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Abstract

The characteristic distribution of a polytope is the functional taking a test function to
its integral over the polytope. The characteristic distributions of the cells in a polyhedral
cell complex K generate a module Mg over the ring D of differential operators with
polynomial coefficients. We describe this module and compute its de Rham cohomology
and various direct images.

A B-spline is a distribution given by integration over the fibers of a projected polytope.
We show that the D-module generated by the B-splines associated to the cells of K is
isomorphic to the D-module direct image of My under the given projection, given a

certain mild condition on K.

Sammanfatning

Den karakteristiska distributionen 5 till ett polyhedralt cellcomplex K genererar en
D-modul Mg. Vi ger en beskrivning av modulen, och visar ett sammanhang mellan di-
rekta bilder av modulen under projektionsavbildningar och vissa sakallade B-splines.
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1 Introduction

Multivariate B-splines are as functions given by projecting a (usually convex) polytope
in R™ to a lower-dimensional linear subspace, and integrating over the fibers of this
projection. In terms of distributions, this is a direct image (under the projection) of
the characteristic distribution of the polytope, given by integration over the polytope.
In this work, we replace the polytope by the polyhedral cell complex K it defines, and
describe the D-module My generated by the characteristic distributions of all the cells.
The main result is that under fairly nice conditions, the D-module direct image of this
module under a projection R™ — R?® is isomorphic to the D-module Sk generated by
the associated B-splines.

This provides a concrete worked-out example of a D-module direct image, of which
the existing corpus of D-module theory is somewhat short. Some generalisations to more
complicated settings than polyhedral cell complexes are within easy reach, but are not
pursued in this work.

Some good sources for the basic properties of multivariate B-splines are [DCP06],
[DBHS82| and [CLR&7|. A good introductory source for modules over the Weyl algebra
is [Cou95|, more comprehensive treatments of D-modules in the full context of derived
categories of sheaves are given in [BT87|, [Mal93], [Dim04] and [Bj3]. We tangentially
touch the subject of currents in Section 4, the best source here is [Dem(9].

1.1 Notation and terminology

The Weyl algebra is the ring of differential operators with polynomial coefficients on the
space C™. It is freely generated as a C-algebra by variables x;, 0;, subject to the relations
that [0;,0;] = [z, 2;] = [05,x;] = 0 for @ # j; and [0;, x;] = 1 (where [—, —] denotes the
commutator as usual). In particular, one has [0;, f] = % for any polynomial f. One
uses the same name for the corresponding ring on C*, and one says the Weyl algebra in
m wvariables (say) if one wishes to specify. As this ring is not commutative, one must
distinguish between left and right modules; as is traditional, we will consider only left
modules in this text (although a few bimodules do appear).

A distribution (on a subset of a manifold) is an (R- or C- valued) functional that
operates on the space of (compactly supported) test functions by § : ¢ — 6(¢). A ring of
differential operators (e.g. the Weyl algebra) acts on a distribution ¢ by

(p(@)0” - 6)(6) = & ((~D)lo*(p(x) - 0)) .

We will use the following conventions in this article: The Weyl algebra will be denoted
W, or if it is important which space it is associated to, Dx, Dy etc. We let Ox,Dx



and Cx, respectively, denote the sheaves of regular functions, differential operators and
locally constant C-valued functions on X. The differential operator 7 will be denoted
0;, or O, if necessary. For a vector v € R™, we denote by 0, the directional derivative
> (v|e;)0;. Standard multiindex notation will be employed.

R™ is as usual, with (-|-) denoting the standard inner product. We will consider various
(linear) maps m : R™ — R® and their complexification 7 : C™ — C?*, and denote
X :=C" Y :=C?® etc., and write 7 : X — Y. In the simple case that « is the projection
on the first s coordinates, we implicitly choose a splitting and write 7 : X =Y x Z — Y.
Correspondingly, we use the shorthand C[X]| := Clxy,..., 2] etc., for the polynomial

ring in m variables, and in general C[H] := I'(H, (’)%g) for an affine subspace H C X.
Throughout the text, m, s are reserved to mean dim(X),dim(Y"), respectively.

A ‘polyhedral complex’ or ‘polyhedral complex in R™’ means a ‘finite polyhedral cell
complex embedded in R™’ that is, a collection of polyhedral cells in R™ such that
the intersection of two is a face of either. When we write e.g. K, we mean K C R™,
considered as a subspace. We will thus consider two such complexes to be isomorphic
if there is some affine coordinate change that takes one to the other. In particular, the
‘standard m-simplex’ is the convex hull in R™ of the coordinate vectors {e; }1<i<m and
the origin. Note that we do not in general require anything to be convex.

For a subset S C R™ or in C™, we let I(S) denote the ideal in C[z1, ..., x| associated
to its Zariski closure. We also let Hg denote its affine hull, which in the case that S C
C™ is defined by linear equations is the same as the Zariski closure of S, that is, here

I(Hs) = I(S).



2 The characteristic distribution

Definition 2.1. Given a measurable subset o C R™, the characteristic distribution on
o, denoted by ¢, is given by
o[ 1
g

for any suitable (i.e. compactly supported or swiftly decreasing) test function f, and
where [ denotes the (dim o)-dimensional integral with respect to the standard measure.
It has a left action by the Weyl algebra W, given by

p(2)0" / ;= / (=110 (p(x) )

where p(z) is some polynomial, and « € Z™ is a multiindex, with |o| = )", o; as usual.

An interesting case is when o C R™ is a polyhedral body, with facets ¢; and outward
unit normal vectors n; (where by outward we mean pointing outward when considering
o as lying in its affine hull H,). We will more generally consider a finite polyhedral cell
complex K = |J, - o, where the o are the cells of K; and the intersection of two cells is
a face of either. Throughout the document, whenever we write “o C K”, we are implicitly
saying that o is a cell in K. For technical reasons we will require that K is closed in R™,
but we do not in general require it to be convex or compact.

Here, and onward, we adopt the notational convention that when o is some face or cell
(or union of such) of K, 0, is denoted by dgenerators for I(o); ©-&- 0 the standard 3-simplex,
for the facet that lies in the y — z-plane we write d,, for the diagonal facet 6,4y4.—1, for
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Figure 2.1: A cell o with facets and normal vectors; sitting in the cell complex K.



the face on the z-axis 6, etc. We will also be sloppy and refer to the distribution of a
face or cell of K as a ‘face/cell of i’ or even a ‘face/cell of K’ when no confusion is
likely to arise.

For any cell o C K, one has the following relations between d, and its facets d,;, which
we call the standard relations.

Proposition 2.2 (Standard relations). (i) If dim(o) > 0, then for any directional
deriwative 0, where v is a vector tangent to H, (the affine flat spanned by o),
we have

0y 05 = — Y _(v[ni)s,,
(2

and

(it) for any p € I(0), we have
p-d, =0.

As o is a polyhedral body, H, is an affine space defined by m — dim(o) equations
of degree 1, and the corresponding polynomials generate 1(o).

Proof. (i) is Stokes’ theorem, applied to o.

(i) is obvious, and it follows immediately by definition. To find the action of z; on J,
simply evaluate it in k[X]/I(0), e.g. if I(0) = (x; —p(x)) (where p(x) will be some linear
polynomial in the other variables), we have x; - 6, = p(x)d,-. O

Lemma 2.3. For any cell o, m of the standard relations suffice to generate all of them.

Proof. The relations of the type 2.2(i) are generated by a spanning set of the tangent
space of H,, which is dim(o)-dimensional. The relations of type 2.2(i7) are generated by
a generating set for I(H,), and as H, is defined by m — dim(o) equations, it suffices to
have dim(o) + m — dim(c) = m standard relations to generate all of them. O

Example 2.4. Let K be a single point p = (p1,...,pm). Then éxg = 6, the Dirac
distribution on that point. It is annihilated by any form (x; — p;). Indeed, I(p) = (z1 —
Pl,-..,Tm — Pm). In this case, there are no standard relations given by differentials, as
H),, is zero-dimensional and has no tangents.

Example 2.5. Let K = [0,1]" C R™. Then 9,05 = dz; — 0z,—1, S0 0 is annihilated by
any element on the form x;(x; — 1)0;.

Example 2.6. Let K = Ay C R? be the standard 2-simplex. In this case, 9;0x =
Oz, — %(511_%2_1, and one sample annihilator of da, is x;(z1 + x2 — 1)0;.

Remark 2.7 (Topology). Above, we made the requirement that K be closed. This is
because we wish to connect the relations between the d, to the geometry of K, and in
order for this to work, we must require that K be closed. An example is that djg 1,00 1)
and §(g,1) are all the same distribution (on R), even though [0, 1],[0,1) and (0, 1) are very
different topologically.



10 CHAPTER 2. THE CHARACTERISTIC DISTRIBUTION

We can note from the standard relations 2.2 that the 9;’s act on J, like a topological
boundary map, in the sense that the result of applying 0, to dx is, informally, ‘what K
looks like when viewed in the direction v’ or ‘the boundary in the v direction’. We will
see later, in 4.6, that the 9;’s in a very precise sense act like a simplicial boundary map.



3 The module My

We can consider all of this taking place in the W-module
Mg =W - {5U|U C K},

the module generated by the characteristic distributions of all the cells of K. In the
sequel, this is the module we will work with.

Let us note right away that Mg does mot uniquely determine K. In general, the
annihilator ideal in W of a distribution g annihilates many other distributions. This is
of no greater concern for us, however, as we are mainly concerned with what features of
K are applicable to M.

Proposition 3.1. My is a quotient of the free module generated by the cells of K, by
the ideal generated by the standard relations given in Proposition 2.2. Letting ¢ be the
number of cells in K, there is by Lemma 2.3 a total of m - ¢ relations generating this
ideal, and hence there is a canonical presentation

W™e 5 W —» My,
where the last map is given by Y Do - (0) = D,k Polo-
We postpone the proof of this until section 3.2.

Example 3.2 (The 1-simplex). Consider the standard 1-simplex in R, i.e. the closed unit
interval I = [0,1]. My is generated by three simplices, o7,y and 01, with the relations
007 = 09 — 01, x99 = 0 and (x — 1)d; = 0. The canonical presentation is therefore

Oy —1 1
0 x 0
0 0 rz—1
w3 —>( ) W3 — Mj.

We note that the multiplication is from the right, so as to make the quotient a left
W-module.

Given that K is a polyhedral cell complex, we would like to describe the module My in
terms of the modules of the cells of K and so preserve some of its cell complex structure.
Some such results come easily:

Proposition 3.3. If K C L is a subcomplez, closed in L, then Mg C My, is a submodule.
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Proof. Considering that the cells of K are also cells of L, and that because K is closed
in L the relations between the generators d, of My are also relations between generators
in L, it is clear that we have a diagram with exact rows:

W' —— WK —))MK

L

WL Wt My,

where rk, sk are the number of cells and standard relations (resp.) of Mg, and vice versa
for My; it is clear that the map My — My, is an injection. O

Proposition 3.4. If K’ is a subdivision of K, there exists a canonical injective map
MK — MK/.

Proof. Characteristic distributions have the property that if K, L C R™ are of equal
dimension and K N L has dimension strictly less than dim(K), then dxur = dx + dr.
Using this, we can just take the map that sends a simplex é7, to the sum of the simplices
that subdivide it. O

Example 3.5. To subdivide [0, 2] into [0, 1] Uy [1,2], we send g 9) to djg,1) + d[1,9) and
the relation <815[072] —0p+ 09 = 0) to <@x5[0’1} — 0o+, = 0> + (015[172] —01+09 = 0>. The
points &g, 62 and their relations (zdy = 0),((z — 2)d2 = 0) (in Mg g)) are sent to oy, d2 and
(20 = 0),((z — 2)d2 = 0) (in Mg 1)u,(1,2))-

Proposition 3.6. If K and L are glued along a subcomplex F, we have Mgy, ~
My ©yp My,

Proof. By considering the generators we see that Mp is a submodule of both Mg and
My, so we can take the pushout of the two inclusions and be done. The crucial part
is observing that both the generators and their relations are matched correctly, which
is obvious if one writes out the presentations W™ — W?* — My for all the involved
modules, along with their inclusions into eachother. O

Example 3.7. Consider the gluing [0, 1] U; [1,2]. We know from Example 2.5 that in
general M|, ;) has generators dy, ), 44, 0y, and relations 9;0(q 5 = 64 — p, (¥ —a)d, = 0 and
(z — )dp = 0. The module Mg 1ju,[1,2) has generators djg 1], d[1,2), 00,01, 92 and the same
relations, as appropriate. Gluing M| 1) and M[; 5) along 41 simply amounts to saying that
the 01’s appearing in each module is in fact the same.

3.1 The support of My

Given that Mk is a module over the complex Weyl algebra, it is worth taking a moment
to think about what the support of Mg in C™ looks like, and to take advantage of any
structure it has.
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Figure 3.1: The cell complex K and the associated affine space arrangement K.

Definition 3.8. Recall from 1.1 that for any cell o C R™, we let H, denote its affine
hull Z(I(o)) in C™. This is a complex variety of degree one and dimension dim(o).

Now, define
K=|JH,
ocCK

with the union taken over the cells of K. This is an arrangement of affine spaces in
C™. Note that if K is pure dimensional of dimension m, this is in fact a hyperplane
arrangement.

We can stratify this by dimension of o:

Definition 3.9 (The skeleton stratification). Consider the arrangement K in C™. The
skeleton stratification, denoted S, is defined by

K<= |J H.,
dim(o)<i
and the strata are

Si=K<i\ Keio

One notable feature of the arrangement K is that not all the components of the strata
correspond to a cell of K. That is, we may have cells o, 7 with N7 = (), but H, NH, # 0.
These ’excess’ intersections do not cause any problems, as we will see.

Definition 3.10. Let Mg be the sheaf associated to Mg (considered as a C[X]-module)
on C™. This has a natural structure as Dx-module.

The sections of M are determined by the arrangement K:

Proposition 3.11. Over an open set U C C™, the sections My (U) are generated by
those 0, such that Hy NU # (.



14 3.2 The skeleton filtration

Figure 3.2: Thick lines/points are K, thin lines are I?, extra intersection point shown in
gray.

Proof. Localizing Mg at some point p € C™ has the effect of killing those §, that are

not supported at p, explicitly if p ¢ H,, and g(z) - 6o = 0, then in the localization,
0y = %50 = Tlx)q(x) -0, = 0. Also, the relations are modified accordingly.

By definition (see e.g. [Har77, IL.5]), the sections over an open U are those functions
s : U — [],ep(MK)p such that s(p) € (Mk), and that are locally a fraction m/f with
m € Mg and f € C[X]. Here, m = ) _ps(x,0)d,, and those d, that appear can be only
those that are not killed by localization at some point of U. These are exactly those such

that H, N U # 0. O

We now see that the extra intersections we get when passing from K to K cause no
real trouble, as there are no generators that correspond to any extra intersection.

Example 3.12. Let K C R? be the union of the line segments o7 = [(1,0), (2,0)] and
o2 = [(0,1),(0,2)]. Then K is the zero-set of 129, and the origin appears as an extra
point in the arrangement (see 3.2).

By the standard relations and 3.1, M is generated by 4, , 5,, and d(, ) for the points
(1,0),(2,0),(0,1) and (0,2). The standard relations give that Oy, 0o, = d(1,0) — (2,0 and
7205, = 0 (and similarly for d,,), and (1 — p)dpq) = (T2 — q)d(pq) = O for the given
points.

Localizing this at the origin, we see that the vertices (1,0),(2,0),(0,1) and (0,2)
disappear, indeed 4, o) = %5(},,@ = #_p(wl —P)d(p,q) = 0 etc., as x1 — p is invertible
in the localisation. What remains is the generators d,,, ds,, with the relations 0,05, =
0,265, = 0 for i # j, so the module does not see the extra intersection point. There are
no relations between d,, and J,, in the localisation, so the localised module is a direct
sum.

As C™ is affine, the categories of W-modules and of Dem-modules are equivalent; all
the results for My will also hold for M . We will not have any further use for Mg and
will work only with My for the remainder.

3.2 The skeleton filtration

Associated to the skeleton stratification is a natural filtration on Mp:
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Definition 3.13 (Skeleton filtration). Let F?M be the submodule of My generated
by those 0, with dim(o) < i. These submodules form a filtration

FOMg ¢ F*Mg € --- C F™ 'Myx € F™" Mg = My
which we call the skeleton filtration.

Thus, FOMp is generated by the vertices of My, F' My by the vertices and 1-cells,
etc.

Proposition 3.14. Let ¢ : H, — X be the inclusion map. The filtration quotients
Q= FkMK/Fk_lMK are semisimple, with summands 1somorphic to the direct image
under the inclusion i C[H,|, one for each k-cell o C K.

Remark 3.15. See Section 5 for definitions of the direct image functors i(}r, (.

Proof. Tt is clear that @y is generated by the (classes of the) k-cells, namely Qp =
S"W - 8,. We must show two things: that W - § is of the given form, and that the sum
is direct.

We may assume by choosing coordinates appropriately that H, is the affine flat 1 —
Pkl = - = Tm—Pm = 0. From the standard relations given in Proposition 2.2, it follows
that o

06, =0, j<k
(l’j _pj)ég =0, 5> k.

Indeed, we have 9, - 0, = }_;(v|n;)ds; for v parallel to H,, and in the quotient the

right-hand side disappears, so we are left with 9,0, = 0.
The existence of these relations implies that there is a surjective map

O C[H,] — W -5,

and as the first module is simple by Kashiwara’s Theorem (|Mal93, IV]), this is an
isomorphism unless W - 8, is the zero module. It is not, as 6, = 0 would imply that d, is
some linear combination of distributions with support on lower-dimensional cells, which
cannot be true as their supports have different dimension.

For directness of the sum, the only obstruction is that there might be relations between
cells of the same dimension. For some cells o, 7; of the same dimension, we could have
p(z,0)6, =Y. p;(x, 8)5Tj, with p nonzero and not all p; zero. This is impossible, however,
because the E all have disjoint supports, and acting by an operator p(x,d) can never
expand the support of a distribution, only restrict it ([H690, 3.1.1]). Thus, for some test
function f with support strictly contained in the interior of o, the right-hand side is zero
and the left-hand side is non-zero, so the equality cannot hold. ]

We have actually proved a little more:

Proposition 3.16. The modules W - 5y, and W -8, are isomorphic, and also simple.
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Proof. It follows from the proof of 3.14 that the module W -6, is simple, being isomorphic
to the simple module z'S)r(C[HU]. The generator 0, obeys the same relations as dy,, as the
facets d,, of 0, are killed in the quotient. We now have W - 0 ~ W - dm, and the claim
follows. (]

Remark 3.17. Proposition 3.14 gives us a very useful tool for calculation: the quotient
summands W - §, are each, for a suitable choice of coordinates z; (depending on o),
isomorphic to the module Clz1, ..., &k, Opi1, - -, Om] = W/ Dok W-0i+ Y jcicm Wi =
i} C[H,] (see [B*87, V.3]). Here z;,d; have the natural actions induced in the quotient.

We are now equipped to give a proof of Proposition 3.1.

Proof of Proposition 3.1. We want to show the exactness of W™ — W¢ — My, where ¢
is the number of cells in K, r = m - ¢, the map W™ — W€ is given by the relations from
Proposition 2.2, and the map W¢ — My makes the appropriate identifications.

Let us first define the maps properly. We label the generators of W¢ by the cells of K
— so that W€ is freely generated by generators g, — for all the ¢ C K, and let the map
W€ — Mg be given by g, — 6.

We give a corresponding labelling on the generators of W, by the standard relations
from Proposition 2.2. By Lemma 2.3, there is for each ¢ C K a total of m generators
for the standard relations. We can write each of these as some W-linear combination
P7(05,...,00,) =0, e.8. 0y-05+> ,;(v|n;)ds, = 0 for some v tangent to H,, or (>, ajz;—
d)ds = 0 for some generator (>, a;xz;—d) of I(H,). We now let W be freely generated by
generators rpo, one for each generating standard relation, and define the map W' — W¢
by rpe — P7(go, .-, go,)-

The skeleton filtration on M induces filtrations on W¢ and W, in both cases by
dimension of o: F/"W¢ and F"'W" are generated, respectively, by those g, and rps with
dim(o) < i. We can immediately observe that both maps respect the filtration.

The map W¢ — M is clearly surjective, what remains is exactness in the middle. We
can check this by passing to the associated graded modules of the skeleton filtration and
checking exactness of the sequence

gr(W") — gr(We) — gr(Mr).

This reduces to checking the direct summands of the filtration quotients.
For a quotient summand W - ¢, ~ Clz1, ..., Tk, k11, - - -, Om|, the sequence is

0
O
Tk+1

Tm

The cokernel of the first map is W/(3_, <, W - 0; + >, W - 2;), and this is clearly
isomorphic to Clx1,. .., 2Zx, Ops1, .-+, Om] = W - 5. O
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Proposition 3.14 also gives us the following, almost for free:
Proposition 3.18. My is holonomic.

Proof. 1t suffices to check the filtration quotients in the skeleton filtration, which reduces
to checking the direct summands. The summands for My are by 3.14 isomorphic to
i9.C[H,]. C[H,] is holonomic, and since the functor i preserves holonomicity, (see [BT87,
VII.12]), we are done. O



4 De Rham cohomology of My

We can also use the skeleton filtration to calculate the de Rham cohomology of M. We
recall first the definitions, and here we follow the conventions of [Mal93|:

Definition 4.1. The de Rham complex DRx (M) (or DR(M) for short) of a left W-
module M is the complex Q° ®c(x] M[m], that is,

0—>M—>Ql®(c[X]M—>...—>Qm®C[X]M,

graded such that Q° ® M has degree i —m, so e.g. M has degree —m and Q™ ® M has
degree 0. The differential is given by the exterior derivative,

d(w®m):dw®m+2da:i/\w®8im

2

or equivalently
d(dz; ®@m) =Y dz; Adxr @ 0ym
j

which suggests as a shorthand d =), dx; ® 0;.
The de Rham cohomology H};p(M,C) of M is the cohomology of this complex.

Remark 4.2. We remark that this can be stated in terms of the derived category (of
vector spaces or Cx-modules, respectively): we can define DR(M) = Q™ ®% M, and this
will be equivalent to the above definition (see [Mal93, 1.2] for details). DR can be viewed
as a functor from the bounded derived category of W-modules to the bounded derived
category of C-vector spaces, see [Dim04, 5.3] for details.

We wish to use the skeleton filtration to compute the cohomology of My, and to do
this we start with the filtration quotients @, which reduces to their summands.

Remark 4.3. For ease of terminology, we make a minor deviation from our context of
distributions and W-modules into the realm of currents, for which the best source is
[Dem09]. Currents are (in one equivalent formulation) differential forms with distribution
coefficients, and the generators that will appear in our de Rham complexes can be viewed
as currents. In computing with the skeleton filtration quotients, we will encounter a
generator of the form 6, ® dxj4q A ... A dz,, (where we have chosen coordinates such
that H, is parallel to the flat 1 = --- = z;, = 0). Viewed as a current, this is nothing
other than the current of integration over H, (in Demailly’s notation [H,], see [Dem09,
(2.4),(2.9)]) because §, is isomorphic to dz, (by 3.16). It should be clear (again from
3.16) that the [H,| that appears in the quotient DR(Q)) comes from [o] (the current of
integration over o) in DR(Mf).
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We can act on currents with differential operators, by acting on the distribution coef-
ficients. That is, if p(x,0) € W, §; are distributions and w; are k-forms, we have

p(l‘, 6) : Zézwz = Z(p(x7a) : 6z)wz
The notation [o] will also be used later to refer to the singular homology class of o, an

overloading of notation we permit ourselves to commit as it should not cause any real
confusion.

Lemma 4.4. The de Rham cohomology of W -6, is C' in degree —k, zero otherwise. In
the derived category, DR(W - 6,) is isomorphic to the one-term complex that has C-[H,|
i degree —k.

Proof. We can by 3.17 replace W - 6, by i.C[H,]. Choosing coordinates and using the
decomposition Clxy, ..., 2k, Okt+1,---,0m] =~ Clx1] @ -+ @ C[0p,], we can express the de
Rham complex of i,C[H,]| as a tensor product of m complexes, k of the form

0 — Clzy] L\ Clx;|dz; — 0

for 1 <i < k; and m — k of the form

0 — C[9;] & Clo;)de; — 0

for k < 7 < m (see [Wei94, 4.5] and [DCP10, 10.1]). Recall that our degree convention
means that these are complexes with first non-zero term in degree -1 and second term in
degree 0.

The first k£ of these m maps are surjective, and the last m — k are injective. It is
obvious that respectively the inclusion of the kernel in degree -1 and the projection on
the cokernel in degree () are quasi-isomorphisms, which means that we have k complexes
quasi-isomorphic to the single-term complex with C in degree -1, and m — k quasi-
isomorphic to a complex of the form Cdz; in degree zero. Their tensor product is the
de Rham complex of Clx1,..., 2k, Oki1,-..,0n], which is then quasi-isomorphic to the
complex Cdxyiq A --- A dx,, concentrated in degree —k. Recalling that we are really
working with W - 6,, this is C - §,dzpq1 A -+ A dxy, or (by 4.3) C - [H,].

We have even more: the inclusion

is a quasi-isomorphism, but so is
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.0,
and the same for (C[9;] = C[9;]dx;) < (0 — Cdx;), mutatis mutandis. Combining these
we get two explicit quasi-isomorphisms

Cdxgsr A - ANdxy, < DR((C[.I‘l, ey Tl Okt 1,y e - ,8m]),

one given by the inclusion, and one by the projection x;,0; — 0,dz; — 0 for j > k;
moreover one is a section of the other (this fact is not immediately useful, but it is nice
to know anyway). O]

Corollary 4.5. H};,(Qy,C) has dimension equal to the number of k-simplices in degree
—k, and zero otherwise. In the derived category, DR(Qy) is isomorphic in the derived
category to the one-term complezr Q™ F @ C* = @dim(a):k(c - [Hy|, concentrated in
degree k — m, where ay is the number of k-cells in K.

Theorem 4.6. The de Rham cohomology of My (with coefficients in C) is isomorphic
to the Borel-Moore homology of K. In the derived category of vector spaces, DR(Mf) is
isomorphic to the singular homology chain complex CEM (K, C).

Remark 4.7. As Borel-Moore homology is isomorphic to singular homology for compact
spaces, we note that for compact K, we have DR(Mg) ~ C¢" (K, C).

Proof. We use the spectral sequence associated to the skeleton filtration. The Ey page
is then the de Rham complexes of the filtration quotients Qy, E5? = Q™ Pt ® Q_, (to
match our degree convention for the de Rham complex):

T

Q'@ Qm Q% ® Qm-1 Q@ Q2

Td d d
Qm Q' ® Qm—1 Q% ® Qm—2

d d
Qm—l Ql X Qm—2

d

Qm—2

Here, the term @y, is in position (—m,0), the term @Q,,—1 in position (1 —m,—1) etc.
The E; page is given by

EPY = Hyp "7 (Q-yp),
and from Proposition 4.5 we have that EV'? is Q™% @ C% for p = k,q = 0 and zero
otherwise, where again aj is the number of k-cells in K. Thus, the £y page consists of a
single complex

0— C* — Q' @cpx) C* ! — - = Q"7 ¢y € — Q™ B¢px) C — 0.
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We must now examine what the differential is. It suffices to check what happens to a
single generator [0] = dx;, ® 05, assuming suitable coordinates.

k
d(dzy, ® 65) = Y da; A dxr, @ 00,
=1

k
== > (eilny)dz; A dxy, @ 5,,

ilj

= —Z Zel|n] Ydx; Ndxg, ®5
=1

:_Zd Zez|n3 )/\dm10®ffj
J i=1

= —Zd (nj) Adzg, ® 6y,
J

We see that the generator corresponding to ¢, is sent to the sum of the generators
corresponding to the boundary cells d,,. Using the language of currents, this could be
seen directly from the fact that d[o] = £[do] ([Dem09, (2.7)]). Note that each generator
[o] has closed support; d thus corresponds to the boundary maps for chains of closed
support, i.e. the Borel-Moore homology boundary map, and we are done.

The claim about isomorphism in the derived category is straightforward: the inclusion
CBM(K) — DR(Mf) given by sending the homology class [0] to the current [o] is

a quasi-isomorphism (because d[o| = [0c]), and even more: the map P : DR(Mg) —
CBM(K) given in degree —k by

P(p(z, O)w) = {p(O) [o] if w=[o] for some o with dim(o) =k,

0 otherwise

is a chain map:
0 fa=p8=0
o(P(a*0%[o))) = {0["] o

(letting O denote the differential in CBM (K')) and choosing suitable coordinates as before,

P(d(dz, ® 2°0%5,)) = P(Y_ dw; Adxy, ® 0;(x*0%,))

= P(Z dx; Ndxr, ® (:co‘ﬁﬂ@ida + Z aiwafliaﬁég)
i<k i
+ Z dzx; Ndxy, ® (xaaﬁﬂiéa)) = P(Z dr; Ndxp, ® maﬁﬂaﬁg)
>k i<k
_ ) P(dlo]) =0lo] ifa=p=0
o if a, B8 #0,
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and is a quasi-isomorphism as it is the identity on homology. Moreover, the inclusion is a
section of P (again, this is of no particular use to us, but we mention it for completeness).
O

Example 4.8 (The standard 2-simplex). Let us run through the whole calculation.
We have one 2-simplex, da, three 1-simplices d,,0, and d,4,—1, and three O-simplices
90,0)O(1.0) and d(0,1).

First, we recall what the simplicial homology complex looks like. Let us give the
simplices names corresponding to the generators for Mg, e.g. o, is the simplex cor-
responding to d, etc. For the orientation (0,1) < (0,0) < (1,0), the boundary maps
are given by 0A = 0, — 0yyy—1 + 0y, 00z = 0(10) — 0(0,0), Doy = 000y — O(0,1) and
00z 4y—1 = 0(1,0) — 0(0,1)- The complex then becomes

1 -1 1 0
1 0o -1 -1
1 —1 3 1 0 1 3
C(A) — C(oz,0y,004y-1) — C(0(0,0): 71,0y, 7(0,1))

Asin 3.17, we can write each skeleton quotient summand of Mg as follows, for suitable
coordinates u, v: the 2-simplex as C[u, v]da, the 1-simplices as dv ® C[u, 8,]0y—y,;, and the
0-simplices as du A dv ® C[0,, 0, ]5pj, with appropriate actions. Taking cohomology and
keeping track of the dx’s and dy’s, we get the complex

C-&i@dw@@@@-dy@@@@-d’”jg’y®5$+y_1

i(C-d[l?/\dy®5(070)@C'd%/\diij@é(l’g)@C'd.@/\d?j@é(oyl)

Now it is simple to see what the differentials are, just apply d = >, dx; ® 0; to the
generators and keep track of where to go regarding dx and dy. We’ll first take da:

d(0p) = (dz ® 0y + dy ® 9y)0n
= dz ® 9,6a + dy ® 0y0a

1 -
=dz® (0, — %550-@—1) +dy ® (0y — %‘iﬁ-y—l)

=dz® 0, +dy ® by — (dz + dy) ® F5004y—1
=dz ® 0y +dy ® 8y — d(* ) ® Saiy—1

This corresponds exactly to the topological boundary map. as we can see that d is sent
to the sum of its boundary simplices d(ny) ® 0.
Further, we have

d(dx ©5,) = (dx ® 9, + dy @ d,)dx @ 5,
=dx N\ dx ® 0,0, + dy A dz ® 9,0,
= dy Adz ® (3(0,0) — 9(0,1))
= dz Ady @ (0,1) — 0(0,0))
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and similarly B
d(dy @ 0y) = dx AN dy @ (6(0,0) — 0(1,0))-

T—y

To get d(d(%)) ® 0z4y—1) we apply the coordinate change u = v = A

d(%) ® Opqy—1 =dv® 5%%, and d = du ® 0, + dv ® 0,. We now get

ddv® 0, 1) =duNdu® dyo,_ 1
V]

S

which is, in the original coordinates,

d(Z2) N (") © (0n = 0y)0a4y—1 = dz A dy @ (50,1) — 0(1,0))-

V2 V2

Suppressing now the generators, we assemble this into the complex

1 -1 1 0
1 0 -1 -1
-1 1 0 1
— 3 C3 —

which we recognize as the singular homology complex of As above.

C! c3

T+y

SO



5 Direct images under linear maps

For a polynomial map 7 : C™ — C*® (which we denote as w : X — Y'), thereis a direct
image functor 7, : D?(Dx) — D®(Dy) from the (bounded) derived category of Dx-
modules to the (bounded) derived category of Dy-modules. It is defined by

7 M :=Dy_x ®p, M

for a left Dx-module M, where Dy . x is a so-called ‘transfer module’ defined in terms
of Dx and Dy, which is a left Dy-module and a right Dx-module. The definitions are
somewhat involved, so we leave the details to [B*87| (chapter V.3 in particular), and
restrict ourselves to quoting the parts we are interested in.

In particular, we will focus on the zeroth-level part 7r3_, which is a functor from Dx-
modules to Dy-modules; 7y is the left derived functor of 7%. We can define 79 by
7r9rM = Dy x ®py, M, that is, the ordinary tensor product of modules rather than the
derived tensor product of complexes.

Because our K is defined by linear equations, and we wish to preserve this feature,
we must restrict our treatment to linear maps m : X — Y. Any linear map can be
decomposed as an inclusion followed by a projection, so we need only consider these
cases. Furthermore, as K is intrinsically a real object, we will tacitly assume whenever
necessary that m is the complexification of a map 7 : R”™ — R®. For technical reasons,
we will also always assume that the fibers 771 (x) N K of this map are compact.

Proposition 5.1. Let i : X — Y be an inclusion. Then, i(_)FMK ~ Mk, where i(K) is
simply K considered as lying in Y.

Proof. This is really a consequence of Kashiwara’s Theorem (see [Mal93, IV]), which
states that ¢ is an equivalence of categories between the categories of Dx-modules, and
Dy-modules with support in i(X).

Indeed, we may assume i is the inclusion on the first m coordinates, (z1,...,zy) —
(1,...,Tm,0,...,0), that is, we embed X as the subspace z;, 41 = -+ = x5 = 0. In
this case, the transfer module Dy . x is isomorphic to Dy / Zf:m_H Dy - x;, with the
natural left Dy-module structure; and the right Dx-module structure given by letting x;
and 0,, act by multiplication with z; and —0,,, respectively (see [B*87, V.3.3.3]). This
gives us that i(}rMK is Dy / Ef:m_H Dy - z; ®p, M. This amounts to adding variables
xj,0;j for j > m, and because the variables z;, x; commute pairwise, the relations that
for j > m, x; kills the generators of i(iMK. These relations are exactly the additional
information we need to describe i(K) in Y, indeed I(H;g)) = [(Hg) + (Zm1, - - -, Ts)
(considering here C[X] as a subring of C[Y]). The other relations are unchanged. O
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Next up is the case of isomorphisms. This next result is in some sense trivial, as it is
obvious that ¢3MK is isomorphic to My gy when ¢ is a linear isomorphism, but for the
purpose of enabling explicit calculations in the case of projections, we work out what
exactly happens to the generators. Later we will compute WﬁMK when 7 is a projection
on the first coordinates of the ambient space, and precomposing with an isomorphism
gives us any general projection.

Proposition 5.2. Let ¢ : X — Y be a linear isomorphism. (;50+MK 15 1somorphic to the
module generated by the distributions | det(¢|m, )| 0p(r). Here, we mean by ¢|p, : Hy —
¢(Hy) the restriction to the subspaces Hy,, p(H,) with the measures induced from X and
Y, respectively.

Proof. By [BT87, V.3.3.5], for a linear isomorphism ¢, the transfer module Dy. x is
isomorphic to Dx with the usual right Dx-structure and the left Dy-structure given
by letting y; act by multiplication with ¢;(z), and letting 0,, act by multiplication with
ZJ’ %%.

As this is a coordinate change, it is clear that the generators 5, are of the form CoO¢(a)
for some scaling factor ¢, € R, depending on ¢. Now, by the usual change of variables
formula, 4(,)(f) = [det #|u, |- d5(f o @) for some test function f supported on ¢(o). As

0, must satisfy the same relations as d,, expressed in the new coordinates, we must have
that

05 (f) = Colo(o) (f) = ol det ¢, |05 (f © ),
which implies ¢, = |det ¢|p, |71 O

Example 5.3. Consider the standard 2-simplex Ay C R? and the linear isomorphism

¢ given by the matrix ¢ = ((2) (1)

O0r,0n, = Opy — %&Cﬁm,l and 0y,0n, = 0z — %&Cﬁm,l. The image ¢(Asg) has

). As we already know, da, satisfies the relations

relations 0y, 5¢(A2) = Oy, — %5y1+2y2_1 and Oy,0a, = 0y, — %6y1+2y2_1.

In the direct image, we have 8y1@ = 8y1(%5¢(A2)) = 2(8y, — %5y1+2y2_1) = %(5/5,;\1 -

%%5y1+2y2_1) = 1(0q, — %&Cﬁ@_l) etc. Note that ¢% Mg in this presentation is not
equal to My k), but they are isomorphic by rescaling of generators.

Finally comes the case of projections. From here on, 7 : X — Y will always be a
projection. If 7 is the projection on the subspace spanned by the first s variables, the
transfer module Dy x is isomorphic to DX/Z]'>5 0;Dx, with the natural left Dy-
structure (induced by considering Dy as a subring of Dy) and the right Dx-structure
given by letting x;, 05, act by multiplication with x;, —0,,, respectively. It follows that

nl M~ M/ 9;M. (%)
7>s

In fact, we can say what 74 M is too, following [Mal93] or [BT87, V,VI| we have that
7+ M ~ DRy /y M, the relative de Rham complex of M, defined below. We only give the
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definition in our case of a projection Y x Z — Y, the general definition of the module of
relative differentials can be found in [Har77, I1.8].

Definition 5.4 (The relative de Rham complex). Let 7 : X =Y x Z — Y be the
projection on the first factor, and denote by & the projection on the last factor Z. The
module of relative differentials Q1xy is defined to be the C[X]-module §*Qz = C[X]®¢|z
Q.

The relative de Rham compler of a Dx-module M with respect to 7 is the complex

DRX/yM = Q;(/Y ®(C[X] M

(where as in the usual de Rham complex (4.1) we write Qé{/y =N\ Qx/y) with differ-
ential dz given by

m—s
dz(dzr @ m) =Y dz Adz @ 0m

i=1
or as a shorthand we can write dz =), dz; ® 0,,. We grade this in a manner similar to
the de Rham complex, so that the final term QTX”/_; ® M has degree zero and the first
term M has degree —(m — s). This is a complex of Dy-modules.

The derived category formulation is to let wy,y = {*wyz (where wz = Q77°), and

define

The definitions for sheaves are completely analogous, and can be found in e.g. [BT87,
VI.5.3].

We will compute WS)rMK for now, and return to the case of 7, M later.

By composing with an isomorphism, it suffices to consider this case. Explicitly, if we
let Y/ denote the orthogonal complement to ker(r) in X, we have X =Y’ x ker(r) and
Y’ ~Y, so we may write

XSy xz%y,

where Z ~ ker(m) and the last map is the orthogonal projection on the first factor.

Definition 5.5. For a cell 0 C K, let v(0) := dim(o) — dim(n (o)) (which is the same
as the dimension of a generic fiber 7=!(z) N K for a point x € int(m(c))). We call v(o)
the fiber dimension of o.

We also extend this notation to the whole complex, and let v(K) = dim(K) —
dim(7(K)). Do note that a complex K can contain cells o with v(o) > v(K).

Proposition 5.6 (Standard relations for 71'3_MK). Let o be a cell in K of top dimension,
with boundary cells o; with outward unit normals n;, and let m: X =Y x Z =Y be the
projection on the first s coordinates. Denote the class of 05 in the direct image ﬂ'gMK by

dg- Then the following relations hold:

(i) Or(2)06 = — > i(m(2)|ni)0,, for any point z in Hy (where O,y := Y (es|m(2))0;),
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(i) >, (v|ni)ds, = 0, for any v € ker(r), and
(ii1) v(0)oy = >, (di — > j<s(ni)jzs) - 84,, where >_j(ni)ju; —d;i = 0 is the defining

equation of Hy,.

(iv) p(x)- 05 =0 for any p(z) € I(Hy(y)).

Proof. For j < s, the action of 0; is unchanged in the quotient (x), which implies (7).
For j > s, 9;0, is zero in the quotient (x): 0 = 9;0, = >_,{ej|ni)d,, and since ker(m) =
(ejli > s), we get (i7).

The affine spans H,, of the boundary cells o; are of course defined by equations

(z|n;) = d; for some constants d;. Now . 0;x;0, = 0, because > _ d;z; is in the ideal

> i>s0iDx. We then get 0 =3, 0;x;0, = > ;o (1 +2;0;)ds, or (using v(o) =m —s)

(m—s)+> 2,05 | 0o = |v(0) + > _2;0; | o = 0.

j>s j>s
Let us expand this:

v(0)h, = =) 0,6,
J>s
= Z%’Z(ey‘lni@i

J>s i

= Y O lejlni)a;)oo,

i J>s

= Z(dZ —(ex|ni)zy — -+ — (es|ni)xs)do,

7

= Z(dl - Z(ni)jxj)émv

i j<s

where the second-to-last equality uses the standard relation (3_;(n;);z; — di)ds, = 0

and we have (ii7). The claim (iv) is of course obvious, it follows by definition that

supp(dy) = 7(supp(d,)) = 7(Hy) = Hr (o). O

Remark 5.7. By an application of Kashiwara’s theorem, the restriction of 7 to H, induces
similar relations for cells o of arbitrary dimension. That is, we consider the map 7|p, :
H, — n(H,), decompose m = pr o ¢ (where ¢ is an isomorphism and pr is a projection
on one factor), and get a description like (k). The application of Kashiwara’s Theorem is
that the relations of d, in Mgnp, are the same as those of 0, in My (and subsequently
their direct images).

Lemma 5.8. For any cell 0 C K, dim(Y) + v(0) + (1 — 6 y(s)) of the relations of 5.6
suffice to generate all of them (here, 8y (o) is the Kronecker delta function).
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Proof. Clearly we can choose for each cell o, a generating set of dim(n (o)) linearly
independent relations of type 5.6(7), and codim(7(c)) linearly independent relations of
type 5.6(iv). This is exactly as in 2.3, and only depends on the support of the generators
0,. Further, as the relations of type 5.6(ii) essentially say that 0,6, = 0 for those v in
the kernel of 7 parallel to o, we can choose v(o) linearly independent ones of these for
each o, to generate all. Finally, there is one relation of type 5.6(éi7) if v(o) # 0 (when
v(o) = 0, both sides of the equation are zero).

Thus, for each cell o C K, there is a total of dim(Y") +v(o) + (1 — g () generating
relations. O

Let us now attempt a description of 7r9rMK with the aid of the above relations. We
would like to introduce a skeleton stratification on 7 (K’), and an associated skeleton
filtration on 7T3_MK as in 3.9 and 3.13, and use these for computations. This cannot
be done directly, because in general m(K) is not a polyhedral cell complex (its cells
can overlap), and so the construction of 3.9 does not work. We can, however, make a
stratification of K, and a filtration on M, that induces a filtration on TrSJrMK that
behaves like the skeleton filtration in all important respects.

Definition 5.9 (The w-skeleton stratification). We let S™ denote the stratification of X
given by
SZ, = U H,
ocCK
dim(7(0))<i

with strata S = Ugim(r(0))=iHo. We call this stratification the w-skeleton stratification.

This induces a filtration on Mg: we let FZ, be the submodule generated by those
6, with dim(7 (o)) < i. These form an ascending filtration Ff C FT, C --- C FZ_, with
filtration quotients QT generated by those d, with dim(7(c)) = 3. We call this filtration
the w-skeleton filtration.

In a natural way, the m-skeleton filtration is passed on to the quotient 7T3_MK:

Definition 5.10. Let FZ,/ be the submodule of 7T3_MK generated by those by with
dim(7 (o)) < i. These form a filtration as above, with filtration quotients QF’ minimally
generated by the classes (in FZ,//FZ, ') of those d, with dim(7 (o)) =i (this claim fol-
lows from considering the support of each generator, only things with equal-dimensional
image can be identified in the direct image). Without fear of overloading the name, we
call this filtration the skeleton filtration on 773_MK.

Let us see how these fit together. We first introduce some notation that will be of use:

Definition 5.11. We let K;, K<; denote the subcomplexes of K given by respectively
K; = Udim(w(a)):z’ o and K<; := Udim(w(a))gi o. Note that K<; is closed in K.

Lemma 5.12. ng ~ MKSk-

Proof. This is obvious by construction. O
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Remark 5.13. Tt follows from that Q7 is generated by generators 6, corresponding to the
cells of K.

Lemma 5.14. The skeleton filtration quotients Q™) of 7T3MK are naturally isomorphic
to the direct images 71'3_@2 of the w-skeleton filtration quotients of My .

Proof. From the definitions of the two filtrations, it follows that we have a surjection
0 : 7T3_F2k — FZ,’ and it is clear that if this map is an isomorphism, we also have

”QC ~ 77_3@};. M(;reover, because F7, ~ Mg_j by 5.13, and K<} is closed in K, we get
by 3.3 a canonical presentation for FZ, that injects into the canonical presentation for
Mpy; and putting this together we have the following commutative diagram:

P
Wre s yse Lo FI T 20 P
. y . [ I Ai x
iy is 7 %
r P S P q 0 L )Fﬂ'/
w W Mk T Mk <

The vertical arrows 4,, is, ¢ are the canonical inclusions, i is the induced map in the direct
image, and ¢ is the inclusion of FZ,” as a submodule in 7r9rMK; P, Py, p, pi. are the maps
in the canonical presentations, and q: Mg — Mg/> 0, Mg ~ WQ_MK (and similar for
qx) is the quotient map from (x).

In particular, we can build from this the diagram

Py ak°PE ()
W Wk T FZ,,
P qop
wr we 79 M

~

where the horizontal maps compose to zero. We wish to show that ker(i) = 0, i.e. that
7Y FZ, is a submodule of 7% Mp; because % = 100 this in turn implies that 0 is an
isomorphism and we are done.

We consider the previous diagram as a double complex, and examine the associated
spectral sequence. Taking the horizontal direction first, we get F to be

ker(Pk) * 0
ker(P) * 0

(where we have marked by # the entries we do not care about); and the sequence stops
with Fs:
0 £ 0 (A)

ker(P)/ ker(Py) * 0
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Taking then the vertical direction first, Fj is

0 0 ker(7)

cok(iy) —2 cok(is) ——2> cok(7)

and finally Ej is

0 0 ker (%) (B)
/
ker(P) * *

We now have from diagram (B) a map f : ker(P) — ker (i), which we know from diagram
(A) has to be surjective, and must have kernel isomorphic to ker(P)/ker(Py). In other
words, we have an exact sequence

0 — ker(P)/ker(P,) — ker(P) — ker(i) — 0 (C)

Now, from the Snake Lemma applied to the diagram

erci_T> Wr —s COk(ir)

ool

Wekl—s /s —— COk(’is)
we get the exact sequence
0 — ker(P;,) — ker(P) — ker(P) — cok(Py) — cok(P) — cok(P) — 0

Recalling that by definition of P, and P, we have cok(Py) ~ FZ, and cok(P) ~ Mk:;
so the map cok(Py) — cok(P) is the inclusion map FZ; — M. This means that the
sequence

0 — ker(Py) — ker(P) — ker(P) — 0
is exact, so ker(P) ~ ker(P)/ker(P;), and from the sequence (C) we see that ker(i) =
0. O
The direct image m @} is intimately connected to the homology of the K} ’s:

Theorem 5.15. The cohomology modules hi(DRX/ng) of DRy ,yQF are semisimple
Dy -modules, with summands isomorphic to Dy - 0y, for o € K. For hi(DRX/yQZ),

the number of such summands is equal to dim Hg_]‘,f(Kk, C).
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Proof. We recall our convention that X =Y x Z, with 7 the projection on Y. We will
(begin to) compute the relative de Rham complex by means of the skeleton filtration
(3.13) on Kj. We can express each skeleton filtration quotient summand Dy - 6, as
a module Cly1,...,0y,,21,...,0,_.] by choosing suitable coordinates, in the following

manner. We choose the y; such that

Dy - 6x(0) = Cly1, - - -, Yaim(n(0))> Ovatim(m(on 417 - - - + O]

in the same way as in 3.17. Similarly, we choose the z; such that for a generic fiber
F :=n"Y(p) N & (where p € int(n(0)) is some point), we have, also as in 3.17, that

Dy -0p ~Clz,..., Zy()s 8%(0)71, cey Oy

This isomorphism of course depends on which point p we choose, but the coordinates do
not. In particular we have 9,6, = 0 for j < v(c). These coordinates are not as natural
as those of 3.17, and complicate the description of the actions of y;,0,, and z;, but the
action of 0, is easy to describe, which is all we need.

The relative de Rham complex DRx/y(Dx - 0,) is now of the form

Q;{/Y ® C[ylv st 7ydim(71'(0'))7 8ydim(ﬂ.(a))+17 cte 78y37 Z17 s 7zv(a)7 8ZU(U)_17 e 78277175]7

and since the differential dz =}, dz; ® 0; (using our shorthand from 5.4) commutes
with the Y variables, this becomes

(C[yl, ey 8y5] Rc (Q.Z ®(C[Z] (C[Zl, ey 8mes]) .

We can now follow the cohomology calculation in 4.4, applied to the complex Qf ®
Clz1,- - -5 20(0), 0 0,,,_.]- By 4.4 we have that

' YZy(o)—10 " " YZm—s

0% ® Clzy,. .., Zu(o)s 8%(0)_1, S M = C.BM(W_1<]?) nao),
and the cohomology modules of DR /y (Dx -0,) are zero except in degree —v (o), where
we have

(C[yl, <> Ydim(n (o)) 6ydim(w(0))+l, e ,8ys]dzl VANEIVAN dzv(a) ~ Dy - (57r(0)dZJU

(where dz, == dz1 A+ Adzyq))-

The cohomology of DRx/yQ} can be calculated by a spectral sequence associated
to the skeleton filtration (following the calculation for the de Rham complex DRx Mg
in 4.6). The sequence begins with Ef? = Qg/}fﬂ’ﬂ @ Q_p. As for all cells in Kj we
have dim(o) = k + v(o), each Q_, has only a single cohomology module, in degree
—v(o) = k + p. This gives us that the E; page is a single-row complex

@ Dy - 5#(0) — e — @ Dy - 57r(0)dZJU
v(o)=m—s—k v(o)=0

(we let dzj, = dz1 A -+ A dzy(e), In the coordinates suiting each o as above), and the
differential is dz as before.



32 CHAPTER 5. DIRECT IMAGES UNDER LINEAR MAPS

We can now show that the cohomology modules must be direct sums of simple modules:
as the differential d; commutes with Dy, it acts only on the generators 0., r(0)d2J,, and
so taking cohomology only involves identification of generators. This implies that the
cohomology modules are of the form > Dy - 8., =(0)d2J,, and one gets a (non-canonical)
direct sum decomposition by choosing some generating set. We recall from 3.16 that each
summand Dy -T(U)dz 7, 1s simple.

We want to relate this to the homology of Kj. We recall from 4.6 that the de Rham
differential dx corresponds to the topological boundary map, because for a generator
dodx, we had

d(bpdzy,)) = Z (5azd:c10

0;COo
Now, in the relative de Rham complex we have the relative differential dz acting on

generators d,dz;,, and this also behaves like the topological boundary map, the same
computation as in 4.6 works:

Clz(dZJU & 50) = de VAN dZJa & 8Zj60
j=1
= dzj Ndzj, ® (— Z (ejlni)ds,;)
j=1 0;Coo
=— Z (ejlni)dz; Ndzy, & i,
7j=1 0;COc
== Y A {ejlni)z) Adzy, @ b,
0;,Coo  j=1
== ) d((ni)z) Az, @ 6,
0;COo
= — Z dZJU ®501
0;,COo

Here, (n;)z denotes the projection of the vector n; € R™ on the subspace {0} x R"~%.
We see that the correspondence of the de Rham differential to the topological boundary
map holds, except for one subtlety: those cells o; C do such that (n;)z = 0 do not
appear in the final sum. These are precisely those cells in the boundary of o that have
image of dimension strictly lower than dim(m(o)). Thus, if we restrict our attention to
the subcomplex K}, where these cells are removed, the correspondence to the topological
boundary map remains. Just as we had dlo] = d(dz;, ® 05) = >_dz;, ® ds, = [00] (up
to orientation), we have now dz(dz;,) = > dz,, ® ds,, the only difference is instead of
constant coefficients we now have Dy -coefficients.

We recall the observation that the cells in K}, all have dim(o) = k + v(0), and ac-
cordingly the generators of hi(DRX/ng) correspond to cells with dim(o) = k + 4. This
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H, dim(o) | v(o) | dim(7(0))
=0 2 2 0
y=20 2 1 1
z=0 2 1 1
r+y+2—-1=0 2 1 1
z,y=20 1 1 0
r,z=0 1 1 0
Y,z =20 1 0 1
z,y+2—1=0 1 1 0
y,x+2—1=0 1 0 1
z,x+y—1=0 1 0 1
any vertex 0 0 0

gives us that the number of summands in h*(DRy/yQF) is equal to the dimension of the

homology group H,i]\;[(Kk, C), and one can choose as generators any set of dz;, ® d,’s
such that the associated homology classes [o] generate H;?%(Km C). O

Remark 5.16. Note that the decomposition hi(DRX/ng) ~ P Dy - dr(0) 18 not canon-
ical, as any generating set of m(o)’s will do.

Corollary 5.17. The skeleton filtration quotient QF' ~ wQQT of 70 Mg is a (non-
canonical) direct sum of simple modules, and the number of summands is equal to the
dimension of the homology group H,?M(Kk, C).

Proof. The isomorphism Qf' ~ 7'['3_@2 is 5.14 and 5.13. The statement for 71'3_@2 follows
from 5.15, because 7 M ~ hO(DRX/YM). O]

Example 5.18. Let K be the boundary of the standard 3-simplex Az C R?, and let
7 : R® — R! be the projection (x,y,2) — x on the first coordinate. We apply the n-
skeleton filtration to M, here we list the cells and their place in the filtration (the cells
are listed by their affine hull) in the table.

Thus, the first quotient QT is generated by 6y, 0., 0z4yt2-1,0y,2, Oy ato—1 and 0, 21y 1,
while the zeroth quotient Qf is generated by the vertices, 0z, 05y, 0z, and 0g y4.—1 (see
Figure 5.1).

The generators of the direct image W?LQZ are given by choosing cells corresponding to a
generating set for the homology group Hy(Kj,C), so let us calculate what these are. We
have that K1, being the part of K that lies over the open unit interval, is homeomorphic
to a product of an open interval (the image) with a circle (2-simplex with empty interior,
the fiber); this has Hi(Kj,C) ~ C generated by (e.g.) the open unit interval. Further,
K is the disjoint union of point (the point (1,0,0) and a closed 2-simplex (the part lying
in the plane x = 0). This has Hy(Kp,C) ~ C & C, generated by (e.g.) the points (0,0,0)
and (1,0,0).

This gives us the skeleton filtration quotients of WﬂMK; the zeroth quotient QF’ =
7T3_Q’OT is isomorphic to the Dy-module My @ M, and the first quotient Q7" = 7T3_Q71r is
isomorphic to the Dy-module M 1).
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(8A3)1

0A3

Figure 5.1: The strata in the m-skeleton filtration on dAs;.

Proposition 5.19. There is a canonical presentation
(Dy)" = (Dy)® — 7 Mg

where c is the number of cells in K, and r is equal to (dim(Y')+1)-c+_ - x(v(0) =80 (s))
(here, 0p (o) s the Kronecker delta function).

Proof. We proceed as in the proof of 3.1. We label the generators of (Dy )¢ by the cells of
K, and label the generators of (Dy)" by a generating set for the relations in 5.6. Recall
that each standard relation induced by a cell o can be written as a Dy-linear combination
P?(6g,...,05,) = 0 involving o and its boundary cells oy, e.g. relations of type 5.6(i)
can be written as P(dy,...,05,) = Op(:)06 + »_;(m(2)|n:)d5, = 0 for any point z € H,,
etc. So, we let (Dy )¢ be freely generated by g, for each 0 C K, and (Dy)" by rpo where
the P? are a generating set (following Lemma 5.8) for the standard relations induced o,
as in the proof of 3.1.
The maps (Dy)" — (Dy)¢ and (Dy)¢ — 79 Mg are defined, respectively, by letting

T'po — Pa(ga'a o 7ga'k)7

and

Jo + O

Surjectivity of the last map is clear, what remains is checking exactness in the middle.
The count of generating relations is given by Lemma 5.8: there is for each cell 0 C K

a total of dim(Y") +v(o) + (1 — dg () generating relations. Adding this up over all the

cells, we get (dim(Y) +1)-c+ > cx(v(0) = 0p(s)), Where ¢ is the number of cells.
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We now consider the skeleton filtration on 7T3_MK and the induced filtrations on (Dy )¢
and (Dy )", to reduce to the associated graded modules. The induced filtrations on (Dy )¢
and (Dy)" are given, as in 5.6, by letting

F/(Dy)* := Dy - {g,|dim(r(e)) < i}

and
E,/(Dy>r = Dy . {T’po‘ dlm(ﬂ'(O')) < 7,}

We denote the filtration quotients by ((Dy)); etc., it is clear that they are generated by
generators g,,rpe respectively, such that dim(w (o)) = 1.
We can now pass to the associated graded modules and check exactness of the sequence

S S S

B(ov))i = P((Dy)) — PRF

i=0 i=0 i=0
which reduces to the filtration quotients. Let us now look at the cokernel C} of the map
((Dy)")k — ((Dy))k, that is, what happens to the generators g, when we impose the
relations of 5.6. The generators d, of J; must of course also satisfy these, the obstacle
is proving that nothing else happens.

Those g, with v(o) > 0 can, by 5.6(iii), be written as a sum of their boundary cells,

v(0)8 =Y (di =Y (m)jj) - 0o,
% 7<s
where Zj(ni)javj — d; = 0 is the defining equation of H,,. The boundary cells o; all
have dim(c;) = dim(o) — 1, and either v(o;) = v(o) — 1 or v(0;) = v(o) (in which case
dim(7(0;)) = dim(m (o)) — 1, and these are removed in the skeleton filtration quotients).
Iterating the application of 5.6(iii), we can see that each Cj, is generated by cells g, with
dim(o) = dim(w(0)) = k,v(c) = 0. There are some relations between these, given by
5.6(ii), so we can eliminate some of them and express Cj as a direct sum of modules
generated by g, with v(c) = 0. Reducing to the direct summands, we get surjective maps

Dy - g» — (summand of Q')

and as the first of these is simple, the map must be an isomorphism. O

5.1 Higher direct images
The derived direct image 74 contains more information about My and K than 773, S0
let us examine it further.

Example 5.20. Recall from Example 5.18, that for K be the boundary of the standard
3-simplex in R3 and 7 : R? — R! the projection on the first coordinate, the direct image
7T3_MK was isomorphic to the module Mg ;) = My (). On the other hand, taking K to
be the whole 3-simplex, with interior, we get the same module in the direct image, as
the zeroth homology of the fibers remain the same. We see that 7r9r fails to detect this
difference.
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The derived direct image 74, however, does detect the homological information, which
will come as no surprise given 5.15. Let us first remark that Proposition 4.6 has an
immediate corollary:

Proposition 5.21. The de Rham cohomology of w4 My s equal to the Borel-Moore
homology of K.

Proof. One has the standard isomorphism of functors DRy om, ~ Rm,oDRx (see [BT87,
VIII]), which gives us Hpp(m4 M) = H*(Y, DRy (1, Mg)) ~ H*(Y, Rm.DRx (Mf)) ~
H*(X,DRx(Mg)) ~ HEM (K, C). O

To compute 74 M, we will use the m-skeleton filtration as we did for the ordinary direct
image. We consider DRy /y Mk as a filtered complex with respect to this filtration, and
run the spectral sequence. The Ey page is DRx/y of the Q7 ’s:

Oy ®Q7 DBy ®Qis Oy Q1
sz dZ dZ
Qr )y ® Q74 %)y ® Q52
dZ dZ
s-1 Vy)y ® QT
dz
T

Each column here is the relative de Rham complex of a Q7, and it follows from 5.15
that the cohomology modules are each given by generators corresponding to a generating
set for the homology group H,CBJF]\f(Kk,C). So, in position (—p, —q) we get the —¢’th
relative de Rham cohomology module, which is generated by d, corresponding to our
favourite set of generators [o] for Hﬁrj\g (Kp,C).

We now have the Fy page consisting of these modules, and the process stops here: the
m-skeleton filtration is constructed in such a way that no interaction between the levels
of the filtration takes place in the Z direction, that is one cannot get from QF to Q7_;,
say, by acting with a 0, differential. If this were the case, we would have a generator
of Q7 and a generator of Q7_; having image of the same dimension, which contradicts
the definition of the m-skeleton filtration. The F; page now has in position (—p, —q) the
p’'th skeleton filtration quotient of h?(my My ) (by the natural definition of the skeleton
filtration on hY(m4 Mg)). We do not get the module explicitly, but knowing the skeleton

filtration quotients is enough for most purposes.
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Example 5.22. We extend Example 5.18 to find the higher direct images as well. Recall
that the m-skeleton filtration decomposed K into K7, the product of an open interval with
a 2-simplex with empty interior; and Ky, the disjoint union of a point and a 2-simplex
(with interior).

We already have the zeroth higher direct image 773_MK = h9(m Mg), and as the fiber
of 7 is two-dimensional, we should check for higher direct images in degree —1 and —2.
The homology of K is given by

0 fori=0
HPM(K,,C) =S C fori=1
C for i=2,
and the homology of K is
C for i—=0

HPM(K,,C) =
i (Ko, ©) {O otherwise.

This gives us the following final page of the spectral sequence:

Mo,) 0

Mo,1) Moy & M,

which displays the skeleton filtration quotients of the direct image; in degree zero (h°(my M ))
we have Q1 = Mgy and Qo = My @ Mj, in degree minus one (h™!(m My )) we have
Ql = M(O,l) and Qo =0.



6 Distributional direct images and
B-splines

There is also a notion of direct image of distributions, which in our case, for §,, when
m: R™ — R? is given by

7r*5g::[f»—>/afo7r]

for a test function f on R®. In particular the case of projections is interesting here,
because the distributional direct image 7,0, is the distribution form of the multivariate
B-spline
1 1
0x(r) = ———=vol(n™ " (x)No
o) = vl (0) 1)

(where we by abuse of notation write 7 for the matrix associated to m) which has a
long history in applied mathematics. Typically, one has studied simple shapes like boxes,
simplices and cones, as they are most suited for applications (see for instance [CLR&7],
[DBHS82] or [DCP10]).

Note that we can also express .0, as the distribution
& d(x)or(x)dx
RS

(see e.g. [DCP10, chapter 7| for details).

Before tackling the case of projections, let briefly see how the distributional direct
images of d, behaves under (linear) inclusions and isomorphisms:

For an inclusion, we have fK fli(x))dz = fi(K) f(x)dx, 80 00, = dj(o)- An isomorphism
n likewise gives, by the usual change of variables formula, 7,0, = |det(77)]*1(577(0).

The reader may notice that what follows below follows Section 5 almost exactly. This
is no coincidence, as much of the material in this section is old stuff about B-splines,
and the previous section consisted in large part of checking whether the same statements
and relations applied to m, M. This is true in particular for 5.6, the statement of which
is almost a verbatim copy of 6.2, rephrased to suit the altered context; and the proof
merely consists of checking that the same relations hold.

De Concini and Procesi in [DCP10] investigate some of the properties of the module
W .m0k, when m is a projection, in the cases when K is a box or a cone. In light of
what we have done so far, we might say that for general K, the module generated by all
the 7,0, is the more natural object, so let us investigate it closer.

Definition 6.1. We let Sk := W - {m.d,|0c C K}.
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The fundamental relations for Sk are much the same as for My, given by this result
from [DBHS82|, which also exists in similar versions elsewhere in the literature (follow
references from [DBHS82|,[CLR87| or [DCP10]). We rephrase the original result to suit
our context: De Boor and Héllig in [DBHS82| only prove (i) and the statement of (¢i7) for
the functions o, (0;)x, but the rest is implicit and follows directly.

Theorem 6.2 (De Boor - Hollig, [DBHS82|). Let o be a polyhedral body in R™, with facets
oi, and corresponding outward unit normals n;, and let w be the projection on the first

s coordinates. Assume also that the fibers 7=1(x) N K are compact. Then the following
hold:

(i) On(z)Tx05 = — Y _i(m(2)|ni) 700, for any z € R™,
(it) Y, (vIni)mds, = 0, for v € R™ orthogonal to R®, and

(iii) v(0)Tdo =D ; (ki — x|ni) 7 do,, where k; is an arbitrary point of o; and x € R®.

Proof, adapted from [DBH82]. To ensure convergence of the integrals, we assume that
the fibers K N7~ !(p) are compact. This is necessary because although our test functions
¢ have compact support in R®, ¢ om does not have compact support in ¢ unless the fibers
7 No are compact.

(7) and (d¢) are fairly straightforward: if we let z € R™ be such that m(z) = v, then

o [[o0m== [@wron== [o00m =3 [ hger

This is almost (i), except that ‘z’ is substituted for ‘w(z)’ on the right-hand side. To
resolve this, write z = 7(z) + v, where v is orthogonal to R*. We then get

Or(2)Tx05 = — Z<7T(Z) + v|n;) Tl
that is,

Onteymeds = — S w2y mds, — 3 (0lni) s,
i i
and for this to make sense, the last sum must be zero. This then gives us (7) and (7).

(7i7) is proved in two steps, first we prove that for 6 := Z;:l 70y, we have 00, (v) =
(m — s)or(v) — > ;(kilni)(0i)=(v), where k; € H,, is an arbitrary point. Let’s write this
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out:

;@%Lﬂﬂmw=jAZ%mww@Mz
——s/qb dz—/ij 2 ( z)))dz
=slaﬂmwlgkﬁ4mmeu
:4m—@L¢wwMzilZ;g%woﬂ@mw
=(m—9) [ otreNdz = 3 [ oo mienas

and as (z|n;) is constant on each o;, we're done. Next we observe that m —s = v(o) and
(0 = Or(z))on(m(2)) = 0, and expanding this we get
0= (0 = Or(z))on(m(2))
=v(0)or(m(z)) — Z<k i) (o) = ( )+ Z z)[ni)(0i)x(7(2)),

K3
which rephrased in distribution form is

v(0) T4y = Z ij\nz T,

71<s
that is, statement (iii) above. O

Remark 6.3. By restricting 7 to the appropriate H, and composing with a coordinate
change we see that the above holds for ¢ of any dimension, not merely the top-dimensional
ones. Explicitly, if we factor m = p o 7, where p is the projection on the first coordinates
as above and 7 is an isomorphism, we have

1
=[S = [ S0t = g

Definition 6.4. Let F}, be the submodule of Sk generated by those 7., with dim(7 (o)) <
k. These form a filtration of Sk, with filtration quotients Q) generated by those 7.,
with dim(7 (o)) = k. We call this filtration the skeleton filtration on Sk.

We can now, exactly parallel to 5.19 use 6.2(ii¢) to reduce the generators for @} to those
Tx0g with dim(o) = k,v(o) = 0, and then 6.2(i7i) to further eliminate some generators,
and express @, as a direct sum of Or(0)’s- Just as before, the number of summands is
given by the k’th singular homology of Kj. Further, we may produce a presentation
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| |

oe— o6 ——————o

Figure 6.1: Left: empty interior, gives ‘double line’; right: filled interior, gives single line.
7r9rM i respects this difference, Sk always gives the filled-interior situation.

DYy — D§ — Sk in the same way as in 5.19 (we omit the tedious repetition of the
argument).

Howewer, this is not entirely true: At this point we must point out a crucial difference
between 7.8, and the §,: 6.2(ii) and 5.6(ii) both essentially say that 9;0, = 0 for j > s,
which means a certain linear combination of the boundary cells d,, is zero. The important
observation is that 6.2(i¢) applies even if the o in question is not in K, while 5.6(ii) does
not. The reason is obvious: the 7.d,,, being concrete distributions, inherit that relation
from SUUUi o;» While the abstract generators 0, are not so lucky (see Figure 6.1).

This means that the number of summands of @), is equal to the dimension of HZM (K},),
where K is the cell complex we get from K by ‘filling in’ all the relevant holes. The
consequence for the presentation Dy, — DY — Sk is that we must increase the count of
relations, to add some of type 6.2(ii) for each hole in K we fill in.

Let us try to make this a bit more precise. Exactly what extra identifications are made
in Si? We have seen that the determining factor for the number of generators is the £’th
closed support homology of the subcomplex K. This suggests that it is the subcomplex
of K consisting of cells with v(o) < 1 that determines what remains in the projection,
so it is enough to add relations for the ‘missing’ cells with v(o) = 1.

The extra relations are all of the type 6.2(i7), that is they are induced by a relation
0.0, = 0 that exists in the complex o U Uaicao_ 0. In other words, we get such a relation
if we can express the o;’s as the boundary of a cell o with dim(¢) = dim(o;) + 1, and
v(o) =v(o;) + 1.

There are two cases: first, if o1 and o9 are cells of the same dimension with v = 0, such
that 7(o1) = m(02), they are the boundary of a cell with v =1 filling the space between
them, and so are identified in Sg. The second, slightly more complicated, case is when
K' C K is a compact subcomplex with 0K’ = 0, with dim K’ = dim(7(K")) = 7 (that
is, with v(K') = 0, per 5.5), and K’ is minimal among such subcomplexes. Then K’ is
the boundary of a cell o with dim(c) =i+ 1 and v(o) = 1, so in Sk we get a relation
between the cells in K’ of type 6.2(ii).

Let us summarise this:

Definition 6.5. We say that K is w-connected if it satisfies the following:
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Figure 6.2: The left complex is not w-connected. Adding the grey cells produces a complex
that is m-connected.

Figure 6.3: This complex is not w-connected, and adding the missing rectangle (marked
by grey lines) cannot be done without violating the cell complex structure.

(I) For all cells 01,02 C K such that v(o1) = v(o2) = 0 and 7(01) = 7w(0o2), there
exists a cell o C K with v(o) =1, 7(0) = 7w(071) such that (o) = 01 — 09,

(I) For all compact subcomplexes K’ C K with dim(K’) =4, v(K') =0, 0K’ = 0 and
having no proper compact subcomplex K’ with the same conditions, there exists
a cell o C K with dim(c) =i+ 1 and v(o) = 1 such that do = K'.

Example 6.6. Consider the projection 7 : R> — R! on the first coordinate. The left
complex in Figure 6.2 is not 7w-connected, the right complex is.

There are also complexes K where F?rMK and Sk differ that can not be fixed by the
simple addition of cells, figure 6.3 provides an example (with the same 7 as above) where
no appropriate cell can be added without violating the cell complex structure of K.

We now stand ready to prove a main result:

Theorem 6.7. There is a canonical surjection 71'3_MK — Sk, given by d, — Wy, which
is an isomorphism when K is mw-connected.

Proof. There are two claims to prove: that the given map is surjective, and that under
certain conditions it is an isomorphism.
That the map is well-defined and surjective is clear from the following diagram:

Df Dy, T Mg
Dr-i-r’ D¢ SV
Y Y K

When K is m-connected, there are no extra relations for Sk to satisfy, so the left vertical
map is an isomorphism, and the two rows in the diagram above are identical. O
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Remark 6.8. It is of course clear that the m-connected condition is satisfied for nice K,
e.g. convex or with connected fibers. Indeed, the name 7-connected is due to the condition
being very close to that of K having connected fibers.



7 Closing remarks

We note that almost everything in our description of the module My still works with
only minor modifications if we replace our complex K of polyhedral cells (defined by
linear equations) with a complex of semi-algebraic sets, with similar restrictions on cell
complex structure. As in the standard relations of 2.2, we get relations given by tangent
vector fields sending a §, to its boundary cells, and defining equations annihilating.
Skeleton filtrations are defined in exactly the same way, and from there everything else
follows. The local point of view is essential throughout, and there is a possible issue with
singularities. There are no problems if the defining varieties are smooth, but the author
has not examined what may go wrong otherwise.

The constructions given here may lead to convenient descriptions of the annihilator
ideals of various §,. This may be of use for performing computer calculations, as current
software is better adapted to the use of D-ideals than to the use of presentations like 3.1.

Perhaps also interesting is a possible connection to the large existing body of problems
involving polytopes (usually convex, but not necessarily). It is not immediately clear if
the D-module description presented here is of any use in attacking these problems, but
to the author’s admittedly limited knowledge, tools of this kind have not been used in
this setting.
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