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Abstract

Let f be a function from Rp to Rq and let Λ be a finite set of pairs (θ, η) ∈ Rp×Rq.

For each (θ, η) ∈ Λ, the function x 7→ 〈η, f(x)〉 has certain regularity properties in

the direction θ, where 〈·, ·〉 is the inner product in Rq. We determine (algebraic)

conditions on Λ in order that these regularity properties on 〈η, f(x)〉 in the direction

θ imply the same regularity properties for the function f .

Finally, we determine L1-symbols whose associated Toeplitz operators are bounded

(resp. compact) on the Bergman spaces Lpa(Bn, dν), for 1 ≤ p <∞, where Bn is the

unit ball of Cn. For p > 1, we give a new presentation and improvements of earlier

results. For p = 1, our results are new and are related to the reproducing kernel

thesis and to earlier results.

Keywords: Modulus of continuity, Fourier transform, Toeplitz operators, Berezin

transform, Carleson measure, Bergman spaces.
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Modulus of Continuity of
Mappings between Euclidean

Spaces
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Chapter 1

Measures with Finite Total Mass

1.1 Preliminaries

The space L1(Rp) consist of all measurable functions, f , on Rp such that

‖f‖1 =

∫

Rp

|f(x)|dx <∞.

If f ∈ L1(Rp) then the Fourier transform f̂ is the bounded continuous function on

Rp defined by

f̂(ξ) =

∫

Rp

e−ix·ξf(x)dx, ξ ∈ Rp.

If f̂ also happens to be integrable one can express f in terms of f̂ by the Fourier

inversion formula,

f(x) = (2π)−p
∫

Rp

e−ix·ξf̂(ξ)dξ. (1.1)

The space C∞
0 (Rp) consist of all smooth functions with compact support. By the

Schwartz class, S = S(Rp), we mean the set of all smooth (infinitely differentiable)

functions, ψ, such that

sup
x

|xβ∂αψ(x)| <∞

for all multi-indices α and β.

2
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An important concept about the space S, is that the Fourier transform F : φ→ φ̂

is an isomorphism of the space S with inverse given by the inversion formula (1.1),

see for example Theorem 7.1.5 of [26].

Let Co(R
p) be the space of continuous functions on Rp that tend to zero at infinity

equipped with the supremum norm. The space M(Rp) is the dual space of Co(R
p),

which is the space of measures on Rp with finite total mass. The action of a linear

form µ on test functions will be denoted by 〈µ, ϕ〉. Thus µ ∈ M(Rp) if and only if

|〈µ, ϕ〉| ≤ C sup |ϕ| for any ϕ ∈ Co(R
p), where C is a positive constant and the norm

of µ ∈ M(Rp) will be denoted by denoted by ‖µ‖M , which is given by

‖µ‖M = sup{|〈µ, ϕ〉|;ϕ ∈ Co(R
p), ‖ϕ‖ = sup |ϕ| ≤ 1}.

The space L1(Rp) is identified with a subspace of M(Rp) by f ∈ L1(Rp) being

identified with the linear form

ϕ 7→
∫

Rp

f(x)ϕ(x)dx.

Any element µ ∈ M(Rp) can be uniquely extended as a linear form to the space

Cb(R
p) of bounded continuous functions on Rp. Indeed, if µ is considered as a linear

form on Co(R
p), we take a compactly supported continuous function χ that is equal

to 1 in some neighbourhood of the origin and define

〈µ, ϕ〉 = lim
A→∞

〈µ, χ(·/A)ϕ〉, ϕ ∈ Cb(R
p).

If µ ∈M(Rp) then the Fourier transform of µ is given by

µ̂(ξ) =

∫

Rp

e−ix·ξdµ(x) = µ(e−ix·ξ).

Therefore if µ is a point mass at the point a ∈ Rp, that is, 〈µ, ϕ〉 = ϕ(a) for all test

functions ϕ, then µ̂(ξ) = e−ia·ξ.
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Let f ∈ L1(Rp) and µ ∈M(Rp). Then the convolution of f and µ, µ ∗ f , is given

by

(µ ∗ f)(x) =

∫

Rp

f(x− y) dµ(y)

and

‖µ ∗ f‖1 ≤ ‖µ‖M‖f‖1.

If µ ∈M(Rp) then µ is a difference measure in the direction θ if

〈µ, ϕ〉 = ϕ(θ) − ϕ(0) (1.2)

and its Fourier transform is

e−iθ·ξ − e0 = e−iθ·ξ − 1.

Also its convolution with a continuous function, f , gives

(µ ∗ f)(x) = f(x− θ) − f(x).

We will also be very interested in the following inclusion which can easily be verified.

C∞
0 (Rp) ⊂ S(Rp) ⊂ L1(Rp) ⊂M(Rp).

Notation.

We will denote the set of Fourier transforms of a space X by X̂. Also, we will always

use the following identity:

‖f‖bL1 = ‖f̂‖1.

The next lemma will be used always.
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1.1.1 Lemma

Suppose χ is smooth function on Rp which is a constant outside some compact set

containing the origin. Then χ is the Fourier transform of a measure in M(Rp).

Proof . We may assume χ(x) = 1 for |x| > 1. Then

χ(x) = 1 − ψ(x) ⇔ ψ(x) = 1 − χ(x), x ∈ Rp

where ψ ∈ C∞
0 (Rp) with the support of ψ been |x| ≤ 1. ψ ∈ C∞

0 (Rp) implies

ψ ∈ S(Rp) and thus ψ is the Fourier transform of a function φ ∈ S(Rp), that is

φ̂ ∈ S(Rp) ⊂M(Rp). Thus

χ = 1 − φ̂ = ̂(δ0 − φ)

where δ0 is the Dirac measure, and hence χ ∈ M̂(Rp). 2

Let Mθ = Mθ(R
p) denote the subset of M(Rp) consisting of measures with mean

equal zero on all lines with direction θ ∈ Rp.

1.1.2 Definition

µ ∈Mθ, if and only if 〈µ, ϕ〉 = 0 for all test functions, ϕ, that are constant in direction

θ , or equivalently,

ϕ(x+ tθ) − ϕ(x) = 0 for all t ∈ R, x ∈ Rp. (1.3)

Let M c
θ denote the set of µ in Mθ with compact support.

1.1.3 Lemma

µ ∈Mθ if and only if µ̂(ξ) = 0 whenever θ · ξ = 0.

Proof Let µ ∈Mθ. If θ · ξ = 0, then the function ψ(x) = e−ix·ξ satisfies (1.3) and

hence µ̂(ξ) = µ(e−ix·ξ) = 0.
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The converse follows from the fact that a continuous function ϕ : Rp → R such

that ϕ(x + tθ) is independent of t for every x can be approximated uniformly on

compact sets by linear combinations of exponential functions eiξ·θ such that θ · ξ = 0.

For θ ∈ Rp, θ 6= 0, let Nθ(R
p) denote the set of measures µ ∈M(Rp) for which

µ̂(ξ)

θ · ξ ∈ M̂(Rp).

It is clear that Nθ(R
p) ⊂ Mθ(R

p), but the opposite inclusion is not true as seen by

the following example, in the case p = 1. Let

h(x) = π−1/(1 + x2) − ψ(x),

where ψ ∈ L1(R) is even , has compact support and
∫
R
ψ(x)dx = 1. Then

ĥ(ξ) = e−|ξ| − ψ̂(ξ).

Thus ĥ(0) = 0 and ĥ(ξ) = −|ξ| + ©(|ξ|2) as |ξ| → 0, hence ĥ(ξ)/ξ is discontinuous

at the origin and therefore cannot be in M̂(R). Our next lemma shows that this

inclusion is possible for some subsets of Mθ(R
p).

1.1.4 Lemma

If µ ∈M c
θ then µ ∈ Nθ(R

p).

Proof Let µ ∈ M c
θ , suppµ = K, θ = (1, 0, · · · , 0) and let ϕ be a test function.

Define the function

ψ(x1, y) =

∫ x1

−∞

ϕ(s, y) ds

where y = (x2, x3, · · · , xp). Define a measure ω by

〈ω, ϕ〉 = −〈µ, ψ〉 (1.4)
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then ω ∈M(Rp). To prove that ω ∈M(Rp) we write ϕ = ϕ0+ϕ1 where suppϕ0 ⊂ V ,

K ⊂ V and ϕ1 = 0 in some neighbourhood of K. Let

ψ0(x1, y) =

∫ x1

−∞

ϕ0(s, y) ds and ψ1(x1, y) =

∫ x1

−∞

ϕ1(s, y) ds.

We claim that 〈ω, ϕ1〉 = 0. Indeed, since ∂1ψ1 = 0 in a neighbourhood of K, it implies

ψ1 is a constant in the direction θ which implies 〈ω, ϕ1〉 = −〈µ, ψ1〉 = 0, thus the

claim is proved. Also, since

|〈ω, ϕ0〉| = |〈µ, ψ0〉| ≤ C sup |ψ0| ≤ C1 sup |ϕ0|

where C1 = Cdiam(suppϕ0) we have that ω ∈M(Rp). Finally, (1.4) implies ∂1ω = µ

if and only if iξ1ω̂(ξ) = µ̂(ξ) as required. The result follows by rotation of the axis.

2

1.1.5 Lemma

Let χ be a smooth function on R that is zero in some neighborhood of the origin and

is 1 outside some compact set containing the origin. Then χ(ξ)
ξ

∈ M̂(R).

Proof Let H be the Heaviside function, that is H(x) = 1 for x > 0, H(x) = 0 for

x ≤ 0 and let ψ = 1 − χ, that is, ψ is smooth and compactly support. Consider the

function ν given by

ν(x) = H(x) − 1

2π

∫ x

−∞

ψ̂(y) dy.

We claim that ν ∈ L1. To prove this claim we first observe that ψ(0) = 1 implies

1

2π

∫ +∞

−∞

ψ̂(y) dy = 1.
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Thus

ν(x) = H(x) − 1

2π

∫ x

−∞

ψ̂(y) dy

= H(x) − 1

2π

∫ +∞

−∞

ψ̂(y) dy +
1

2π

∫ ∞

x

ψ̂(y) dy.

This shows that

ν(x) =





1
2π

∫∞

x
ψ̂(y) dy when x > 0,

− 1
2π

∫∞

−x
ψ̂(−y) dy when x ≤ 0,

since

−1 +
1

2π

∫ ∞

x

ψ̂(y) dy = − 1

2π

∫ ∞

−x

ψ̂(−y) dy, for x ≤ 0.

That ν ∈ L1 follows from the fact that ψ̂ is in the Schwartz class, that is, |ψ̂(y)| ≤

C(1+ |y|)−a, a > 2. We now observe that −ν ′ = δ0− ψ̂, indeed, if Ψ is a test function

and µ(x) = 2π
∫ x
−∞

ψ̂(y) dy then

〈ν,Ψ′〉 = 〈H,Ψ′〉 − 〈µ,Ψ′〉

= −〈H ′,Ψ〉 + 〈µ′,Ψ〉

= −〈δ,Ψ〉 + 〈µ′,Ψ〉.

This implies, ν ′ = −δ0 + ψ̂. Thus −iξν̂(ξ) = 1−ψ(ξ) = χ(ξ) which proves the lemma.

2

Lemma 1.1.5 can be refined to get the following;

1.1.6 Lemma

Let µ ∈ M(R) and assume that µ̂(ξ) is twice continuously differentiable in some

neighborhood of the origin and that µ̂(0) = 0. Then µ̂(ξ)/ξ is in M̂(R).

Proof . Let χ ∈ C∞, equal 1 for |ξ| ≥ ǫ/2 and vanishing in a smaller neighborhood

of the origin and let 1 − χ = ψ. Then µ̂(ξ) = χ(ξ)µ̂(ξ) + ψ(ξ)µ̂(ξ). For χ(ξ)µ̂(ξ) the
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conclusion of the lemma follows by Lemma 1.1.5 since χ(ξ)/ξ ∈ M̂(R). Also since

ψ(ξ)µ̂(ξ) is compactly supported, twice continuously differentiable and equals zero at

ξ = 0, we see that τ(ξ) = ψ(ξ)µ̂(ξ)/ξ is continuously differentiable and compactly

supported. Thus τ ′ is compactly supported, belongs to L2, and we have that τ̂ ′ is

bounded. By Plancherel, τ̂ ′ ∈ L2. It is easy to see by applying Schwartz inequality

that τ̂ ∈ L1 or τ ∈ L̂1 ⊂ M̂(R). This completes the proof of the lemma. 2

1.1.7 Lemma

Let r be a positive integer greater than 1 and let the function f be homogeneous of

degree r, and smooth on Rp/{0} and let the function g be smooth and compactly

supported. Then fg ∈ M̂(Rp).

Proof It is clear that the p + 1th partial derivatives of f will be homogenous of

degree at least r − p− 1. Thus if h = fg then

|∂p+1
k h| ≤ C(|g(x)||x|r−p−1 + |∂kg(x)||x|r−p + · · · + |∂pkg(x)||x|r−1 + |∂p+1

k g(x)||x|r).

Now, since ∂̂p+1
k h(ξ) = ξp+1

k ĥ(ξ) together with the fact that r − p− 1 > −p and g is

compactly supported we have

|ξp+1
k ĥ(ξ)| ≤

∫

Rp

|∂p+1
k h(x)| dx

≤
∫

Rp

C(|g(x)||x|r−p−1 + |∂kg(x)||x|r−p + · · · + |∂p+1
k g(x)||x|r−p) dx

≤ C ′

for every k. Thus

(1 + |ξp+1
k |)|ĥ(ξ)| ≤ C ′

for every k. This implies

|ĥ(ξ)| ≤ C ′(1 + |ξk|p+1)−1
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for all k. Thus there exists a constant C ′′ such that

|ĥ(ξ)| ≤ C ′′(1 + |ξ|p+1)−1

which implies ĥ(ξ) ∈ L1 and hence h ∈ M̂(Rp). 2

1.2 Modulus of Continuity

Let σ be a function defined on the non-negative reals which tends to zero at the

origin.

1.2.1 Definition

K(σ) denotes the set of functions f : Rp → Rq such that to every compact subset

K ⊂ Rp there exists a constant C such that for x and x+ y ∈ K

|f(x+ y) − f(x)| ≤ Cσ(ǫ), if |y| ≤ ǫ.

If 0 6= θ ∈ Rp, we denote by K(θ, σ) the set of functions f : Rp → Rq such that

to every compact subset K ⊂ Rp there exists a constant C such that for x and

x+ tθ ∈ K, t real

|f(x+ tθ) − f(x)| ≤ Cσ(ǫ), if |t| ≤ ǫ.

If f ∈ K(σ) we say that f has modulus of continuity ≤ σ(ǫ) or simply f has modulus

of continuity σ(ǫ) while f ∈ K(θ, σ) will mean f has modulus of continuity σ(ǫ) in

the direction θ.

Denote by Σ the set of all real-valued continuous subadditive and increasing func-

tions from {t ∈ R; t > 0} into itself, tending to zero at the origin. We observe that

any class K(σ) is equal to some K(σ1) where σ1 ∈ Σ. Indeed, we can take

σ1(ǫ) = inf

{
n∑

i=1

σ(ǫi);
n∑

i=1

ǫi ≥ ǫ, ǫi ≥ 0

}
(1.5)
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which is the largest subadditive and increasing lowerbound of σ. We first show that

σ1 is subadditive an increasing.

Subadditivity. We observe that if

E1 =

{
z =

n∑

i=1

σ(ǫi);

n∑

i=1

ǫi ≥ s+ t, ǫi ≥ 0

}

and

E2 =

{
z =

p∑

k=1

σ(ǫk) +

q∑

j=1

σ(ǫj);

p∑

k=1

ǫk ≥ s,

q∑

j=1

ǫj ≥ t ǫj , ǫk ≥ 0, p+ q = n

}
,

then E1 ⊃ E2. Thus

σ1(s+ t) = inf{z; z ∈ E1} ≤ inf{z; z ∈ E2}

= inf

{
p∑

k=1

σ(ǫk);

p∑

k=1

ǫk ≥ s, ǫk ≥ 0

}

+ inf

{
q∑

j=1

σ(ǫj);

q∑

j=1

ǫj ≥ t, ǫj ≥ 0

}
= σ1(s) + σ1(t).

Monotone increasing. Let s > t. Then
{

n∑

i=1

σ(ǫi);
n∑

i=1

ǫi ≥ s, ǫi ≥ 0

}
⊂
{

n∑

i=1

σ(ǫi);
n∑

i=1

ǫi ≥ t, ǫi ≥ 0

}
.

Thus

σ1(s) = inf

{
n∑

i=1

σ(ǫi);

n∑

i=1

ǫi ≥ s, ǫi ≥ 0

}

≥ inf

{
n∑

i=1

σ(ǫi);
n∑

i=1

ǫi ≥ t, ǫi ≥ 0

}

= σ1(t).

Now, let f ∈ K(σ1). Then |f(x+y)−f(x)| ≤ Cσ1(t) whenever |y| ≤ t. But we know

that

σ1(t) = inf

{
n∑

i=1

σ(ǫi);
n∑

i=1

ǫi ≥ t, ǫi ≥ 0

}
.
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Thus if we take
∑n

i=1 σ(ǫi) = ǫ1 = t, then
∑n

i=1 σ(ǫi) = σ(ǫ1) = σ(t). By the definition

of σ1(t) we must have σ1(t) ≤ σ(t) and thus f ∈ K(σ). Conversely, suppose f ∈ K(σ).

Let ωf(t) be the modulus of continuity of f , defined by

ωf(t) = sup{|f(x+ y) − f(x)|; |y| ≤ t}.

Then ωf(t) is subadditive and increasing. Indeed, if y = y1 + y2 then by the triangle

inequality

|f(x+ y) − f(x)| = |f(x+ y1 + y2) − f(x+ y1) + f(x+ y1) − f(x)|

≤ |f(x+ y1 + y2) − f(x+ y1)| + |f(x+ y1) − f(x)|.

Thus if |y| ≤ s + t we can choose y1 and y2 such that |y1| ≤ s and |y2| ≤ t. And

hence,

ωf(t+ s) ≤ ωf (t) + ωf(s)

that is ωf (t) is subadditive. Also if t > s then

{|f(x+ y) − f(x)|; |y| ≤ t} ⊂ {|f(x+ y) − f(x)|; |y| ≤ s},

and thus ωf(t) ≤ ωf(s). Now, since σ1 is the largest subadditive and increasing lower-

bound of σ(t), we see that if ωf(t) ≤ σ(t) then ωf(t) is subadditve and increasing

lowerbound of σ(t). But σ1(t) is the largest of all subadditive and increasing lower-

bounds of σ(t). Hence it must in particular be larger than ωf(t), that is, ωf(t) ≤ σ1(t).

This shows that if f ∈ K(σ) then f ∈ K(σ1).

We will often use the following simple inequality.

1.2.2 Lemma

Let σ ∈ Σ, a > 0, t > 0, and [a] denotes the integral part of a. Then

σ(at) ≤ σ(([a] + 1)t) ≤ (a+ 1)σ(t).
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Proof Since σ is subadditive, σ(2t) ≤ 2σ(t) and thus by induction σ(nt) ≤ nσ(t).

Also since at ≤ ([a] + 1)t and σ is increasing we have

σ(at) ≤ σ(([a] + 1)t) ≤ ([a] + 1)σ(t) ≤ (a + 1)σ(t).2

If σ ∈ Σ, we set

σ̂(ǫ) = ǫ

{
σ(1) +

∫ 1

min(ǫ,1)

t−2σ(t) dt

}
, ǫ > 0. (1.6)

1.2.3 Lemma

If σ ∈ Σ, then σ̂ ∈ Σ and σ(t) ≤ σ̂(t), for 0 < t < 1.

Proof . We first show that σ(t) ≤ σ̂(t), for 0 < t < 1. Since σ is increasing, we

have

tσ(t)

∫ 1

t

s−2ds ≤ t

∫ 1

t

s−2σ(s)ds

which implies

(1 − t)σ(t) ≤ t

∫ 1

t

s−2σ(s)ds, 0 < t < 1.

Thus

σ(t) ≤ t

∫ 1

t

s−2σ(s)ds+ tσ(t)

≤ t

{∫ 1

t

s−2σ(s)ds+ σ(1)

}
= σ̂(t), 0 < t < 1

since σ is increasing.

We show that σ̂(t) → 0 as t→ 0. If 0 < t < δ < 1 then

t

∫ 1

t

s−2σ(s)dt ≤ σ(δ)t

∫ δ

t

s−2ds+ t

∫ 1

δ

s−2σ(s)ds
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since σ is increasing. Thus given ǫ > 0 we can find a δ ∈ (0, 1) such that σ(δ) < ǫ/2.

For such a δ we can make the second term on the right hand side of the previous

equation smaller then ǫ/2 as t→ 0. We thus get

t

∫ 1

t

s−2σ(s)ds→ 0 as t→ 0.

Subadditivity of σ̂ follows from the fact that if ψ : R+ → R+ is decreasing, then

the function g(t) = tψ(t) is subadditive.

Finally, we will show that σ̂ is increasing. Now

σ̂′(t) = σ(1) +

∫ 1

t

s−2σ(s)ds− σ(t)/t, 0 < t < 1.

Which implies

tσ̂′(t) = σ̂(t) − σ(t) ≥ tσ(1) + σ(t)

(
t

∫ 1

t

s−2ds− 1

)

= t(σ(1) − σ(t)).

Thus σ̂′(t) ≥ σ(1) − σ(t) > 0 for 0 < t < 1 since σ is increasing. Thus σ̂′(t) > 0 and

hence σ̂ is increasing.

Now if σ(ǫ) = ǫp, 0 < p < 1, then σ̂(ǫ) = ǫσ(1) + (ǫp − ǫ)(1 − p) when ǫ < 1,

hence σ̂ ≈ σ. If σ(ǫ) = ǫ, f ∈ K(σ) is said to be Lipschitz continuous. Furthermore

σ̂(ǫ) = ǫσ(1) + ǫ log(1/ǫ), that is σ̂(ǫ) ≈ ǫ log(1/ǫ) which shows that sometimes K(σ)

is a proper subset of K(σ̂).

Set ∆θψ(x) = ψ(x+ θ) − ψ(x) and define ∆k
θψ(x) recursively by

∆j
θψ(x) = ∆θ∆

j−1
θ ψ(x).
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1.2.4 Definition

Let g be a real-valued function defined on a compact subset K of Rp and k a natural

number. Then the kth order difference is

∆k
hg(x) =

k∑

j=0


k
j


 (−1)j+kg(x+ jh)

and the modulus of smoothness of order k is

ωk(g, t) = sup{|∆k
hg(x)|; x ∈ K, x+ kh ∈ K, |h| ≤ t, t > 0}.

When k = 1, ωk(g, t) is the modulus of continuity of g. For some basic properties

of ωk(g, t) see [39].

The generalized modulus of continuity will also be useful to us, which we now

define. For t > 0 and µ ∈ M(Rp) we denote by µt the dilation of µ defined by

µ̂t(ξ) = µ̂(tξ).

1.2.5 Definition

Let µ ∈ M(Rp). Then the generalized modulus of continuity ωµ(f, t), for a function

f on Rp with respect to the measure µ on Rp is given by

ωµ(f, t) = sup{‖µs ∗ f‖; 0 < s ≤ t}

where ‖ · ‖ is some norm, e.g supremum norm.

We have the following easy consequences of the definition.

ωµ∗ρ(f, t) ≤ ‖µ‖Mωρ(f, t)

and

ωµ+ρ(f, t) ≤ ωµ(f, t) + ωρ(f, t)
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for all µ, ρ ∈M(Rp).

We give a special partition of unity that will be useful to us.

1.2.6 Lemma

There exist a function ψ ∈ C∞
0 (Rp) such that

1. ψ(x) is non-negative and suppψ ⊂ {1/2 < |x| < 2},

2.
∑∞

k=−∞ ψ(2kx) = 1 if x 6= 0

Proof. Let h(t) denote a function defined for 0 ≤ t < ∞ and equal to 1 on

[0, 1], to 0 for t ≥ 2, strictly decreasing on [1, 2], and infinitely differentiable. Then

ψ(x) = h(|x|) − h(2|x|) satisfies the requirements. Observe that in the series above ,

atmost two terms are different from zero, for each x 6= 0. 2

Finally we present a useful and interesting lemma, which is a special case of a

result in [13].

1.2.7 Lemma

Let µ ∈M(R) be a measure such that µ̂(ξ) = 1 outside some compact set. Then

ω(f, t) ≤ C(ωµ(f, t) + t

∫ ∞

t

s−2ωµ(f, s)ds), f ∈ C0(R). (1.7)

Proof . If µ̂(0) 6= 0, then ωµ(f, t) in general does not tend to zero as t→ 0, so the

statement is empty in this case. If µ̂(ξ) vanishes at the origin of order at most 1 in

the sense that ξ/µ̂(ξ) is locally in L̂1(R) near the origin, then the stronger conclusion

ω(f, t) ≤ Cωµ(f, t) holds. Indeed, if

ξ/µ̂(ξ) = ν̂(ξ), ν ∈ L1(R), |ξ| ≤ ǫ, ǫ > 0
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and ∆ = δ1 − δ0 then

∆̂(ξ) = µ̂(ξ)ν̂(ξ)
∆̂(ξ)

ξ
. (1.8)

By Lemma 1.1.6 ρ̂(ξ) = ∆̂(ξ)
ξ

∈ M̂(R) and thus equation (1.8) shows that ∆ = µ∗ν∗ρ

and hence ω(f, t) ≤ ‖ρ ∗ ν‖Mωµ(f, t).

The interesting case is therefore when µ̂(ξ) vanishes at the origin of higher order

than 1. The statement of the lemma is a special case of Corollary 2.4 in [13], but

the case considered here is much simpler because of the assumption that µ̂(ξ) = 1

for large |ξ|. We therefore give the short proof here. By scaling we easily see that we

may assume that µ̂(ξ) = 1 for |ξ| > 1/2. Let χ be a smooth function on R such that

χ(ξ) = 0 for |ξ| < 1/2 and χ(ξ) = 1 for |ξ| > 1, and let ρ be the measure defined

by ρ̂(ξ) = χ(ξ). Then ρ̂(ξ) = ρ̂(ξ)µ̂(ξ), hence ωρ(f, t) ≤ Cωµ(f, t), so it is enough to

prove the lemma with µ replaced by ρ. Set φ(ξ) = χ(2ξ) − χ(ξ). Then

1 = χ(ξ) +

∞∑

k=0

φ(2kξ), ξ 6= 0.

Multiplying by ∆̂(ξ) and using the fact that ∆̂(ξ) = eiξ−1 = ξĥ(ξ) for some h ∈ L1(R)

we obtain

∆̂(ξ) = ∆̂(ξ)χ(ξ) +
∞∑

k=0

ξĥ(ξ)φ(2kξ) = ∆̂(ξ)χ(ξ) +
∞∑

k=0

2−kĥ(ξ)2kξφ(2kξ). (1.9)

Let ρ and ν be the measures defined by ρ̂(ξ) = χ(ξ) and ν̂(ξ) = ξφ(ξ). Replacing ξ

by tξ in (1.9) and taking inverse Fourier transforms we obtain

∆t = ∆t ∗ ρt +
∞∑

k=0

2−kht ∗ νt2k . (1.10)

Since χ(4ξ) = 1 on the support of φ we have ξφ(ξ) = ξφ(ξ)χ(4ξ), hence ων(f, t) ≤
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Cωρ(f, 4t). It now follows from (1.10) that

ω(f, t) ≤ 2ωρ(f, t) + C

∞∑

k=0

2−kωρ(f, 2
k+2t)

= 2ωρ(f, t) + 4C

∞∑

k=2

2−kωρ(f, 2
kt). (1.11)

To estimate the last sum by integral we use the fact that for any increasing function

ω(s) and A > 0

2−kAω(s) ≤ (log 2)−12A
∫ 2k+1

2k

ω(s)s−A−1ds,

and hence
∞∑

k=0

ω(s)2−kA ≤ C

∫ ∞

2

ω(s)s−A−1ds.

Applying this to the sum on the right side of (1.11), with A = 1, and ω(s) = ωρ(f, st)

gives

∞∑

k=2

2−kωρ(f, 2
kt) ≤ C

∫ ∞

2

ωρ(f, st)s
−2ds

= Ct

∫ ∞

ct

ωρ(f, s)s
−2ds

≤ C ′t

∫ ∞

t

ωρ(f, s)s
−2ds

which gives 1.7.

1.2.8 Lemma

Let χ be a smooth function that is zero in some neighborhood of the origin and is

1 outside some compact set containing the origin and let µ ∈ M(R) be the measure

defined by µ̂(ξ) = χ(ξ). Assume that ωµ(f, t) ≤ σ(t). Then

ω(f, t) ≤ Cσ̂(t), f ∈ C0(R).
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Proof Follows immediately from Lemma 1.2.7, since

t

∫ ∞

t

ωµ(f, s)s
−2ds ≤ t

∫ 1

t

ωµ(f, s)s
−2ds+ C ′t sup |f |

≤ Ct(

∫ 1

t

σ(s)s−2ds+ σ(1))

and σ(t) ≤ σ̂(t), for 0 < t < 1.

1.3 Wiener-Levy Theorem

In this section we will study the Wiener-Levy’s theorem and some applications that

will be useful to our study. Our next lemma will help in the prove the version of the

Wiener-Levy Theorem needed in our work.

1.3.1 Lemma

Assume k ∈ L1(Rp),
∫
Rp k(x)dx = 0, and u ∈ L1(Rp). Set kδ(x) = 1

δpk(
x
δ
). Then

‖kδ ∗ u‖L1 → 0 as δ → 0.

Proof . Observe that by a suitable change of variable we have

(kδ ∗ u)(x) =

∫

Rp

kδ(y)u(x− y)dy

=

∫
1

δp
k(
y

δ
)u(x− y)dy

=

∫

Rp

k(y)u(x− δy)dy.

Set

Fδ(x) :=

∫

Rp

k(y)u(x− δy)dy.

Since
∫
Rp k(x)dx = 0, we can write

Fδ(x) =

∫

Rp

k(y)(u(x− δy) − u(x))dy.
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Hence, using Fubini’s theorem we have
∫

Rp

|Fδ(x)|dx ≤
∫

Rp

∫

Rp

|k(y)(u(x− δy) − u(x))|dydx

≤
∫

Rp

(∫

Rp

|u(x− δy) − u(x)|dx
)
|k(y)|dy. (1.12)

Since u ∈ L1, we know that
∫

Rp

|u(x− t) − u(x)|dx→ 0 as t→ 0. (1.13)

Indeed, (1.13) is true for any test function ψ and by density it holds for L1 functions.

Since k ∈ L1, given ǫ > 0 we can choose a positive constant A so that
∫

|y|>A

|k(y)|dy < ǫ.

Using (1.12) we have

‖Fδ‖1 ≤
∫

|y|>A

(∫

Rp

|u(x− δy) − u(x)|dx
)
|k(y)|dy

+

∫

|y|≤A

(∫

R

|u(x− δy) − u(x)|dx
)
|k(y)|dy. (1.14)

Now,
∫

|y|>A

(∫

R

|u(x− δy) − u(x)|dx
)
|k(y)|dy ≤

∫

|y|>A

2‖u‖1|k(y)|dy

≤ 2‖u‖1ǫ = C1ǫ.

Also because of (1.13) we can make
∫

Rp

|u(x− δy) − u(x)|dx < ǫ

uniformly in the interval |y| ≤ A, by choosing δ < δ0. Hence,
∫

|y|≤A

(∫

Rp

|u(x− δy) − u(x)|dx
)
|k(y)|dy ≤ ‖k‖1ǫ ≤ C2ǫ.

Hence ‖Fδ‖1 ≤ Cǫ if δ < δ0. 2

Observe that Lemma 1.3.1 holds if k ∈M(Rp) and k̂(0) = 0. We now give a variant

of the Wiener-Levy Theorem that will be useful to us.
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1.3.2 Theorem (Wiener-Levy Theorem)

Assume f ∈ L1(Rp) and f̂(ξ0) 6= 0. Then there exists g ∈ L1(Rp) and δ > 0 such

that

ĝ(ξ) =
1

f̂(ξ)
for |ξ − ξ0| < δ.

Proof . Let ψ(t) be a smooth function supported in some compact set containing

|ξ − ξ0| < δ with ψ(ξ) = 1 on |ξ − ξ0| < δ. Then we will prove that there exist a

function ω ∈ L1 such that

ψ((ξ − ξ0)/α)

f̂(ξ)
= ω̂(ξ)

if α is small enough. We assume for simplicity that ξ0 = 0 and that f̂(0) = f̂(ξ0) = 1.

Also we may assume the support of ψ is contained in |ξ| ≤ δ′ and ψ = 1 on |ξ| ≤ δ =

δ′

2
. Then ψ(ξ/2α) = 1 on the support of ψ(ξ/α) and we have

ψ(ξ/α)

f̂(ξ)
=

ψ(ξ/α)

1 + (f̂(ξ) − 1)ψ(ξ/2α)
.

Set h(ξ) = f̂(ξ) − 1. Then h(0) = 0. Also we claim that

‖hψ(·/2α)‖L̂1 → 0 as α → 0.

Indeed, set h = k̂ and ψ = û. Then k ∈ M(Rp), k̂(0) = 0, the function u belong to

the Schwartz class and hence in L1. Thus

‖hψ(·/2α)‖L̂1 = ‖h(α·)ψ(·/2‖L̂1 = ‖k̂αû2−1‖L̂1

= ‖ ̂kα ∗ u2−1‖L̂1 = ‖kα ∗ u2−1‖L1 .

Our claim follows from Lemma 1.3.1.

To complete the prove we have to show that if ‖G‖1 < 1 then

ψ(ξ)

1 − Ĝ(ξ)
∈ L̂1(Rp).
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To do this we first observe that

ψ(ξ)

1 − Ĝ(ξ)
≈ ψ(ξ)

N∑

n=0

Ĝ(ξ)n (1.15)

if N is large. We choose µ so that µ̂ = ψ. Then the right hand side of (1.15) is the

Fourier transform of

FN :=
N∑

n=0

µ ∗Gn, Gn = G ∗G ∗ · · · ∗G, n− times.

The fact that ‖Gn‖1 ≤ ‖G‖n1 and ‖G‖1 < 1 implies the infinite series

∞∑

n=1

Ĝ(ξ)n

converges in L1. The result follows by letting Ĝ(ξ) = −h(ξ)ψ(ξ/2α). 2

We give a comparison result of generalized modulus of continuity.

The measure µ is said to satisfy the Tauberian Condition (TC), if

for each ξ ∈ Rp, ξ 6= 0, there exist a number b > 0 such that µ̂(bξ) 6= 0.

1.3.3 Lemma

If µ, τ ∈ M(Rp), µ satisfies (TC) and τ̂ vanishes in neighborhoods of the origin and

infinity, then for a function f defined on Rp and t > 0, there exist constants C and

B depending on µ and τ only such that

ωτ (f ; t) ≤ Cωµ(f ;Bt)

Proof . Let K be the support of τ̂ and let ξ0 ∈ K and b0 > 0 be such that

µ̂(b0ξ0) 6= 0 . Then there exist a neighborhood of ξ0, Nξ0 and a number b0 > 0 such

that µ̂(b0ξ0) 6= 0 on Nξ0 . Thus for each ξk ∈ K there is a an open set Nk and a number

bk such that µ̂(bkξk) 6= 0 on Nk and the Nk is an infinite family of open sets whose
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union covers the compact set K. By the Heine-Borel Theorem there exists a finite

subfamily of open sets, Nk, k = 1, 2, · · · , m, of the infinite family Nk, which covers

the compact set K. Thus for each ξ ∈ K there is a open set Nk, k = 1, 2, · · · , m

and bk > 0 such that µ̂(bkξ) 6= 0 on Nk. Now let {ϕk} be a partition of unity such

that 1 =
∑m

k=1 ϕk(ξ) on K and suppϕk ⊂ Nk for each k. Now since ϕk ∈ C∞
0 and

supported in Nk the Wiener-Levy theorem implies there exists a νk ∈ M(Rp) such

that ψk(ξ) = ν̂(ξ)µ̂(bkξ) for all ξ ∈ Nk.

Thus

1 =

m∑

k=1

ψk(ξ) =

m∑

k=1

ν̂k(ξ)µ̂(bkξ).

This shows that, for every ξ ∈ Rp

τ̂(ξ) =
m∑

k=1

ν̂k(ξ)µ̂(bkξ)τ̂(ξ)

=
m∑

k=1

τ̂k(ξ)µ̂(bkξ)

where ν̂k(ξ)τ̂(ξ) = τ̂k(ξ). Thus τ =
∑m

k=1 τk ∗ µbk . This shows that

|τu ∗ f | ≤
m∑

k=0

|(τk)u ∗ (µbk)u ∗ f |

≤
m∑

k=0

‖(τk)u‖M‖(µbk)u ∗ f‖

Hence

ωτ (f, t) ≤ C

m∑

k=0

ωµ(f, bkt) ≤ C ′ωµ(f, Bt)

where B = max{bk; k = 1, 2, · · · , m}. 2

1.3.4 Lemma

If µ, τ ∈M(Rp), µ satisfies (TC) and τ̂ vanishes in neighborhoods of the origin, then

for a function f on Rp and t > 0, there exist constants C and B depending on µ and



24

τ only such that

ωτ (f, t) ≤ C

∫ Bt

0

ωµ(f, s)
ds

s
.

Proof . Assume that τ̂(ξ) = 0 for |ξ| < 1 and choose ψ as in Lemma 1.2.6, that is

smooth and compactly supported in 1
2
< |ξ| < 2 such that

1 =
∞∑

k=0

ψ(2−kξ), |ξ| > 1.

This implies

τ̂ (ξ) =
∞∑

k=0

ψ(2−kξ)τ̂(ξ) for all ξ ∈ Rp.

Set ν̂ = ψ. Then we have

τ =
∞∑

k=0

τ ∗ ν2−k .

We have

|τu ∗ f | ≤ |
∞∑

k=0

τu ∗ (ν2−k)u ∗ f | ≤ ‖τu‖M
∞∑

k=0

‖(ν2−k)u ∗ f‖.

Thus,

ωτ (f, t) ≤ C
∞∑

k=0

ων
2−k

(f, t).

By Lemma 1.3.3 there exist constants C ′ and B′ such that

ων
2−k

(f, t) ≤ C ′ωµ(f, B
′2−kt)

and hence,

ωτ (f, t) ≤ C ′′

∞∑

k=0

ωµ(f, B
′2−kt).

This completes the proof, once we take account of the elementary inequality

∞∑

k=1

φ(k) ≤
∫ ∞

0

φ(v)dv
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for functions φ continuous and decreasing for 0 ≤ λ < ∞, and apply it to φ(λ) =

ωµ(f, B
′2−λt). Indeed, if a > 0, then

∫ ∞

0

φ(v)dv =

∫ ∞

0

ωµ(f, B
′2−vt)dv

= −
∫ 0

B′t

ωµ(f, s)
ds

s ln 2

≤ C

∫ B′t

0

ωµ(f, s)
dt

s

where we have used the change of variable s = B′2−va.

1.3.5 Theorem

Assume that µ satisfies (TC) and that µ̂ divides τ̂ , τ ∈M(Rp), in some neighborhood

of the origin. Then there exist constants C and B which only depend on µ and τ ,

such that

ωτ (f, t) ≤ C

∫ t

0

ωµ(f, Bs)
ds

s
, t > 0.

Proof . Take a smooth function ψ, equal to 1 for |ξ| < δ/2 and supported in

|ξ| < δ. Then choose ρ by ρ̂(ξ) = ψ(ξ)τ̂(ξ)/µ̂(ξ) and let ν ∈ M(Rp) be given by

ν̂(ξ) = (1 − ψ(ξ))τ̂(ξ). Then ν̂(ξ) = 0 for |ξ| < δ and

τ̂(ξ) = µ̂(ξ)ρ̂(ξ) + ν̂(ξ), for all ξ ∈ Rp.

Thus,

ωτ (f, t) ≤ ωµ∗ρ(f, t) + ων(f, t)

≤ ‖ρ‖Mωµ(f, t) + ων(f, t).

We apply Lemma 1.3.4 with τ = ν to have

ωτ (f, t) ≤ ‖ρ‖Mωµ(f, t) + C

∫ Bt

0

ωµ(f, s)
ds

s
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for some constants B and C depending on ν and µ. The proof is complete by observing

that

ωµ(f, t) ≤
∫ Ct

t

ωµ(f, s)
ds

s
, for all C such that lnC ≥ 1. 2

1.3.6 Lemma

Let µ ∈M(R) and assume that µ̂(ξ)/ξ is in M̂(R). Assume moreover that f ∈ C0(R),

f ∈ K(σ) and

(1 + |x|)µ ∈M(R). (1.16)

Then there exist a constant C > 0 such that

sup |µt ∗ f | ≤ Cσ(t). (1.17)

Proof . Since µ̂(ξ)/ξ is in M̂(R) we have that µ̂(0) = 0, that is 〈µ, 1〉 = 0. This

shows that ,

µt ∗ f(x) = 〈µ, f(x− t·)〉 = 〈µ, f(x− t·) − f(x)〉.

Thus using the monotonicity and subadditivity of σ(t) we have

|µt ∗ f(x)| ≤ C

∫

R

σ(|yt|)|dµ(y)| ≤ C

∫

R

(1 + |y|)σ(t)|dµ(y)| ≤ C‖(1 + |y|)µ‖σ(t)

which completes the proof.

1.3.7 Lemma

Let µ ∈M(R) and assume that µ̂(ξ)/ξ is in M̂(R). Assume moreover that f ∈ C0(R)

and f ∈ K(σ). Then (1.17) holds for some constant C.

Proof . Let ψ be smooth function on R that is equal to 1 for |ξ| < 1 and equals

0 for |ξ| > 2. Define h and τ by ĥ = ψ and τ̂ = 1 − ψ. It is clear that τ satisfies the

conditions of Lemma 1.3.6. Indeed, since h is in the Schwartz class and τ = δ0 − h
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we have that τ satisfies (1.16), the other conditions are fulfilled trivially. Decompose

µ by writing µ = ν + ρ where ν̂ = ψµ̂. We observe that

ρ̂(ξ) = ρ̂(ξ)τ̂(2ξ), (1.18)

because τ̂(2ξ) = 1 on the support of ρ̂. It follows from Lemma 1.3.6 that

sup |τt ∗ f | ≤ Cσ(t)

for some constant C. Since equation (1.18) implies ρ = ρ∗ τ2 we see that the assertion

is proved for ρ.

Consider ν. We note that ν̂(ξ)/ξ is in M̂(R) and is compactly supported. Thus we

can choose the function ψ as above then (e−iξ− 1)/ξ is non zero on the support of ψ.

We apply Weiner’s theorem to get some ω ∈M(R) such that

ν̂(ξ)/ξ

(e−iξ − 1)/ξ
= ω̂(ξ)

which gives

ν = ∆ ∗ ω,

which implies

|ν ∗ f | ≤ Cσ(t),

as required.2



Chapter 2

Mappings between Euclidean
spaces

We say a function f from Rp to R is continuous in the direction θ ∈ Rp \ {0} if the

function h : R → R defined by h(t) = f(x+ tθ) is continuous uniformly with respect

to x on compact sets. It is obvious that f must be continuous if it satisfies p conditions

of this kind for a set of θ-vectors that spans Rp. However to be able to conclude that

two real functions on R2 are continuous we do not need four conditions, but three

conditions suffice. Infact, if f is continuous in the direction (1, 0), g is continuous in

the direction (0, 1), and f + g is continuous in the direction (1, 1), then f and g must

be continuous. This makes it natural to ask question on what condition on subsets

of R2 × R2 do we have a transfer of regularity properties in given directions to the

functions itself. More generally we will be studying the following:

Let Λ be a finite set of pairs (θ, η) ∈ Rp ×Rq and let f be a function from Rp to

Rq. Assume the real-valued function x 7→ 〈η, f〉(x) has certain regularity properties

(e.g continuity, infinite differentiability, modulus of continuity etc) in the direction

θ for every (θ, η) ∈ Λ. Then under what conditions on Λ do we have the following:

Each regularity property on x 7→ 〈η, f〉(x) in the direction θ for every (θ, η) ∈ Λ will

28



29

imply a corresponding (unrestricted) regularity property for the function f .

In this chapter we will study two (algebraic) conditions on the set Λ which we shall

denote by (Â) and (A). Also if η ∈ Rq and µ ∈ M(Rp) then ηµ shall be considered

as the q-tuple (η1µ, · · · , ηqµ). In [10] the notation η ⊗ µ was used where ⊗ denotes

the tensor product over R.

2.1 The algebraic condition (Â).

In order to be able to study regularity properties between Euclidean spaces we will

need to use some algebraic conditions.

The subset Λ of Rp × Rq is said to satisfy (Â) if

u ∈ Rp, v ∈ Rq and 〈u, θ〉〈v, η〉 = 0 for all (θ, η) ∈ Λ

implies |u||v| = 0

or equivalently as stated in [10]

if Φ is a bilinear form Rp ×Rq → R of rank one and Φ(Λ) = 0 , then Φ = 0.

Another formulation of this condition can be as follows. If we associate the p×q matrix

with the linear form αij 7→
∑
αijaij on the vector space M(p, q) of all p× q matrices,

then the dual space of M(p, q) will be identified with another copy of M(p, q). Λ will

satisfy (Â) if there is no rank one element of M(p, q) that is orthogonal to all the

matrices (θiηj) for (θ, η) ∈ Λ.

2.1.1 Lemma

If Λ satisfies (Â), then Λ must contain at least p+ q − 1 elements.
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Proof . Suppose Λ contains only p + q − 2 elements and let (θk, ηk) ∈ Λ, k =

1, 2, · · · , p+q−2. Let {w1, · · · , wp−1} be a set of p−1 vectors in Rp. Then there exist

a non-zero vector u ∈ Rp such that 〈u, wi〉 = 0, i = 1, 2, · · · , p−1, since the p−1 ele-

ments cannot span Rp. Similarly if {w1, · · · , wq−1} be a set of q−1 vectors in Rq then

there exist a non-zero vector v ∈ Rp such that 〈v, wi〉 = 0, i = 1, 2, · · · , q − 1. This

shows that we can find non-zero vector u ∈ Rp and v ∈ Rq such that 〈u, θk〉〈v, ηk〉 = 0

for all (θk, ηk) ∈ Λ, k = 1, 2, · · · , p+ q−2 which contradicts the condition (Â). Hence

Λ cannot contain less than p+ q − 1 elements. 2

2.1.2 Remark

We give some simple examples of Λ satisfying (Â). Lets consider the case p = q = 2,

then Lemma 2.1.1 shows that Λ must contain at least three elements. Let

Λ = {(e1, e1), (e2, e2), (e1 + e2, e1 + e2) : e1 = (1, 0), e2 = (0, 1)}.

Then Λ contains only three elements and satisfies (Â) . Indeed, Let u = (u1, u2), v =

(v1, v2) ∈ R2 be such that 〈u, θ〉〈v, η〉 = 0 for all (θ, η) ∈ Λ. That is,

〈u, e1〉〈v, e1〉 = 0, 〈u, e2〉〈v, e2〉 = 0, 〈u, e1 + e2〉〈v, e1 + e2〉 = 0.

Then u1v1 = 0, u2v2 = 0 and u1v2 + u2v1 = 0. We see easily that either u or v is the

zero vector. Also the set of 2 × 2 matrices (θiηj) for (θ, η) ∈ Λ is:





 1 0

0 0


 ,


 0 0

0 1


 ,


 1 1

1 1





 .

Now if

Λ = {(e1, e1), (e2, e2), (e1, e2), (e2, e1) : e1 = (1, 0), e2 = (0, 1)}
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then Λ satisfies (Â) with four elements. We shall latter see that our last example

satisfies a stronger algebraic condition which we are going to study. There are infact

infinitely many subsets of Rp × Rq satisfying (Â) with only p + q − 1 elements. In

a previous studies (Licentiate thesis [1]), we called such sets “minimal sets”, and our

study was basically on the minimal sets. However as the second example shows, not

every set satisfying (Â) contains a minimal set. The set in question satisfies (Â) but

if you take away one element the condition (Â) will no longer be satisfied. Thus

our results here are more general. However the minimal sets contain some algebraic

properties which does not hold in the general case, which we used.

Now suppose Λ satisfies (Â) and contains only p + q − 1 elements. If we take a

subset D of Λ of p-elements then the complement of D, D′, will contain q−1 elements.

Now if the set of θ-vectors for which (θ, η) in D is linearly dependent then there exist

a non-zero vector u ∈ Rp such that 〈u, θ〉 = 0 for all (θ, η) ∈ D. Also there exist a

non-zero vector v ∈ Rq such that 〈v, η〉 = 0 for all (θ, η) ∈ D′. Thus 〈u, θ〉〈v, η〉 = 0

for all (θ, η) ∈ Λ. This contradicts the fact that Λ satisfies (Â). This shows that the

θ vectors in D are linearly independent and hence form a basis for Rp. A similar

statement holds if D contains q elements. We have proved the following:

2.1.3 Lemma

Suppose (θ, η) ∈ Λ satisfies (Â) and contains only p+ q− 1 elements. Then every set

of p(resp. q) elements of the θ(resp. η) vectors form a basis of Rp (resp.Rq).

The following is one of the most useful property of the condition (Â).
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2.1.4 Lemma

Assume that Λ satisfies (Â). Then for every ξ 6= 0 the set of ηk such that (θk, ηk) ∈ Λ

and θk · ξ 6= 0 spans Rq;

Proof . If the above statement were false there would exist ξ and y such that ηk ·y = 0

for all k for which θk · ξ 6= 0, that is (ηk · y)(θk · ξ) is equal to 0 for all k, which means

that (Â) is false. 2

2.1.5 Lemma

Assume that Λ is finite subset of Rp × Rq satisfying (Â) and that s is a natural

number. Then there exist a constant C which is independent of u and v such that

|v||u|s ≤ C
∑

(θ,η)∈Λ

|〈η, v〉||〈θ, u〉|s, u ∈ Rp, v ∈ Rq. (2.1)

Proof . The function on the right-hand side is positively homogeneous with respect

to v of degree 1 and with respect to u of degree s, and so is the left-hand side. Thus

it is sufficient to prove (2.1) when |v| = |u| = 1. But if |v| = |u| = 1 the bilinear form

Φ(θ, η) = 〈θ, u〉〈η, v〉 cannot vanish on all of Λ in view of (Â). Hence the continuous

function on the right-hand side of (2.1) must have a positive lower bound δ > 0 on

the compact set |u| = |v| = 1. Choose C > 1/δ to complete the proof. 2

2.1.6 Definition

Let 0 6= θ ∈ Rp and k ≥ 1. We denote by Ck(θ) the class of continuous functions

defined in Rp such that the derivatives

Dj
θf(x) = [(d/dt)jf(x+ tθ)]t=0

exist and are continuous when j ≤ k.
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Ck is the class of k times continuously differentiable functions. C∞(θ) denotes

⋂∞
k=1C

k(θ) and C∞ denotes
⋂∞
k=0C

k

2.1.7 Theorem

Assume Λ satisfies (Â) and that f : Rp → Rq satisfies

〈η, f〉 ∈ C∞(θ) for each (θ, η) ∈ Λ. (2.2)

Then f ∈ C∞. Conversely if (2.2) implies that f ∈ C∞, then (Â) holds.

Proof . Take ψ : Rp → R, ψ ∈ C∞ such that ψ = 1 on some open set and ψ = 0

outside some compact set. It will be enough to prove that g = ψf ∈ C∞. It is clear

that 〈η, g〉 ∈ C∞(θ) for each (θ, η) ∈ Λ. Since g has compact support we can form

the Fourier transform ĝ of g. By partial integration we obtain in a well known way

for any natural number s a constant Cs such that

|〈η, ĝ(ξ)〉||〈θ, ξ〉|s ≤ Cs,

for every (θ, η) ∈ Λ and ξ ∈ Rp. Indeed, we know that

ĝ(ξ) =

∫

Rp

e−iξ·xg(x)dx

=

∫

R

e−iξ1·x1

∫

R

e−iξ2·x2 · · ·
∫

R

e−iξp·xpg(x)dxp · · · dx2dx1.

Let θ = (1, 0, · · · , 0) then by the hypothesis

(∂s/∂xs1)〈η, g〉(x) = 〈η, (∂s/∂xs1)g(x)〉,

exists, is continuous and compactly supported. Using integration by parts we obtain
∫

R

e−iξ1·x1〈η, g〉(x)dx1 =
1

(iξ1)s

∫

R

e−iξ1·x1(∂s/∂xs1)〈η, g〉(x)dx1

=
1

(iξ1)s

∫

R

e−iξ1·x1〈η, (∂s/∂xs1)g(x)〉dx1
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for any natural number s. We now multiply by e−i(x2ξ2+···+xpξp) and integrate over all

the other x-variables we obtain

〈η, ĝ(ξ)〉 =
1

(iξ1)s

∫

Rp

e−iξ·x〈η, (∂s/∂xs1)g(x)〉dx.

Thus,

|ξ1|s|〈η, ĝ(ξ)〉| = |〈θ, ξ〉|s|〈η, ĝ(ξ)〉| ≤ C.

But we can always make a rotation of the coordinate system so that θ becomes

(1, 0, · · · , 0) in the new coordinate system. Thus,

|〈θ, ξ〉|s|〈η, ĝ(ξ)〉| ≤ C (2.3)

for all (θ, η) ∈ Λ.

Now, since any infinite set satisfying (Â) contains a finite subset satisfying (Â), we

may assume Λ is a finite subset of Rp × Rq. Thus summing over all (θ, η) ∈ Λ in

(2.3) we obtain
∑

(η,θ)∈Λ

|〈θ, ξ〉|s|〈η, ĝ(ξ)〉| ≤ C1.

We now apply Lemma 2.1.5 with ξ = u and ĝ(ξ) = v to get

|ĝ(z)||z|s ≤ C ′
s, z ∈ Rp, s = 1, 2, · · · .

It is well known that this implies that g ∈ C∞.

Conversely, suppose that there exist u 6= 0 and v 6= 0 such that

〈u, θ〉〈v, η〉 = 0 for every (θ, η) ∈ Λ.

Let h be an arbitrary continuous function R → R, and the function f : Rp → Rq be

defined by f(x) = vh(〈u, x〉). Then for every (θ, η) ∈ Λ

Dθ〈η, f(x)〉 = 〈η, v〉Dθh(〈u, x〉)

= 〈η, v〉〈u, θ〉h′(〈u, x〉) = 0
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which implies 〈η, f(x)〉 ∈ C∞(θ) for each (θ, η) ∈ Λ. But f does not in general belong

to C∞.

Let χ(t) be a smooth function on the set of real numbers that is equal to 1 for

|t| > 1 and equals 0 for |t| < 1
2

and define the function ψ(t) = 1−χ(t) so that ψ(t) = 1

on |t| < 1
2

and suppψ ⊂ [−1, 1]. Let ψk(ξ) denote ψ(θk · ξ) and χk(ξ) denote χ(θk · ξ).

We note from Lemma 1.1.1 that ψk, χk and the products of these functions are all

in M̂(Rp). We are now ready to state and prove a theorem on the decomposition of

vector valued measures.

2.1.8 Theorem

Assume that µ0 ∈M(Rp), and that µ̂0(ξ) = 0 in some neighborhood of the origin, and

that Λ satisfies (Â). Then for each η0 ∈ Rq, there exist µk ∈Mθk , k = 1, 2, · · · , m ≥

p+ q − 1, with

µ̂k(ξ)

θk · ξ ∈ M̂(Rp), (2.4)

such that

η0µ0 =
m∑

k=1

ηkµk. (2.5)

Infact, one can take µk such that µ̂k(ξ) = 0 when ever |θk · ξ| ≤ δ for some δ > 0.

Proof Let η0 be an arbitrary vector in Rq and the functions χ(t) and ψ(t) be define

as above. We will show that there exist measures µk in Mθk such that the equation

η0 =
m∑

k

µ̂k(ξ)η
k (2.6)

holds for |ξ| > B for some sufficiently large B.

For s = 1, 2, · · · , 2m, let Es ⊂ {1, 2, · · · , m} and E ′
s the compliment of Es in
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{1, 2, · · · , m}. Outside any compact set we write

1 =

m∏

i=1

(ψi(ξ) + χi(ξ)) =

2m∑

s=1

∏

i∈Es

ψi(ξ)
∏

j∈E′
s

χj(ξ) (2.7)

We may take E1 = {1, 2, · · · , m} and E2m = ∅ so that
m∏

i=1

ψi(ξ) and
m∏

i=1

χi(ξ)

are the first and the last terms respectively on the right hand of equation (2.7). If Λ

satisfy (Â) then for each s = 1, 2, · · · , 2m, we have the following: Either

1. the set of {θi}, i ∈ Es spans Rp or

2. the set of {ηj}, j ∈ E ′
s spans Rq.

Indeed, if neither of this is not true then we can find 0 6= v ∈ Rq and 0 6= u ∈ Rp

such that 〈v, ηk〉〈u, θk〉 = 0 for all (θk, ηk) ∈ Λ which implies (Â) is false.

We also observe that if {θi}i∈Es spans Rp then the support of
∏

i∈Es
ψi(ξ) is

contained in some compact set ,{|ξ| ≤ Rs}, around the origin. Now for each s for

which {θi}i∈Es spans Rp, there is an Rs such that
∏

i∈Es
ψi(ξ) = 0 for all ξ with

|ξ| > Rs. Let B = maxsRs. Then for |ξ| > B equation (2.7) will contain the sum of

terms of the form
∏

i∈Es

ψi(ξ)
∏

j∈E′
s

χj(ξ)

where the set {ηj}j∈E′
s

span Rq. Now if η0 ∈ Rq, there exist bk such that

η0 =
∑

k∈E′
s

bkη
k

which implies

∏

i∈Es

ψi(ξ)
∏

j∈E′
s

χj(ξ)η
0 =

∏

i∈Es

ψi(ξ)
∏

j∈E′
s

χj(ξ)
∑

k∈E′
s

bkη
k

=
∑

k∈E′
s

c(ξ)bkη
k,
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where

c(ξ) =
∏

i∈Es

ψi(ξ)
∏

j∈E′
s

χj(ξ).

Now, let

csk(ξ) = bk
∏

i∈Es

ψi(ξ)
∏

j∈E′
s, j 6=k

χj(ξ),

for k ∈ E ′
s. Then csk(ξ) is in M̂(Rp) and

∏

i∈Es

ψi(ξ)
∏

j∈E′
s

χj(ξ)η
0 =

∑

k∈E′
s

csk(ξ)χk(ξ)η
k. (2.8)

Thus for each s for which the set ηj ∈ E ′
s spans Rq, there exist csk ∈ M̂(Rp) such

that equation (2.8) holds.

Multiplying equation (2.7) by η0 and summing over s we get

η0 =
2m∑

s=1

∑

k∈E′
s

csk(ξ)χ(θk · ξ)ηk

=
m∑

k=1

ck(ξ)χ(θk · ξ)ηk, |ξ| > B,

where

ck(ξ) =
∑

s

csk(ξ),

which is in M̂(Rp). Let

µ̂k(ξ) = µ̂0(ξ)ck(ξ)χ(θk · ξ)

then µk ∈ M̂θk and

µ̂0(ξ)η
0 =

m∑

k=1

µ̂k(ξ)η
k, |ξ| > B.

To complete the proof we must show that µk, k = 1, 2 · · · , m satisfies (2.4). To this

end, let Φ(t) be a smooth function on the set of real numbers that is equal to 1 for
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|t| > 1/2 and equals 0 for |t| < 1
4
, then

Φ(θk · ξ)
θk · ξ µ̂k(ξ) =

µ̂k(ξ)

θk · ξ , for all ξ.

Thus it suffices to show that Φ(θk·ξ)
θk·ξ

∈ M̂(Rp). But this follows by Lemma 1.1.5 and

thus the theorem is proved. 2

Our next Lemma shows that the result above holds for |ξ| > δ for any δ > 0,

precisely we have

2.1.9 Lemma

Suppose there exist B and µk ∈Mθk such that

η =
∑

k

µ̂k(ξ)η
k for |ξ| > B.

Then for any δ > 0 there exist νk ∈Mθk such that

η =
∑

k

ν̂k(ξ)η
k for |ξ| > δ.

Proof . If µ ∈ Mθ then µ̂ ∈ M̂θ. For a 6= 0 define ν by ν̂(ξ) = µ̂(aξ). Thus ν ∈ Mθ

and if we let a = B
δ

we get the result. 2

2.1.10 Theorem

If Λ satisfies (Â) then for all η0 ∈ Rq, θ0 ∈ Rp and positive integer r, there exist

ck(ξ), ξ ∈ Rp/{0}, which are smooth and homogeneous of degree r − 1 such that

η0(θ0 · ξ)r =
m∑

k=1

ck(ξ)η
k(θ0 · ξ). (2.9)

Proof . Let ξ0 ∈ Sp−1. Then by Lemma 2.1.4 we can choose a set E of numbers k of

{ηk} such that θk · ξ0 6= 0, for all k ∈ E and constants bk such that

η0 =
∑

k∈E

bkη
k. (2.10)
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By continuity, there exist a open neighborhood, V0, of ξ0 such that θk · ξ 6= 0 for

all ξ ∈ V0. Since the unit sphere, Sp−1, is compact we can find a finite set of open

neighborhoods, Vj j = 1, 2, · · · , N , which covers Sp−1. Let {ϕj} be a partition of

unity such that 1 =
∑N

j=1 ϕj(ξ) on Sp−1 and suppϕj ⊂ Vj for each j. Then for each

j = 1, 2, · · · , N , equation (2.10) implies there exist Ej such that θk · ξ 6= 0 for all

k ∈ Ej and all ξ ∈ Vj and

ϕj(ξ/|ξ|)η0 =
∑

k∈Ej

ϕj(ξ/|ξ|)bkηk (2.11)

this implies

ϕj(ξ/|ξ|)η0(θ0 · ξ)r =
∑

k∈Ej

dk,j(ξ)η
k(θk · ξ) (2.12)

where dk,j(ξ) = (θ0·ξ)r

(θk·ξ)
ϕj(ξ/|ξ|) is smooth and homogeneous of degree r − 1. Putting

all of this together we have

η0(θ0 · ξ)r =

N∑

j

m∑

k=1

dk,j(ξ)η
k(θk · ξ)

=
m∑

k=1

N∑

j

dk,j(ξ)η
k(θk · ξ) (2.13)

with dk,j(ξ) = 0 if k /∈ Ej . 2

Using Theorems 2.1.7 and 2.1.8 we have the following:

2.1.11 Corollary

Assume Λ satisfies (Â) , and f ∈ K(σ, θ) for all (θ, η) ∈ Λ and r a positive integer

greater than 1. Then there exists a constant C

ωr(f, t) ≤ Cσ(ǫ), |t| ≤ ǫ.
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Proof . Let η0 ∈ Rq and θ0 ∈ Rp be arbitrary and let µ0 be the rth order difference

measure in the direction θ0 for r ≥ 2. Then

µ̂0(ξ) = (e−iθ
0·ξ − 1)r. (2.14)

We claim that

sup |µ0,t ∗ 〈η0, f〉| ≤ Cσ(t). (2.15)

To prove (2.15), take a smooth function ψ(ξ) supported in |ξ| < 2 and equal to

1 in |ξ| ≤ 1 and decompose µ0 as µ0 = ν0 + ρ0 by taking ν̂0(ξ) = ψ(ξ)µ̂0(ξ) and

ρ0 = µ0 − ν0. The measure ρ0 satisfies the hypothesis of Theorem 2.1.8 and thus

|ρ0,t ∗ 〈η0, f〉| = |
m∑

k=1

µk,t ∗ 〈ηk, f〉| ≤
m∑

k=1

|µk,t ∗ 〈ηk, f〉|.

This shows that

|ρ0,t ∗ 〈η0, f〉| ≤ Cσ(t),

since 〈ηk, f〉 ∈ K(θk, σ) by Lemma 1.3.7. Consider ν0. Theorem 2.1.10 implies that

there exist smooth and homogeneous functions, ck(ξ), in Rp/{0} of degree r− 1 such

that

η0(θ0 · ξ)r =
m∑

k=1

ck(ξ)η
k(θk · ξ). (2.16)

Now, write

ν̂0(ξ) = µ̂0(ξ)ψ(ξ) = (θ0 · ξ)r µ̂0(ξ)

(θ0 · ξ)rψ(ξ) = (θ0 · ξ)rG(ξ)ψ(ξ),

where

G(ξ) =
µ̂0(ξ)

(θ0 · ξ)r =

(
(e−iθ

o·ξ − 1)

(θ0 · ξ)

)r

which is the Fourier transform of a measure in M(Rp) by Lemma 1.1.5. Multiplying

(2.16) by G(ξ)ψ(ξ) we obtain

η0ν̂0(ξ) =
∑

k

ck(ξ)ψ(ξ)ηkG(ξ)(θk · ξ).
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Since ψ is smooth and has compact support it follows from Lemma 1.1.7 that ck(ξ)ψ(ξ)G(ξ)

is the Fourier transform of a measure inM(Rp), and thus ck(ξ)ψ(ξ)G(ξ)(θk·ξ) belongs

to M̂θk . The claim follows as in the case of ρ above.

Now, observe that (2.15) implies

|∆r
t,θ0〈η0, f(x)〉| ≤ Cσ(t)

with θ0 and η0 arbitrary. Now let θ0 = (1, 1, · · · , 1) and η0 = ek then

|∆r
tfk(x)| ≤ Cσ(t)

for all k = 1, 2, · · · , q and this implies there exist a constant C ′ which may depend

on q such that

|∆r
tf(x)| ≤ C ′σ(ǫ), |t| ≤ ǫ.2

2.1.12 Corollary

Let f be a function from Rp to Rq and σ ∈ Σ. Let Λ be a subset of Rp × Rq

satisfying (Â) and assume that

〈η, f〉 ∈ K(θ, σ) for every (θ, η) ∈ Λ. (2.17)

Then f ∈ K(σ̂).

Proof . Choose ν by ν̂(ξ) = χ(θ0 · ξ). By Lemma 1.2.8 it is enough to prove that

ων(〈η0, f〉, t) ≤ Cσ(t) (2.18)

Using Theorem 2.1.8 with ν = µ0 together with Lemma 1.3.7 we get

|ν0,t ∗ 〈η0, f〉| = |
m∑

k=1

νk,t ∗ 〈ηk, f〉| ≤
m∑

k=1

|νk,t ∗ 〈ηk, f〉| ≤ Cσ(t).2
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We end this section with an example which shows that Corollary 2.1.11 is not

always true for r = 1 and that no stronger conclusion is valid for Corollary 2.1.12.

Let f : R2 → R2 given by

f(x) = (x2 log |x|,−x1 log |x|), f(0, 0) = (0, 0), x = (x1, x2),

σ(ǫ) = ǫ and (θk, ηk) ∈ Λ given by θ1 = η1 = (1, 0), θ2 = η2 = (0, 1), θ3 = η3 = (1, 1).

Since

|(d/dx1)x2 log |x|| = |x1x2|/|x|2 ≤ 1 when |x| 6= 0.

Thus

|〈η1, f(x+ tθ1) − f(x)| = |f1(x1 + t, x2) − f1(x1, x2)| ≤ |t|,

that is 〈η1, f〉 ∈ K(θ1, σ). Similarly we show that 〈η2, f〉 ∈ K(θ2, σ). Also, if |x| 6= 0,

then

|η3, f(x+ tθ3) − f(x)〉| = |f1(x1 + t, x2 + t) − f1(x1, x2) + f2(x1 + t, x2 + t) − f2(x1, x2)|

≤ |f1(x1 + t, x2 + t) − f1(x1, x2)| + |f2(x1 + t, x2 + t) − f2(x1, x2)|

= |f1(x1 + t, x2 + t) − f1(x1 + t, x2) + f1(x1 + t, x2) − f1(x1, x2)|

+ |f2(x1 + t, x2 + t) − f2(x1, x2 + t) + f2(x1, x2 + t) − f2(x1, x2)|

≤ |f1(x1 + t, x2 + t) − f1(x1 + t, x2)| + |f1(x1 + t, x2) − f1(x1, x2)|

+ |f2(x1 + t, x2 + t) − f2(x1, x2 + t)| + |f2(x1, x2 + t) − f2(x1, x2)|

≤ c|t|,

and when |x| = 0 the estimate is trivial. Thus 〈ηk, f〉 ∈ K(θk, σ) for each (θk, ηk) ∈ Λ.

By Corollary 2.1.11, ωk(f, t) ≤ cσ(|t|) for k > 1 while Corollary 2.1.12 implies that

ω1(f, t) ≤ Cσ̂(|t|). Now if we choose the compact set K = {x ∈ R2 : |x| ≤ 0.09} then

|f(x) − f(0)| = |x|| log |x|| = σ̂(|x|) > |x|.
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We see that ω1(f, t) ≤ cσ(|t|) is not possible in this case.

2.2 The algebraic condition (A)

The set Λ of pairs (θ, η) ∈ Rp × Rq is said to satisfy the condition (A) if the set of

tensor products θ ⊗ η for (θ, η) ∈ Λ spans Rp ⊗ Rq. This is the same as saying that

the set of p× q matrices (θiηj) spans the pq- dimensional vector space M(p, q) of all

p× q matrices.

If we associate the p× q matrix with the linear form αij 7→
∑
αijaij on the vector

space M(p, q) of all p× q matrices, then the dual space of M(p, q) will be identified

with another copy of M(p, q). Λ will satisfy (A) if there is no non-vanishing element

of M(p, q) that is orthogonal to all the matrices (θiηj) for (θ, η) ∈ Λ.

Note that the formulation of the condition (A), here is equivalent to that in [10],

which is as follows:

if Φ is a bilinear form Rp × Rq → R and Φ(Λ) = 0 , then Φ = 0.

One can establish this equivalence by representing the bilinear forms by Φ(θ, η) =

∑
aijθiηj . We note immediately that if Λ satisfies the condition (A) it must contain

at least pq elements. We also observe that the condition (A) is a stronger condition

compare with the condition (Â).

2.2.1 Remark

We give an example of a set satisfying (A). Let p = q = 2 and take

Λ = {(e1, e1), (e2, e2), (e1, e2), (e2, e1) : e1 = (1, 0), e2 = (0, 1)}
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then Λ satisfies (A) and the set of 2 × 2 matrices (θiηj) for (θ, η) ∈ Λ is:





 1 0

0 0


 ,


 0 1

0 0


 ,


 0 0

1 0


 ,


 0 0

0 1





 .

2.2.2 Theorem

Assume Λ satisfies (A) and that f : Rp → Rq, continuous and satisfies

〈η, f〉 ∈ C1(θ) for each (θ, η) ∈ Λ. (2.19)

Then f ∈ C1. Moreover, there exist a constant C depending on Λ only, such that

‖Df(x)‖ ≤ C sup
(θ,η)∈Λ

|Dθ〈η, f(x)〉| for every x ∈ Rp.

Here ‖Df(x)‖ denotes the norm of the differential of f at x considered as an operator

from Rp to Rq. Conversely if (2.19) implies that f ∈ C1, then (A) holds.

Proof . We have to prove that an arbitrary first partial derivative of f exist and

is continuous. Choose bases in Rp and Rq such that this derivative is D1f1 where

D1 = ∂/∂x1. Since Λ satisfies (A), there exist bk and (θk, ηk) ∈ Λ such that

n∑

k=1

bkθ
k
i η

k
j =





1 when (i, j) = (1, 1),

0 when (i, j) 6= (1, 1).

(2.20)

Take ψ of class C1 with compact support such that
∫
ψdx = 1 and for any ǫ > 0 set

fǫ(x) =

∫
f(x+ ǫy)ψ(y)dy.

For each (θ, η) ∈ Λ

Dθ〈η, fǫ(x)〉 =
d

dt
〈η, fǫ(x+ tθ)〉t=0

=
d

dt

∫
〈η, f(x+ tθ + ǫy)〉t=0ψ(y) dy
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which tends to Dθ〈η, f(x)〉 as ǫ → 0. This implies Dθ〈η, fǫ(x)〉 converges uniformly

on compact sets to Dθ〈η, f(x)〉 when ǫ → 0. Denoting the first component of fǫ by

(fǫ)1 we have by (2.20)

D1(fǫ)1 =

n∑

k=1

bkDθk〈ηk, fǫ〉. (2.21)

Indeed

n∑

k=1

bkDθk〈ηk, fǫ〉 =

n∑

k=1

bk
d

dt
〈ηk, fǫ(x+ tθk)〉|t=0

=

n∑

k=1

bk〈ηk,
d

dt
fǫ(x+ tθk)|t=0〉

=

n∑

k=1

bk〈ηk, Dθk(fǫ)〉.

Now, since

Dθk(fǫ) =

p∑

i=1

θkiDi(fǫ),

where Di = ∂
∂xi

, we have that

n∑

k=1

bkDθk〈ηk, fǫ〉 =
n∑

k=1

bk

p∑

i=1

θki 〈ηk, Di(fǫ)〉

=

p∑

i=1

q∑

j=1

n∑

k=1

θki η
k
jDi(fǫ)j

= D1(fǫ)1,

by (2.20).

Thus, D1(fǫ)1 is continuous and converges uniformly on compact sets to some

function g when ǫ → 0. Since f1 is continuous and D1(fǫ)1 converges uniformly on

compact sets to f1 we must conclude that f1 is differentiable with respect to x1 and

that D1f1 = g. We also obtain equation (2.21) with fǫ = f . Since the constants bk
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only depend on Λ we have

|D1f1| ≤ C
∑

(θ,η)∈Λ

|Dθ〈η, f〉|.

Using a similar arguments we obtain

|Dkfj | ≤ C
∑

(θ,η)∈Λ

|Dθ〈η, f〉| for each k = 1, 2, · · · , n and , j = 1, 2 · · · , n.

Thus

‖Df(x)‖ = max
k,j

|Dkfj |

≤ C sup
(θ,η)∈Λ

|Dθ〈η, f(x)〉|

which the estimate for ‖Df(x)‖.

Conversely, suppose Λ does not satisfy (A). We shall show that there exists a

function, f : Rp → Rq with 〈η, f〉 ∈ C1(θ) for all (η, θ) ∈ Λ but f is not differentiable

at the origin. Since Λ does not satisfy (A), there exists a non-zero linear operator B

from Rp to Rq such that 〈Bθ, η〉 = 0 for each (θ, η) ∈ Λ. Consider the function, f ,

defined by

f(x) = (Bx) log | log |x||, 0 < |x| < 1

2
, f(0) = 0.

Then

lim
t→0

f(tx) − f(0)

t
= lim

t→0
(Bx) log | log |tx||

which does not exist, thus f is not differentiable at the origin.

On the other hand, for all (θ, η) ∈ Λ

Dθ〈η, f(x)〉 =
d

dt
〈η, f(x+ tθ)〉|t=0

=
d

dt
〈η, (B(x+ tθ)) log | log |x+ tθ||〉|t=0

= 〈η, Bx〉 d
dt

log | log |x+ tθ|| |t=0,
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since 〈Bθ, η〉 = 0. Also,

d

dt
log | log |x+ tθ||{t=0} =

log |x|
| log |x||2

〈θ, x〉
|x|2 .

Thus,

Dθ〈η, f(x)〉 =
log |x|

| log |x||2
〈η, Bx〉〈θ, x〉

|x|2 =
log |x|

| log |x||2 〈η, B
x

|x|〉〈θ,
x

|x| 〉.

Also,

|Dθ〈η, f(x)〉| ≤ ‖B‖|θ||η| 1

| log |x||
which tends to zero as x→ 0. Thus

lim
x→0

Dθ〈η, f(x)〉 = 0.

Hence, 〈η, f〉, is C1(θ) for all (η, θ) ∈ Λ. 2

2.2.3 Remark

If we replace C1(θ) by Ck(θ), k > 1, the assertion of Theorem 2.2.2 becomes false.

Indeed, Let f : R2 → R be define by

f(x) = x1x2 log | log |x||, 0 < |x| < 1

2
, f(0) = 0, x = (x1, x2)

then D2
1f and D2

2f exist and are continuous. Also D1f(0, x2) = x2 log | log |x2|| which

shows that D2D1f(0, 0) does not exist.

The most important consequences of (A) are deduced from the theorem on the

decomposition of vector valued measures (Theorem 2.1.8).
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2.2.4 Theorem

Assume that Λ satisfies (A) and let θ0 ∈ Rp \ {0}, η0 ∈ Rq, µ0 ∈ Nθ0 . Then there

exist µk ∈ Nθk , k = 1, 2, · · · , m ≥ pq such that

η0µ0 =
m∑

k=1

ηkµk. (2.22)

Proof . Take a smooth function ψ(ξ) supported in |ξ| < 2 and equal to 1 in |ξ| ≤ 1

and decompose µ0 as µ0 = ν0 + ρ0 by taking ν̂0(ξ) = ψ(ξ)µ̂0(ξ) and ρ0 = µ0 − ν0. The

fact that ρ0 can be expressed in the form (2.22) follows from Theorem 2.1.8. Indeed,

since

ρ̂0(ξ) = µ̂0(ξ) − ν̂0(ξ) = µ̂0(ξ)(1 − ψ(ξ))

equals zero for |ξ| ≤ 1 and the fact that Λ satisfies (A) implies Λ satisfies (Â). It

remains to consider ν0. Now, because Λ satisfies (A), there exist constants bk and

(θk, ηk) ∈ Λ such that

η0 ⊗ θ0 =
∑

k

bkη
k ⊗ θk

or equivalently

η0(θ0 · ξ) =
∑

k

bkη
k(θk · ξ), ξ ∈ Rp. (2.23)

Since µ0 ∈ Nθ0(R
p),

µ̂0(ξ)

θ0 · ξ
is the Fourier transform of a measure in M(Rp) and thus the function

G(ξ) =
ν̂0(ξ)

θ0 · ξ =
µ̂0(ξ)

θ0 · ξ ψ(ξ) (2.24)

is the Fourier transform of a measure in M(Rp) since ψ(ξ) is smooth and has compact

support. Multiplying (2.23) by G(ξ) gives

η0ν̂0(ξ) =
∑

k

bkη
kG(ξ)(θk · ξ)
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where G(ξ)(θk · ξ) belongs to Nθk which completes the proof.

2.2.5 Corollary

Let f be a function from Rp to Rq and σ ∈ Σ. Let Λ be a subset of Rp × Rq

satisfying (A) and assume that

〈η, f〉 ∈ K(θ, σ) for every (θ, η) ∈ Λ. (2.25)

Then f ∈ K(σ).

Proof Let θ0 ∈ Rp and η0 ∈ Rq be arbitrary vectors. Then by applying Theorem

2.2.4 to µ0,t with µ0(φ) = φ(θ0) − φ(0) we get

|µ0,t ∗ 〈η0, f〉| = |
m∑

k=1

µk,t ∗ 〈ηk, f〉| ≤
m∑

k=1

|µk,t ∗ 〈ηk, f〉|.

We now apply Lemma 1.3.7 to get

|µ0,t ∗ 〈η0, f〉| ≤ Cσ(t),

since 〈ηk, f〉 ∈ K(θk, σ) . Now, if µ0(φ) = φ(θ0) − φ(0) then µ0,t(φ) = φ(tθ0) − φ(0)

and µ0,t ∗ f(x) = f(x + tθ0) − f(x) and since θ0 and η0 are arbitrary, we see that if

we apply this result for θ0 = (1, 1, · · · , 1) and η0 a set of bases for Rq we have

|f(x+ t) − f(x)| ≤ Cσ(t)

as required.

2.3 Theorem on Modulus of Continuity

2.3.1 Theorem

Let f be a function from Rp to Rq and σ ∈ Σ. Let Λ be a subset of Rp × Rq

satisfying (A) and assume that

〈η, f〉 ∈ K(θ, σ) for every (θ, η) ∈ Λ. (2.26)
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Then f ∈ K(σ). Moreover, if Λ satisfies (Â) and (2.26) holds, then f ∈ K(σ̂).

Conversely, if (2.26) implies f ∈ K(τ), then either Λ satisfies (Â) and τ(t) ≥ Cσ̂(t)

or Λ satisfies (A) and τ(t) ≥ Cσ(t)

Proof . The if part is just Corollaries 2.1.12 and 2.2.5.

Conversely, if Λ does not satisfies (Â) then (2.26) does not imply f ∈ K(σ) for any

σ ∈ ∑. Indeed if Λ does not satisfies (Â) then there exist non-zero vectors u ∈ Rp

and v ∈ Rq such that 〈u, θ〉〈v, η〉 = 0 for all (θ, η) ∈ Λ. Choose such vectors u and

v and consider the function f(x) = v〈u, x〉. It is easy to see that 〈η, f(x)〉 ∈ K(θ, σ)

for all (θ, η) ∈ Λ and all σ ∈∑ . Now if K is a compact set, for which x, y, x+ y ∈ K

with y = u
a|u|2

, for some a > 0 then |f(x + y) − f(y)| = |v|/a which is a non zero

constant.

Furthermore if Λ does not satisfies (A) and (2.26) implies f ∈ K(τ) for some

τ ∈ ∑
then by the previous argument Λ must satisfies (Â). We must show that

f ∈ K(τ) always holds if σ̂(t) ≤ Cτ(t). Since (A) does not hold there exist a

non-trivial bilinear form Φ which vanishes on Λ. We can represent Φ in the form

Φ(θ, η) = 〈Bθ, η〉, where B is a linear operator from Rp to Rq. Set

f(x) = (Bx/|Bx|)σ̂(|Bx|), x ∈ Rp.

Then f ∈ K(τ) implies σ̂(t) ≤ Cτ(t). We claim that 〈η, f〉 ∈ K(θ, σ) whenever

〈Bθ, η〉 = 0; this will complete the proof. We may assume |Bx| < |B(x+ tθ)|. Then

|〈η, f(x+ tθ) − f(x)〉| =

∣∣∣∣〈η, Bx〉
(
σ̂(|B(x+ tθ)|)
|B(x+ tθ)| − σ̂(|Bx|)

|Bx|

)∣∣∣∣

≤ |〈η, Bx〉|
∫ |B(x+tθ)|

|Bx|

s−2σ(s)ds.
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Using the fact that σ is increasing and that σ(st) ≤ (1 + s)σ(t) we obtain if a < b,

∫ b

a

s−2σ(s)ds ≤ σ(b)

∫ b

a

s−2ds = σ(b)(b− a)/(ab) = σ(
b

b− a
(b− a))(b− a)/(ab)

≤ σ(b− a)

(
1 +

b

b− a
)

)
b− a

ab
.

With a = |Bx|, b = |B(x+ tθ)|, we have that b− a ≤ |Btθ| and hence

|〈η, f(x+ tθ) − f(x)〉| ≤ 2|η|σ(|Btθ|) ≤ 2|η|(1 + |Bθ)σ(|t|).2

2.3.2 Remark

As in Boman [10] the proof of Theorem 2.3.1 is deduced from Theorems 2.1.8 and

2.2.4 which gives the representation of vector valued measures as a finite sums of

measures of the form ηνθ where νθ ∈ Nθ(R
p) and (θ, η) ∈ Λ. The novelties about our

approach here relative to Boman [10] are as follows: In the proof of Theorem 2.2.4

the measure µ0 is written as a sum, µ0 = ν0 + ν1, of a measure ν0 whose Fourier

transform has compact support and a measure ν1 whose Fourier transform vanishes

in a neighborhood of the origin, and it is observed that the representation for ν0 is

easy to prove and that the representation for ν1 is just an immediate consequence

of Theorem 2.1.8. The measures µk constructed in this way will not be compactly

supported like those constructed in the proof of Theorem 3 in Boman [10], but this

is not needed for the proof of Theorem 2.3.1. Moreover, Theorem 2.1.8 is somewhat

weaker than Theorem 5 of Boman [10] in that µ̂0 is assumed to vanish in some

neighborhood of the origin, but the proof is much simpler, the main new idea being

the use of the special partition of unity (2.7). Finally, the measure µ in Lemma 1.2.7

with Fourier transform vanishing in a neighborhood of the origin has replaced the

iterated convolutions occurring in Theorem 5 of Boman [10] ( typically q-th order
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difference measures) and therefore Marchaud’s inequality ([30]) has been replaced by

the easier and perhaps more fundamental Lemma 1.2.7
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Chapter 3

Toeplitz operators on L
p
a(Bn) for

p > 1.

3.1 Introduction

Throughout this chapter, n is a fixed positive integer. We denote by Bn the unit ball

of Cn and by ν the Lebesgue volume measure on Bn, normalized so that ν(Bn) = 1.

For p ∈ [1,∞], the Bergman space Lpa = Lpa(Bn) is the closed subspace of the Lebesgue

space Lp(Bn, dν) consisting of analytic functions on Bn. When p = 2, the Bergman

space L2
a is a closed subspace of the Hilbert space L2(Bn, dν). We denote by 〈., .〉 the

usual inner product in L2(Bn, dν) and by ||.||p the norm in Lp(Bn, dν), p ∈ [1,∞].

The orthogonal projection P from L2(Bn, dν) unto L2
a is called the Bergman projector.

It is well-known that the Bergman projection Pφ of a function φ ∈ L2(Bn, dν) is given

by

Pφ(z) = 〈φ,Kz〉 (z ∈ Bn)

where

Kz(w) =
1

(1 − (w · z))n+1

54
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is called the Bergman kernel of Bn. Here,

(w · z) :=
n∑

j=1

wjzj , z = (z1, · · · , zn), w = (w1, · · · , wn).

The normalized Bergman kernel kz is given by

kz(w) :=
Kz(w)

||Kz||2
=

(1 − |z|2)n+1
2

(1 − (w · z))n+1
. (3.1)

Given f ∈ L1(Bn, dν), the Toeplitz operator Tf is densely defined on Lpa(Bn) by

(Tfg)(w) =

∫

Bn

f(z)g(z)

(1 − (w · z))n+1
dν(z) = P (fg)(w),

for g ∈ L∞
a and w ∈ Bn, that is Tfg = P (fg). Note that the above formula makes

sense and defines an analytic function on Bn.

3.1.1 Definition

Let A be a linear operator on Lpa, p ∈ (1,∞), the Berezin transform Ã of A is the

function defined by

Ã(z) := 〈Akz, kz〉

where kz is the normalized kernel defined by (3.1). For a function f ∈ L1(Bn, dν), the

Berezin transform T̃f of Tf will simply be denoted f̃ and will be called the Berezin

transform of f. Explicitly,

f̃(z) := T̃f (z) =

∫

Bn

f(w)
(1 − |z|2)n+1

|1− (z.w)|2n+2
dν(w).

Let p ∈ (1,∞), our interest is to determine conditions on the symbols f ∈

L1(Bn, dν) which ensure the boundedness (resp. the compactness) on Lpa of the

associated Toeplitz operator Tf . It is easily checked that if A is a bounded operator

on Lpa, then its Berezin transform Ã(z) is a bounded function on Bn; moreover, if A



56

is also compact on Lpa, then Ã(z) → 0 as z → ∂Bn. But the converses of these two

implications are false. Furthermore, for a symbol f ∈ L1(Bn, dν), if Tf is bounded

on Lpa, p ∈ (1,∞), then sup
z∈Bn

||Tf(kpz)||p < ∞, where kpz(w) := (1−|z|2)
n+1
p′

(1−(w·z))n+1 satisfies

||kpz ||p = 1 and k2
z = kz. However, for p = 2 and n = 1, F. Nazarov produced an

unpublished counterexample for the converse implication.

In our study we will extend to the unit ball Bn, n ≥ 1 the space BT of symbols

introduced by Miao and Zheng [31]. Explicitly, a symbol f ∈ L1(Bn, dν) belongs

to BT if the measure |f |dν is a Carleson measure for Bergman spaces on the unit

ball. For BT symbols, the associated Toeplitz operators are bounded on Lpa for

all p ∈ (1,∞). Using this, we derive some new classes of L1 symbols for which

known necessary conditions for boundedness of the Toeplitz operators on Lpa are also

sufficient. For example, we obtain a class of L1 functions, X1, containing the space

BMO1 and non-negative L1 functions such that Tf is bounded if and only if f̃(z)

is a bounded function on Bn, provided f ∈ X1. An example shows that there exist

functions f in X1 such that Tf is not bounded.

We also exhibit a class X2 of L1 symbols f for which Tf is bounded on L2
a if

sup
z∈Bn

||Tf(kz)||2 <∞. (3.2)

In other words, X2 is a class of symbols for which this well known necessary condition

(3.2) is also sufficient. Moreover, this class of symbols can be described without any

reference to the space BT.

We also mention that our results on compactness extend the result of Lu Yu-feng

[27], whose result was an extension of the result of Axler and Zheng[5] to the unit ball

and the polydisk in Cn. Finally, we notice that the condition f ∈ BT is equivalent

to some Schur’s estimates related to some linear operator Sf defined on Lp(Bn). Let
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us mention that beyond Toeplitz operators Tf , f ∈ L1(Bn, dν), we study general

linear operators A on Lpa.

3.2 Preliminaries

For w ∈ Bn, let Pw(z) = (z·w)
|w|2

w which is the orthogonal projection from Cn onto the

subspace spanned by w and Qw = I − Pw. Then the mapping ϕw : Bn → Bn given

by

ϕw(z) =
w − Pw(z) −

√
(1 − |w|2)Qw(z)

1 − (z · w)

is an automorphism of Bn such that ϕw(0) = w and ϕ−1
w = ϕw. More about the

mappings ϕw are described in section 2.2 of [37] and section 1.2 of [47]. The following

identities hold:

1 − (ϕw(z) · w) =
1 − |w|2

1 − (z · w)
, 1 − |ϕw(z)|2 =

(1 − |z|2)(1 − |w|2)
|1 − (z · w)|2 . (3.3)

For w ∈ Bn, the real Jacobian of the function ϕw is given by

|Jϕw(z)|2 =
(1 − |w|2)n+1

|1 − (w · z)|2n+2
.

This gives the change of variable formula

∫

Bn

f(ϕw(z))|kw(z)|2 dν(z) =

∫

Bn

f(z) dν(z) (3.4)

for every f ∈ L1(Bn, dν). It then follows easily that the transformation Uw defined

by Uwf := (f ◦ ϕw)kw is an isometry on L2
a, that is,

‖Uwf‖2
2 =

∫

Bn

|f(ϕw(z))|2|kw(z)|2 dν(z) =

∫

Bn

|f(z)|2 dν(z) = ‖f‖2
2,

for all f ∈ L2
a(Bn). Using the first identity in (3.3) we have

kw(ϕw(z)) =
(1 − |w|2)(n+1)/2

(1 − (ϕw(z) · w)n+1
=

(1 − (z · w)n+1

(1 − |w|2)(n+1)/2
=

1

kw(z)
.
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This implies

(Uw(Uwf))(z) = (Uwf)(ϕw(z))kw(z) = f(z)kw(ϕw(z))kw(z) = f(z),

for all z ∈ Bn and f ∈ L2
a(Bn). Hence Uw ◦ Uw is the identity on L2

a and U∗
w = Uw,

i.e. Uw is unitary.

If A is a bounded operator on L2
a, then for z ∈ Bn, we define a bounded operator

Az on L2
a by

Az := UzAUz.

We shall need the following lemma:

3.2.1 Lemma

(1) For all f ∈ L1(Bn, dν) and z ∈ Bn, we have

f̃(z) =

∫

Bn

f ◦ ϕz(w)dν(w).

(2) For all w ∈ Bn and all f ∈ L1(Bn, dν) such that Tf is bounded on L2
a, we have

that

Tf◦φwUw = UwTf .

(3) Let z, w ∈ Bn. Then

UzKw = kz(w)Kϕz(w) (3.5)

and

Uzkw = αkϕz(w), (3.6)

where |α| = 1.

(4) If A is a bounded operator on Lpa, then for every z ∈ Bn, we have

Ã ◦ ϕz = Ãz.
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Proof (1) Using (3.4) we have

f̃(z) = 〈Tfkz, kz〉 = 〈fkz, kz〉

=

∫

Bn

f(w)|kz(w)|2 dν(w)

=

∫

Bn

f ◦ ϕz(w) dν(w).

(2) For every g, h ∈ L2
a, we have:

〈UwTfg, Uwh〉 = 〈Tfg, h〉 = 〈fg, h〉
=
∫
Bn
f(z)g(z)h(z)dν(z)

=
∫
Bn
f(ϕw(z))g(ϕw(z))h(ϕw(z))|kw(z)|2dν(z)

= 〈f ◦ ϕwUwg, Uwh〉 = 〈Tf◦ϕwUwg, Uwh〉.

(3) For every g ∈ L2
a, we have:

〈g, UzKw〉 = 〈Uzg,Kw〉 = Uzg(w) = g(ϕz(w))kz(w) = 〈g, kz(w)Kϕz(w)〉.

This proves (3.5). Also,

Uzkw = (1 − |w|2)n+1
2 UzKw = (1 − |w|2)n+1

2 kz(w)Kϕz(w),

where the latter equality follows from (3.5). Thus

Uzkw = kϕz(w)Kw(z)
(1 − |w|2)n+1

2 (1 − |z|2)n+1
2

(1 − |ϕz(w)|2)n+1
2

= kϕz(w)Kw(z)|Kz(w)|−1.

The latter equality follows from the equality,

1

(1 − |ϕz(w)|2)n+1
2

= |Kz(w)|−1(1 − |w|2)−n+1
2 (1 − |z|2)−n+1

2 (3.7)

obtained easily using (3.3).

(4) For z ∈ Bn

Ãz(w) = 〈Azkw, kw〉 = 〈AUzkw, Uzkw〉.
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Use the relation in (3.6) to get

Ã(ϕz(w)) = 〈Akϕz(w), kϕz(w)〉

= 〈AUzkw, Uzkw〉

= 〈Azkw, kw〉 = Ãz(w)

as required. 2

Let dσ denote the surface measure on the unit sphere Sn, normalized so that

σ(Sn) = 1. Our next lemma which is [47, Theorem 1.12] or [37, Proposition 1.4.10]

is always very useful to estimate integral operators whose kernels is a power of the

Bergman kernel. We just state this very useful result.

3.2.2 Lemma

Suppose c is real and t > −1. Then the integrals

Ic(z) =

∫

Sn

dσ(ξ)

|1 − (z · ξ)|n+c
, z ∈ Bn,

and

Jc,t(z) =

∫

Bn

(1 − |w|2)t
|1 − (z · w)|n+1+t+c

dν(w), z ∈ Bn,

have the following asymptotic properties.

1. If c < 0 then Ic and Jc,t are both bounded in Bn.

2. If c = 0, then

Ic ≈ Jc,t ≈ log
1

1 − |z|2 , as |z| → 1−
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3. If c > 0, then

Ic ≈ Jc,t ≈
1

(1 − |z|2)c , as |z| → 1−

Here and elsewhere, A ≈ B implies there exist constants C,K > 0 such that CA ≤

B ≤ KA.

Let 1 < p <∞. Then p′ is the conjugate exponent of p whenever 1
p

+ 1
p′

= 1.

3.2.3 Lemma

Let 1 < p < ∞, p1 = min{p, p′}, n ≥ 1 and s > (p1 + n)/(p1 − 1). Suppose A is a

bounded operator on Lpa and

max

{
n + 1

sp′
,
n + 1

sp

}
< ǫ < min

{
1

ps′
,

1

p′s′

}
. (3.8)

Then there exists a constant C such that

∫

Bn

|(AKz)(w)|(1− |w|2)−pǫ dν(w) ≤ C‖Az1‖s(1 − |z|2)−pǫ (3.9)

and ∫

Bn

|(AKz)(w)|(1 − |z|2)−p′ǫ dν(z) ≤ C‖A∗
w1‖s(1 − |w|2)−p′ǫ (3.10)

Proof We first observe that
{
n + 1

sp′
,
n + 1

sp

}
< min

{
1

ps′
,

1

p′s′

}

where p′ and s′ are the conjugate exponents of p and s respectively. Indeed, if we

assume, without loss of generality, that p ≥ 2, that is p1 = p′. We then have to show

that n+1
sp′

< 1
ps′

, but this inequality holds for s′ < (p′ + n)/(n+ 1) or equivalently for

s > (p′ + n)/(p′ − 1). We now prove our Lemma. Let ǫ be as in (3.8).

Fix z ∈ Bn. We have

AKz =
AUz1

(1 − |z|2)(n+1)/2
=

UzAzUz1

(1 − |z|2)(n+1)/2
=

(Az1) ◦ ϕz)kz
(1 − |z|2)(n+1)/2
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where the second equality comes from the definition of Az, and the third equality

from the definition of Uz. Thus

∫

Bn

|(AKz)(w)|
(1 − |w|2)pǫ dν(w) =

1

(1 − |z|2)(n+1)/2

∫

Bn

|(Az1) ◦ ϕz(w)|kz(w)|
(1 − |w|2)pǫ dν(w).

In the latter integral, we make the change of variable w = ϕz to obtain,

∫

Bn

|(AKz)(w)|
(1 − |w|2)pǫ dν(w)

=
1

(1 − |z|2)(n+1)/2

∫

Bn

|(Az1)(w)|kz(ϕz(w))|
(1 − |ϕz(w)|2)pǫ |kz(w)|2 dν(w)

=
1

(1 − |z|2)(n+1)/2

∫

Bn

|(Az1)(w)|kz(w)|
(1 − |ϕz(w)|2)pǫ dν(w)

=
1

(1 − |z|2)ǫp
∫

Bn

|Az1(w)|
|1 − (z · w)|n+1−2pǫ(1 − |w|2)pǫ dν(w),

where we have used (3.7) to get the second and third equality respectively. Apply

Hölder’s inequality on the right hand side above, we get

∫

Bn

|(AKz)(w)|
(1 − |w|2)pǫ dν(w) ≤ ‖Az1‖s

(1 − |z|2)ǫp
(∫

Bn

(1 − |w|2)−s′pǫ
|1 − (z · w)|(n+1−2pǫ)s′

dν(w)

) 1
s′

.

Since n+1
sp

< ǫ < 1
ps′

, Lemma 3.2.2, shows that the last integral on the right is

uniformly bounded with respect to z ∈ Bn . This gives the estimate (3.9). We finally

show the estimate (3.10). Since A∗ is bounded on Lp
′

a , the identity

(A∗Kw)(z) = 〈A∗Kw, Kz〉 = 〈Kw, AKz〉 = (AKz)(w),

reduces the estimate (3.10) to estimate (3.9) with A replaced by A∗. 2

Let us recall Schur’s lemma which is a widely used method to show that an integral

operator with kernel Q is bounded on the Lebesgue space Lp(X,M, dµ), 1 < p <∞.

For p ∈ (1,∞), we denote p′ the conjugate exponent of p.
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3.2.4 Lemma (Schur’s Lemma, cf. [22])

For p ∈ (1,∞), suppose that there are a positive measurable function φ on the

measurable space (X,M) and two positive constants C1 and C2 such that

∫

X

|Q(x, y)|φ(y)p
′

dµ(y) ≤ C1φ(x)p
′

and ∫

X

|Q(x, y)|φ(x)pdµ(x) ≤ C2φ(y)p.

Then the integral operator Q defined by

Qψ(x) :=

∫

X

Q(x, y)ψ(y)dµ(y)

is bounded on Lp(X,M, dµ) with ||Q|| ≤ C
1
p

1 C
1
p′

2 .

3.2.5 Lemma

Let A be a bounded operator on Lpa for some p ∈ (1,∞). We suppose further that

sup
z∈Bn

||Az1||s <∞ for some s > 1. Then the following are equivalent:

(1) Ã(z) → 0 as z → ∂Bn;

(2) for every q ∈ [1, s), ||Az1||q → 0 as z → ∂Bn;

(3) ||Az1||1 → 0 as z → ∂Bn.

Proof (1) ⇒ (2). Suppose that Ã(z) → 0 as z ∈ ∂Bn. Fix q ∈ [1, s). We will show

that ‖Az1‖q → 0 as z → ∂Bn. Let α, β be multi-indices with non-negative integers
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and z ∈ Bn. Then

|〈Azwα, wβ〉| = |〈AUzwα, Uzwβ〉|

= (1 − |z|2)n+1|〈A[wα ◦ ϕzKz], w
β ◦ ϕzKz〉|

≤ (1 − |z|2)n+1‖A‖p‖wα ◦ ϕzKz‖p‖wβ ◦ ϕzKz‖p′

≤ (1 − |z|2)n+1‖A‖p‖Kz‖p‖Kz‖p′

≤ C(1 − |z|2)n+1‖A‖p(1 − |z|2)−(n+1)/p′(1 − |z|2)−(n+1)/p

= C‖A‖p (3.11)

where the first inequality comes from Hölder’s inequality and the second comes from

the fact that |wα ◦ ϕz| < 1 and |wβ ◦ ϕz| < 1 for all multi-indices α and β with

non-negative integers.

First we show that 〈Az1, wm〉 → 0 as z → ∂Bn for every multi-index m with

nonnegative integers. If this is not true, then there is a sequence zk ∈ Bn such that

〈Azk
1, wm〉 → a0m

and zk → ∂Bn for some non-zero constant a0m and some m. Since (3.11) implies

|〈Azwα, wβ〉| is uniformly bounded for z ∈ Bn we may assume that for each α and β

〈Azk
wα, wβ〉 → aαβ

as zk → ∂Bn for some constant aαβ.

We shall also make use of the power series representation of the normalized

Bergman kernel. Let α = (α1, α2, · · · , αn) ∈ Nn, write |α| =
∑n

j=1 αj, α! =

α1!α2! · · ·αn! ,

zα = zα1
1 zα2

2 · · · zαn
n
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and

∂αf = ∂|α|f =
∂α1+α2+···+αnf

∂zα1
1 ∂zα2

2 · · ·∂zαn
n

.

Then

kz(w) = (1 − |z|2)(n+1)/2)

∞∑

j=0

(j + n)!

n!j!
(w · z)j

= (1 − |z|2)(n+1)/2)
∞∑

j=0

(j + n)!

n!j!

∑

|α|=j

j!

α!
wαzα

= (1 − |z|2)(n+1)/2)
∞∑

|α|=0

(|α| + n)!

n!α!
wαzα (3.12)

Set Cα,n = (|α|+n)!
n!α!

. Then for z ∈ Bn we have

Ã(z) = (1 − |z|2)n+1
∞∑

|α|,|β|=0

Cα,nCβ,n〈Awα, wβ〉zαzβ (3.13)

by first multiplying both sides (3.12) by A and then take the inner product with

kz. Thus using the relation equality Ã(ϕz(v)) = Ãz(v) (Lemma 3.2.1(4)) we have

immediately that

Ã(ϕz(v)) = (1 − |v|2)n+1

∞∑

|α|,|β|=0

Cα,nCβ,n〈Azwα, wβ〉vαvβ. (3.14)

For each v ∈ Bn, ϕzk
(v) → ∂Bn as zk → ∂Bn. Thus Ã(ϕzk

(v)) → 0 as zk → ∂Bn.

Replacing z by zk in (3.14) and taking the limit as zk → ∂Bn for (3.14), we get

(1 − |v|2)n+1
∞∑

|α|,|β|=0

Cα,nCβ,naαβv
αvβ = 0

for each v ∈ Bn (note that the interchange of limit and infinite sum is justified by the

fact that for each fixed v ∈ Bn, the series of (3.14) converges uniformly for z ∈ Bn).

Let

f(v) =

∞∑

|α|,|β|=0

Cα,nCβ,naαβv
αvβ.
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Then f(v) = 0 for all v ∈ Bn. This implies

[
∂β

∂vβ
∂α

∂vα
f

]
(0) = 0

for each α and β. On the other hand, we have

[
∂β

∂vβ
∂α

∂vα
f

]
(0) = Cα,nCβ,nα!β!aαβ

for each α and β. Thus aαβ = 0, in particular a0m = 0 which is a contradiction.

Hence we obtain

lim
z→∂Bn

〈Az1, wm〉 = 0.

For v ∈ Bn, we have

(Az1)(v) =
∑

|m|=0

Cm,n〈Az1, wm〉vm.

It is clear that for each fixed v ∈ Bn, the power series above converges uniformly for

z ∈ Bn. This gives

lim
z→∂Bn

(Az1)(v) = 0

for each v ∈ Bn. Thus

lim
z→∂Bn

|(Az1)(v)|q = 0

for each v ∈ Bn. Let r = s/q. Then r > 1. Thus

∫

Bn

(|(Az1)(v)|q)r dν(v) = ‖Az1‖ss ≤ sup
z∈Bn

‖Az1‖ss <∞.

This implies that {|Az1|q}z∈Bn is uniformly integrable. By Vitali’s Theorem (cf Corol-

lary 13 page 183 of [35]) or [38] page 134-135 exercises 9-11, we have that

lim
z→∂Bn

‖(Az1)(v)‖q = 0
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which shows that (1) ⇒ (2).

(2) ⇒ (3). Suppose for every q ∈ [1, s), ‖Az‖q → 0 as z → ∂Bn. This implies

‖Az‖1 → 0 as z → ∂Bn.

(3) ⇒ (1). By assertion (4) of Lemma 3.2.1, we get:

|Ã(z)| = |Ã(ϕz(0))| = |Ãz(0)| = |〈Az1, 1〉| ≤ ||Az1||1. 2

We end this section with some notions on the Carleson measures on the Bergman

spaces. Recall that for r > 0 and z ∈ Bn the set

D(z, r) = {w ∈ Bn : β(z, w) < r}

is the Bergman ball centered at z with radius r. For fixed r > 0, we have the following

well known identities:

ν(D(z, r)) ≈ ν(D(w, r)), 1 − |z|2 ≈ |1 − (z · w)| when β(z, w) < r, and ν(D(z, r)) ≈

(1 − |z|2)n+1.

Our next lemma is Theorem 2.23 of [47].

3.2.6 Lemma

There exists a positive integer N such that for any 0 < r ≤ 1 we can find a sequence

{ak} in Bn with the following properties:

1. Bn =
⋃∞
k D(ak, r).

2. The sets D(ak, r/4) are mutually disjoint.

3. Each point z ∈ Bn belongs to at most N of the sets D(ak, 4r).

The following is Lemma 2.2.4 of [47].
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3.2.7 Lemma

Suppose r > 0, p > 0. Then there exists a constant C > 0 such that

|f(z)|p ≤ C

ν(D(z, r))

∫

D(z,r)

|f(w)|p dν(w)

for all f analytic in Bn and all z ∈ Bn.

3.2.8 Definition

A positive Borel measure µ on Bn is called a Carleson measure for the Bergman space

Lpa, or simply a Carleson measure, if there exists a constant C > 0 such that

∫

Bn

|f(z)|pdµ(z) ≤ C

∫

Bn

|f(z)|pdν(z) (3.15)

for all f ∈ Lpa.

The infimum of all constants C which satisfy (3.15) is called the Carleson measure

constant of µ and will be denoted by C(µ). The next theorem recalls a characterization

of Carleson measures for Bergman spaces which is [47, Theorem 2.25].. We fix r > 0

and write D(z) = D(z, r) for every z ∈ Bn.

3.2.9 Theorem

Let µ be a positive Borel measure on Bn. The following four assertions are equivalent:

(1) for some p ∈ [1,∞), µ is a Carleson measure for the Bergman space Lpa;

(2) there exists a positive constant C such that

∫

Bn

(1 − |z|2)n+1

|1 − (w.z)|2(n+1)
dµ(w) ≤ C

for all z ∈ Bn;
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(3) there exists a positive constant C such that

∫

D(z)

dµ(w) ≤ C(1 − |z|2)n+1

for all z ∈ Bn;

(4) for all p ∈ [1,∞), µ is a Carleson measure for the Bergman space Lpa.

Moreover, the Carleson measure constant C(µ) of µ is smaller than the constant C

of assertion (2).

Proof (1) ⇒ (2). Suppose µ is a Carleson measure for the Bergman space Lpa for

some p ∈ [1,+∞). Then for z ∈ Bn we have

∫

Bn

(1 − |z|2)n+1

|1 − (w · z)|2(n+1)
dµ(w) = (1 − |z|2)n+1

∫

Bn

(
1

|1 − (w · z)|
2(n+1)

p

)p

dµ(w)

≤ C(µ)(1 − |z|2)n+1

∫

Bn

1

|1 − (w · z)|2(n+1)
dν(w)

≤ C ′(µ)

since (1 − (w · z))−
2(n+1)

p is in Lpa and the last inequality follows from Lemma 3.2.2.

If (2) is true, then ∫

D(z)

(1 − |z|2)n+1

|1 − (w · z)|2(n+1)
dµ(w) ≤ C

since D(z) ⊂ Bn. Also, because w ∈ D(z) we have

∫

D(z)

(1 − |z|2)n+1

|1 − (w · z)|2(n+1)
dµ(w) ≈ (ν(D(z))−1

∫

D(z)

dµ(w).

Thus

µ(D(z)) ≤ Cν(D(z)),

that is (2) ⇒ (3).

Suppose (3) is true and let f be analytic in Bn and r > 0. Then Lemma 3.2.6 implies
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there exists sequences {ak} in Bn such that

∫

Bn

|f(z)|pdµ(z) ≤
∞∑

k=1

∫

D(ak ,r)

|f(z)|pdµ(z)

≤
∞∑

k=1

µ(D(ak, r)) sup{|f(z)|p : z ∈ D(ak, r)}.

By Lemma 3.2.7, there exists a constant C ′ > 0 such that

|f(z)|p ≤ C ′

ν(D(z, r))

∫

D(z,r)

|f(w)|pdν(w)

≤ C ′

ν(D(ak, r))

∫

D(ak ,2r)

|f(w)|pdν(w)

where we have used the fact that ν(D(z, r)) ≈ ν(D(ak, r)) since β(z, ak) < r. Thus

sup{|f(z)|p : z ∈ D(ak, r)} ≤ C ′

ν(D(ak, r))

∫

D(ak ,2r)

|f(w)|pdν(w)

for all k ≥ 1. It follows from assertion (3) that

∞∑

k=1

µ(D(ak, r)) sup{|f(z)|p : z ∈ D(ak, r)} ≤ C ′′
∞∑

k=1

∫

D(ak ,2r)

|f(z)|pdν(z).

That is, ∫

Bn

|f(z)|pdµ(z) ≤ C ′′

∞∑

k=1

∫

D(ak ,2r)

|f(z)|pdν(z)

for all analytic f ∈ Bn. Since every point in Bn belongs to at most N of the sets

D(ak, 4r), we must have

∫

Bn

|f(z)|pdµ(z) ≤ C ′′N

∫

Bn

|f(z)|pdν(z)

for all analytic f in Bn. That is (3) ⇒ (4).

(4) ⇒ (1) is trivial. 2
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3.3 An Associated operator on the Lebesgue space

Lp(Bn)

In this section , we clarify some results obtained by N. Zorboska [52] and Miao-Zheng

[31]. Let p ∈ (1,∞) and f ∈ L1(Bn). To a Toeplitz operator Tf , we associate an

integral operator, Sf , on the Lebesgue space Lp := Lp(Bn, dν) by

Sf = Tf ◦ P.

The boundedness of P in Lp implies that

Tf is bounded on Lpa ⇐⇒ Sf is bounded on Lp.

We then apply Schur’s Lemma with test functions (1 − |z|2)−ǫ to get a sufficient

condition for the boundedness of Sf on Lp(Bn, dν) and hence for Tf on Lpa. On the

unit disk B1 of the complex plane, N. Zorboska [52] and J. Miao and D. Zheng [31]

proved respectively for p = 2 and for general p ∈ (1,∞) that the boundedness of Tf

is implied by extra integrability conditions

sup
z∈B1

||Tf◦φz1||s <∞ and sup
z∈B1

||Tf̄◦φz
1||s <∞.

Here s > 3
p1−1

with p1 = min(p, p′), and φz(w) := z−w
1−z̄w

.

We show here that these extra integrability conditions can be weakened to

sup
z∈B1

||Tf◦φz1||s <∞ and sup
z∈B1

||Tf̄◦φz
1||s <∞

with s > p1+1
p1−1

.

Let A be a linear operator on Lpa, densely defined on L∞
a with values in the space

of analytic functions on Bn. If A extends to a bounded operator on Lpa, then the

operator

S := AP
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extends to a bounded operator from Lp(Bn, dν) to Lpa since P is a bounded operator

from Lp(Bn, dν) to Lpa. In this case, the adjoint operator A⋆ (with respect to the

duality pairing 〈, 〉) of A is bounded on Lp
′

a and satisfies

A⋆Kz(w) = 〈A⋆Kz, Kw〉 = 〈Kz, AKw〉 = AKw(z) (3.16)

for all z, w ∈ Bn. The latter equality holds because AKw ∈ Lpa since A is bounded on

Lpa and Kw ∈ Lpa. Therefore, for every l ∈ C∞
c (Bn), we obtain the formula

Sl(z) =

∫

Bn

l(w)AKw(z)dν(w). (3.17)

In fact,

Sl(z) = 〈Sl,Kz〉 = 〈APl,Kz〉 = 〈P l, A⋆Kz〉 = 〈l, A⋆Kz〉

and using (3.16), we get (3.17). In other words, S is an integral operator with kernel

(z, w) 7−→ AKw(z).

Conversely, let A be a linear operator on Lpa densely defined on L∞
a with values in

the space of analytic functions on Bn. We suppose that for every z ∈ Bn, the function

ηz defined on Bn by

ηz(w) := AKw(z)

is antianalytic on Bn. Then we have the following.

3.3.1 Proposition

Let A be a linear operator on Lpa densely defined on L∞
a with values in the space

of analytic functions on Bn. If S extends to a bounded operator from the Lebesgue

space Lp(Bn, dν) to Lpa, then A extends to a bounded operator on Lpa. Furthermore,

the restriction of S to Lpa coincides with A i.e. S = AP.
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Proof For every z ∈ Bn, we get
(∫

Bn

|AKw(z)|p′dν(w)

) 1
p′

= sup
l∈C∞

c (Bn),||l||p≤1

∣∣∣∣
∫

Bn

l(w)AKw(z)dν(w)

∣∣∣∣

= sup
l∈C∞

c (Bn),||l||p≤1

|Sl(z)|.

Since Sl ∈ Lpa, by the mean-value property, there exists a constant C(z) such that

|Sl(z)| ≤ C(z)||Sl||p ≤ C(z)||S||

and hence the function ηz : w 7→ AKw(z) belongs to Lp
′

a .

We need to prove that for every g ∈ Lpa, the following identity

Sg = Ag

is valid. Since the linear span of {Kζ : ζ ∈ Bn} is dense in Lpa, it suffices to show that

SKζ = AKζ , for every ζ ∈ Bn.

Now for every z ∈ Bn, since ηz ∈ Lp
′

a , we obtain

SKζ(z) =

∫

Bn

Kζ(w)AKw(z)dν(w) = AKζ(z). 2

Let us consider the particular case of Toeplitz operators, that is A = Tf with

f ∈ L1. The assumptions of the previous proposition are in particular fulfilled.

Indeed, for fixed z, we obtain

ηz(w) = TfKw(z) = P (Kzf̄)(w)

and so the function ηz(w) = TfKw(z) is antianalytic on Bn since the function Kzf̄

is integrable on Bn. On the other hand, the function z 7−→ TfKw(z) is analytic on

Bn for every w ∈ Bn. The associated operator S = Sf is given on the dense subspace

C∞
c (Bn) of Lp(Bn, dν) consisting of C∞ functions on Bn with compact support, by

Sf l(z) =

∫

Bn

l(ζ)TfKζ(z)dν(ζ) (3.18)
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and Sf l is an analytic function on Bn. The right hand side integral in (3.18) is

absolutely convergent for all z ∈ Bn, since
∫

Bn

|l(ζ)|
(∫

Bn

|f(w)||Kζ(w)|
|1 − (z · w)|n+1

dν(w)

)
dν(ζ) ≤ C(l)

(1 − |z|)n+1
||l||∞||f ||1.

This inequality follows from the fact that |Kζ(w)| ≤ C(l) for all ζ ∈ Supp(l) and

w ∈ Bn on the one hand, and 1
|1−(z·w)|n+1 ≤ 1

(1−|z|)n+1 for all z, w ∈ Bn on the other

hand. So by Fubini’s Theorem, for all l ∈ C∞
c (Bn), we obtain

Sf l(z) =

∫

Bn

(∫

Bn

l(ζ)

(1 − (w.ζ))n+1
dν(ζ)

)
f(w)Kz(w)dν(w) = (Tf ◦ P )l(z).

It is then easy to get the following proposition.

3.3.2 Proposition

Let f ∈ L1(Bn, dν) and p ∈ (1,∞). Then the following two assertions are equivalent:

1. Tf extends to a bounded operator on Lpa;

2. The operator Sf defined in (3.18) extends to a bounded operator from the Lebesgue

space Lp(Bn, dν) to Lpa.

Furthermore, Sf = Tf ◦ P and ||Tf || ≤ ||Sf || ≤ ||Tf ||||P ||, where ||Tf ||, ||Sf ||, and

||P || denote the operator norms of Tf , Sf and P on Lpa, Lp(Bn, dν) and Lp(Bn, dν)

respectively.

For p ∈ (1,∞), let A be a linear operator on Lpa, densely defined on L∞
a with values

in the space of analytic functions on Bn, such that the function ηz(w) = AKw(z) is

antianalytic on Bn for every z ∈ Bn and such that the function z 7→ AKw(z) is

analytic on Bn. According to Schur’s Lemma, if there exist a positive ǫ and positive

constants C1 and C2 such that
∫

Bn

|(AKw)(z)|(1 − |w|2)−ǫp′dν(w) ≤ C1(1 − |z|2)−ǫp′ (3.19)
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and ∫

Bn

|(AKw)(z)|(1 − |z|2)−ǫpdν(z) ≤ C2(1 − |w|2)−ǫp, (3.20)

then the associated operator S defined in (3.17) is bounded from Lp(Bn, dν) to Lpa

with ||S|| ≤ (C1)
1
p (C2)

1
p′ . Hence, by Proposition 3.3.2, the operator A is also bounded

on Lpa with ||A|| ≤ ||S|| ≤ (C1)
1
p (C2)

1
p′ . Furthermore, if f ∈ L1(Bn, dν) and A = Tf ,

estimates (3.19) and (3.20) imply that the associated operator Sf defined in (3.18)

is bounded on Lp(Bn, dν), and hence by Proposition 3.3.2, Tf is also bounded on Lpa

with ||Tf || ≤ ||Sf || ≤ (C1)
1
p (C2)

1
p′ .

We end this section by giving some improvements to the indices of the work of

[52] and [31]. We give a simple application on operator norm.

3.3.3 Proposition

Suppose 1 < p <∞ , p1 = min(p, p′) and n ≥ 1. Suppose further that A is a bounded

operator on Lpa(Bn) and such that

C1 = sup
z∈Bn

‖Az1‖s <∞, C2 = sup
z∈Bn

‖A⋆z1‖s <∞,

for some s with s > (p1 + n)/(p1 − 1). Then there exists a constant C such that

‖A‖ ≤ C(C1)
1/p(C2)

1/p′.

Proof If h ∈ L∞
a then

(Ah)(z) = 〈Ah,Kz〉 = 〈h,A∗Kz)〉

=

∫

Bn

h(w)(A∗Kz)(w) dν(w)

=

∫

Bn

h(w)(AKw)(z) dν(w). (3.21)
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By Schur’s Lemma, if there exist a positive measurable function g on Bn and constants

c1, c2 such that ∫

Bn

|(AKz)(w)|g(w)p dν(w) ≤ c1g(z)
p

for all z ∈ Bn and ∫

Bn

|(AKz)(w)|g(z)p′ dν(z) ≤ c2g(w)p
′

for all w ∈ Bn, where p′ is the conjugate exponent of p then A is bounded on Lpa(Bn)

and ‖A‖ ≤ (c1)
1/p(c2)

1/p′. We choose g(w) = (1 − |w|2)−ǫ with max{n+1
sp′
, n+1
sp

} < ǫ <

min{ 1
ps′
, 1
p′s′

} and apply Lemma 3.2.3 to get the result. 2

The next question that arises is whether the index p1+n
p1−1

in Proposition 3.3.3 is

sharp. We do not know whether the index p1+n
p1−1

is sharp for p ∈ (1,∞) even for p = 2

and n = 1. However, we can prove that Proposition 3.3.3 is not valid for p = 2 and

n = 1 if we take s < 3. More precisely, we prove the following Lemma.

3.3.4 Lemma

There exists no positive constant C = C(s) such that every bounded operator A on

L2
a satisfies

||A|| ≤ C( sup
z∈B1

||Az1||s)
1
2 ( sup
z∈B1

||A⋆z1||s)
1
2 . (3.22)

Proof

Let b = {bn} be a sequence of complex numbers, we consider a linear operator Ab

defined by

Ab

(
∞∑

n=0

anzn

)
=

∞∑

n=0

anbnzn.

It is well known that ||A|| = sup
z∈mathbfB1

|bn|. Also the adjoint operator A⋆b of Ab is

A⋆b

(
∞∑

n=0

anzn

)
=

∞∑

n=0

anbnzn.
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It is not difficult to see that for a linear operator A,

||Az1||ss = (1 − |z|2)2

∫

B1

|AKz(w)|s|1 − zw|2(s−2)dλ(w).

Hence, if we take bm = δm,n, then ||Ab|| = 1 and

||(Ab)z1||ss = ||(A⋆b)z1||ss = (1 − |z|2)2(n + 1)s|z|ns
∫

B1

|w|ns|1 − zw|2(s−2)dλ(w)

We may assume s ∈ [2, 3). It is then enough to show that there exists no constant C

such that for every positive integer n, the following estimate holds:

1 ≤ C sup
z∈B1

{
(1 − |z|)2(n+ 1)s|z|ns

∫

B1

|w|nsdλ(w)

}
. (3.23)

The right hand side of the (3.23) is

C
(n+ 1)s

2 + ns
sup
z∈B1

{(1 − |z|)2|z|ns}.

Since the latter supremum is attained at |z| = ns
ns+2

, the inequality (3.23) would

implies that for any n,

1 ≤ C
(n + 1)s

2 + ns

4

(2 + ns)2

(
ns

2 + ns

)ns
≤ 4C

(n+ 1)s

(2 + ns)3
. (3.24)

Letting n −→ ∞, we are led to a contradiction. 2

If we take, in particular, A = Tf , then by assertion (2) of Lemma 3.2.1, we obtain

Az1 = Tf◦φz1 and Propositions 3.3.2 and 3.3.3, gives the following result.

3.3.5 Theorem

Let p ∈ (1,∞), p1 = min(p, p′), s > p1+n
p1−1

. Let p′ and s′ are conjugate exponents

of p and s respectively and let f ∈ L1(Bn, dν). Then for every positive number ǫ



78

satisfying

max

{
n + 1

sp′
,
n + 1

sp

}
< ǫ < min

{
1

s′p
,

1

s′p′

}
,

there exists a positive constant C(ǫ, p, s) such that, if C1 = sup
z∈Bn

||Tf◦φz1||s < ∞ and

C2 = sup
z∈Bn

||Tf̄◦φz
1||s <∞, then

∫

Bn

|(TfKw)(z)|(1 − |w|2)−p′ǫdν(w) ≤ CC1(1 − |z|2)−p′ǫ (3.25)

and ∫

Bn

|(TfKw)(z)|(1 − |z|2)−pǫdν(z) ≤ CC2(1 − |w|2)−pǫ. (3.26)

Moreover, Tf is bounded on Lpa with ||Tf || ≤ C(C1)
1
p (C2)

1
p′ .

3.3.6 Remark

We recall that ||Tψ◦φz1||2 = ||Tψkz||2 for every ψ ∈ L1(Bn, dν) (assertion (1) of Lemma

3.2.1). For p = 2, even in dimension one, we do not know whether Tf is bounded on

L2
a if the following two conditions hold.

sup
z∈Bn

||Tfkz||2 <∞ and sup
z∈Bn

||Tf̄kz||2 <∞.

F. Nazarov showed that one single condition is not sufficient for Tf be bounded on

L2
a.

3.4 The space BT and related spaces of symbols.

The space BT = BT (Bn) is the space of functions f ∈ L1(Bn, dν) such that

||f ||BT := sup
z∈Bn

|̃f |(z) <∞.

This is an extension to several complex variables of the space BT introduced by J.

Miao and D. Zheng [31] for n = 1.We first give the relation between the space BT and
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the space of Carleson measures for Bergman spaces. An easy application of Theorem

3.2.9 gives the following:

3.4.1 Lemma

If f ∈ BT if and only if the measure µ = |f | dν is a Carleson type measure on the

Bergman spaces Lpa.

Proof If f ∈ BT then clearly

∫

Bn

(1 − |z|2)n+1

|1 − (w · z)|2(n+1)
dµ(w) ≤ sup

z∈Bn

|̃f |(z) <∞.

Thus by Theorem 3.2.9 µ = |f | dν is a Carleson measure.

Conversely, if µ = |f | dν is a Carleson type measure. Then

|̃f |(z) =

∫

Bn

|f(w)| (1 − |z|2)n+1

|1− (w · z)|2n+2
dν(w)

=

∫

Bn

(1 − |z|2)n+1

|1 − (w · z)|2n+2
dµ(w)

≤ C(µ)

∫

Bn

(1 − |z|2)n+1

|1 − (w · z)|2n+2
dν(w) = CC(µ),

where C(µ) is the Carleson measure constant. This shows that f ∈ BT . 2

We next state the following generalization to several complex variables of a result

of [31]:

3.4.2 Theorem

Let f ∈ BT and p ∈ (1,∞). Then the Toeplitz operator Tf is bounded on Lpa.

Moreover, there exists a positive constant C such that

||Tf || ≤ C||f ||BT
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for every f ∈ BT.

Proof The proof is the same as for n = 1. Let h ∈ Lp
′

a and g ∈ Lpa. Then

〈Tfg, h〉 = 〈fg, h〉

for all g ∈ Lpa and h ∈ Lp
′

a . Thus

|〈Tfg, h〉| ≤
∫

Bn

|gh|(|f |dν) ≤ C(f)||gh||1 ≤ C(f)||g||p||h||p′,

where C(f) is the Carleson measure constant of the Carleson measure |f |dν. This

implies that Tf is bounded on Lpa with ||Tf || ≤ C(f). The announced estimate for

||Tf || follows from the fact that C(f) ≤ ||f ||BT according to the last assertion of

Theorem 3.2.9. 2

An alternative proof of Theorem 3.4.2 can be provided using Schur’s lemma. Ac-

cording to Proposition 3.3.2, it is sufficient to show that the integral operator Sf

defined in (3.18) is bounded on the Lebesgue space Lp(Bn, dν). By Schur’s lemma, it

is enough to prove that f satisfies the following property:

(SL) there exist a real number ǫ and a positive constant C such that for every f ∈ BT,

there is a constant Cf for which the following two estimates hold:

∫

Bn

(∫

Bn

|f(w)|(1 − |ζ |2)−ǫp′

|(1 − (w · ζ))n+1(1 − (z · w))n+1|dν(w)

)
dν(ζ) ≤ CCf(1 − |z|2)−ǫp′

and

∫

Bn

(∫

Bn

|f(w)|(1 − |z|2)−ǫp
|(1 − (w · ζ))n+1(1 − (z · w))n+1|dν(w)

)
dν(z) ≤ CCf(1 − |ζ |2)−ǫp.

In fact, we have another characterisation of the space BT .
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3.4.3 Proposition

For f ∈ L1(Bn, dν), the following two assertions are equivalent:

(1) f ∈ BT ;

(2) f satisfies property (SL).

Proof (1) ⇒ (2). We prove assertion (2) with Cf = ||f ||BT . Since f ∈ BT, we get:

∫

Bn

|f(w)|
|(1 − (w · ζ))n+1(1 − (w · z))n+1|dν(w) ≤

||f ||BT
∫

Bn

1

|(1 − (w · ζ))n+1(1 − (w · z))n+1|dν(w).

The conclusion follows from an iterative application of the well-known fact that, for

positive ǫ such that 0 < ǫ < min(1
p
, 1
p′

), there exists a positive constant C such that

the following estimates

1

C
(1 − |w|2)−ǫp′ ≤

∫

Bn

(1 − |z|2)−ǫp′

|1 − (z · w)|n+1
dν(z) ≤ C(1 − |w|2)−ǫp′ (3.27)

and

1

C
(1 − |z|2)−ǫp ≤

∫

Bn

(1 − |w|2)−ǫp
|1 − (z · w)|n+1

dν(w) ≤ C(1 − |z|2)−ǫp. (3.28)

hold simultaneously.

(2) ⇒ (1) According to the left inequality of (3.27), property (SL) implies that

∫

Bn

|f(w)|(1− |w|2)−ǫp′

|1 − (z · w)|n+1
dν(w) ≤ CCf(1 − |z|2)−ǫp′

for all z ∈ Bn. Since the functions w 7→ (1 − |w|2)−ǫp′ and w 7→ |1 − (z · w)|n+1 are

almost constant on the Bergman ball D(z), we obtain,

C1
(1 − |z|2)−ǫp′

(1 − |z|2)n+1

∫

D(z)

|f(w)|dν(w) ≤
∫

D(z)

|f(w)|(1 − |w|2)−ǫp′

|1 − (z · w)|n+1
dν(w)

≤
∫

Bn

|f(w)|(1− |w|2)−ǫp′

|1 − (z · w)|n+1
dν(w) ≤ CCf(1 − |z|2)−ǫp′.
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Hence, ∫

D(z)

|f(w)|dν(w) ≤ CC−1
1 Cf (1 − |z|2)n+1.

Theorem 3.2.9 then gives that the measure |f |dν is a Carleson measure, i.e. f ∈

BT. 2

Let 1 ≤ p <∞, the space BMOp = BMOp(Bn) consists of functions f ∈ L1 such

that

sup
z∈Bn

||f ◦ φz − f̃(z)||p <∞.

It is clear that for 1 ≤ p ≤ q, BMOq ⊂ BMOp ⊂ BMO1.

In some sense, Proposition 3.4.3 says that to go further in the research of the

complete criterion for boundedness of Toeplitz operator for general symbols, one

should use more than only Schur’s estimates. Nevertheless, when we can relate the

set of symbols to this BT class in a clever and simple way, we are able to obtain new

sets of symbols for which a boundedness criterion for Tf can be given. Such an idea

appeared implicitly in [52], where it is showed that if f ∈ BMO1 and if f̃ is in L∞,

then f ∈ BT . The best result so far known for boundedness of Toeplitz operators is

contained in the following lemma.

3.4.4 Lemma

Let p ∈ (1,∞). For f ∈ BMO1 (resp. for f nonnegative and integrable on Bn), the

following three properties are equivalent.

(1) Tf is bounded on Lpa.

(2) f̃ is bounded on Lpa.

(3) f ∈ BT.
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A natural question is to know if in the above Lemma, we can replace BMO1,

and/or the nonnegative L1 functions by a bigger set of symbols. To do this, we use

a simple procedure to construct a subset X of L1(Bn, dν) such that for an exponent

p ∈ (1,∞), the associated Toeplitz operator Tf is bounded on Lpa for f ∈ X only if

f ∈ BT. We proceed as follows. For f ∈ L1(Bn, dν), we suppose that there exists

a positive function K(f) on Bn with K(f)(z) finite at each z ∈ Bn, such that the

following implication holds:

Tf bounded on Lpa ⇒ sup
z∈Bn

K(f)(z) <∞.

Usually, the necessary condition sup
z∈Bn

K(f)(z) < ∞ is not sufficient in general. We

define the set X
(q)
K , 1 ≤ q < ∞, to be the set of all functions f ∈ Lq(Bn, dν) such

that

sup
z∈Bn

||̃f |q(z) −K(f)(z)| <∞. (3.29)

Now, if Tf is bounded on Lpa and if f ∈ XK , then f ∈ BT by (3.29) This gives the

following result.

3.4.5 Theorem

Let f ∈ L1. Then the following are equivalent:

(1) Tf is bounded on Lpa.

(2) K(f) is bounded on Lpa.

(3) f ∈ BT.

We study two special cases which show that in the above construction, we obtain

bigger sets which strictly contains previously known sets of symbols.
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Case 1: Take K(f) = K1(f) = |f̃ |. We denote by X1 the corresponding space

X
(1)
K . Since for f ∈ L1(Bn, dν), we necessarily have K1(f)(z) = |f̃(z)| < ∞ for every

z ∈ Bn, the space X1 therefore consists of L1 functions f such that

sup
z∈Bn

|̃f |(z) − |f̃(z)| <∞.

3.4.6 Lemma

The following inclusions hold.

(1) If f ∈ L1(Bn, dν) and if f is a nonnegative function, then f ∈ X1.

(2) BT ( BMO1 ( X1.

Proof (1) Clear from the definition of X1 since |̃f | = f̃ if f is a nonnegative

function.

(2) The first inclusion follows from the inequality ||f ◦ϕz− f̃(z)||1 ≤ 2|̃f |(z) which is

valid for all f ∈ L1(Bn, dν) and z ∈ Bn. The inclusion is strict because for a ∈ ∂Bn,

the function f(z) = log(1−(z.a)) belongs to BMO1, but not to BT . Indeed if f ∈ BT

then f̃ ∈ L∞, but f̃(w) = log(1 − (w.a)) does not belong to L∞.

For z ∈ Bn, we get that

|̃f |(z) − |f̃(z)| =
∫
Bn

[|f(w)| − |f̃(z)|]|kz(w)|2dν(z)
≤
∫
Bn

[|f(w)− f̃(z)|]|kz(w)|2dν(z)
=
∫
Bn

|f ◦ ϕz(w) − f̃(z)|dν(w) = ||f ◦ ϕz − f̃(z)||1.

This gives the second inclusion. This inclusion is strict because there are nonnegative

L1 functions on Bn which do not belong to BMO1.2

We give an example of a function in X1, with Tf not bounded on Lpa.
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3.4.7 Example

There exists a function f ∈ X1 such that Tf is not bounded on Lpa.

Define f(z) = f(|z|) by f(x) = 0 if x ∈ [0, 1
2
), and for

x ∈ [1 − 1
2k ; 1 − 1

2k+1 ), k = 1, 2, · · ·

f(x) =





2
3
2
k if 1 − 1

2k ≤ x ≤ 1 − 1
2k + 1

22k ;

0 otherwise.

Then

∫

B1

|f(z)|dλ(z) =

∫ 1

0

f(s)s ds

=

∫ 1

1
2

f(s)sds

≈
∞∑

k=1

2
3
2
k

∫ 1− 1

2k+1

1− 1

2k

f(s)ds

=
∞∑

k=1

2
3
2
k

∫ 1− 1

2k + 1

22k

1− 1

2k

ds

=
∞∑

k=1

(√
2

2

)k

<∞.

Thus f ∈ L1. For ξ ∈ ∂B1 and r ∈ [0, 1) we denote that Carleson square by

S(ξ, r) = {z ∈ B1 : r < |z| < 1, arg ξ − 1 − r

2
< arg z < arg ξ +

1 − r

2
}.

Then by the comment after Theorem 2.2 of [29] or Lemma 2.1 of [31], a positive Borel

measure µ is a Carleson measure if and only if

sup{µ(S(ξ, r))/λ(S(ξ, r)) : ξ ∈ ∂B1, r ∈ (0, 1)} <∞.

Now, let dµ = fdλ, then

λ((S(ξ, r)) =
1

π

∫ 1

r

sds

∫ (1−r)/2

−(1−r)/2

dθ =
(1 − r)2(1 + r)

2π
.



86

Thus

µ(S(ξ, r))

λ(S(ξ, r))
=

1

λ(S(ξ, r))

∫

S(ξ,r)

f(z)dλ(z)

=
2

(1 − r2)

∫ 1

r

f(s)sds

For n ∈ N, take r = 1 − 1
2n then

µ(S(ξ, r))

λ(S(ξ, r))
=

22n

2n+1 − 1

∫ 1

1− 1
2n

f(s)sds

≈ 22n

2n+1 − 1

∞∑

k=n

∫ 1− 1

2k+1

1− 1

2k

f(s)ds

=
22n

2n+1 − 1

∞∑

k=n

2
3
2
k

∫ 1− 1

2k + 1

22k

1− 1

2k

ds

=
22n

2n+1 − 1

∞∑

k=n

(√
2

2

)k

= C
2

3
2
n

2n+1 − 1
.

As n tends to ∞, µ(S(ξ,r))
λ(S(ξ,r))

is unbounded and thus f does not belong to BT . This

implies Tf is not bounded on Lpa. Lemma 3.4.6 clearly shows that f ∈ X1.

3.4.8 Corollary

Let p ∈ (1,∞). Let f ∈ X1 (in particular, f ∈ BMO1, or f is a nonnegative L1

function). Then following two properties are equivalent:

(1) Tf is bounded on Lpa;

(2) the function f̃ is bounded on Bn.

Case 2. Take K(f)(z) = K2(f)(z) = ‖Tfkz‖2
2. We denote by X2 the correspond-

ing space X2
K . we point out that K1(f) ≤ K2(f) for every f ∈ L1(Bn, dν). Since for

every f ∈ L2(Bn, dν) we have ‖Tfkz‖2 < ∞ for all z ∈ Bn. The space X2 therefore
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consists of L2 functions f such that

sup
z∈Bn

|̃f |2(z) − ||Tfkz||22 <∞.

We just recall that this case refers to a necessary condition which was proved insuffi-

cient for p = 2 and n = 1 by F. Nazarov.

3.4.9 Lemma

BMO2(Bn) ( X2 and X2 is not contained in BMO1.

Proof We first show that f ∈ BMO2 is equivalent to the following:

sup
z∈Bn

{|̃f |2(z) − |f̃(z)|2} <∞.

Direct calculation shows that

∫

Bn

∫

Bn

|f(u) − f(v)|2|kz(u)|2|kz(v)|2 dν(v) dν(u) = 2(|̃f |2(z) − |f̃(z)|2). (3.30)

Indeed,

∫

Bn

|kz(u)|2〈(f(u) − f)kz, (f(u) − f)kz〉 dν(u)

=

∫

Bn

|kz(u)|2[|f(u)|2 − f(u)〈kz, fkz〉 − f(u)〈fkz, kz〉 + |̃f |2(z) dν(u)

= 2(|̃f |2(z) − |f̃(z)|2).
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Also, the double integral in equation (3.30) is equal to

∫

Bn

∫

Bn

|f ◦ ϕz(u) − f ◦ ϕz(v)|2 dν(v) dν(u)

=

∫

Bn

∫

Bn

|f ◦ ϕz(u)|2 − f ◦ ϕz(u)f ◦ ϕz(v) − f ◦ ϕz(u)f ◦ ϕz(v)

+ |f ◦ ϕz(v)|2 dν(v) dν(u)

=

∫

Bn

|f ◦ ϕz(u)|2 − f ◦ ϕz(u)
∫

Bn

f ◦ ϕz(v) dν(v)

− f ◦ ϕz(u)
∫

Bn

f ◦ ϕz(v) dν(v) + |̃f |2(z) dν(u)

=

∫

Bn

|f ◦ ϕz(u) − f̃(z)|2 dν(u) − |f̃(z)|2 + |̃f |2(z)

which gives the equivalence. We recall that

|f̃(z)| = |P (f ◦ ϕz)(0)| ≤ ||P (f ◦ ϕz)||1 ≤ ||P (f ◦ ϕz)||2 = ||Tfkz||2,

here, the former identity follows from assertion (1) of Lemma 3.2.1, while the latter

identity follows from assertion (3) of Lemma 3.2.1. Thus if f ∈ BMO2 then

sup
z∈Bn

{|̃f |2(z) − ‖Tf◦ϕz1‖2
2} ≤ sup

z∈Bn

{|̃f |2(z) − |f̃(z)|2} <∞

that is f ∈ X2. This inclusion is strict. Otherwise, BMO2 = X2 and hence we

have the Bloch space equals X2 ∩H(Bn), where H(Bn) denote the space of analytic

function on Bn. But L2
a ⊂ X2 ∩H(Bn), this shows that the Bloch space contains L2

a

which is false. The fact that X2 does not belong to BMO1 is clear from the previous

statement above. 2

We next show that the space X2 can be described without reference to the space

BT.
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3.4.10 Proposition

For f ∈ L2, the following two properties are equivalent:

(1) f ∈ X2;

(2) The following estimate holds:

sup
z∈Bn

∫

Bn

∣∣∣∣
∫

Bn

f ◦ ϕz(ξ) − f ◦ ϕz(w)

(1 − (w · z))n+1
dν(w)

∣∣∣∣
2

dν(ξ) <∞.

Proof We have

|̃f |2(z) − ‖P (f ◦ ϕz)‖2
2

= ‖f ◦ ϕz‖2
2 − ‖P (f ◦ ϕz)‖2

2

= 〈f ◦ ϕz, f ◦ ϕz〉 − 〈P (f ◦ ϕz), P (f ◦ ϕz)〉

= 〈f ◦ ϕz, f ◦ ϕz〉 − 2〈P (f ◦ ϕz), P (f ◦ ϕz)〉 + 〈P (f ◦ ϕz), P (f ◦ ϕz)〉

= 〈f ◦ ϕz, f ◦ ϕz〉 − 〈P (f ◦ ϕz), (f ◦ ϕz)〉

− 〈(f ◦ ϕz), P (f ◦ ϕz)〉 + 〈P (f ◦ ϕz), P (f ◦ ϕz)〉

= 〈f ◦ ϕz − P (f ◦ ϕz), f ◦ ϕz − P (f ◦ ϕz)〉

= ‖(I − P )(f ◦ ϕz)‖2
2.

Thus we have the equivalence. 2

Similar argument as the one used for the case of functions in XK yields the fol-

lowing.



90

3.4.11 Corollary

Let f ∈ X2. The following three assertions are equivalent:

(1) Tf is bounded on L2
a;

(2) sup
z∈Bn

||Tfkz||2 <∞.

(3) sup
z∈Bn

||P (f ◦ φz)||2 <∞

Other cases can be obtained from the following theorem:

3.4.12 Theorem

Let f ∈ L1 and 1 < p <∞, suppose that Tf is a bounded operator on Lpa(Bn) and p′

the conjugate exponent of p. Then the following hold

1. f̃ is bounded;

2. supz∈Bn
‖Tf k̃pz‖p <∞,

3. supz∈Bn
‖P (f ◦ ϕz)(·)(1 − ( · z))(n+1)(p−2)/p‖p <∞,

4. supz∈Bn
‖P (f ◦ ϕz)‖p <∞ if 1 < p ≤ 2

5. supz∈Bn
‖P (f ◦ ϕz)‖1 <∞

6. supz∈Bn
‖P (f ◦ ϕz)‖q, qp < p+ q, p > q

where k̃pz(w) = (1−|z|2)(n+1)/p′

(1−(w·z))n+1 .

Proof

1) It is known that there exist positive constants C,C ′ such that

|g(z)| ≤ C‖g‖p(1 − |z|2)−(n+1)/p, g ∈ Lpa(Bn) (3.31)
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and

‖Kz‖p ≤ C ′(1 − |z|2)−(n+1)/p′ ,
1

p
+

1

p′
= 1.

If z ∈ Bn then using these two estimates we have

|f̃(z)| =

∣∣∣∣
(
Tf

(1 − |z|2)n+1

(1 − ( · z))n+1

)
(z)

∣∣∣∣

= (1 − |z|2)n+1|(TfKz)(z)|

≤ C(1 − |z|2)n+1‖TfKz‖p(1 − |z|2)−(n+1)/p

≤ C(1 − |z|2)n+1‖Tf‖‖Kz‖p(1 − |z|2)−(n+1)/p

≤ C‖Tf‖

2) Follows from the fact that the Lp-norm of k̃pz is 1.

3) Observe that

(Tf k̃
p
z)(w) = (1 − |z|2)(n+1)/p′〈TfKz, Kw〉

= (1 − |z|2)(n+1)/p′〈UzUzTfUzUzKz, Kw〉

= (1 − |z|2)(n+1)/p′〈Tf◦ϕzUzKz, UzKw〉

= (1 − |z|2)(n+1)(1/p′−1/2)〈Tf◦ϕz1, kz(w)Kϕz(w)〉

= k̃pz(w)(Tf◦ϕz1)(ϕz(w))

where the fourth equality comes from the relation (3.5).

Thus

‖Tf k̃pz‖pp =

∫

Bn

|P (f ◦ ϕz)(ϕz(w))|p|k̃pz(w)|p dν(w)

=

∫

Bn

|P (f ◦ ϕz)(w)|p|k̃pz(ϕz(w))|p|kz(w)|2 dν(w)

=

∫

Bn

|P (f ◦ ϕz)(w)|p|1 − (w · z)|(n+1)(p−2) dν(w)
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where the second equality is by making a change of variable w = ϕz. Use assertion

2) to get the result.

4) A consequence of 3).

5) Using Hölder’s inequality we have

‖P (f ◦ ϕz)‖1

=

∫

Bn

|P (f ◦ ϕz)(w)||1− (w · z)|(n+1)(p−2)/p|1 − (w · z)|−(n+1)(p−2)/p dν(w)

≤ ‖P (f ◦ ϕz)|1 − (w · z)|(n+1)(p−2)‖p
{∫

Bn

|1 − (w · z)|−(n+1)(p−2)p′/p dν(w)

}1/p′

.

If p ≤ 2 the last integral is clearly bounded. Now for p > 2 the last integral will be

bounded provided (n+ 1)(p− 2)p′/p− (n+ 1) < 0, if and only if (p− 2)p′/p− 1) < 0

if and only if −p′ + 1 < 0. This last inequality is true since p′ > 1.

6) Let s = p/q and s′ the conjugate exponent of s, that is s′ = p/(p− q). Then by

the Hölder’s inequality we have

‖P (f ◦ ϕz)‖qq =

∫

Bn

|P (f ◦ ϕz)(w)|q |1 − (w · z)|(n+1)(p−2)/s

|1 − (w · z)|(n+1)(p−2)/s
dν(w)

≤ ‖P (f ◦ ϕz)|1 − ( · z)|(n+1)(p−2)‖p
{∫

Bn

dν(w)

|1 − (w · z)| (n+1)(p−2)s′

s

}1/s′

.

Now s′/s = s′ − 1 = q/(p − q) and thus the last integral is bounded if and only if

(p− 2)q/(p− q) − 1 < 0 or equivalently pq < p+ q, which completes the proof. 2

3.5 Compactness of Toeplitz operators

In this section, we focus our attention to the problem of determining classes of symbols

for which we have a characterization of compact Toeplitz operators on Lpa. We begin

with a general result from which we shall characterize compactness on Lpa for symbols
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in the space XK defined in the previous section. The main result of this section is

the following theorem which improves earlier one-dimensional results of [31] and [52].

We state it here and give the proof at the end of this section.

3.5.1 Theorem

Suppose that 1 < p < ∞ and write p1 = min(p, p′). Suppose further that A is a

bounded operator on Lpa such that

sup
z∈Bn

||Az1||s <∞, and sup
z∈Bn

||A⋆z1||s <∞ (3.32)

for some s satisfying s > p1+n
p1−1

. Then the following four assertions are equivalent:

(1) A is compact on Lpa;

(2) Ã(z) → 0 as z tends to ∂Bn;

(3) for every q ∈ [1, s), ||Az1||q → 0 as z → ∂Bn;

(4) ||Az1||1 → 0 as z → ∂Bn.

In [31], for n = 1, p = 2, J. Miao and D. Zheng showed that the bound p1+n
p1−1

= 3

is sharp for this theorem. Namely, they produced a bounded operator A on L2
a

satisfying

sup
z∈Bn

||Az1||3 <∞, and sup
z∈Bn

||A∗
z1||3 <∞

and Ã(z) → 0 as z tends to ∂Bn, but it is not compact on L2
a.

To proof Theorem 3.5.1, we will require the following lemma which is given in

Appendix C of [34] and is Exercise 7 on page 181 of [19] and is also stated in [31].
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3.5.2 Lemma

Suppose 1 < p <∞ and K(z, w) is a measurable function on Bn ×Bn such that

∫

Bn

(∫

Bn

|K(z, w)|p dν(w)

)p′−1

dν(z) <∞.

Then the integral operator T defined by

Tf(w) =

∫

Bn

f(z)K(z, w) dν(z)

is compact on Lp(Bn, dν).

3.5.3 Proof of Theorem 3.5.1

The method used is the same as the one used to prove Theorem 1.1 in [31]. Suppose

A is compact. If

kpz(w) =
(1 − |z|2)(n+1)/p′

(1 − (w · z))n+1

then kpz tends to 0 weakly in Lpa as z → ∂Bn. Hence

〈Akpz , kp
′

z 〉 → 0

as z → ∂Bn. Since

Ã(z) = 〈Akpz , kp
′

z 〉

for z ∈ Bn, we have Ã(z) → 0 as z → ∂Bn. This proves the implication (1) ⇒ (2).

Recall that by Lemma 3.2.5, the properties (2), (3) and (4) are equivalent. We next

show the implication (3) ⇒ (1). Under assumption (3), we want to show that A is

compact on Lpa. Fix q such that (p1 + n)/(p1 − 1) < q < s in the rest of the proof.

Suppose h ∈ Lpa and z ∈ Bn. Then

(Ah)(z) =

∫

Bn

h(w)(AKw)(z) dν(w).
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For r ∈ (0, 1), define an operator A[r] on Lpa(Bn) by

(A[r]h)(z) =

∫

rBn

h(w)(AKw)(z) dν(w).

Then A[r] is an integral operator with kernel (AKw)(z)χrBn
(w). In view of Lemma

3.5.2, this operator is compact on Lp(Bn, dν) since

∫

Bn

(∫

Bn

|(AKw)(z)χrBn(w)|p dν(z)
)p′−1

dν(w) ≤
∫

rBn

‖A‖p′‖Kw‖p
′

p dν(w)

≤ C‖A‖p′
∫

rBn

dν(w)

(1 − |w|2)n+1
.

The latter quantity is finite since A is bounded on Lpa and the last integral is over

a compact set. This proves that A[r] is a compact operator on Lpa. To conclude, we

only need to show that

‖A−A[r]‖p → 0 as r → 1−.

Now, for h ∈ Lpa, we have

(A−A[r])h(z) =

∫

Bn

χBn/rBn
(w)h(w)(AKw)(z) dν(w).

This implies that A− A[r] is an integral operator on Lp(Bn) with kernel

(AKw)(z)χBn/rBn
(w).

We apply Shur’s Lemma. Since the hypotheses of Proposition 3.3.3 are fulfilled with

s replaced by q, the proof of this proposition implies

∫
Bn

|(AKw)(z)χBn/rBn
(w)|(1 − |w|2)−p′ǫdν(w) ≤

∫
Bn

|(AKw)(z)|(1 − |w|2)−p′ǫdν(w)

≤ C||A⋆z1||q(1 − |z|2)−p′ǫ

and

∫
Bn

|(AKw)(z)|χBn/rBn
(w)(1 − |z|2)−pǫdν(z) ≤ CχBn/rBn

(w)||Aw1||q(1 − |w|2)−pǫ

≤ sup
r≤|w|<1

||Aw1||q(1 − |w|2)−pǫ.
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By Schur’s Lemma, the following conclusion holds:

||A−A[r]||p ≤ C(c1)
1
p (c2)

1
p′ ,

where c1 = sup
z∈Bn

{||A⋆z1||q} and c2 = sup{||A⋆z1||q : r ≤ |z| < 1}. We have, by assertion

(3), that c2 → 0 as r → 1−. The hypotheses of the theorem give c1 < ∞. Thus

‖A− A[r]‖p → 0 as r → 1−, completing the proof. 2

The following lemma will enable us establish some corollaries of Theorem 3.5.1.

3.5.4 Lemma

If f ∈ BT then

sup
z∈Bn

‖Tf◦ϕz1‖s <∞, sup
z∈Bn

‖Tf◦ϕz
1‖s <∞

for s > 0.

Proof It is enough to prove these estimates for s > 1. So let s > 1 and z ∈ Bn, we

have

‖Tf◦ϕz1‖s = ‖P (f ◦ ϕz)‖s

= sup
‖h‖s′≤1

|〈P (f ◦ ϕz), h〉|

= sup
‖h‖s′≤1

|〈f ◦ ϕz, h〉|

= sup
‖h‖s′≤1

|〈f, h ◦ ϕz|kz|2〉|

≤ sup
‖h‖s′≤1

∫

Bn

|h ◦ ϕz(ζ)(kz(ζ))2||f |dν(ζ)

≤ sup
‖h‖s′≤1

C(f)

∫

Bn

|h ◦ ϕz(ζ)||kz(ζ)|2|dν(ζ)

= C(f) sup
‖h‖s′≤1

∫

Bn

|h(ζ)|dν(ζ)

≤ C(f).

The other inequality follows the same way. 2
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3.5.5 Remark

We recall that by assertion (2) of Lemma 3.2.1, for A = Tf , f ∈ L1(Bn, dν), we

have Az = Tf◦φz if Tf is bounded on L2
a. Hence, by Lemma 3.5.4, for every f ∈ BT,

the associated Toeplitz operator Tf satisfies the hypotheses of Theorem 3.5.1. We

therefore obtain the following corollary:

3.5.6 Corollary

Suppose that 1 < p < ∞. Then for f ∈ BT, Tf is compact on Lpa if and only if

f̃(z) → 0 as z tends to ∂Bn.

3.5.7 Corollary

Let f ∈ X1 (in particular, let f ∈ BMO1 or let f be a nonnegative function on Bn)

be such that Tf is bounded on Lpa, 1 < p < ∞. Then Tf is compact on Lpa if and

only if f̃(z) → 0 as z tends to ∂Bn.

3.5.8 Corollary

Let f belong to the set X2 defined at the end of Section 3. Suppose that Tf is bounded

on L2
a. Then the following four assertions are equivalent:

(1) Tf is compact on L2
a;

(2) lim
z→∂Bn

||Tfkz||2 = 0;

(3) lim
z→∂Bn

f̃(z) = 0.

Proof The implication (4) ⇒ (1) follows from Corollary 3.5.6. The implication

(1) ⇒ (2) follows from the fact that {kz} converges weakly to 0 on L2
a when z tends to

∂Bn. The implication (2) ⇒ (3) is elementary to get, while the implication (3) ⇒ (4)
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is trivial. 2



Chapter 4

Toeplitz Operators on L1
a(Bn)

4.1 Introduction

In this chapter we will be treating the question of boundedness and compactness of

the Toeplitz operator on the Bergman space L1
a(Bn). Unlike the case in the previous

chapter i.e when p > 1, the case p = 1 produces a new phenomenon. For example,

in [51] Zhu showed that a Toeplitz operator Tf̄ with antianalytic symbols is bounded

on L1
a if and only if f ∈ L∞ ∩ LB, where LB is the Logarithmic Bloch space defined

below. At the same time, for p > 1, it is well known that Tf is bounded on Lpa if and

only if f is bounded. So the study of Tµ on L1
a deserves a particular attention. The

study of Toeplitz operators on L1
a has been considered in [45, 46].

For α > 0, we let

K̃α
ξ (z) =

d(α)

(1 − (z · ξ))n+1+α

where

d(α) =
Γ(n+ 1 + α)

n!Γ(α + 1)

and

k̃αξ (z) =
K̃ξ(z)

‖K̃ξ‖1

=
(1 − |ξ|2)α

((1 − (z · ξ))n+1+α
.

99
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Given a complex Borel measure µ on Bn, the Bergman projection Pµ of µ is

defined by

(Pµ)(w) =

∫

Bn

dµ(z)

(1 − (w · z))n+1
, w ∈ Bn.

The Toeplitz operator Tµ is densely defined on L1
a by

(Tµg)(w) =

∫

Bn

g(z)

(1 − (w · z))n+1
dµ(z) = P (µg)(w),

for g ∈ L∞
a and w ∈ Bn. Note that the formula

Tµg = P (gµ), g ∈ L∞
a

makes sense, and defines an analytic function on Bn and the operator Tµ is in general

unbounded on L1
a. For dµ = fdν, with f ∈ L1 we write Tµ = Tf .

4.2 Boundedness

We will need the following Lemma which is Proposition 1.14 of [47] and Theorems 1

and 2 of [48].

4.2.1 Lemma

Let α and t be any two parameters with the property that neither n + 1 + c nor

n+ 1 + c+ t is a negative integer. Then there exists a unique linear operator Dc,t on

H(Bn) with the following properties:

1. Dc,t is continuous onH(Bn) with respect to the topology of uniform convergence

on compact sets of Cn contained in Bn;

2. Dc,t
z [(1 − (z · w))−(n+1+c)] = (1 − (z · w))−(n+1+c+t) for every w ∈ Bn.

3. Dc,t is invertible on H(Bn).
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Proof Let f ∈ H(Bn) and f(z) =
∑∞

k=0 fk(z), be the homogeneous expansion of f .

We define

Dc,tf(z) =

∞∑

k=0

Γ(n+ 1 + c)Γ(n+ 1 + k + c+ t)

Γ(n+ 1 + c+ t)Γ(n + 1 + k + c)
fk(z),

and

Dc,tf(z) =

∞∑

k=0

Γ(n+ 1 + c+ t)Γ(n+ 1 + k + c)

Γ(n+ 1 + c)Γ(n+ 1 + k + c+ t)
fk(z).

Then Dc,t and Dc,t are continuous on H(Bn) if we equip H(Bn) with the topology of

uniform convergence on compact sets. Also Dc,t is invertible with inverse Dc,t. Finally

we recall that

1

(1 − (z · w))n+1+c
=

∞∑

k=0

Γ(n+ 1 + k + c)

k!Γ(n + 1 + c)
(z · w)k z, w ∈ Bn,

is actually a homogeneous expansion. Thus

Dc,t
z[(1 − (z · w))−(n+1+c)]

=

∞∑

k=0

Γ(n+ 1 + k + c)

k!Γ(n + 1 + c)

Γ(n+ 1 + c)Γ(n+ 1 + k + c+ t)

Γ(n+ 1 + c+ t)Γ(n + 1 + k + c)
(z · w)k

=

∞∑

k=0

Γ(n+ 1 + k + c+ t)

k!Γ(n + 1 + c+ t)
(z · w)k

= (1 − (z · w))−(n+1+c+t). 2

We will need the following Lemma which is Theorem 2.19 of [47].

4.2.2 Lemma

Suppose p > 0 and c > 0. There exist constants A and B such that

A

∫

Bn

|f(z)|pdν(z) ≤
∫

Bn

|(1 − |z|2)cDcf(z)|pdν(z) ≤ B

∫

Bn

|f(z)|pdν(z) (4.1)

We shall denote Dc,0 simply by Dc.
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4.2.3 Lemma

For every h ∈ L1
a, the function Dc,0h = Dch, c > 0, has the following expression,

Dch(z) =

∫

Bn

h(w)

(1 − (z · w))(n+1+c)
dν(w), (z ∈ Bn).

Moreover, there exists a constant C such that all h ∈ L1
a and g ∈ L∞

a ,

∫

Bn

(1 − |z|2)cDch(z)g(z)dν(z) = C

∫

Bn

h(z)g(z)dν(z).

Proof We first prove the lemma for all h ∈ L2
a and g ∈ L∞

a . Let {ak} be a

r−lattice as described in Lemma 3.2.6. By the atomic decomposition theorem (cf.

e.g. Theorem 2.30 of [47]), for every h ∈ L2
a, there exists a sequence {ck} of complex

numbers belonging to the sequence space l2 such that

h(z) =

∞∑

k=1

ck
(1 − |ak|2)

n+1
2

(1 − (z · ak))(n+1)
, (z ∈ Bn),

where the series converges in the norm topology of L2
a. Then this series converges

uniformly on compact sets of Cn contained in Bn to its sum h(z). Next, the series

∞∑

k=1

ck
(1 − |ak|2)

n+1
2

(1 − (z · w))(n+1+c)

converges in the norm topology of the weighted Bergman space L2
a((1−|z|2)2cdν(z)),

and thus converges uniformly on compact sets of Cn contained in Bn to its sum.

We recall that Dc
z[(1 − (z · w))−(n+1)] = (1 − (z · w))−(n+1+c) for every w ∈ Bn.

This implies the partial sums

N∑

k=1

ck(1 − |ak|2)
n+1

2 Dc
z

[
1

(1 − (z · ak))n+1

]
= Dz

[
N∑

k=1

ck
(1 − |ak|2)

n+1
2

(1 − (z · ak))n+1

]

converges uniformly on compact sets of Cn contained in Bn to the analytic function

∞∑

k=1

ck
(1 − |ak|2)

n+1
2

(1 − (z · ak))n+1+c
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as N → ∞. Since Dc is continuous in H(Bn), we conclude that

Dch(z) =

∞∑

k=1

ck
(1 − |ak|2)

n+1
2

(1 − (z · ak))n+1+c
. (4.2)

Hence

Dch(z) =

∞∑

k=1

ck(1 − |ak|2)
∫

Bn

1

(1 − (w · ak))n+1(1 − (z · w))n+1+c
dν(w)

=

∫

Bn

{
∞∑

k=1

ck
1 − |ak|2

(1 − (w · ak))n+1

}
1

(1 − (z · w))n+1+c
dν(w)

=

∫

Bn

h(w)

(1 − (z · w))n+1+c
dν(w).

Next the convergence in L2
a(1−|z|2)2cdν(z)) of the series in the right hand side of

(4.2) implies that
∫

Bn

(1−|z|2)cDch(z)g(z)dν(z) =
∞∑

k=1

ck(1−|ak|2)
n+1

2

∫

Bn

(1 − |z|2)c
(1 − (ak · z))n+1+c

g(z)dν(z).

Since for w ∈ Bn there exists a constant C such that
∫

Bn

(1 − |z|2)c
(1 − (ak · w))n+1+c

g(z)dν(z) = Cg(ak) = C

∫

Bn

g(w)

(1 − (ak · w))n+1
dν(z),

for every g ∈ L∞
a . This implies that

∫

Bn

(1 − |z|2)cDch(z)g(z)dν(z) = C
∞∑

k=1

ck(1 − |ak|2)
∫

Bn

g(z)

(1 − (ak · z))n+1
dν(z)

= C

∫

Bn

{
∞∑

k=1

ck
(1 − |ak|2)

n+1
2

(1 − (ak · z))n+1

}
g(z)dν(z)

= C

∫

Bn

h̄(z)g(z)dν(z).

We next consider the general case when h ∈ L1
a. The announced conclusions follow

from the density of L2
a in L1

a and from the existence of a constant C such that
∫

Bn

(1 − |z|2)c|Dch(z)|dν(z) ≤ C

∫

Bn

|h(z)|dν(z)
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for all analytic functions h on Bn. Indeed, if h ∈ L1
a then

h(z) = d(s)

∫

Bn

h(w)(1 − |w|2)s
(1 − (z · w))n+1+s

dν(w), s > 0, z ∈ Bn.

This shows that

Dch(z) = d(s)

∫

Bn

h(w)(1 − |w|2)s
(1 − (z · w))n+1+s+c

dν(w), s > 0, z ∈ Bn.

Applying Fubini’s theorem we have,

∫

Bn

(1 − |z|2)c|Dch(z)|dν(z) ≤ C ′

∫

Bn

∫

Bn

|h(w)|(1 − |z|2)c(1 − |w|2)s
|1 − (z · w)|n+1+s+c

dν(w)dν(z)

≤ C ′

∫

Bn

|h(w)|(1 − |w|2)s
∫

Bn

(1 − |z|2)c
|1 − (z · w)|n+1+s+c

dν(z)dν(w)

≤ C

∫

Bn

|h(w)|dν(w)

The latter result is just Lemma 4.2.2. This completes finishes the proof of the lemma.

2

For c > 0, we denote by Pc the orthogonal projector from L2((1−|z|2)cdν(z)) onto

the weighted Bergman space L2
a((1−|z|2)cdν(z)) (Pc is a weighted Bergman projector

in Bn). For every φ ∈ L2((1 − |z|2)cdν(z)), and z ∈ Bn we have

Pcφ(z) = (1 + c)

∫

Bn

(1 − |ζ |c
(1 − (z · ζ))n+1+c

φ(ζ)dν(ζ).

We also denote by D(Bn) the space of C∞ functions with compact support in Bn. We

shall need the following lemma.

4.2.4 Lemma

The space Pc(D(Bn)) is a dense subspace of L1
a.
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Proof It is easy to check that Pc(D(Bn)) ⊂ L1
a. Since the dual space of L1

a with

respect to the usual duality pairing <,> in L2(Bn, dν) is the Bloch space B∞, it

suffices to show that every h ∈ B∞ such that

∫

Bn

Pcφ(z)h̄(z)dν(z) = 0 ∀φ ∈ D(Bn)

vanishes identically. An application of Fubini’s theorem and Lemma 4.2.3 gives

0 =

∫

Bn

Pcφ(z)h̄(z)dν(z) =

∫

Bn

(∫

Bn

(1 − |ζ |2)2

(1 − (z · ζ))n+1+c
φ(ζ)dν(ζ)

)
h̄(z)dν(z)

=

∫

Bn

φ(ζ)Dch(ζ)(1 − |ζ |2)cdν(ζ),

for all φ ∈ D(Bn). We conclude that Dch ≡ 0 on Bn. Using the invertibility of Dc on

H(Bn), we obtain that h ≡ 0 on Bn. 2

We have the following boundedness result.

4.2.5 Theorem

Let A be a linear operator defined on L∞
a with values in the space of analytic functions

on Bn and let c > 0. Then the implication (1) ⇒ (2) holds for the following two

assertions.

1. A extends to a bounded operator on L1
a;

2. the following estimate holds:

sup
ξ∈Bn

‖Ak̃cξ‖1 <∞. (4.3)
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The converse (2) ⇒ (1) also holds in the following two cases.

(a) The operator A satisfies the property that

∫

Bn

(Akcξ)(z)g(ξ)dν(ξ) = CAg(z)

for some absolute constant C and for all z ∈ Bn and g ∈ Pc(D(Bn)).

(b) A = Tµ, µ a complex Borel measure on Bn.

Moreover, in such cases if C1 = supξ∈Bn
‖Ak̃cξ‖1, there exists a constant C such that

‖A‖ ≤ CC1.

Proof If A is bounded on L1
a then

‖Ak̃cz‖1 ≤ ‖A‖‖k̃cz‖1

and since

‖k̃cz‖1 =

∫

Bn

(1 − |z|2)α
|1 − (w · z)|n+1+α

dν(w)

which is bounded in z by Lemma 3.2.2.

Conversely, suppose (4.3) holds.

Case (a): By our assumption on A, we have

∫

Bn

|Ag(z)|dν(z) ≤ C−1

∫

Bn

(∫

Bn

|Ak̃cζ(z)||g(ζ)|dν(ζ)
)
dν(z)

= C−1

∫

Bn

(∫

Bn

|Ak̃cζ(z)|dν(z)
)
|g(ζ)|dν(ζ)

= C−1 sup
ζ∈Bn

||Ak̃cζ||1||g||1.

This shows the implication (2) =⇒ (1) for the case (a).
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Case (b): Let µ be a complex Borel measure on Bn. From case (a), it is enough

to prove that if z ∈ Bn and g in the dense subspace Pc(D(Bn)) of L1
a, then

∫

Bn

(Tµk̃
(c)
ζ )(z)g(ζ)dν(ζ) = d(c)−1Tµg(z). (4.4)

Let h ∈ L1
a(Bn, (1 − |z|2)cdν(z)) = L1

a((1 − |z|2)cdν(z)) and g = Pcφ with φ ∈

D(Bn). Then

∫

Bn

h̄(ζ)g(ζ)(1− |ζ |2)cdν(ζ) =

∫

Bn

h̄(ζ)φ(ζ)(1− |ζ |2)cdν(ζ). (4.5)

Fix z ∈ Bn and take

hz(ζ) := (TµK̃c
ζ)(z) = d(c)

∫

Bn

1

(1 − (w · z))n+1(1 − (ζ · w))n+1+c
dµ(w).

It is clear that the function hz is analytic and for every ζ ∈ Bn, and the function

z 7→ hz(ζ) is antianalytic. By the mean value property, there exists a constant Cz

such that

|hz(ζ)| ≤ Cz||TµK̃(c)
ζ ||1

and hence ∫

Bn

|hz(ζ)|(1− |ζ |2)cdν(ζ) ≤ Cz sup
ζ∈Bn

||Tµk̃(c)
ζ ||1 <∞.

In the latter inequality, we applied assertion (2).

For every φ in the space D(Bn), we have

∫

Bn

(∫

Bn

(1 − |ζ |2)c
|1 − (w · ζ)|n+1+c

|φ(ζ)|dν(ζ)
)

d|µ|(w)

|1 − (z · w)|n+1
≤ C(φ)

(1 − |z|2)n+1

∫

Bn

d|µ|(w) <∞
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for every z ∈ Bn. By identity (4.5) and Fubini’s Theorem, we obtain that for every

g = Pcφ in the dense subspace Pc(D(Bn)) of L1
a and for every z ∈ Bn,

∫

Bn

(Tµk̃
c
ζ)(z)g(ζ)dν(ζ) =

∫

Bn

(Tµk̃
c
ζ)(z)φ(ζ)dν(ζ)

=

∫

Bn

(∫

Bn

1

(1 − (z · w)n+1

(1 − |ζ |2)c
(1 − (w · ζ)n+1+c

dµ(w)

)
φ(ζ)dν(ζ)

=

∫

Bn

(∫

Bn

(1 − |ζ |2)c
(1 − (w · ζ))n+1+c

φ(ζ)dν(ζ)

)
1

(1 − zw̄)2
dµ(w)

= d(c)−1

∫

Bn

g(w)

(1 − (z · w))n+1
dµ(w) = d(c)−1Tµg(z).

This proves identity (4.4) and so the implication (2) ⇒ (1) is proved for case (b). 2

Our next lemma shows that our necessary condition, when A = Tµ, in Theorem

4.2.5 is remarkably strong.

4.2.6 Lemma

Let c > 0 and µ is a complex Borel measure in Bn. Then there exists a constant C

such that for all z, ξ ∈ Bn,
∣∣∣∣
∫

Bn

(1 − |ξ|2)c
(1 − (w · ξ))n+1+c

dµ(w)

(1 − (z · w))n+1+c

∣∣∣∣ ≤
C

(1 − |z|2)n+1+c
‖Tµk̃cξ‖1. (4.6)

Proof Let ξ, z ∈ Bn. Then equation (3.31) implies
∣∣∣∣
∫

Bn

(1 − |ξ|2)c
(1 − (w · ξ))n+1+c

dµ(w)

(1 − (z · w))n+1+c

∣∣∣∣

≤ C

(1 − |z|2)n+1+c

∫

Bn

(1 − |ξ|2)c
∣∣∣∣
∫

Bn

(1 − |ξ|2)c
(1 − (w · ξ))n+1+c

dµ(w)

(1 − (ζ · w))n+1+c

∣∣∣∣ dν(ζ).

We apply (4.1) to get that the last equation is atmost

B

(1 − |z|2)n+1+c

∫

Bn

∣∣∣∣
∫

Bn

(1 − |ξ|2)c
(1 − (w · ξ))n+1+c

dµ(w)

(1 − (ζ · w))n+1

∣∣∣∣ dν(ζ)

=
B

(1 − |z|2)n+1+c
‖Tµk̃cξ‖1,
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which completes the proof. 2

4.2.7 Remark

If we take ξ = z in (4.6), we see that for each ξ ∈ Bn,

∣∣∣∣
∫

Bn

(1 − |ξ|2)n+1+2c

|1 − (w · ξ)|2(n+1+c)
dµ(w)

∣∣∣∣ ≤ C sup
ξ∈Bn

‖Tµk̃cξ‖1.

Thus for positive measures, this clearly shows that our necessary condition implies

that µ must be a Carleson measure.

Let ▽f(z) be the holomorphic gradient of f at z, that is

▽f(z) =

(
∂f

∂z1
,
∂f

∂z2
, · · · , ∂f

∂zn

)
.

We recall the definition of the Bloch space, B∞(Bn), to be the space of analytic

functions f in Bn for which

‖f‖B∞ = sup
z∈Bn

(1 − |z|2)| ▽ f(z)| <∞.

We define the Logarithmic Bloch space, LB, to be the space of analytic functions,

f , on the unit ball such that

sup
z∈Bn

(1 − |z|2)| ▽ f(z)| log

(
2

1 − |z|2
)
<∞.

We have the following characterization with anti-analytic symbols.

4.2.8 Theorem

Let f ∈ L1
a. The following three assertions are equivalent;
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(1) Tf̄ is bounded on L1
a;

(2) the following estimate holds:

sup
z∈Bn

||Tf̄ k̃cz||1 <∞

for some (all) c > 0;

(3) f belongs to L∞
a ∩ LB.

Proof The implication (1) ⇒ (2). was shown in the proof of Theorem 1.1. The

equivalence (1).⇔ (3). was proved by K. Zhu [51]. It suffices to prove the implication

(2) ⇒ (1). Apply Theorem 4.2.5, since the measure fdν = dµ is a complex measure

on Bn. 2

We extend some results on boundedness of [45] to the unit ball.

We will need the following Lemma.

4.2.9 Lemma

For all z, w ∈ Bn we have

(1) |w − ϕw(z)|2 =
(1 − |w|2)(|z|2 − |(z · w)|2

|1 − (z · w)|2 .

Consequently,

(2) |w − ϕw(z)| ≥ (1 − |w|2)|z|
|1 − (z · w)| ,

and

(3) |w − ϕw(z)|2 ≤ 2(1 − |w|2)
|1 − (z · w)| .

Proof . Observe that

(w − ϕw(z))(1 − (z · w)) = (1 − |w|2)Pw(z) +
√

(1 − |w|2)Qw(z).
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Since (Pw(z) ·Qz(w)) = 0 we have

|(1 − |w|2)Pw(z) +
√

(1 − |w|2)Qw(z)|2 = (1 − |w|2)2|Pw(z)|2 + (1 − |w|2)|Qw(z)|2.

Now, using the identities |Qw(z)|2 = |z|2 − |(z·w)|2

|w|2
and |Pw(z)|2 = |(z·w)|2

|w|2
we have

(1 − |w|2)2|Pw(z)|2 + (1 − |w|2)|Qw(z)|2 = |z|2 − |(z · w)|2(1 − |w|2)

which gives (1). The inequality (2) follows from (1) and the fact that |(z ·w)| ≤ |z||w|.

The inequality (3) follows from (1) and the estimates

|z|2 − |(z · w)|2 ≤ 1 − |(z · w)|2 = (1 + |(z · w)|)(1 − |(z · w)|) ≤ 2(1 − |(z · w)|). 2

Let k be a non-negative integer and let

τk(w, z) :=
1

B(n, k)

n−1∑

p=0


n− 1

p


 (−1)p

k + p
(1 − |ϕw(z)|2)p,

where B(n, k) is the Bessel function

B(n, k) =
Γ(n)Γ(k)

Γ(n+ k)
.

We associate to every complex Borel measure µ on Bn the locally integrable function

Ri(µ), i = 1, 2, · · · , n, defined on Bn by and

Ri(µ)(w) := (1 − |w|2)
∫

Bn

(wi − zi)(1 − (z · w))n−1

|w − z|2n(1 − (w · z))2
τk(w, z)dµ(z), w ∈ Bn.

We say that µ satisfies condition (R) if the measure |Ri(µ)(w)|dν(w), i = 1, 2, · · · , n,

is a Carleson measure for Bergman spaces. We simply say that f ∈ L1 satisfies con-

dition (R) when the measure dµ = fdν satisfies condition (R).
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4.2.10 Remark

When n = 1 the function R(µ) is given by

R(µ)(w) := (1 − |w|2)
∫

B1

dµ(z)

(z − w)(1 − zw̄)2
,

which was introduced in [45].

4.2.11 Lemma

If µ is a complex measure on Bn such that |µ| is a Carleson measure for Bergman

spaces then µ satisfies the condition (R) and hence

R(µ)(w) =

n∑

i=1

|Ri(µ)(w)|dν(w)

is a Carleson measure for Bergman spaces.

Proof . We fix r > 0. The question is to prove that if |µ| is a Carleson measure

for Bergman spaces then

sup
z∈Bn

1

ν(D(ξ, r))

∫

D(ξ,r)

|Ri(µ)(w)|dν(w) <∞, i = 1, 2, · · · , n. (4.7)

First observe if we let w = ϕz(a) in assertion (2) of Lemma 4.2.9 we have

|z − w| ≥ |1 − (z · w)||ϕz(w)|.
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Applying Fubini’s Theorem and using (2) we obtain

1

ν(D(ξ, r))

∫

D(ξ,r)

|Ri(µ)(w)|dν(w)

=
1

ν(D(ξ, r))

∫

D(ξ,r)

∣∣∣∣(1 − |w|2)
∫

Bn

(wi − zi)(1 − (z · w))n−1

|w − z|2n(1 − (w · z))2
τk(w, z)dµ(z)

∣∣∣∣ dν(w)

≤ C

ν(D(ξ, r))

∫

Bn

∫

D(ξ,r)

|1 − (z · w)|n−3(1 − |w|2)
|w − z|2n−1

dν(w)d|µ|(z)

≤ C

ν(D(ξ, r))

∫

Bn

∫

D(ξ,r)

|1 − (z · w)|n−3(1 − |w|2)
|1 − (z · w)|2n−1|ϕz(w)|2n−1

dν(w)d|µ|(z)

=
C

ν(D(ξ, r))

(∫

D(ξ,3r)

+

∫

Bn/D(ξ,3r)

)∫

D(ξ,r)

(1 − |w|2)
|1 − (z · w)|n+2|ϕz(w)|2n−1

dν(w)d|µ|(z)

= I + J,

where

I =
C

ν(D(ξ, r))

∫

D(ξ,3r)

∫

D(ξ,r)

(1 − |w|2)
|1 − (z · w)|n+2|ϕz(w)|2n−1

dν(w)d|µ|(z)

and

J =
C

ν(D(ξ, r))

∫

Bn/D(ξ,3r)

∫

D(ξ,r)

(1 − |w|2)
|1 − (z · w)|n+2|ϕz(w)|2n−1

dν(w)d|µ|(z).

Now if z ∈ D(ξ, 3r) and w ∈ D(ξ, r), we know that ν(D(ξ, r)) ≈ ν(D(z, r)) ≈ (1−

|ξ|2)n+1 and that |1− (z ·w)| ≈ (1−|ξ|2) ≈ (1−|w|2) and we have D(ξ, r) ⊂ D(z, 4r).

Thus

I ≤ C

(1 − |ξ|2)2n+2

∫

D(ξ,3r)

∫

D(z,4r)

1

|ϕz(w)|2n−1
dν(w)d|µ|(z)

=
C

(1 − |ξ|2)2n+2

∫

D(ξ,3r)

{∫

D(0,4r)

1

|w|2n−1
|Jϕz(w)|2dν(w)

}
d|µ|(z)

≤ Cr
(1 − |ξ|2)n+1

∫

D(ξ,3r)

∫

D(0,4r)

1

|w|2n−1
dν(w)d|µ|(z)

≤ C|µ|(D(ξ, 3r))

(1 − |ξ|2)n+1
<∞,
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here we have made the change of variable w = ϕz to get the first equality.

We now consider J .

If z /∈ D(ξ, 3r) and w ∈ D(ξ, r), we have β(z, w) ≥ 2r. This implies |ϕz(w)| ≥
e4r−1
e4r+1

> 0. This and the fact that |µ| is a Carleson measure gives

J =
C

ν(D(ξ, r))

∫

Bn/D(ξ,3r)

∫

D(ξ,r)

(1 − |w|2)
|1 − (z · w)|n+2|ϕz(w)|2n−1

dν(w)d|µ|(z)

≤ Cr
1

ν(D(ξ, r))

∫

Bn/D(ξ,3r)

∫

D(ξ,r)

(1 − |w|2)
|1 − (z · w)|n+2

dν(w)d|µ|(z)

≤ CrC(|µ|)
ν(D(ξ, r))

∫

D(ξ,r)

∫

Bn

(1 − |w|2)
|1 − (z · w)|n+2

dν(z)dν(w)

≤ C ′
rC(|µ|)

ν(D(ξ, r))

∫

D(ξ,r)

dν(w) <∞.

This shows that (4.7) holds for every i = 1, 2, · · · , n. 2

We introduce the standard volume form on Cn,

dν(ξ) =

(
1

2iπ

)n n∧

i=1

(dξi ∧ dξi), (4.8)

where
n∧

i=1

(dξi ∧ dξ) = (dξ1 ∧ dξ1) ∧ (dξ2 ∧ dξ2) ∧ · · · ∧ (dξn ∧ dξn).

Also if u is continuously differentiable on Cn then

∂u(ξ) :=

n∑

i=1

∂u

∂ξi
dξi,

where

∂

∂ξi
≡ 1

2

(
∂

∂xi
+ i

∂

∂yi

)
, ξi = xi + iyi, i = 1, 2, · · · , n,

and

∂

∂ξi
≡ 1

2

(
∂

∂xi
− i

∂

∂yi

)
, ξi = xi + iyi, i = 1, 2, · · · , n.
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We recall that if u ∈ C1(B1), and z ∈ B1,the unit disk of C, then

u(z) =
k

2iπ

∫

B1

u(ξ)
(1− |ξ|2)k−1

(1 − ξz)k+1
dξ ∧ dξ

+
1

2iπ

∫

B1

∂u

∂ξ
(ξ)

(1 − |ξ|2)k
(z − ξ)(1 − ξz)k+1

dξ ∧ dξ

= Pk−1u(z) +
1

2iπ

∫

B1

∂u

∂ξ
(ξ)

(1 − |ξ|2)k
(z − ξ)(1 − ξz)k+1

dξ ∧ dξ,

where k0 a non-zero positive integer. We note that the second integral is zero if u is

analytic on B1. The extension of the above formula to the unit ball in Cn is given by

P.Charpentier [17] which we shall present below. If u ∈ C1(Bn), k > 0 and z ∈ Bn

then

u(z) = Pk−1u(z) +

∫

Bn

∂u ∧ Ck(ξ, z), (4.9)

where

Ck(ξ, z) = Ψk(ξ, z)C0(ξ, z),

and

Ψk(ξ, z) =

(
(1 − |ξ|2)

(1 − (z · ξ))

)k
τk(ξ, z),

C0(ξ, z) = d(n)
(1 − (ξ · z))n−1

|ξ − z|2n

{
n∑

i=1

(−1)i−1(ξi − zi)
∧

j 6=i

dξj

}
n∧

i=1

dξi,

with d(n) = −(−1)n(n−1)/2 (n−1)!
(2iπ)n .

4.2.12 Lemma

Let u ∈ C1(Bn), and k > 0. Then there exists a constant, C = C(n), such that

∫

Bn

∂u ∧ Ck(ξ, z) = C

n∑

i=1

∫

Bn

∂u

∂ξi
(ξ)(ξi − zi)Ψk(ξ, z)

(1 − (ξ · z))n−1

|ξ − z|2n dν(ξ). (4.10)
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Proof .

{
n∑

i=1

(−1)i−1(ξi − zi)
∧

j 6=i

dξj

}
n∧

i=1

dξi

=

(
(ξ1 − z1)

n∧

j=2

dξj − (ξ2 − z2)

n∧

j=1,j 6=2

dξj + · · ·+ (−1)n−1(ξn − zn)

n−1∧

j=1

dξj

)
n∧

i=1

dξi

= (−1)n(n−1)/2(ξ1 − z1)dξ1

n∧

j=2

(dξj ∧ dξj) + (−1)n(n−1)/2(ξ2 − z2)dξ1 ∧ dξ1 ∧ dξ2

n∧

j=3

(dξj ∧ dξj) + · · ·+ (−1)n(n−1)/2(ξn − zn)

n−1∧

j=1

(dξj ∧ dξj) ∧ dξn

= (−1)n(n−1)/2(ξ1 − z1)dξ1

n∧

j=2

(dξj ∧ dξj)

+ (−1)n(n−1)/2
n∑

i=2

(ξi − zi)
i−1∧

j=1

(dξj ∧ dξj) ∧ dξi
n∧

j=i+1

(dξj ∧ dξj).

Let G(ξ, z) = (−1)n(n−1)/2d(n) (1−(ξ·z))n−1

|ξ−z|2n and let’s use the notation

(ξi − zi)
∧0
j=1(dξj ∧ dξj) = (ξi − zi). Then

C0(ξ, z) = G(ξ, z)

n∑

i=1

(ξi − zi)

i−1∧

j=1

(dξj ∧ dξj) ∧ dξi
n∧

j=i+1

(dξj ∧ dξj),

and thus

Ck(ξ, z) = Ψk(ξ, z)G(ξ, z)
n∑

i=1

(ξi − zi)
i−1∧

j=1

(dξj ∧ dξj) ∧ dξi
n∧

j=i+1

(dξj ∧ dξj),

which is an (n, n− 1) form. Also since

∂u(ξ) =

n∑

i=1

∂u

∂ξi
dξi

and the fact that dξi∧dξi = 0, dξi∧dξi = 0, dξi∧dξj = −dξj ∧dξi and dξi∧dξj =
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−dξj ∧ dξi we obtain

∂u(ξ) ∧ Ck(ξ, z)

=

n∑

i=1

∂u

∂ξi
dξi ∧ Ψk(ξ, z)G(ξ, z)

n∑

i=1

(ξi − zi)

i−1∧

j=1

(dξj ∧ dξj) ∧ dξi
n∧

j=i+1

(dξj ∧ dξj)

= Ψk(ξ, z)G(ξ, z)
n∑

i=1

∂u

∂ξi
(ξi − zi)

n∧

j=1

(dξj ∧ dξj).

Now using (4.8) we see that

∂u(ξ) ∧ Ck(ξ, z) = CnΨk(ξ, z)G(ξ, z)

n∑

i=1

∂u

∂ξi
(ξi − zi) dν(ξ).

Substituting this gives (4.10). 2

4.2.13 Lemma

Let h ∈ L∞
a and g ∈ B∞. Then there exists a constant, C = C(n), such that

(I − P1)(gh)(z) =
n∑

i=1

∫

Bn

h(ξ)
∂g

∂ξi
(ξ)(ξi − zi)Ψ2(ξ, z)

(1 − (ξ · z))n−1

|ξ − z|2n dν(ξ), z ∈ Bn.

Proof Let r ∈ (0, 1) and z ∈ Bn. Set gr(z) = g(rz) and hr(z) = h(rz). Then the

function u = grhr is in C1(Bn) and thus by (4.9)

(I − P1)u(z) =

∫

Bn

∂u ∧ C2(ξ, z).

Now since h is analytic we see that

∂u = ∂(grhr) = hr∂(gr),

and thus Lemma 4.2.12 shows that

(I − P1)(grhr)(z) = C
n∑

i=1

∫

Bn

h(rξ)r
∂g

∂ξi
(rξ)(ξi − zi)Ψ2(ξ, z)

(1 − (ξ · z))n−1

|ξ − z|2n dν(ξ).

(4.11)
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Now since,

|Ψ2(ξ, z)| ≤ |Cn|
(1 − |ξ|2)2

|1 − (ξ · z)|2 ,

we have that

∣∣∣∣h(rξ)r
∂g

∂ξi
(rξ)(ξi − zi)Ψ2(ξ, z)

(1 − (ξ · z))n−1

|ξ − z|2n
∣∣∣∣

≤ |Cn||h(rξ)|r
∣∣∣∣
∂g

∂ξi
(rξ)

∣∣∣∣
(1 − |ξ|2)2

|1 − (ξ · z)|2
|1 − (ξ · z)|n−1

|ξ − z|2n−1

≤ C ′‖g‖B∞‖h‖∞
(1 − |ξ|2)|1 − (ξ · z)|n−3

|ξ − z|2n−1
.

Now the latter function is integrable with respect to dν(ξ) for each z ∈ Bn. Thus

dominated convergence gives the convergence of the right hand side of (4.11). For

the left hand side, we note that grhr → gh pointwise and also in L2 and hence in

L2(Bn, (1 − |z|2)dν(z)), so P1(grhr) → P1(gh) in L2(Bn, (1 − |z|2)dν(z)) as r → 1−.

That is,

(I − P1)grhr(z) → (I − P1)gh(z), as r → 1, for each z ∈ Bn. 2

We now give an extension of Theorem 2.1 of [45] to the unit ball of Cn.

4.2.14 Theorem

Suppose µ is a complex measure which satisfies the condition (R). Then Tµ is bounded

on B∞ if and only if P (µ) ∈ LB.

Moreover, there exists a positive constant C such that for every complex Borel

measure µ satisfying the condition (R), the following estimate holds:

‖P (µ)‖LB ≤ C(‖Tµ‖ + Carl(R(µ)), (4.12)

where Carl(R(µ)) denotes the Carleson measure constant for the measure R(µ)(ξ)dν(ξ).
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Proof . Let g ∈ B∞ and h ∈ L∞
a . Since (L1

a)
∗ = B∞ with respect to the usual

L2- duality pairing, we have

〈h, Tµg〉 =

∫

Bn

h(w)Tµg(w)dν(w)

=

∫

Bn

h(w)

∫

Bn

g(z)Kz(w)dµ(z)dν(w)

=

∫

Bn

g(z)

∫

Bn

h(w)Kw(z)dν(w)dµ(z)

=

∫

Bn

g(z)h(z)dµ(z)

=

∫

Bn

P1(gh)(z)dµ(z) +

∫

Bn

(I − P1)(gh)(z)dµ(z) (4.13)

= I1 + I2.

By Lemma 4.2.13 we have

I2 =

∫

Bn

C(n)
n∑

i=1

∫

Bn

h(ξ)
∂g

∂ξi
(ξ)(ξi − zi)Ψ2(ξ, z)

(1 − (ξ · z))n−1

|ξ − z|2n dν(ξ)dµ(z)

= C(n)

n∑

i=1

∫

Bn

∫

Bn

h(ξ)
∂g

∂ξi
(ξ)(ξi − zi)τ(ξ, z)

(1 − |ξ|2)2(1 − (ξ · z))n−1

|ξ − z|2n(1 − (z · ξ))2
dν(ξ)dµ(z)

= C(n)

n∑

i=1

∫

Bn

h(ξ)
∂g

∂ξi
(ξ)(1 − |ξ|2)Ri(µ)(ξ) dν(ξ).

Thus, Lemma 4.2.12 implies

|I2| ≤ C ′(n)‖g‖B∞

∫

Bn

|h(ξ)|
n∑

i=1

|Ri(µ)(ξ)|dν(ξ)

≤ C ′(n)C(µ)‖g‖B∞‖h‖1

where C(µ) is the Carleson measure constant for the measure
∑n

i=1 |Ri(µ)(ξ)|dν(ξ).



120

On the other hand, by Fubini’s Theorem

I1 =

∫

Bn

∫

Bn

h(ξ)g(ξ)
(1 − |ξ|2)

(1 − (z · ξ))n+2
dν(ξ)dµ(ξ)

=

∫

Bn

h(ξ)g(ξ)(1 − |ξ|2)
∫

Bn

dµ(ξ)

(1 − (ξ · z))n+2
dν(ξ)

=

∫

Bn

h(ξ)g(ξ)(1 − |ξ|2)Q(µ)(ξ)dν(ξ),

where Q is given by

Q(µ)(ξ) =

∫

Bn

dµ(z)

(1 − (ξ · z))n+2
. (4.14)

Thus Tµ(g) ∈ B∞ if and only if

g(ξ)(1 − |ξ|2)Q(µ)(ξ) ∈ L∞. (4.15)

Now, the relation between Q(µ) and P (µ) is

Q(µ)(ξ) = P (µ)(ξ)(n+ 1) +

n∑

i=1

ξi
∂

∂ξi
P (µ)(ξ). (4.16)

Thus if P (µ) ∈ LB, then

Q(µ)(ξ)(1 − |ξ|2) log
2

1 − |ξ|2 ∈ L∞

which shows that (4.15) holds.

Conversely, if Tµ is bounded on B∞, then by (4.15) there exists a constant C > 0,

independent of g, such that

(1 − |ξ|2)|g(ξ)Q(µ)(ξ)| ≤ C‖g‖B∞. (4.17)

Using ga(w) = log 2
(1−(w·a))

, a ∈ Bn we get

Q(µ)(ξ)(1 − |ξ|2) log
2

1 − |ξ|2 ∈ L∞, (4.18)
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since ‖ga‖B∞ is uniformly bounded. Now the boundedness of Tµ on B∞, implies

P (µ) ∈ B∞ and thus (1 − |ξ|2) log 2
1−|ξ|2

|P (µ)(ξ)| ≤ C‖P (µ)‖B∞ < ∞, that is

(1 − |ξ|2) log 2
1−|ξ|2

P (µ)(ξ) ∈ L∞. Equations (4.16) and (4.18) shows that (1 −

|ξ|2) log 2
1−|ξ|2

| ▽ P (µ)(ξ)| ∈ L∞ that is P (µ) ∈ LB.

To get the estimate (4.12), we observe using (4.13), Lemma 4.2.13 and the defini-

tion of the operator P1 that

Tµg = P

(
C(n)

n∑

i=1

∂g(ξ)

∂ξi
(1 − |ξ|2)Ri(µ)

)
+ P (g(1 − |ξ|2)Q(µ)). (4.19)

Let L denote the operator on the space of bounded analytic functions, L∞
a , defined

by

L(g) := P (g(1− |ξ|2)Q(µ)), g ∈ L∞
a .

Then Tµ is bounded on B∞ if and only if the operator L extends to a bounded

operator on B∞ with equivalent norms. Thus for every g ∈ B∞, with ‖g‖B∞ = 1, we

have

‖P (µ)‖LB ≤ C ′′ sup
a∈Bn

‖L(ga)‖B∞

≤ C ′ sup
a∈Bn

{‖Tµga‖B∞ + C(n)Carl(R(µ))‖ga‖B∞}

≤ C(‖Tµ‖ + C(n)Carl(R(µ))).

2

By the duality between B∞ and L1
a with respect to the usual pairing in L2(Bn, dν),

if Tµ is bounded on B∞, the adjoint operator of Tµ is Tµ̄ and is bounded on L1
a. This

gives the following corollary.
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4.2.15 Corollary

Let µ be a complex measure satisfying the condition (R). Then Tµ is bounded on L1
a

if and only if P (µ) ∈ LB.

4.2.16 Corollary

Let µ be a positive measure on Bn and let c > 0. Then the following four assertions

are equivalent:

(i) The Toeplitz operator Tµ is bounded on L1
a;

(ii) For every positive constant c, there is a constant A such that

sup
ξ∈Bn

‖Tµk̃cξ‖1 ≤ A.

(iii) There is a constant A such that

sup
ξ∈Bn

‖Tµk̃1
ξ‖1 <∞.

(iv) µ is a Carleson measure for Bergman spaces and P (µ) ∈ LB.

Proof . It is clear that (i) ⇒ (ii) and (ii) ⇒ (iii). It suffices to show that (iii) ⇒ (iv)

and (iv) ⇒ (i). For the implication (iii) ⇒ (iv) Remark 4.2.7 shows that µ is a

Carleson measure for Bergman spaces. Thus we have to show that P (µ) ∈ LB. We

shall use the following result:

4.2.17 Lemma

Let µ be a positive Carleson measure for Bergman spaces. Then the operator

Sµ(h)(z) = (1 − |z|2)
∫

Bn

h(z) − h(w)

(1 − (z · w))n+2
dµ(w)
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is bounded from B∞ to L∞.

Proof Using the Carleson condition, Lemma 4.2.6 and a change of variable w = ϕz

we have

|Sµ(h)(z)| ≤ (1 − |z|2)
∫

Bn

|h(z) − h(w)|
|1 − (z · w)|n+2

dµ(w)

≤ C(µ)(1 − |z|2)
∫

Bn

|h(z) − h(w)|
|1 − (z · w)|n+2

dν(w)

≤ C(µ)(1 − |z|2)‖h‖B∞

∫

Bn

β(z, w)

|1 − (z · w)|n+2
dν(w)

≤ C(µ)‖h‖B∞

∫

Bn

β(0, w)

|1 − (z · w)|ndν(w)

≤ C‖h‖B∞

by lemma 3.2.2, and this proves the Lemma.

We continue our proof of (iii) ⇒ (iv). Let h ∈ B∞ and z ∈ Bn. Then

〈
Tµk̃

1
z , h
〉

=

∫

Bn

Tµk̃
1
z(w)h(w)dν(w)

=

∫

Bn

(∫

Bn

(1 − |z|2)
(1 − (ζ · z))n+2

dµ(ζ)

(1 − (wζ̇))n+1

)
h(w)dν(w)

= (1 − |z|2)
∫

Bn

1

(1 − (ζ · z))n+2

∫

Bn

h(w)dν(w)

(1 − (ζ · w))n+1
dµ(ζ)

= (1 − |z|2)Lµ(h)(z)

where Lµ(h)(z) =
∫
Bn

h(ζ)
(1−(z·ζ))n+2dµ(ζ), and Lµ(1)(z) = Q(µ)(z). It is then easy to

obtain this identity

(1 − |z|2)h(z)Lµ(1)(z) =
〈
Tµk̃

1
z , h
〉

+ Sµ(h)(z) (4.20)

for z ∈ Bn and h ∈ B∞. So that using Lemma 4.2.17 we get

(1 − |z|2)|h(z)Lµ(1)(z)| ≤ C||h||B∞ (4.21)
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for z ∈ Bn and h ∈ B∞. A similar argument as in the proof of the converse part

of Theorem 4.2.14 we see that P (µ) ∈ LB. The implication (iv) ⇒ (i) follows from

Corollary 4.2.15 since µ is a Carleson measure and thus satisfies the condition (R).

2

4.2.18 Remark

We just want to point out here that the condition P (µ) ∈ LB is not superfluous in

assertion (iv). If this is the case, every Carleson measure µ for the Bergman spaces

would satisfy P (µ) ∈ LB. In particular, for every bounded non-negative function on

Bn, we have that P (f) ∈ LB. Thus if f is a real and bounded function on Bn then

f = f+ + f− with P (f+) ∈ LB and P (f−) ∈ LB. This shows that P (f) ∈ LB for

all bounded complex functions on Bn. This will imply B∞ is contained in LB which

is false.

4.2.19 Corollary

Suppose that µ is a complex Borel measure on Bn such that Tµ is bounded on L1
a.

Then for every z ∈ Bn, the Toeplitz operator TKzµ is bounded on the Bloch space

B∞.

We suppose further that the measure Kzµ̄ satisfies condition (R) for every z ∈ Bn

with the following uniform condition:

∀r ∈ (0, 1), sup
z∈rBn

Carl(R(Kzµ)) <∞

(this is the case when |µ| is a Carleson measure for Bergman spaces). Then for every

r ∈ (0, 1), there exists a constant C = C(r) such that

sup
z∈rBn

||P (Kzµ̄)||LB ≤ C(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ))),
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where ||Tµ|| denotes the norm operator of Tµ on L1
a and Carl(R(Kzµ)) denotes the

Carleson constant of the Carleson measure |R(Kzµ)|dν.

Proof It is easy to check that for every g ∈ B∞ and for every z ∈ Bn, the

function Kzg belongs to B∞ and there exists a constant C(z) such that ||Kzg||B∞ ≤

C(z)||g||B∞. Hence, for all g ∈ B∞, h ∈ L2
a and z ∈ Bn, we get:

|〈TKzµ̄g, h〉| = |〈Kzg, Tµh〉| ≤ ‖Kzg‖B∞‖Tµh‖1

≤ C(z)||g||B∞||Tµ||||h||1.

For every r ∈ (0, 1), there exists a constant C(r) such that

sup
z∈rBn

||Kzg||B∞ ≤ C(r)||g||B∞.

Hence for all g ∈ B∞, h ∈ L2
a and z ∈ rBn, we have that

|〈TKzµ̄g, h〉| ≤ C(r)‖g‖B∞||Tµ||‖h‖1.

If we denote by ||TKzµ̄||′ the operator norm of TKzµ̄ on B∞, we obtain

||TKzµ̄||′ ≤ C(r)||Tµ||.

Since the measure Kzµ̄ satisfies condition (R) for every z ∈ Bn, the conclusion follows

from inequality

||P (Kzµ̄)||LB ≤ C(||TKzµ̄||′ + Carl(R(Kzµ̄)).

2

4.3 Duality

In this section we will be extending duality results of Shields and Williams [40], to the

case n > 1. We note that Ren and Xiao [36] had extended this results with weights
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that are slightly different from that of Shields and Williams [40]. Since our method

to prove the compactness result could not make use of the weights used by Ren and

Xiao [36] we have to extend it with weights that will be useful in our study. Most of

the lemmas are found in [40] and [36] with some slight modifications in some cases.

4.3.1 Lemma

For α > −1, and n = 0, 1, · · · ,
∫ 1

0

rn(1 − r)αdr =
Γ(n+ 1)Γ(α+ 1)

Γ(n + α + 1)
= n!/(α + 1)(α + 2) · · · (α + n+ 1).

Proof The proof is by induction on n. The result is trivial for n = 0. Assume that

it holds for n = k and all α > −1. Integrating by parts

∫ 1

0

rk+1(1 − r)αdr = (k + 1)(α + 1)−1

∫ 1

0

rk(1 − r)α+1dr.

Now we apply the induction hypothesis on the right side to see that the result holds

for n = k + 1 and hence for all n = 0, 1, · · · . 2

4.3.2 Lemma

For δ > −1 and m > 1 + δ we have

∫ 1

0

(1 − ρr)−m(1 − r)δdr ≤ C(1 − ρ)1+δ−m, 0 < ρ < 1.

Proof Integrating by parts,

∫ 1

0

(1 − ρr)−m(1 − r)δdr =
1

1 + δ
+

mρ

1 + δ

∫ 1

0

(1 − ρr)−m−1(1 − r)δ+1dr

≤ 1

1 + δ
+

mρ

1 + δ

∫ 1

0

(1 − ρr)−m+δdr

=
1

δ + 1 −m
− m

(δ + 1)(δ + 1 −m)
(1 − ρ)δ+1−m

=
1

1 + δ
(1 − ρ)δ+1−m
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where the first inequality is from the fact that (1 − r)δ+1 ≤ (1 − ρr)δ+1. 2

4.3.3 Definition of some spaces of holomorphic functions

Let φ, ψ be positive and continuous functions on [0, 1) with

lim
r→1

φ(r) = 0 and

∫ 1

0

ψ(r)dr <∞.

Let H(Bn) denote the space of holomorphic function on the unit ball in Cn. For

f ∈ H(Bn), let

‖f‖φ = sup
z∈Bn

|f(z)|φ(|z|) = sup
0≤r<1

M∞(f, r)φ(r),

‖f‖ψ =

∫

Bn

|f(z)|ψ(|z|) dν(z) = 2n

∫ 1

0

r2n−1M1(f, r)ψ(r)dr

where

M∞(f, r) = max
|z|=r

|f(z)| and M1(f, r) =

∫

Sn

|f(rξ)|dσ(ξ).

We define the following spaces of holomorphic functions.

A∞(φ) = {f ∈ H(Bn) : ‖f‖φ <∞},

A0(φ) = {f ∈ H(Bn) : sup
0≤r<1

M∞(f, r)φ(r) = 0, }

A1(ψ) = {f ∈ H(Bn) : ‖f‖ψ <∞}.

Clearly A0(φ) ⊂ A∞(φ) so we may use the norm ‖f‖φ on A0(φ). These three spaces

are all norm linear spaces with the indicated norms.

If L1
ψ(Bn) = L1(ψ) denotes the Banach space of measurable functions f such that

‖f‖ψ =
∫
Bn

|f | dνψ < ∞, where dνψ(z) = ψ(|z|) dν(z) then A1(ψ) is the closed

subspace of L1(ψ) consisting of all analytic functions.
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4.3.4 Lemma

Let A denote any of the above three normed spaces.

(i) If D is a bounded subset of A, then the functions in D are uniformly bounded

on each compact subset of Bn.

(ii) If fn is a Cauchy in A, then it converges uniformly on each compact subset of

Bn.

(iii) Point evaluation at any point of Bn is a bounded linear functional on A.

(iv) A is a Banach space.

(v) A0(φ) is a closed subspace of A∞(φ).

Proof . (i) This is obvious for A0(φ) and A∞(φ). Suppose D is a bounded subset of

A1(ψ), and f ∈ D. For |z| ≤ R < 1, the Cauchy integral formulae gives

f(z) =

∫

Sn

f(ρξ)(1 − ρ−1(z · ξ))−n dσ(ξ), (4.22)

where ρ = (1 + R)/2. Indeed, if f ∈ H(Bn) then the function g : ξ 7→ f(1+R
2
ξ) is in

the Ball algebra (that is g is analytic on Bn and continuous up to the boundary Sn).

This implies by the Cauchy integral formulae that

g(ξ) =

∫

Sn

g(w)dσ(w)

(1 − (ξ · w))n
.

So if ρ = (1 +R)/2 we have that

f(ρξ) =

∫

Sn

f(ρw)dσ(w)

(1 − (ξ · w))n
.

If z = ρξ ∈ B(0; ρ) then

f(z) =

∫

Sn

f(ρw)dσ(w)

(1 − ρ−1(z · w))n
,
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which gives (4.22).

Hence

|f(z)| ≤ ((1 +R)/(1 − R))nM1(f, ρ).

Also,

M1(f, ρ)

∫ 1

ρ

ψ(r)dr ≤
∫ 1

ρ

M1(f, r)ψ(r)dr ≤ ‖f‖ψ,

since M1(f, r) is an increasing function of r by Corollary 4.21 of [47]. The gives the

result.

(ii) and (iii) follow from the above estimate for f(z).

(iv) It is only necessary to establish completeness, and this is easy for A∞(φ) and

A0(φ). If fn is a Cauchy sequence in A1(ψ), then it converges uniformly on compact

sets to a holomorphic function f , by (ii). Also f ∈ A1(ψ) by Fatou’s lemma. Thus

A1(ψ) is complete.

(v) This follows from (iv). 2

Define fr(z) = f(rz), 0 ≤ r < 1, for f ∈ H(Bn).

4.3.5 Lemma

(i) For f ∈ A1(ψ) or A0(φ), fρ → f in norm as ρ→ 1.

(ii) The polynomials are dense in A1(ψ) and A0(φ).

Proof This is obvious for A0(φ). For f ∈ A1(ψ) and ǫ > 0 choose R < 1 so that

∫

|z|>R

|f(z)|ψ(|z|) dν(z) = 2n

∫ 1

R

r2n−1M1(f, r)dr < ǫ.



130

Since M1(fρ, r) = M1(f, rρ) ≤M1(f, r), we have

∫

|z|>R

|fρ(z)|ψ(|z|) dν(z) < ǫ.

Choose ρ so that |f(z) − fρ(z)| < ǫ on |z| ≤ R. Then

∫

Bn

|f(z) − fρ(z)|ψ(|z|) dν(z) ≤ ǫ

∫

|z|≤R

ψ(|z|) dν(z) + 2ǫ ≤ ǫ(‖ψ‖1 + 2).

(ii) In either A0(φ) or A1(ψ), if ǫ > 0 is given, choose ρ so that ‖f − fρ‖ < ǫ,

which is possible by (i). Since the power series of f converges uniformly to f on every

compact subset of Bn, we may choose a polynomial P so that |fρ(z) − P (z)| < ǫ on

all of Bn. The result follows from ‖f − P‖ ≤ ‖f − fρ‖ + ‖fρ − P‖.

4.3.6 Definition

The positive continuous function φ will be called normal if there exist 0 < a < b and

r0 < 1 such that

φ(r)

(1 − r2)a
ց 0 and

φ(r)

(1 − r2)b
ր ∞ (r0 ≤ r → 1−). (4.23)

4.3.7 Definition

The functions {φ, ψ} is called a normal pair if φ is normal, ψ is integrable on (0, 1),

and if for some b satisfying (4.23), there exists α > b− 1 such that

φ(r)ψ(r) = (1 − r2)α, 0 ≤ r < 1. (4.24)

The following is Lemma 7 of [40].

4.3.8 Lemma

If φ is normal then there exist ψ such that {φ, ψ} is a normal pair.
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Proof Choose k such that ǫ(r) = (1 − r)k/φ(r) → 0 as r → 1−. Then

ψ(r) = (1 − r2)α/φ(r) = ǫ(r)(1 − r2)α/(1 − r)k

which is integrable if we choose α > k − 1. 2

The following lemma, (Lemma 8 of [40]) is basic for everything that follows in this

section.

4.3.9 Lemma

If {φ, ψ} is a normal pair and if m ≥ α + 1 then

I =

∫ 1

0

(1 − ρr)−mψ(r)dr ≤ C
1

φ(ρ)
(1 − ρ)1+α−m, 0 ≤ ρ < 1.

Proof With the notations in (4.23) and (4.24) we have

∫ 1

0

(1 − ρr)−mψ(r)dr =

∫ r0

0

(1 − ρr)−mψ(r)dr +

∫ 1

r0

(1 − ρr)−mψ(r)dr = I1 + I2.

Assume that ρ > r0. Then

I2 =

∫ 1

r0

(1 − ρr)−m
1

φ(r)
(1 − r)αdr

=

∫ ρ

r0

(1 − ρr)−m
1

φ(r)
(1 − r)αdr +

∫ 1

ρ

(1 − ρr)−m
1

φ(r)
(1 − r)αdr

≤ C

∫ ρ

r0

(1 − ρr)−m
(1 − r)a

φ(r)
(1 − r)α−adr + C

∫ 1

ρ

(1 − ρr)−m
(1 − r)b

φ(r)
(1 − r)α−bdr

≤ C
(1 − ρ)a

φ(ρ)

∫ ρ

r0

(1 − ρr)−m(1 − r)α−adr + C
(1 − ρ)b

φ(ρ)

∫ 1

ρ

(1 − ρr)−m(1 − r)α−bdr

and the result follows from Lemma 4.3.2, since α−a > α−b > −1, and m > 1+α−a.

Similarly,

I1 =

∫ r0

0

(1 − ρr)−m
(1 − r)α

φ(r)
dr ≤ C

(1 − ρ)a

φ(ρ)

∫ r0

0

(1 − ρr)−m(1 − r)α−adr
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and the required estimate follows as above.

Finally, if ρ ≤ r0 a similar argument gives the required result. 2

From now to the end of this section {φ, ψ} will be a normal pair as defined above.

We shall use the following pairing between A∞(φ) and A1(ψ).

[f, g] =

∫

Bn

f(z)g(z)φ(|z|)ψ(|z|) dν(z), f ∈ A∞(φ), g ∈ A1(ψ). (4.25)

Note that [f, g] is unchanged if f(z)g(z) is replaced by f(z)g(z).

4.3.10 Lemma

Let f =
∑

β aβz
β and g =

∑
β bβz

β be polynomials, where the summation is over all

multi-indices β = (β1, β2, · · · , βn) of non-negative integers. Then

[f, g] =
∑

β

aβbβ
n!β!Γ(n + |β|)Γ(α+ 1)

Γ(n+ |β| + α + 1)
.

Proof

[f, g] =
∑

β,θ

aθbβ

∫

Bn

zθzβ(1 − |z|2)α dν(z)

=
∑

β

aβbβ

∫

Bn

|zβ |2(1 − |z|2)α dν(z)

=
∑

β

aβbβ2n

∫ 1

0

r2n+2|β|−1

∫

Sn

|ξβ|2(1 − r2)α dσ(ξ) dr

By Lemma 1.11 of [47],

∫

Sn

|ξβ|2 dσ(ξ) =
(n− 1)!β!

(n− 1 + |β|)! . (4.26)
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Using (4.26) and Lemma 4.3.1 we have

[f, g] =
∑

β

aβbβ
(n− 1)!β!

(n− 1 + |β|)!2n
∫ 1

0

r2n+2|β|−1(1 − r2)α dr

=
∑

β

aβbβ
(n− 1)!β!

(n− 1 + |β|)!n
∫ 1

0

rn+|β|−1(1 − r)α dr

=
∑

β

aβbβ
n!β!

(n− 1 + |β|)!
Γ(n+ |β|)Γ(α+ 1)

Γ(n + |β| + α+ 1)

=
∑

β

aβbβ
n!β!Γ(n+ |β|)Γ(α+ 1)

Γ(n+ |β| + α + 1)
. 2

Using Lemmas 4.3.5 and 4.3.10 we obtain the following.

4.3.11 Lemma

For f =
∑

β aβz
β ∈ A∞(φ) and g =

∑
β bβz

β ∈ A1(ψ), we have

(i) [fρ, g] = [f, gρ] =
∑

aβbβρ
|β|n!β!Γ(n+ |β|)Γ(α+ 1)

Γ(n+ |β| + α + 1)
,

(ii) [f, g] = lim
ρ→1

[fρ, g].

4.3.12 Lemma

For α > −1 we let

Jw(z) =
Γ(n + 1 + α)

n!Γ(α + 1)

1

(1 − (w · z))n+1+α
, w, z ∈ Bn.

Then

(i) Jw is both in A0(φ) and A1(ψ);

(ii) g(w) = [Jw, g], for all g ∈ A1(ψ);

(iii) f(w) = [f, Jw], for all f ∈ A∞(φ).
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Proof (i) Jw is holomorphic for |z| < |w|−1 and so is both in A0 and A1.

(ii) Let bn,α = Γ(n+1+α)
n!Γ(α+1)

and aβ = Γ(n+1+α+|β|)
Γ(n+1+α)β!

. Then

1

(1 − (w · z))n+1+α
=

∞∑

k=0

∑

|β|=k

aβw
βzβ . (4.27)

Also, for any multi-index θ of non-negative integers we have

[Jw, z
θ] = bn,α

∞∑

k=0

∑

|β|=k

aβw
β[zβ , zθ]

= bn,α

∞∑

k=0

∑

|β|=k

aβw
β

∫

Bn

zβzθ(1 − |z|2)α dν(z)

= bn,αaθw
θ

∫

Bn

|zθ|2(1 − |z|2)α dν(z)

= bn,αaθw
θ2n

∫ 1

0

r2n+2|θ|−1(1 − r2)α dr

∫

Sn

|ξθ|2 dσ(ξ)

= bn,αaθw
θn

∫ 1

0

rn+|θ|−1(1 − r)αdr

∫

Sn

|ξθ|2 dσ(ξ).

Using (4.26) and Lemma 4.3.1 we see that

[Jw, z
θ] = wθ,

for all multi-indices θ. The result follows for all polynomials. The general case follows

from Lemmas 4.3.4(iii) and 4.3.5(iii) ( if two bounded linear functional agree on a

dense set then they agree identically) which proves (ii).

(iii) Let f ∈ A∞(φ). It is easily known that
∫
Bn

|f(z)|(1 − |z|2)α dν(z) < ∞. This

shows that f is in the weighted Bergman space

L1
a(Bn, d(α)(1− |z|2)α dν). The result follows by Theorem 2.2 of [47]. 2

Let C0(Bn) denote the Banach space of continuous functions on the closed ball

that vanish on the boundary, with supremum norm. Also let L1(Bn) and L∞(Bn)
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denote, respectively, the usual Banach spaces of integrable and essentially bounded

measurable functions associated with Lebesgue measure on Bn. The maps

T0 : A0(φ) → C0(Bn), T∞ : A∞(φ) → L∞(Bn), T1 : A1(ψ) → L1(Bn) (4.28)

defined by T0f = φf , T∞f = φf , T1g = ψg are isometries. We use the following

notation for the ranges of these operators.

Notation. TA0 = T0A0(φ), TA∞ = T∞A∞(φ), TA1 = T1A
1(ψ).

Thus TA0 is a subspace of C0(Bn), TA
1 is a subspace of L1(Bn), and TA∞ is a

subspace of L∞(Bn). These subspaces are closed by Lemma 4.3.4.

Let M(Bn) denote the Banach space of complex valued, bounded Borel measures

on Bn with the variation norm. The map

M : A1(ψ) →M(Bn) (4.29)

defined by Mg = gψ dν is an isometry of A1(ψ) unto a closed subspace of M(Bn),

which we denote by MA1.

We shall need the following:

4.3.13 Lemma

∫

Bn

|Jw(z)|ψ(|z|) dν(z) ≤ C

φ(|w|). (4.30)

Proof ∫

Bn

|Jw(z)|ψ(|z|) dν(z) =

∫ 1

0

ψ(r)r2n−1M1(Jw, r)dr.

By Lemma 3.2.2

∫

Sn

1

(1 − (rw · ξ))n+1+α
dσ(ξ) ∼ 1

(1 − r2|w|2)α+1
α > −1.
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Thus,

M1(Jw, r) ∼ C
1

(1 − r2|w|2)α+1
.

From this we have

∫

Bn

|Jw(z)|ψ(|z|) dν(z) ≤ C2n

∫ 1

0

ψ(r)
1

(1 − r2|w|2)α+1
dr.

Applying Lemma 4.3.9 we obtain

∫

Bn

|Jw(z)|ψ(|z|) dν(z) ≤ C ′ 1

φ(|w|). 2

4.3.14 Theorem

(i) The transformation P defined by

(Ph)(w) =

∫

Bn

Jw(z)h(z)ψ(|z|) dν(z), h ∈ L∞(Bn), w ∈ Bn, (4.31)

is a bounded operator mapping L∞(Bn) onto A∞(φ). The operator T∞P is a

bounded projection of L∞(Bn) onto the subspace TA∞.

(ii) The operator P0 = P |C0(Bn) is a bounded operator mapping C0(Bn) onto A0(φ);

the operator T0P0 is a bounded projection of C0(Bn) onto the subspace TA0.

(iii) The transformation defined by

(Qµ)(w) =

∫

Bn

Jw(z)φ(|z|) dµ(z), µ ∈M(Bn), w ∈ Bn, (4.32)

is a bounded operator mapping M(Bn) unto A1(ψ); the operator MQ is a

bounded projection of M(Bn) onto the subspace MA1.

(iv) The transformation Q1 = Q|L1(Bn) is a bounded operator mapping L1(Bn) unto

A1(ψ); the operator T1Q1 is a bounded projection of L1(Bn) unto the subspace

TA1.
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Proof (i) For w ∈ Bn and h ∈ L∞(Bn) we have

|(Ph)(w)| ≤
∫

Bn

|Jw(z)||h(z)|ψ(|z|) dν(z)

≤ ‖h‖∞
∫

Bn

|Jw(z)|ψ(|z|) dν(z).

Lemma 4.3.13 shows that

sup
w∈Bn

|(Ph)(w)|φ(|w|) <∞,

that is, P is a bounded operator mapping L∞(Bn) into A∞(φ). Now let f ∈ A∞(φ)

be given. Then from Lemma 4.3.12(iii),

(P (T∞f))(w) =

∫

Bn

(T∞f)(z)Jw(z)ψ(|z|) dν(z)

=

∫

Bn

f(z)Jw(z)φ(|z|)ψ(|z|) dν(z)

= [f, Jw] = f(w).

Thus PT∞ = I, the identity on A∞(φ), and so P is onto and T∞P is a bounded

projection of L∞ onto the subspace TA∞. This proves (i).

(ii) This follows from (i) if it can be shown that h ∈ C0(Bn) implies P0h ∈ A0(φ).

Given ǫ > 0, choose R ∈ (0, 1), such that |h(z)| < ǫ for |z| > R. Then

|(Ph)(w)| ≤
(∫

|z|≤R

+

∫

|z|>R

)
|h(z)||Jw(z)ψ(|z|) dν(z) = I1 + I2.

From Lemma 4.3.13, I2 ≤ Cǫ/φ(|w|). Also, I1 ≤ cR‖h‖∞ where cR is some constant

depending on R. Hence

|(Ph)(w)|φ(|w|) ≤ cR‖h‖∞φ(|w|) + cǫ, w ∈ Bn.

Thus, by the definition of φ,

lim
|w|→1−

sup |(Ph)(w)|φ(|w|) ≤ cǫ,
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that is, P0h ∈ A0(φ).

(iii) For µ ∈M(Bn),

∫

Bn

|(Qµ)(w)|ψ(|w|) dν(w) ≤
∫

Bn

∫

Bn

|Jw(z)ψ(|w|)φ(|z|) dν(w) d|µ|(z).

In a similar manner to that of Lemma 4.3.13, we have

∫

Bn

|Jw(z)|ψ(|w|) dν(w) ≤ C

φ(|z|) . (4.33)

Thus Q is a bounded operator from M(Bn) into A1(ψ). Now let g ∈ A1(ψ). From

Lemma 4.3.12(ii) we have (Q(T1g))(w) = (Q(ψg)) = [Jw, g] = g(w). Thus QT1 = I,

the identity on A1(ψ), and so Q is onto and T1Q is a projection.

(iv) This follows from (iii). 2

Let 〈Jw〉 denote the vector space spanned by the functions Jw, w ∈ Bn.

4.3.15 Lemma

〈Jw〉 is dense in A1(ψ) and in A0(φ)

Proof Consider first A1(ψ). It is equivalent to showing that 〈T1Jw〉 is dense in TA1.

By the Hahn Banach theorem and the Riesz representation theorem, it suffices to

show that if h ∈ L∞ and if

∫

Bn

Jw(z)ψ(|z|)h(z) dν(z) = 0 (4.34)

for all w ∈ Bn, then h annihilates all of TA1. Using (4.27), equation (4.34) shows

that

0 = bn,α

∞∑

k=0

∑

|β|=k

aβw
β

∫

Bn

zβψ(|z|)h(z) dν(z)
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for all w ∈ Bn. Thus h annihilates polynomials and the result follow from Lemma

4.3.5 (ii).

The proof of A0(φ) is similar, by using the duality between C0(Bn) and M(Bn)

given by the pairing

(f, µ) =

∫

Bn

f(z)dµ(z), f ∈ C0(Bn), µ ∈M(Bn). (4.35)

We now come to the main result of this section.

4.3.16 Theorem

Using the pairing in (4.25), we have

(i) A0(φ)∗ ∼= A1(ψ),

(ii) A1(ψ)∗ ∼= A∞(φ).

More precisely, if g ∈ A1(ψ) and if we define λg = [f, g], f ∈ A0(φ) then λg ∈ A0(φ)∗

and ‖λg‖ ≤ ‖g‖ψ. Conversely, given λ ∈ A0(φ)∗ then there is a unique g ∈ A1(ψ)

such that λ = λg. Also, ‖g‖ψ ≤ ‖Q‖‖λ‖.

Furthermore, if f ∈ A∞(φ) and if we define λf(g) = [f, g], g ∈ A1(ψ), then

λf ∈ A1(ψ)∗ and ‖λf‖ ≤ ‖f‖φ. Conversely, given λ ∈ A1(ψ)∗ then there is a unique

f ∈ A∞(φ) such that λ = λf . Also, ‖f‖φ ≤ ‖P‖‖λ‖.

Proof It is trivial that if g ∈ A1(ψ) then λg ∈ A0(φ)∗. We also have uniqueness:

if λg(f) = 0 for all f ∈ A0(φ), then g = 0. Indeed, from Lemma 4.3.12(ii) g(w) =

λg(Jw).

Now let λ ∈ A0(φ)∗ be given. Since T0 is an isometric embedding of A0(φ) into

C0(Bn), there exists µ ∈ M(Bn) with ‖µ‖ = ‖λ‖ and, by (4.35), λ(f) = (T0f, µ) =
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(φf, µ) for all f ∈ A0(φ) by the Riesz representation theorem. Let g(w) = λ(Jw).

Then

g(w) = λ(Jw) =

∫

Bn

Jw(z)φ(|z|) dµ(z) = (Qµ)(w).

By Theorem 4.3.14, g ∈ A1(ψ) and ‖g‖ψ ≤ ‖Q‖‖µ‖ = ‖Q‖‖λ‖. From Lemma

4.3.12(ii) we see that λg(Jw) = g(w) for w ∈ Bn. Hence λ = λg on 〈Jw〉 and hence

also on A0(φ) by Lemma 4.3.15.

(ii) The proof of the first part and the proof of the uniqueness of f are the same

as in the proof of (i).

Now let λ ∈ A1(ψ)∗. T1 is an isometric embedding of A1(ψ) into L1(Bn). There

exists h ∈ L∞(Bn) with ‖h‖ = ‖λ‖ and

λ(g) =

∫

Bn

g(z)h(z)ψ(|z|) dν(z)

for all g ∈ A1(ψ), by the Riesz representation theorem. Let f(w) = λ(Jw). Then

f(w) =

∫

Bn

Jw(z)h(z)ψ(|z|) dν(z) = (Ph)(w).

By Theorem 4.3.14(i), f ∈ A∞ and ‖f‖φ ≤ ‖P‖‖h‖ = ‖P‖‖λ‖. From Lemma

4.3.12(iii) we see that λf(Jw) = f(w) for w ∈ Bn. Hence, λ = λf on 〈Jw〉, and

hence also on A1(ψ) by Lemma 4.3.15. 2

4.3.17 Remark

We observe that for z, w ∈ Bn, we have

Kw(z) = Kα
w(z) = c(α)

1

(1 − (w · z))n+1+α
= Jw(z)

where c(α) = Γ(n+1+α)
n!Γ(α+1)

. Yu T [46] noted that the duality Theorem 4.3.16 holds with

the pairing between A1(ψ) and A∞(φ) given by

[f, g] =

∫

Bn

f(z)g(z)φ(|z|)ψ(|z|) dν(z). (4.36)
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And also that if f ∈ A∞(φ) then using the pairing in (4.36) we have

[f,Kw] =

∫

Bn

f(z)Kw(z)φ(|z|)ψ(|z|) dν(z)

=

∫

Bn

f(z)Jw(z)φ(|z|)ψ(|z|) dν(z)

= [f, Jw] = f(w)

where the last equality comes from Lemma 4.3.12(iii). Thus Kw also reproduces

functions in A∞(φ). We normalize the kernel Kw by

kψw(z) =
Kw(z)

‖Kw‖ψ
.

From now henceforth we will be using duality paring given in (4.36).

4.4 Compactness on the Weighted Bergman space

L1
a(ψ)

We now extend the compactness given in [46] for n = 1 to the case n ≥ 2. Define an

operator Q′ on L1(ψ) by

(Q′f)(w) = [f,Kw] =

∫

Bn

f(z)Kw(z)φ(|z|)ψ(|z|) dν(z).

Then Q′ is a bounded operator from L1(ψ) onto A1(ψ) and by Lemma 4.3.12, Kw is

a reproducing kernel of A1(ψ). We have the following estimates for Kw:

4.4.1 Lemma

There exist constants c and C such that

c/φ(|w|) ≤ ‖Kw‖ψ ≤ C/φ(|w|), w ∈ Bn.
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Proof If |w| ≤ r0 < 1 the first inequality obviously holds. If |w| > r0, using the

equations (4.23) we have

φ(|z|)
(1 − |z|2)a ≤ φ(|w|)

(1 − |w|2)a , 1 > |z| > |w|

and

φ(|z|)
(1 − |z|2)b ≤

φ(|w|)
(1 − |w|2)b , r0 ≤ |z| < |w|.

Thus (4.24) gives

(1 − |z|2)α−a
ψ(|z|) ≤ (1 − |w|2)α−a

ψ(|w|) , 1 > |z| > |w|,

(1 − |z|2)α−b
ψ(|z|) ≤ (1 − |w|2)α−b

ψ(|w|) , r0 ≤ |z| < |w|.

Hence,

‖Kw‖ψ = c(α)

∫

Bn

1

|1 − (z · w)|n+1+α
ψ(|z|) dν(z)

≥ c(α)ψ(|w|)
(1 − |w|2)α−b

∫

r0≤|z|≤|w|

(1 − |z|2)α−b
|1 − (z · w)|n+1+α

dν(z)

+
c(α)ψ(|w|)

(1 − |w|2)α−b
∫

|w|<|z|<1

(1 − |z|2)α−a
|1 − (z · w)|n+1+α(1 − |w|2)b−a dν(z).

Also, since (1 − |z|2)(1 − |w|2) ≤ |1 − (z · w)|2 we have

1

(1 − |w|2)b−a ≥ (1 − |z|2)b−a
|1 − (z · w)|2(b−a) .

So there exist a positive constant c′ such that

‖Kw‖ψ ≥ c′ψ(|w|)
(1 − |w|2)α−b

∫

r0≤|z|

(1 − |z|2)α+b−2a

|1 − (z · w)|n+1+α+2b−2a
dν(z)

=
c′ψ(|w|)

(1 − |w|2)α−b
(∫

Bn

−
∫

|z|≤r0

)
(1 − |z|2)α+b−2a

|1 − (z · w)|n+1+α+2b−2a
dν(z)

=:
c′ψ(|w|)

(1 − |w|2)α−b (I1(w) − I2(w)).
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Now by Lemma 3.2.2, I1(w) ∼ (1 − |w|2)−b as |w| → 1−; and I2 is bounded. Thus it

is easy to see that there exist a constant c such that

‖Kw‖ψ ≥ c/φ(|w|),

which is the first inequality. Finally,

‖Kw‖ψ =

∫

Bn

|Kw(z)|dν(z)

=

∫

Bn

|Jw(z)|dν(z)

≤ C/φ(|w|)

by Lemma 4.3.13, which gives the second inequality. 2

4.4.2 Lemma

kψz converges weakly* to 0 in A1(ψ) as z → ∂Bn.

Proof For g ∈ A0(φ), by the reproducing property of Kw, we have

[kψw, g] =
[Kw, g]

‖Kw‖ψ
=

g(w)

‖Kw‖ψ
.

Lemma 4.4.1 implies |[kψw, g]| ≤ C|g(w)|φ(|w|) and hence from the definition of A0(φ)

we have that [kψw, g] → 0 as w → ∂Bn. 2

We give the main result of this section.

4.4.3 Theorem

Suppose that A is a bounded operator on A1(ψ) and let A⋆⋆ denote the adjoint of

A. Then A is compact and A0(φ) is an invariant subspace of A⋆⋆ if and only if

‖Akψw‖ψ → 0 as w → ∂Bn.

Proof Suppose A is compact and A0(φ) is an invariant subspace of A⋆⋆. If ‖Akψw‖ψ →
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a 6= 0 as w → ∂Bn, then there exist a constant δ > 0 and a sequence {wp} in Bn

such that

wp → ∂Bn and ‖Akψwp
‖ψ > δ. (4.37)

Since {kψwp
} is a bounded sequence in A1(ψ) and A is compact, there exists a subse-

quence of {kψwp
}, also denoted by {kψwp

}, such that {Akψwp
} converges in A1(ψ). By

Lemma 4.4.2, wp → ∂Bn implies kψwp
tend weakly* to 0. Since A0(φ) is an invariant

subspace of A⋆⋆, we have for any g ∈ A0(φ),

[Akψwp
, g] = [kψwp

, A⋆⋆g] → 0.

Thus Akψwp
tends weakly* to 0. Since {Akψwp

} converges in A1(ψ), it must converge

to its weak*-limit, that is 0. This contradicts (4.37).

Conversely, suppose ‖Akψw‖ψ → 0 as w → ∂Bn. Since Kz is in A0(φ) the repro-

ducing property of Kw gives

A⋆⋆Kz(w) = [A⋆⋆Kz, Kw] = [AKw, Kz] = AKw(z).

So for f ∈ A1(ψ),

(Af)(w) = [Af,Kw] = [f, A⋆⋆Kw],

thus

(Af)(w) =

∫

Bn

f(z)(AKz)(w)ψ(|z|)φ(|z|) dν(z).

For 0 < t < 1, define a compact supporting continuous function ηt on Bn by

ηt(z) =





1, |z| ≤ t

1+t
1−t

− 2|z|
1−t
, t < |z| ≤ (1 + t)/2

0, (1 + t)/2 < |z| < 1.
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For any 0 < r, t < 1, define the integral operators A[r] on A1(ψ) and A[r,t] from A1(ψ)

to L1(ψ) as follows;

A[r]f(w) =

∫

Bn

f(z)(AKz)(w)ηr(z)ψ(|z|)φ(|z|) dν(z),

A[r,t]f(w) =

∫

Bn

f(z)(AKz)(w)ηr(z)ηt(w)ψ(|z|)φ(|z|) dν(z).

Using Lemma 4.4.1, we have

‖(A− A[r])f‖ψ ≤
∫

Bn

|f(z)|ψ(|z|)
∫

Bn

|(AKz)(w)|φ(|z|)(1 − ηr(z))ψ(|w|) dν(w) dν(z)

≤ C‖f‖ψ sup
z∈Bn

(1 − ηr(z))‖Akψz ‖ψ.

Since ‖Akψz ‖ψ → 0 as z → ∂Bn, we have that supz∈Bn
(1 − ηr(z))‖Akψz ‖ψ → 0 as

r → 1−. Thus

‖A−A[r]‖ψ → 0 as r → 1−. (4.38)

Seeing A[r] as an operator from A1(ψ) to L1(ψ), if we show that it is compact, then

it is also compact as an operator on A1(ψ). Similar to the above, we have

‖A[r] −A[r,t]‖ψ ≤ C sup
z∈ 1+r

2
Bn

∫

Bn

|(Akψz )(w)|(1 − ηt(w))ψ(|w|) dν(w) (4.39)

We will prove that

sup
z∈ 1+r

2
Bn

∫

Bn

|(Akψz )(w)|(1 − ηt(w))ψ(|w|) dν(w) → 0

as t→ 1− for fixed r < 1.

Let

gt(z) =

∫

Bn

|(Akψz )(w)|(1 − ηt(w))ψ(|w|) dν(w).

Firstly we will show that the set {gt : 0 < t < 1} is equicontinuous and uniformly

bounded on 1+r
2

Bn. Let ak = Γ(n+1+α+k)
Γ(n+1+α)k!

. Then

Kz(w) = c(α)

∞∑

k=0

ak(w · z)k.
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Thus for u, v ∈ 1+r
2

Bn, we have

|Ku(w) −Kv(w)| =

∣∣∣∣∣c(α)

∞∑

k=0

ak((w · u)k − (w · v)k)
∣∣∣∣∣

≤ c(α)

∞∑

k=0

ak|(w · u)k − (w · v)k|

≤ c(α)

∞∑

k=0

ak|(w · u) − (w · v)|
k−1∑

s=0

|(w · u)|k|(w · v)|s−k

≤ c(α)

∞∑

k=1

akkr
k−1|u− v|.

The last series above is convergent in |r| < 1. So for any ǫ > 0, there exists a constant

δ1 > 0 such that |Ku(w) − Kv(w)| < ǫ for any u, v ∈ 1+r
2

Bn with |u − v| < δ1 and

for every w ∈ Bn, and so the function z 7→ ‖Kz‖ψ is ‖Kz‖ψ is uniformly continuous

on 1+r
2

Bn. Thus for any ǫ > 0 there exist δ2 such that |kψu (w) − kψv (w)| < ǫ for any

u, v ∈ 1+r
2

Bn with |u− v| < δ2, whence

|gt(u) − gt(v)| ≤
∫

Bn

|Akψu (w) −Akψv (w)|(1 − ηt(w))ψ(|w|) dν(w)

≤ ‖A‖
∫

Bn

|kψu (w) − kψv (w)|ψ(|w|) dν(w)

≤ ǫ‖A‖‖1‖ψ.

Since ǫ is arbitrary, {gt : 0 < t < 1} is equicontinuous. It is obvious that {gt : 0 <

t < 1} is uniformly bounded, since A is bounded on A1(ψ).

For z ∈ 1+r
2

Bn, Lebesgue’s dominated convergence theorem implies that gt(z) → 0

as t→ 1−. It follows from Ascoli’s theorem that {gt : 0 < t < 1} is relatively compact

in C(1+r
2

Bn), the Banach space of continuous functions on 1+r
2

Bn, so has a unique

accumulation point 0. Therefore gt(z) → 0 in C(1+r
2

Bn) as t→ 1−. So (4.39) implies

that

‖A[r] − A[r,t]‖ψ → 0 as t→ 1−. (4.40)
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We now show that the operator A[r,t] is compact. By Appendix C of [34], it suffices

to show that there exist a constant C > 0, such that

ψ(|z|)φ(|z|)
∫

Bn

|Akξ(z)|ηt(z)ηr(ξ) dν(ξ) < C

and ∫

Bn

|Akξ(z)|ηt(z)ηr(ξ)ψ(|z|)φ(|z|) dν(z) < C,

but this follows easily from the fact that A is bounded and the definition of the

function η. Thus (4.40) implies A[r] is compact and (4.38) implies A is compact.2

The following example due to Yu[46] shows that the condition A0(φ) is an invariant

subspace of A∗∗ cannot be ignored in general.

Suppose that f ∈ A∞(φ) \ A0(φ). Then by definition of A∞(φ), there exists a

sequence {zn} in Bn and an ǫ > 0 such that

|f(zn)|φ(|zn|) ≥ ǫ whenever zn → ∂Bn.

Now if 0 6= g ∈ A1(ψ). Then there exists h ∈ A∞(φ) such that [g, h] 6= 0. Let

A = g ⊗ f be defined by Au = (g ⊗ f)u = [f, u]g for u ∈ A1(ψ). Then A is a finite

rank operator and hence compact. However

|[Akzn, h]| = |[(g ⊗ f)kzn, h]|

= |[[f, kzn]g, h]|

= |[g, h]||[f, kzn]|

= |[g, h]| |f(zn)|
‖Kzn‖φ

≥ C|[g, h]||f(zn)|φ(|zn|)

≥ Cǫ|[g, h]|
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where the first inequality comes from Lemma 4.4.1. This shows that ‖Akzn‖φ does

not tend to zero.

We now consider the Toeplitz operator. If we take ψ = 1, and α = n+ 1 then by

letting

k̃1
ξ (z) := c(n+ 1)

(1 − |ξ|2)n+1

(1 − (z · ξ))2(n+1)

and

K̃ξ(w) :=
1

(1 − (z · ξ))2(n+1)

then we have the following (cf Yu[46]).

4.4.4 Theorem

Let f ∈ L1(Bn) and Tf bounded on L1
a(Bn). Then Tf is compact and A0(φ) is an

invariant subspace of T ⋆⋆f if and only if ‖Tf k̃1
ξ‖1 → 0 as ξ → ∂Bn.

4.5 Compactness on the unweighted space L1
a

We begin by presenting results on a more general operator A before considering the

Toeplitz operator. We state a version of the Ascoli theorem adapted to Lp(Rn) spaces.

We write (τhf)(x) = f(x+ h). Let U ∈ Rn we write O ⊂⊂ U to imply the closure of

O is contained in U .

4.5.1 Theorem [M. Riesz-Frechet-Kolmogrov]

Let U be an open subset of Rn and let O ⊂⊂ U . Let F be a bounded subset of

Lp(U), 1 ≤ p <∞. Suppose that

for all ǫ > 0 there exist δ > 0, δ < dist(O,U
′

) such that ,

‖τhf − f‖Lp(O) < ǫ for all h ∈ Rn, with |h| < δ and all f ∈ F .
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Then F|Lp(O) is relatively compact in Lp(O), where U ′ is the complement of U .

For a proof of this theorem see [15] pages 72-73.

4.5.2 Theorem

Let U be an open subset of Rn and F be a bounded subset of Lp(U) , 1 ≤ p < ∞.

Then F is relatively compact in Lp(U) if and only if

(1) for all ǫ > 0 and all O ⊂⊂ U there exist δ > 0, δ < dist(O,U
′
) such that

‖τhf − f‖Lp(O) < ǫ for all h ∈ Rn, with |h| < δ and all f ∈ F .

(2) for all ǫ > 0 there exist O ⊂⊂ U such that ‖f‖Lp(U/O) < ǫ and all f ∈ F .

Where U ′ is the complement of U .

Proof . Suppose (1) and (2). By the Riesz-Frechet-Kolmogrov theorem 4.5.1, F|Lp(O)

is relatively compact in Lp(O). That is there exist a finite number of open balls in

Lp(O) with radius r such that

F ⊂
k⋃

i=1

B(gi, r), with gi ∈ Lp(O).

Let

hi(x) =




gi(x) when x ∈ O,

0 when x ∈ U/O.

Then for each f ∈ F there exists a gi ∈ Lp(O) , i = 1, 2, · · · , k, such that

‖f − gi‖Lp(O) < r.

Thus for f ∈ F assertion (2) implies

‖f − hi‖Lp(U) ≤ ‖f − gi‖Lp(O) + ‖f‖Lp(U/O) < 2r.
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That is

F ⊂
k⋃

i=1

B(hi, 2r), with hi ∈ Lp(U).

Conversely suppose F is compact in Lp(U). Let gi, i = 1, 2 · · · , k be compactly

supported, C∞(U), functions be the center of the finite number of balls with radius ǫ

in Lp(U) which covers F . Let O ⊂⊂ U and f ∈ F . Then there exist gi, i = 1, 2, · · · , k

such that f ∈ B(gi, ǫ/3) and

‖τhf − f‖Lp(O) ≤ ‖τhf − τhgi‖Lp(O) + ‖τhgi − gi‖Lp(O) + ‖gi − f‖Lp(O).

Choose δ > 0, such that |h| < δ and h+ x, x ∈ O. Then

‖τhf − f‖Lp(O) < ǫ

which is (1) with the gi ∈ C∞
0 (U). The result follows by density.

Assertion (2) is well known property of Lp functions.2

We present our first result on compactness of a general bounded operator in L1
a.

4.5.3 Theorem

Let A be a bounded operator on L1
a. The following two assertions are equivalent:

1. The operator A is compact on L1
a;

2. For every ǫ > 0, there exists R ∈ (0, 1) such that

∫

R≤|z|<1

|(Ak̃cζ)(z)|dν(z) < ǫ

for every ζ ∈ Bn.
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Proof Let F := {Ag : g ∈ L1
a, ||g||1 ≤ 1}. Since A is bounded on L1

a, the set F

is a bounded subset of L1
a and hence a bounded subset of L1(Bn, dν). Moreover,

the compactness of F in L1
a is equivalent to the compactness of F in L1(Bn, dν).

According to Theorem 4.5.2, it suffices to show that the following two properties are

equivalent:

1. For every ǫ > 0, there exists R ∈ (0, 1) such that

∫

R≤|z|<1

|(Ak̃cζ)(z)|dν(z) < ǫ;

2. a) For all ǫ > 0 and R ∈ (0, 1), there exists δ ∈ (0, 1 − R) such that

∫

|z|<R

|φ(z + h) − φ(z)|dν(z) < ǫ

for all φ ∈ F and all h ∈ Cn such that |h| < δ and

b) For every ǫ > 0, there exists R ∈ (0, 1) such that
∫
R≤|z|<1

|φ(z)|dν(z) < ǫ for

every φ ∈ F .

The implication 2.⇒ 1. is obtained by taking g = Ak̃cζ in part b) of assertion 2.

We next prove the implication 1.⇒ 2. We first point out that part a) of assertion 2.

is valid for every bounded subset F of L1
a. In fact, the closed subset ω = {z ∈ Bn :

|z| ≤ 1+R
2

} is a compact subset of Bn and hence on this set, the Bergman distance β

on Bn is equivalent to the Euclidean distance. On the other hand, it is well known

(cf [8] that for φ analytic on Bn, δ ∈ (0, 1) and z, ζ ∈ Bn such that β(z, ζ) < δ, the

following estimate holds:

|φ(z) − φ(ζ)| ≤ Cδ

∫

β(z,w)<1

|φ(w)| dν(w)

(1− |w|2)n+1
.

We recall that the measure dν(w)
(1−|w|2)n+1 is invariant under automorphisms of Bn. On

ω, there exist two constants A and B such that A|z − ζ | ≤ β(z, ζ) ≤ B|z − ζ | for all
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z, ζ ∈ ω. We suppose that δ < A(1−R)
2

. Now, for all h ∈ Cn such that |h| < δ
A

and all

z ∈ Cn such that |z| < R, it is easy to check that z and z+ h both lie in ω. Moreover

for every h ∈ Cn such that |h| < δ
B
, for every φ analytic on Bn and every z such that

|z| < R, we obtain:

|φ(z + h) − φ(z)| ≤ C(R)δ||φ||1.

We set C = sup
φ∈F

||φ||1 and get

∫

|z|<R

|φ(z + h) − φ(z)|dν(z) ≤ CC(R)δ.

Part a) of assertion 2. follows when we take δ < ǫ
CC(R)R2 .

We next prove that assertion 1. implies part b) of assertion 2. By the atomic

decomposition theorem (cf. e.g. Theorem 2.30 of [47]), for every g ∈ L1
a, there exists

a sequence {ck} of complex numbers belonging to the sequence space l1 such that

g(z) =
∞∑

k=1

ckk̃
c
ak

(z) (z ∈ Bn).

This series converges to g in the norm topology of L1
a.Moreover, there exists a constant

C such that for every g ∈ L1
a, the following estimate holds:

∞∑

k=1

|ck| ≤ C||g||1.

Here, the sequence {ak} is again an r−lattice (Lemma 3.2.6). Since A is bounded on

L1
a, we see that
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∫

R≤|z|<1

|Ag(ζ)|dν(ζ) =

∫

R≤|z|<1

|A(

∞∑

k=1

ckk̃
c
ak

)(ζ)|dν(ζ)

=

∫

R≤|z|<1

∞∑

k=1

ckA(k̃cak
)(ζ)|dν(ζ)

≤
∫

R≤|z|<1

∞∑

k=1

|ck||A(k̃cak
)|(ζ)|dν(ζ)

=
∞∑

k=1

|ck|
∫

R≤|z|<1

|A(k̃cak
)|(ζ)|dν(ζ).

Assertion 1. implies that

∫

R≤|z|<1

|Ag(ζ)|dν(ζ) ≤ ǫ

∞∑

k=1

|ck| ≤ Cǫ||g||1 ≤ Cǫ,

because ||g||1 ≤ 1. 2

We shall also a need the inner product formula in L2
a(Bn) given in [41, section

4.2].

4.5.4 Lemma

Let F,G ∈ L2
a(Bn). Then there exist constants a1, a2 and a3 such that

〈F,G〉 = a1

∫

Bn

▽F (z)▽G(z)(1 − |z|2)2 dν(z)

+ a2

∫

Bn

▽F (z)▽G(z)(1 − |z|2)3 dν(z)

+ a3

∫

Bn

F (z)G(z)(1 − |z|2)2 dν(z).

This leads us to the following.
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4.5.5 Theorem

Let c > 0. Suppose that the complex measure µ is such that Kzµ̄ satisfies condition

(R) for every z ∈ Bn with the following uniform condition:

∀r ∈ (0, 1), sup
z∈rBn

Carl(R(Kzµ)) <∞

(in particular if |µ| is a Carleson measure for Bergman spaces) Suppose further that

Tµ is bounded on L1
a. Then Tµ is compact on L1

a if and only if ‖Tµk̃cζ‖1 → 0 as

ζ → ∂Bn.

Proof Take ψ(r) = 1, φ(r) = (1 − r2)c, c > 0. Then by Theorem 4.4.4 it suffices to

prove thatA0(φ) is an invariant subspace of the adjoint operator T ⋆⋆µ of Tµ with respect

to the duality pairing [, ] defined in (4.25). We just suppose Tµ is bounded on L1
a. Then

T ⋆⋆µ is bounded on A∞(φ). Since the weighted Bergman kernel K̃c
ξ(z) = d(c)

(1−(z·ξ))n+1+c

reproduces A∞(ϕ)−functions in the sense that for every h ∈ A∞(φ),

h(ξ) = [h, K̃c
ξ ], (ξ ∈ Bn).

Thus, for every h ∈ A∞(φ) and for every ξ ∈ Bn, we obtain,

T ⋆⋆µ h(ξ) = [T ⋆⋆µ h, K̃
c
ξ ] = [h, TµK̃

c
ξ ]

= d(c)

∫

Bn

(∫

Bn

Kw(z)

(1 − (w · ξ))n+1+c
dµ(w)

)
h(z)(1 − |z|2)cdν(z).

We need to show that T ⋆⋆µ h ∈ A0(φ) if h ∈ A0(ϕ). We fix ǫ > 0 arbitrary. Then there

exists r = r(ǫ) ∈ (0, 1) such that

(1 − |z|2)c|h(z)| < ǫ whenever r < |z| < 1. (4.41)

We write,

1

d(c)
T ⋆⋆µ h(ξ)(1 − |ξ|2)c = I + II
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where

I =

∫

r≤|z|<1

(∫

Bn

Kw(z)(1 − |ξ|2)c
(1 − (w · ξ))n+1+c

dµ(w)

)
h(z)(1 − |z|2)c dν(z)

=

∫

r≤|z|<1

Tµk̃cξ(z)h(z)(1 − |z|2)c dν(z)

and

II =

∫

|z|<r

(∫

Bn

Kw(z)(1 − |ξ|2)c
(1 − (w · ξ))n+1+c

dµ(w)

)
h(z)(1 − |z|2)c dν(z). (4.42)

Concerning I, we deduce from (4.41) that

|I| ≤
∫

r≤|z|<1

|Tµk̃cξ(z)||h(z)|(1 − |z|2)c dλ(z) ≤ Cǫ, (4.43)

with C = supξ∈Bn
‖Tµk̃cξ‖1 <∞, since Tµ is bounded on L1

a.

Now for II, we first study the inner integral. We observe that

∫

Bn

Kw(z)

(1 − (w · ξ))n+1+c
dµ(w) =

1

d(c)
〈TµKz, K̃ξ〉.

Lemma 4.5.4 implies

〈TµKz, K̃ξ〉 = J1 + J2 + J3

where

J1 =
3

d(c)

∫

Bn

(1 − |w|2)2TµKz(w)K̃ξ(w) dν(w)

J2 =
1

2(d(c))

∫

Bn

(1 − |w|2)2(▽TµKz)(w)▽K̃ξ(w) dν(w)

J3 =
1

3(d(c))

∫

Bn

(1 − |w|2)3(▽TµKz)(w))▽K̃ξ(w) dν(w).

Now, since Tµ is bounded on L1
a, Corollary 4.2.19 implies that there exists a constant

C(r) such that

sup
|z|<r

||P (Kzµ̄)||LB ≤ C(r)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ))).
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So

|J1| ≤ 3

∫

Bn

(1 − |w|2)2|P (Kzµ̄)(w)| 1

|1− (w · ξ)|n+1+c
dν(w)

≤ 3

∫

Bn

(1 − |w|2)2|P (Kzµ̄)(w) − P (Kzµ̄)(0)|
|1 − (w · ξ)|n+1+c

dν(w)

+ 3|P (Kzµ̄)(0)|
∫

Bn

(1 − |w|2)2

|1 − (w · ξ)|n+1+c
dν(w)

≤ C‖P (Kzµ̄)‖B∞

{∫

Bn

(1 − |w|2)2β(0, w)

|1 − (w · ξ)|n+1+c
dν(w) +

∫

Bn

(1 − |w|2)2

|1 − (w · ξ)|n+1+c
dν(w)

}
.

It is well known, see for example [8], that for every ν > 0, there exists a constant

C(ν) such that

β(0, w) ≤ C(ν)

(1 − |w|2)ν ,

for every w ∈ Bn. Hence,

|J1| ≤ C(ν)||P (Kzµ̄)||B∞

∫

Bn

(1 − |w|2)2−ν

|1 − (w · ξ)|n+2+c
dν(w).

Since ||g||B∞ ≤ ||g||LB

log2
for every g ∈ B∞, we obtain by Corollary 4.2.19 that

|J1| ≤ C ′(ν)||P (Kzµ̄)||LB
∫

Bn

(1 − |w|2)2−ν

|1 − (w · ξ)|n+2+c
dν(w)

≤ C(r, ν)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ)))

∫

Bn

(1 − |w|2)2−ν

|1 − (w · ξ)|n+2+c
dν(w).

Applying Lemma 3.2.2, the conclusion for |J1| is the following:

1. If c < 2, we take ν such that ν < 2 − c and we get,

|J1| ≤ C(r, ν)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ)));

2. If c = 2, we take ν ∈ (0, 1) and we get,

|J1| ≤ C(r, ν)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ)))
1

(1 − |ξ|2)ν ;
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3. If c > 2, we take ν ∈ (0, 1) and we get,

|J1| ≤ C(r, ν)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ)))
1

(1 − |ξ|2)c−2+ν
.

Also,

2|J2| ≤ 1

d(c)

∫

Bn

(1 − |w|2)2|(▽P (Kzµ̄)(w))||(▽K̃c
ξ)(w)|dν(w)

≤ C

∫

Bn

log(
2

1 − |w|2 )
(1 − |w|2)2|(▽P (Kzµ̄)(w))|

log( 2
1−|w|2

)

1

|1 − (w · ξ)|n+2+c
dν(w)

≤ C‖P (Kzµ̄)‖LB
∫

Bn

1

log( 2
1−|w|2

)

(1 − |w|2)
|1 − (w · ξ)|n+2+c

dν(w)

≤ d′(c))C(r)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ)))

∫

Bn

(1 − |w|2) 1

log( 2
1−|w|2

)

1

|1 − (w · ξ)|n+2+c
dν(w)

The latter inequality comes from Corollary 4.2.19. There exists s ∈ (0, 1) such that

1
log( 2

1−|w|2
)
< ǫ whenever s < |w| < 1. We fix such an s. Then

∫

Bn

(1 − |w|2) 1

log( 2
1−|w|2

)

1

|1 − (w · ξ)|n+2+c
dν(w)

=

{∫

sBn

+

∫

Bn/sBn

}
(1 − |w|2) 1

log( 2
1−|w|2

)

1

|1 − (w · ξ)|n+2+c
dν(w)

≤ Cs +
Cǫ

(1 − |ξ|2)c

with Cs = 1
(log2)(1−s)3+c . This implies

|J2| ≤
1

2
(2 + c)C(r)(||Tµ|| + sup

z∈rBn

Carl(R(Kzµ)))

{
Cs +

Cǫ

(1 − |ξ|2)c
}
.

In a similar manner, we obtain,

|J3| ≤
1

3
(2 + c)C(r)(||Tµ|| + sup

z∈rBn

Carl(R(Kzµ)))

{
Cs +

Cǫ

(1 − |ξ|2)c
}
.
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Thus,

|II| ≤ ||h||A∞(φ)(|J1| + |J2| + |J3|)(1 − |ξ|)c.

Given ǫ > 0, there exists an s ∈ (0, 1) such that

1. if c < 2, then for ν positive such that ν < 2 − c, we get,

|II| ≤ C(c, r, ν)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ)))

||h||A∞(φ)

[
1 + Cs +

Cǫ

(1 − |ξ|2)c
]

(1 − |ξ|)c;

2. if c = 2, then for ν ∈ (0, 1), we get,

|II| ≤ C(c, r, ν)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ)))

||h||A∞(φ)

[
1

(1 − |ξ|2)ν + Cs +
Cǫ

(1 − |ξ|2)c
]

(1 − |ξ|)c

3. if c > 2, then for ν ∈ (0, 1), we get:

|II| ≤ C(c, r, ν)(||Tµ|| + sup
z∈rBn

Carl(R(Kzµ)))

||h||A∞(φ)

[
1

(1 − |ξ|2)c−2+ν
+ Cs +

Cǫ

(1 − |ξ|2)c
]

(1 − |ξ|)c.

Combining these estimates when |ξ| → 1−with (4.43) easily implies the desired con-

clusion. 2

4.5.6 Corollary

Let µ be a positive measure on Bn such that the Toeplitz operator Tµ is bounded on

L1
a and let c > 0. The following three assertions are equivalent:

1. The Toeplitz operator Tµ is compact on L1
a;
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2. The following estimate holds:

lim
ζ→∂Bn

||Tµk̃cζ ||1 = 0;

3. For every ǫ > 0, there exists R ∈ (0, 1) such that

∫

R≤|z|<1

|(Tµk̃cζ)(z)|dν(z) < ǫ

for every ζ ∈ Bn.

Proof The Toeplitz operator Tµ is bounded on L1
a. It follows from Corollary 2.5

that µ is a Carleson measure for Bergman spaces. The proof of the equivalence 1.⇔ 2.

follows from a direct application of Theorem 4.5.5. The equivalence 1.⇔ 3. is a direct

application of Theorem 4.5.3. 2

4.5.7 Corollary

Suppose c > 0. Let f ∈ L1
a be such that Tf is a bounded operator on L1

a . Then the

following five assertions are equivalent:

1. The Toeplitz operator Tf is compact on L1
a;

2. ‖Tf k̃cξ‖1 → 0 as ξ → ∂Bn;

3. For every ǫ > 0, there exists R ∈ (0, 1) such that

∫

R≤|z|<1

|(Tf̄ k̃cξ)(z)|dλ(z) < ǫ

for every ξ ∈ Bn.

4. ‖Tf k̃1
ξ‖1 → 0 as ξ → ∂Bn;

5. f vanishes identically.
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Let us mention that using duality, property (1) is equivalent to ”f is a compact

multiplier of B∞. The latter was shown in [32] to be equivalent to (5) in the case

n = 1.

Proof . The proof goes along the following implications: (1) ⇔ (2) ⇒ (4) ⇒

(5) ⇒ (2) and (1) ⇔ (3). From Theorem 4.2.8 Tf bounded on L1
a implies f is

bounded. We apply Theorem 4.5.5 to get the equivalence (1) ⇔ (2). Theorem 4.5.3

gives (1) ⇔ (3). Taking c = 1 we have (2) ⇒ (4). Suppose (4) holds. Using Lemmas

4.2.6 and 4.2.3 with z = 0 we have

(1 − |ξ|2)|D1(f)(ξ)| → 0 as ξ → Bn, (4.44)

where

D1f(ξ) =

∫

Bn

f(w)

(1 − (ξ · w))n+2
dν(w).

On the other hand, observing that D1 = I + (n + 2)
∑n

i=1 zi
∂
∂zi

we have for some

absolute constant C and for all ξ, z ∈ Bn

∣∣∣∣
f(ξ)

(1 − (ξ · z))n+3

∣∣∣∣ ≤ C

∣∣∣∣D1

{
f

(1 − (· · z))n+2

}
(ξ)

∣∣∣∣+ C

∣∣∣∣
D1(f)(w)

(1 − (ξ · z))n+2

∣∣∣∣ . (4.45)

Multiplying (4.45) by (1 − |ξ|2)(1 − |z|2)n+2 and then using again Lemmas 4.2.6 and

4.2.3, equation (4.44) we have, taking z = ξ, that |f(ξ)| → 0 as ξ → Bn. Hence

(5) holds. The implication (5) ⇒ (2) is obvious. This completes the proof of the

Corollary.2



Conculsion

In the first part, we develop a new type of partition of unity, which enables us to

decompose vector valued measures in terms of measures whose Fourier transform is

a measure satisfying some satisfactory properties in a precise direction. With this we

are able to give a simplified proof of the theorem on the modulus of continuity first

proved by Boman [10] in 1967.

In the second part, we set out with the following two problems:

(1) Characterize the symbols f ∈ L1(Bn, dν) whose associated Toeplitz operator,

Tf , extend to bounded operators on the Bergman spaces, Lpa(Bn, dν).

(2) Characterize the symbols f ∈ L1(Bn, dν) whose associated Toeplitz operator,

Tf , extend to compact operators on the Bergman spaces, Lpa(Bn, dν).

For p > 1 we are able to improve the existing results on the following two problems for

the case p > 1. While for the p = 1 we where able to give new results characterizing

boundedness and compactness not only of the Toeplitz operator but also for more

general operators on the Bergman space L1
a.
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