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2



To Torsten Ekedahl
It has truly been a privilege to learn geometry from a man of such

great knowledge. I am proud of having been your student.



4



Abstract

Given an algebraic group, one may consider the class of its classifying stack
in the Grothendieck group of stacks. This is an invariant studied by Ekedahl.
For certain connected groups, called the special groups by Serre and Grothen-
dieck, the invariant simply gives the inverse of the class of the group itself.
It is natural to ask whether the same is true for other connected groups. We
investigate this for the groups PGL2 and PGL3 under mild restrictions on
the choice of base field.

In the case of PGL2, the question turns out to have a positive answer.
In the case of PGL3, we reduce the question to the computation of the
invariant for the normaliser of a maximal torus in PGL3. The reduction
involves determining the class of a certain gerbe over the moduli stack of
elliptic curves.
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1 Introduction

The main results of this thesis are computations of an algebro-geometric invariant for
groups in the case of the projective general linear groups PGL2 and PGL3. In this
introduction, I will put these results into context. My aim is to provide a non-technical
overview intended for a broader mathematical audience, not necessarily specialised in
algebraic geometry. The definition of the invariant is given in Section 1.5 following a
preprint of Ekedahl [Eke09a]. The results themselves are stated in Section 1.6.

1.1 Euler characteristics

The main objects of study in algebraic geometry are varieties — geometric objects
defined by algebraic equations. When studying varieties, a simple, yet effective, invariant
is the classical Euler characteristic. It owes much of its effectiveness to its additivity
properties with respect to closed subsets. We capture these properties in the following
definition.

Definition. A (generalised) Euler characteristic is a function χ from the set of isomor-
phism classes of varieties over some fixed base field k to some ring R. The function is
supposed to satisfy the relations

• χ(X) = χ(Z) + χ(X \Z) for each pair of varieties Z ⊂ X, where Z is closed in X,

• χ(X × Y ) = χ(X) · χ(Y ) for arbitrary varieties X and Y .

These relations are referred to as the scissors relation and the multiplicative relation
respectively.

The most general Euler characteristic one can think of is the one taking values in the
Grothendieck group of varieties K0(Vark). This is defined as the ring generated by iso-
morphism classes {X} of varieties subject to the relations needed to make the assignment
X 7→ {X} an Euler characteristic in the sense of the definition above. By construction,
every Euler characteristic factors via K0(Vark). Hence the Euler characteristic taking
values in K0(Vark) deserves to be referred to as the universal Euler characteristic.

The class {∅} of the empty variety is the zero element in K0(Vark) and the class {∗}
of a point is the multiplicative identity. The class {A1

k} of the affine line also plays a
particular role. It is usually called the Lefschetz class, and we will denote it by L.

In modern times, the study of K0(Vark) gained interest due to its appearance in the
field of motivic integration introduced by Kontsevich. In this context, it is common to
formally invert the Lefschetz class L and take the completion with respect to a dimension
filtration. The resulting ring is usually denoted by K̂0(Vark).

We shall neither be directly concerned with motivic integration nor the ring K̂0(Vark)
in this work. But in several of the articles referenced in this introduction, the results
are stated in terms of the ring K̂0(Vark). It is worth noting that the classes of the
general linear groups GLn are invertible in K̂0(Vark). This is a property which will have
significance later on.
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As always when introducing algebraic structures by giving relations and generators,
one should make sure that the structure not just collapses to something trivial. In the
case of K0(Vark) this is asserted by various concrete examples of Euler characteristics.
Here are some:

EC1 The classical topological Euler characteristic gives an Euler characteristic from
varieties over C to the integers.

EC2 When working with varieties over a finite field Fq, we get an Euler characteristic
to the integers by simply counting the number of rational points on the variety.
Saying that this function is an Euler characteristic is nothing but a fancy way to
express the obvious fact that if we cut a variety in halves, the total number of
points on the variety equals the sum of the number of points on each half.

EC3 The previous example may be expanded to counting the number of Fqn-points for
each positive integer n. This gives an Euler characteristic taking values in the ring
of integer valued functions on the positive natural numbers.

EC4 A technically more involved Euler characteristic may be considered if we work with
varieties over a field k which is not algebraically closed. Then we may also take
advantage of the arithmetic information. Given a variety X, we take the coho-
mology of Xk. More precisely, we should take the étale cohomology with compact
support and with coefficients in Qℓ. The cohomology groups so obtained have a
natural structure of continuous Gal(k/k)-representations. Taking the alternating
sums of these representations in the representation ring for Gal(k/k) gives our de-
sired Euler characteristic. Since the representation ring for the trivial group is just
Z, this example degenerates into the first one if k = C, due to the correspondence
principle for étale cohomology.

Actually all of the examples above fit into a common framework. The classical Euler
characteristic may be understood as taking the alternating sum of the Betti numbers,
i.e. of the dimensions of cohomology groups for X for a suitable cohomology theory.
This gives an Euler characteristic in our sense since the inclusion Z ⊂ X induces a long
exact sequence on cohomology.

But taking dimensions is a rather coarse invariant. Usually cohomology groups have
richer structure than just being vector spaces, as for instance suggested in the fourth
example. If the cohomology groups for the cohomology theory considered belong to
some abelian category A, we get an Euler characteristic by taking the alternating sum
in the Grothendieck group K0(A). The group K0(A) is defined as the group generated
by isomorphism classes in A subject to the relations {B} = {A} + {C} for short exact
sequences

0 → A → B → C → 0.

We shall mention a few more Euler characteristics fitting into this picture.
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EC5 In [Eke09a], Ekedahl considers an Euler characteristic of mixed Galois represen-
tations taking values in a ring we will call K0(Cohk). This is a variant of the
fourth example with the extra feature that it manages to extract useful arithmetic
information for arbitrary base fields.

EC6 Ekedahl also considers an Euler characteristic of mixed Galois representations with
torsion taking values in a different Grothendieck group L0(Cohk). Here only re-
lations for split exact sequences are added. This has the added feature that it
preserves torsion in the cohomology groups. The construction depends on an al-
ternative presentation of K0(Vark) given by Heinloth-Bittner [Bit04] using only
smooth and proper varieties as generators. Since this result uses resolutions of
singularities and the weak factorisation theorem by Abramovich, Karu, Matsuki
and W lodarczyk [AKMW02, W lo03], it is currently only known to work over fields
of characteristic zero.

EC7 In [BD07], Behrend and Dhillon consider an Euler characteristic of effective Vo-
evodsky motives. This takes values in the Grothendieck group of effective Voevod-
sky motives K0

(
DMeff

gm(k, Q)
)
. Strictly speaking, the category DMeff

gm(k, Q) is not
known to be abelian. However, it is triangulated, which makes the construction
work anyway.

1.2 Fibre bundles and torsors

In geometry, a fibre bundle with fibre F is a map of spaces E → S which locally on S
looks like the projection of a Cartesian product F ×S to the second factor. It is common
to restrict transformations gluing the bundle together over different coordinate patches
to lie in a group G acting as automorphisms on the fibre F . The group G is called the
structure group of the bundle. The prototypical example of a fibre bundle is of course a
rank n vector bundle. Here the fibre is an n-dimensional vector space and the structure
group is GLn.

In differential or complex analytic geometry it is fairly clear what we mean by a fibre
bundle looking like a product locally. In algebraic geometry the question is more subtle.
In many cases, it seems like the Zariski topology is simply to coarse to capture the
geometry of fibre bundles. As an illustration of this, we give the following example:

Example 1.1. Choose coordinates s and t for the affine plane A2
C

and consider the
Zariski open subset S defined by removing the coordinate axes. Let C be the plane
projective curve over S defined by the equation

s · x2 + t · y2 + z2 = 0.

Since s and t do not vanish on S, the fibre over each point in S is a non-singular conic.
Such a curve is isomorphic to the projective line provided that it has a rational point,
which is true over each closed point of S. This gives a hint that we might want to view
C as a P1-fibred bundle over S. But over the generic point of S we have no rational
points since the defining equation of C has no solutions in the function field C(s, t). As
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a consequence, there can be no Zariski open subset U ⊂ S over which C is isomorphic
to P1 × U . Hence C is not a fibre bundle over S according to the näıve definition.

Instead, we may formally adjoin the square roots of s and t to the coordinate ring of
S. This corresponds to a variety S′ surjecting onto S. Over S′ the defining equation of
C does have solutions and hence C is isomorphic to P1 × S′ over S′. A surjection as the
one described here is called an étale covering. Note that in the classical topology the
space S′ is a degree 4 covering space over S. In particular, this implies that C is a fibre
bundle over S in the complex analytic sense.

Such phenomena eventually led Grothendieck to reformulate topology to deal with cov-
erings instead of open subsets. When referring to fibre bundles in algebraic geometry,
we usually mean with respect to the étale topology, i.e. with respect to coverings as in
the example above.

For some structure groups, being a fibre bundle in the generalised sense described
above actually implies being a fibre bundle in the Zariski sense. This is for instance
true for the general linear groups GLn. Hence trying to generalise vector bundles using
étale coverings gives nothing new. Groups with this properties are called special. The
example above shows that the automorphism group of P1, namely PGL2, is not special.
The same turns out to be true for all projective linear groups PGLn.

A fibre bundle may be viewed as a twisted product of the fibre and the base space.
The amount of twist is described by a geometric object called a torsor for the structure
group G. Torsors are fibre bundles in their own right. They are fibred by the group
G viewed as a G-space by translation. In other branches of geometry, torsors are often
called principal homogeneous spaces. For a vector bundle, we get the associated torsor by
taking the frame bundle. A fibre bundle with fibre F and structure group G is completely
described by its associated G-torsor. This essentially reduces the study of fibre bundles
to the study of torsors.

1.3 Multiplicativity relations for torsors

Let E → B be a fibre bundle of topological spaces with fibre F . Then the multiplica-
tivity relation χ(E) = χ(F ) · χ(B) holds for the classical Euler characteristic in quite
general circumstances. A natural question to ask is to what extent this holds for Euler
characteristics in the algebraic setting. Reformulated in terms of torsors, this gives the
following question:

Given a G-torsor T → S, for some group G, when does the multiplicativity relation
{T} = {G}{S} hold in K0(Vark)?

Of course the relation holds, by definition, if T → S is the trivial torsor, i.e. if T is
simply the product G× S. Multiplicativity is also quite easily seen to hold if the torsor
trivialises in the Zariski topology. In particular, it holds for G-torsors if G is special. In
contrast to the case with the classical Euler characteristic, it does not hold in general if
G is not connected. We illustrate this by a simple example.

Example 1.2. In algebraic group theory, it is common to denote the group of units C×

in the ring of complex numbers by Gm. The square map x 7→ x2 from Gm to itself is a
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group homomorphism with kernel {−1, 1}, which is isomorphic to Σ2. Since the square
map is surjective, it makes Gm a Σ2-torsor over itself. Now, considered as a variety, the
group Gm is the affine line with a point removed. Hence its class in K0(VarC) is L − 1.
The class of Σ2 is 2 since the group is just a disjoint union of two points. One can show
that 2(L − 1) 6= L − 1 in K0(VarC), which shows that multiplicativity does not hold in
this case.

The question is more delicate in the case of connected non-special groups. Here we do
have multiplicativity for the Euler characteristic EC5 of mixed Galois motives [Eke09a,
p. 6]. For the Euler characteristic EC7 of Voevodsky motives, we have multiplicativity
for torsors for split connected affine groups [BD07, A.9]. This made Behrend and Dhillon
raise the question whether multiplicativity actually holds already in K̂0(Vark) [BD07,
Remark 3.3]. Ekedahl gave this a negative answer in [Eke08]. In fact he showed, by
using the Euler characteristic EC6, that for each non-special connected affine group G
there is a G-torsor for which multiplicativity does not hold.

1.4 Universal torsors and stacks

One way to obtain torsors for a group G, is to take a space X on which G acts freely
and then take the quotient X/G. This makes X a G-torsor over X/G via the quotient
map.

In homotopy theory, this may be used to construct a universal G-torsor. This is
obtained by choosing a contractible space EG on which G acts freely. Such a space
always exists. The resulting quotient EG/G has well-defined homotopy type and is
denoted by BG. The space BG has the property that given any space X, the homotopy
classes of maps X → BG are in natural correspondence with the homotopy classes of
G-torsors over X. Due to this property, the space BG is called the classifying space for
G.

We would like to do a similar construction in the algebraic setting. This can be
achieved if we enlarge our algebraic objects under consideration to include so called
algebraic stacks. The class of algebraic stacks includes the usual varieties, but also
other, more general objects.

One way to produce stacks is to take the stack quotient [X/G] of a variety X by
an algebraic group G acting on X. The ordinary quotient X/G may be thought of as
the space X together with an equivalence relation on X. Two points are considered
equivalent if there is a group element in G transporting one of the points to the other.
In contrast, the stack quotient [X/G] may be understood as a groupoid structure on X.
Not only do we recall that there exists a group element taking one point to the other,
we also recall which. For free group actions, there is a unique group element with this
property and the two concepts of quotients essentially coincide. However, for a group
action which is not free, the stack quotient is a stack which genuinely fails to be variety.
Although this heuristic picture gives a general clue to what a stack quotient is, it should
be noted that it is a simplification which fails to capture any topological or algebraic
aspects.
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The nice thing about the stack quotient is that it always behaves as if it were free, even
if the group action is not. More precisely, the variety X will always be a G-torsor over
[X/G]. The price we have to pay by considering stacks instead of varieties is increased
complexity. The algebraic stacks form a 2-category. Not only do we need to keep track
on ordinary maps between stacks, but also 2-maps between maps.

In order to get a classifying space in the algebraic setting, we may now make an even
more straightforward construction than in homotopy theory. Instead of letting G act
freely on something that homotopically looks like a point, we simply let G act trivially
on an actual point. The resulting stack quotient has similar classifying properties with
respect to torsors as in the homotopy theory case. Therefore, we call it the classifying
stack for G and denote it by BG. The quotient map from the one-point space ∗ to BG
makes ∗ the universal torsor over this stack.

1.5 Universal Euler characteristics for stacks

Once we have agreed that stacks are natural objects to study, we would like to be able
to do the same things with them as we do with varieties. In particular, we would
like to have an universal Euler characteristic for algebraic stacks. This leads us to
consider the Grothendieck group of stacks, which has been done independently by several
authors. Toën in [Toë05], Joyce in [Joy07], Behrend–Dhillon in [BD07] and Ekedahl in
[Eke09a, Eke08, Eke09b]. We will follow Ekedahl’s axiomatisation:

Definition. The Grothendieck group of stacks is the abelian group K0(Stackk) generated
by equivalence classes {X} of algebraic stacks X subject to the relations

GS1 {X} = {Z} + {X \ Z} if Z is a closed substack of X ,

GS2 {E} = {An ×X} if E → X is a rank n vector bundle of stacks.

The stacks under consideration are assumed to have affine stabiliser groups and be of
finite type over a base field k. The group K0(Stackk) has a natural ring structure with
multiplication defined by {X} · {Y} = {X × Y}.

Note that axiom GS2 is redundant for varieties. For stacks this is not the case. In
fact the axiom is equivalent to requiring that we have multiplicativity relations for all
GLn-torsors. Since for instance B GLn has no non-trivial closed substacks, we cannot
apply the same cutting and pasting arguments as we did for varieties.

A consequence of the axioms is that each stack which may be described as a stack
quotient [X/ GLn] has the class {X}{GLn}

−1 in K0(Stackk). Not every algebraic stack
can be written in this form, but due to a result by Kresch [Kre99], every stack we
shall consider admits a finite stratification by such quotients. From this, it follows that
K0(Stackk) is the localisation of the ring K0(Vark) where the classes {GLn} have been
inverted for all n. Since all these classes are invertible in K̂0(Vark), we get a canonical
ring homomorphism K0(Stackk) → K̂0(Vark) and we may actually talk about the class
of a stack in K̂0(Vark).
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Given a group G, we can consider the class of its classifying stack BG in K0(Stackk).
Ekedahl studies this invariant for finite groups in [Eke09b]. Using the cohomological
Euler characteristic EC5 taking values in the Grothendieck group of mixed Galois rep-
resentations, one always get χ(BG) = 1 when G is a finite group. Ekedahl proves that
{BΣn} = 1 already in K0(Stack) for all symmetric groups Σn. But he also gives examples
of finite groups G such that {BG} 6= 1.

1.6 The main results

As already noted, the multiplicativity relation for torsors does not hold in general for
non-special groups. But it may still hold for particular torsors, an obvious candidate
for investigation being the universal one. Since the total space of a universal torsor is a
single point, which has the class 1 in K0(Stackk), this is the same thing as asking if the
class of the classifying stack BG for a group G is the inverse of the class of the group
itself.

Since the groups PGLn are non-special and connected, they provide a natural starting
point for our studies. We obtain the following results for the cases n = 2 and n = 3.

Theorem A. Let k be a field of characteristic not equal to 2 Then the class of the
classifying stack B PGL2 is the inverse of the class of PGL2 in K0(Stackk).

Theorem B. Let k be a field of characteristic not equal to 2 or 3 containing all third
roots of unity. Then the class of the classifying stack B PGL3 is

{PGL3}
−1 +

(
{BN3} −

L3

(L − 1)2(L + 1)(L2 + L + 1)

)
L − 1

L10 − 1

in K0(Stackk). Here N3 denotes the normaliser of the maximal torus in PGL3.

The groups PGLn themselves have classes which are polynomials in L in K0(Vark).
More precisely, the classes are given by

(L − 1)−1
n−1∏

i=0

(Ln − Li).

Recall that the cohomological Euler characteristic EC5 of Ekedahl’s, taking values in
K̂0(Cohk) is multiplicative with respect to torsors for connected groups. Furthermore,
the induced map K0(Stackk) → K̂0(Cohk) is injective on rational functions in L. Hence
the question of {B PGLn} being the inverse of {PGLn} is equivalent to the question of
{B PGLn} being a rational function in L. Therefore Theorem B, although not giving
a definitive answer regarding the question of multiplicativity of B PGL3, reduces the
problem to the question of rationality in L of the class of BN3.

The group N3 is 2-dimensional and may be explicitly described as the group of 3 × 3
monomial matrices modulo the scalar matrices. The lack of low-dimensional faithful
representations for this group makes it harder to attack than the other groups arising in
the computations.
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It should be remarked that the techniques used for computing the results above do not
extend well to corresponding computations for projective general linear groups of higher
dimension. In particular, the results give no evidence that the multiplicativity relations
should be true for higher n. That we repeatedly get rational functions in L in our
computations seems to stem from the fact that we are getting away with working with
representations of low dimension and that the orbit spaces of such representations tend
to be rational. If I am allowed to speculate, I would rather guess that the multiplicativity
relation will fail, if not for n = 3 so for higher n.

1.7 Outline

Among the preliminaries in Section 2 are a couple of standard facts about stacks, alge-
braic groups, torsors and moduli spaces. They will be used later in the work, but are
not typically found in introductory text books about scheme theory. This will serve the
two-fold purpose of establishing notation and reviewing the facts to non-experts.

In Section 3, we develop some of the basic properties of the Grothendieck group of
stacks. The main purpose is to make the text self-contained. Apart from Proposi-
tion 3.11 and 3.12 these results already occur, either explicitly as propositions or as
simple consequences of such, in for instance the preprint by Ekedahl [Eke09a].

Section 3 also introduces the main techniques for computing the class of a classifying
stack. They are similar to the ones used by Ekedahl in [Eke09b] to compute the classes
of classifying stacks for some finite groups. The strategy is to find a suitable linear
representation V of the group G in question. This gives a relation between the class of
BG with the class of the stack quotient [P(V )/G]. This stack quotient may in turn be
stratified into pieces which will hopefully be easier to understand.

In Section 4, these techniques are applied to the projective linear groups PGL2 and
PGL3. We will use geometrical representations of the groups acting on the space of
hypersurfaces in projective space. In the case of PGL2, this quickly leads to the result
in Theorem A. The case of PGL3 requires more work. Here we will use the natural
representation on the space of planar cubic curves. This space may be subdivided into
two according to whether the curves are singular or not. The computation of the singular
part is reduced to the computation of the group of automorphisms of curves induced by
projective transformations. These automorphism groups are determined in Appendix A.

Next, in Section 5, we study the stack [Hns/ PGL3] of non-singular planar cubics up to
projective equivalence. This is related to the moduli stack M1,1 of elliptic curves. The
main result of this section is that [Hns/ PGL3] is a gerbe over M1,1. More precisely, the
stack [Hns/ PGL3] is equivalent to the classifying stack of the 3-torsion subgroup E [3] of
the universal curve E over M1,1. This equivalence might well have been noted by others,
but I am not aware of any references.

Finally, in Section 6, we use the equivalence from the previous section to compute the
class of [Hns/ PGL3]. The key to this computation is to embed the 3-torsion subgroup
of an arbitrary family of elliptic curves into a special algebraic torus and to compute the
class of the quotient. We show that under mild hypotheses on the base field, the class
of [Hns/ PGL3] equals the class of M1,1, which in turn is shown to be equal to L.
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2 Preliminaries

2.1 Notation and conventions

Our schemes and algebraic spaces are by default assumed to be of finite type over a
base field k. We denote the categories of these objects by Schk and Spacek respectively.
Some of the results are true in a more general setting without the proofs being harder.
In these cases, we will write the conditions explicitly. By variety we mean a reduced
scheme of finite type over a field k. The category of varieties over k is denoted by Vark.

When working with moduli problems, algebraic groups and actions of algebraic groups,
it is often extremely useful to adopt the functor of points perspective. When doing so,
we shall use the term sheaf to mean a sheaf of sets on the site of schemes with the fppf
topology over some base scheme. The symbols ∅ and ∗ denote the initial and terminal
objects respectively in this sheaf category. We shall generally make no distinction be-
tween a scheme and the functor it represents. The terms injective, surjective and image
will be used with their sheaf theoretic meanings. If we mean something else, we shall
clarify this by writing for instance schematic image or surjective on geometric points.

When talking about groups, we will usually mean group objects in whatever category
we are working with. When we need to be more specific, we write sheaf of groups,
group scheme or group varieties for group objects in the category of sheaves, schemes or
varieties respectively.

When working with stacks, we shall often describe them as categories fibred in group-
oids over the site of schemes with the fppf topology. Algebraic stacks are assumed to be
of finite type over the base field and have affine stabilisers. We denote the 2-category
of such objects by Stackk. The assumptions allow us to invoke the following result by
Kresch [Kre99].

Proposition 2.1 (Kresch). A finite type algebraic stack with affine stabilisers has a
non-empty open substack which is the global quotient of a scheme by GLn.

Our assumptions ensures that every algebraic stack admits a finite stratification by
locally closed substacks which are global quotients by GLn.

2.2 Groups of multiplicative type

We recall some terminology and basic facts about groups of multiplicative type. The
standard reference for this is [DG64] exposé VIII-X. A more elementary treatment in
the case where the base is affine is given in [Wat79].

Given a group G, we may consider its Cartier dual, which we denote by G∨. This is
defined as the sheaf Homgr(G, Gm). There is a natural homomorphism from G to its
bidual, and we say that G is reflexive provided that this is an isomorphism. Since taking
the Cartier dual respects base change, it is clear that reflexivity is a local property.

The constant abelian groups are reflexive, and groups isomorphic to their duals are
called diagonalisable. Diagonalisable groups are always representable by schemes. They
are affine and of finite type if and only if they come from finitely generated abelian groups.
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Since we shall only be interested in this case, we will henceforth drop the modifiers finite
type and finitely generated respectively in this context. The dual of Z/nZ for a positive
integer n is the group µn of n-th roots of unity and the dual of Z is Gm. Since the
Cartier dual respects products, this gives the full classification of diagonalisable groups.

A group which is étale locally diagonalisable is said to be of multiplicative type. The
groups of multiplicative type form an abelian category and the Cartier dual gives an in-
volutive exact anti-equivalence to the abelian category of locally constant abelian groups.

A locally constant group is said to be split if it is actually constant. Similarly a group
of multiplicative type is said to be split if it is diagonalisable. Note that the terminology
is relative to in which class we consider the group. For instance, the group µ3 over the
base Q is non-split as a locally constant group but split as a group of multiplicative type.

A group which splits after a finite étale base change is called isotrivial. Over a con-
nected base S a choice of geometric point s gives an exact equivalence of the category of
isotrivial locally constant groups and the category of continuous π1(S, s)-representations
on finitely generated abelian groups. Here π1(S, s) denotes the étale fundamental group
and the abelian groups are considered topological groups endowed with the discrete
topology.

A group of multiplicative type which locally corresponds to a torsion free abelian
group is called a torus. A torus is called quasi-trivial if it corresponds to a permutation
representation of the étale fundamental group of the base.

2.3 Torsors

The theory of torsors is worked out in great detail in for instance Giraud’s book on non-
abelian cohomology [Gir71]. A shorter and more basic introduction is given in Milne’s
book on étale cohomology [Mil80, Section III.4]. In this section, we recall some of the
facts that will be important for this work.

Let G be a sheaf of groups on a site C. By a pseudo-torsor for G we mean a sheaf of G-
sets T on which G acts freely and transitively. We will usually assume that G acts on T
from the right, although the left action case of course is completely analogous. One way
of expressing that the action is free and transitive is to say that the map T ×G → T ×T
defined on generalised points by (t, g) 7→ (t, t · g) is an isomorphism. If in addition the
map T → ∗ is surjective, we call T a torsor.

Torsors will often be considered in the relative setting. If G → S is a group, we
say that T → S is a (pseudo-)torsor provided that it is a (pseudo-)torsor over the site
C/S. If G → ∗ is a group, we will frequently abuse language and say that T → S is a
(pseudo-)torsor for G when we actually mean that it is a (pseudo-)torsor for G×S → S.

Let X and Y be right and left G-spaces respectively. If the action of G is free on
either X or Y , we may form the contraction product X ×G Y . This is defined as the
quotient of the product X × Y by the equivalence relation (t · g, x) ∼ (t, g · x) for any
g ∈ G. If Y is a torsor, we obtain an object which is locally isomorphic to X. We call
this the X-fibration associated to the torsor Y .

In general, there is no natural way to define a nontrivial G-action on X×GY . However,
if X also admits an action from the left by a group H, then so does X ×G Y . The

18



corresponding fact is of course true for right actions on Y . For an abelian group A,
we may utilise this to form contraction powers T n for A-torsors T . This is defined as
the n-fold contraction product. We may also define negative powers by letting T−1 be
defined as the sheaf IsomA(T,A) of A-equivariant isomorphisms. One verifies that we
have a natural isomorphism (T n)m ∼= T n+m for all integers n and m with this definition.

The torsors for a given group G form a category BG. The objects are torsors T → S
and the morphisms are Cartesian squares

T ′ T

S′ S

such that the morphism T ′ → T is G-equivariant in the obvious sense. The forgetful
functor to C taking T → S to S makes this a category fibred in groupoids over C. In
fact BG is a stack equivalent to the stack quotient [∗/G]. It is called the classifying
stack for G. Geometrically, it may be viewed as the moduli stack of G-torsors. The set
of isomorphism classes of torsors over S is denoted by H1(S,G). If G is abelian, this
coincides with the usual definition of cohomology as a derived functor.

Given an arbitrary stack X and an object X ∈ X (∗), we may consider the full substack
of objects locally isomorphic to X. This stack is equivalent to the classifying stack
BAut(X). Given an object Y → S locally isomorphic to X, the associated torsor is
given by Isom(Y, f∗X), where f denotes the structure map S → ∗. If the stack X is
embedded in the stack of sheaves over C, the 2-inverse of this functor is given by taking
the X-fibration associated to a given torsor. This is possible to define even if X is not
embedded in the stack of sheaves by using descent along torsors as described in [Vis05].

For an abelian group A, the stack BA has an alternative description in terms of
extensions by the constant group Z. Consider the category Ext1(Z, A) of short exact
sequences

0 → AS → ES → ZS → 0

of abelian groups over a base S, which we allow to vary. The morphisms are given by
morphisms of complexes. We have a functor Ext1(Z, A) → BA taking such a sequence
as above to the degree 1 part of ES , i.e. the subsheaf of elements in ES mapping to 1.
This functor admits a 2-inverse taking an AS-torsor TS to the exact sequence

0 → AS →
∐

i

T i
S → Z → 0,

where T i
S denote the i-th contraction power. This makes the two categories BA and

Ext1(Z, A) equivalent. A proof is given in [SGA72, Expose VII]. It is interesting to
note that the decategorification of this functor induces an isomorphism H1(S,A) →
Ext1(Z, A).

So far we have only discussed torsors in the general setting of sheaves. When working
with schemes the issue of representability enters. For affine group schemes every torsor
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is representable by an affine scheme. This follows by effective flat descent for affine
schemes and the fact that every torsor is locally isomorphic to an affine group. For
arbitrary group schemes the situation is more delicate since we do not have effective
descent for schemes in general. However, we do have effective descent for algebraic
spaces, so each torsor will at least be an algebraic space.

2.4 Special groups

In [CGS58] Serre and Grothendieck study a class of group varieties which they call the
special groups. They also give a complete classification of these groups over an alge-
braically closed field. The class is closed under extensions and only contains affine and
connected groups. All connected soluble groups are special, but among the semisimple
groups only products of SLn and Sp2n are.

Since we need to work over a general base, we will use a slightly different definition of
special group.

Definition. An algebraic group G → S is called special if for each G-torsor T → S′ over
an S-scheme S′ there is a non-empty open subscheme U ⊂ S′ such that T is trivial over
U . A group scheme over a more general base is considered special if the base change to
every scheme is.

Ekedahl remarks in [Eke09a] that this definition coincides with the one given by Serre
and Grothendieck if we only consider group varieties over an algebraically closed field.
But over a general base the classification is more subtle. It is still true that the class of
special groups is closed under extensions and contains Ga, GLn, SLn and Sp2n. But there
are non-split tori which are not special. This is, however, not the case for quasi-split
tori.

Proposition 2.2. Let S be an arbitrary scheme. Then any quasi-trivial torus T → S
is special.

Proof. First note that T is isomorphic to the group of units of a quasi-coherent sheaf of
OS-algebras A . Indeed, let S′ → S be a Galois extension splitting T with corresponding
Galois group Γ. Then, since T is quasi-trivial, it corresponds to the Γ-equivariant sheaf
of groups O

×
S′ × · · · × O

×
S′ where Γ acts by permuting the factors. This is on the other

hand the group of units in the Γ-equivariant sheaf of OS′-algebras OS′ × · · · × OS′ with
the corresponding permutation action. This sheaf of algebras descends to our desired A

on S.
Now, by flat descent for quasi-coherent sheaves, the fibred category of sheaves of A -

modules is a stack for the fppf topology. Therefore the AutA −mod(A ) = A ×-torsors
classify the rank 1 locally free sheaves for A . But such sheaves, being quasi-coherent,
trivialise Zariski locally, so the same holds for the torsors.

2.5 Elliptic curves

Fix a scheme S. By a curve C/S we shall always mean a smooth, proper morphism
C → S of algebraic spaces of relative dimension 1 with connected geometric fibres. We
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say that C/S is of genus g provided that all its geometric fibres are.

Given an algebraic space X/S, we may consider its Picard sheaf PicX/S (see [Kle05]).
This is the fppf sheafification of the functor taking a point T → S to the Picard group
Pic(XT /T ). In the case when we have a genus g curve C/S, there is a degree function
deg : PicC/S → ZS to the constant sheaf ZS. For projective curves C/S, this is a
consequence of the Hilbert polynomial being constant over flat families. In general, it
follows from the fact that curves are étale locally projective. The degree function gives
rise to the exact sequence

0 → Pic0
C/S → PicC/S

deg
→ ZS → 0

of sheaves of abelian groups. The degree d part of PicC/S , i.e. deg−1(d), will be denoted

by Picd
C/S . The sheaf of groups Pic0

C/S is called the Jacobian of C/S.

A global section s ∈ C(S) of a curve C/S gives rise to a (relative) effective Cartier
divisor which we denote by [s] (see [KM85, 1.2]). The corresponding line bundle, i.e.
the inverse of the ideal sheaf of [s], is denoted by OC([s]) and has degree 1. The map
s 7→ OX([s]) extends to a map of sheaves C → Pic1C/S. For genus 1 curves, this is an
isomorphism (see [KM85, 2.1]), making C/S a torsor for its Jacobian.

Proposition 2.3. Let π : C → S be a genus 1 curve and L a line bundle of degree 3.
Then L is very ample in the sense of [DG61, §4] and π∗(L ) is locally free of rank three.

Proof. If S is the spectrum of a field k, it follows from Riemann-Roch that the dimension
of H0(C,L ) is 3 and that H1(C,L ) vanishes. Hence it follows that π∗(L ) is locally free
of rank 3 in the general case and that π∗ commutes with any pull-back by the cohomology
and base change theorem. Thus surjectivity of the canonical map π∗π∗L → L follows
from the fibrewise surjectivity and we get an induced map ι : C → P(π∗L ). This is
proper since C is proper and P(π∗L ) is separated over S. Therefore, as a consequence
of Zariski’s Main Theorem [DG66, Thm. 8.12.6], we may also check that it is a closed
immersion fibrewise. Hence the proposition follows.

An elliptic curve is a pair (E/S, 0E ∈ E(S)), where E/S genus 1 curve. By abuse of
notation, we often omit the zero section 0E from the notation, and simply write E/S.
Since E/S is a torsor for Pic0

C/S , the section 0E induces an isomorphism Pic0
C/S → E

giving E/S a canonical structure of abelian scheme by transport of structure.

Given an integer n, the sheaf of n-torsion subgroups E[n] of an elliptic curve E/S is
finite and flat of finite presentation. If, in addition, the integer n is invertible in OS ,
the group E[n] is étale over S and locally isomorphic to the constant sheaf of groups
(Z/nZ)2S . There is an alternating perfect pairing e : E[n] ×S E[n] → µn called the Weil
pairing [Mum08].

The elliptic curves over a given base scheme S are parameterised by the moduli stack
of elliptic curves, which we denote by M1,1. As a category fibred in groupoids over
SchS , it has elliptic curves E/T as objects, with T being a scheme over S. A morphism
E′/T ′ → E/T is defined to be a Cartesian square
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E′ E

T ′ T

such that the section of E/S pulls back to the section of E′/S′. We have a morphism of
stacks E → M1,1, where E is the universal elliptic curve. It is defined similarly as M1,1,
but each of its objects E/T has an additional section σ : T → E. The map E → M1,1

is the functor forgetting this section. This map has a right inverse 0E : M1,1 → E which
just duplicates the zero section. The universal elliptic curve has the property that for
each elliptic curve E/T , we have an essentially unique morphism T → M1,1 inducing a
2-Cartesian diagram

E E

T M1,1.

Hence the map E → M1,1 is schematic, and we may view E/M1,1 as an elliptic curve
over the stack M1,1. Just as elliptic curves over schemes, this has the structure of a
group scheme.

3 The Grothendieck group of stacks

3.1 The Grothendieck group of varieties

Let k be an arbitrary field. The Grothendieck group of varieties, denoted by K0(Spacek),
is the abelian group generated by isomorphism classes of objects in Spacek subject to
the relations

{X} = {X \ Z} + {Z},

where Z denotes a closed subspace of X. This relation is sometimes referred to as the
scissor relation. The group admits the structure of a commutative ring with identity.
The product is defined on generators by {X} · {Y } = {X × Y } and the identity is given
by the class of the base {∗}. Also the class of the affine line {A1

k} plays an important
role. It is called the Lefschetz class and will be denoted by L.

Note that similar constructions are possible if we instead of the category Spacek start
with the category Vark of varieties or the category Schk of finite type schemes over k.
However, the natural ring homomorphisms

K0(Vark) → K0(Schk) → K0(Spacek),

induced by the corresponding inclusions of categories, turn out to be isomorphisms.
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Note also that the finiteness hypothesis is essential for interesting results. Indeed,
otherwise we could play the Eilenberg Swindle and consider the the disjoint union

∐
X

of an infinite number of copies a schemes X. Removing one copy of X would give an
isomorphic scheme, and the scissors relation would force the class of X to be zero.

The following basic fact about special fibrations will be used repeatedly:

Proposition 3.1. Let E → S be a fibration of algebraic spaces with fibre F . Assume
that the fibration is associated to a torsor for a special group. Then {E} = {F}{S} in
K0(Spacek).

Proof. Since the fibration is associated to a special group G, there is a non-empty open
subset U ⊂ S over which EU → U is isomorphic to U × F → U . Then {EU} = {F}{U}
in K0(Spacek). If we let Z be any closed subscheme of S with complement U , then
also EZ → Z is associated to a G-torsor. Under the hypothesis that {EZ} = {F}{Z},
we may therefore conclude that indeed {E} = {F}{S} since {E} = {EU} + {EZ}
and {S} = {U} + {Z} by the scissors relation. Hence the result follows by noetherian
induction on S, the statement for S = ∅ being trivial.

3.2 The Grothendieck group of stacks

Next we consider the extension of these notions to algebraic stacks. By the Grothendieck
group of algebraic stacks, K0(Stackk), we mean the abelian group presented by generators
{X} being equivalence classes of objects X in Stackk, subject to the relations

GS1 {X} = {Z} + {X \ Z} if Z is a closed substack of X ,

GS2 {E} = {An ×X} if E → X is a vector bundle of constant rank n.

Note that due to Proposition 3.1, axiom GS2 would be redundant in the definition of
K0(Spacek).

Lemma 3.2. Let n be a natural number and T → S be a GLn-torsor of algebraic
stacks. Then we have the relation {T } = {GLn}{S} with {GLn} =

∏n−1
i=0 (Ln − Li)

in K0(Stackk). In particular, since ∗ → B GLn is a GLn-torsor, we have that 1 =
{GLn}{B GLn}, so {GLn} is invertible in K0(Stackk).

Proof. Let E → S be the vector bundle associated to the GLn-torsor T → S. For
1 ≤ i ≤ n, consider the map E i →

∧i E from the i-th fibre power to the i-th exterior
power over S taking an i-tuple of sections to their exterior product. Define the stack Fi

to be the complement of the pullback of the zero section along this map in E i. Informally,
we may think of this as the stack of i-tuples of linearly independent vectors in E . In
particular F0 ≃ S and Fn, being the frame bundle of E , is isomorphic to T as GLn-torsor
over S.

The stack E×SFi is a rank n vector bundle over Fi. The map E ×SFi →
∧i+1 E×SFi

defined by (v, v1, . . . , vi) 7→ (v∧v1∧· · ·∧vi, (v1, . . . , vi)) may be viewed as a morphism of
OFi

-modules. Its kernel is a rank i vector bundle over Fi whose complement in E ×S Fi
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is Fi+1. Hence the class of Fi+1 in K0(Stackk) is (Ln−Li) · {Fi}, as seen by using axiom
GS1 once and axiom GS2 twice. By induction on i, we therefore get the relation

{T } =

n−1∏

i=0

(Ln − Li){S}.

The statement about the class of GLn follows from the special case where T = GLn and
S = ∗. The statement about a general GLn-torsor follows by substituting this back into
the displayed equation.

Proposition 3.3. Let X → S be a morphism of stacks, and let C be a fixed element
in K0(Stackk). Assume that for each morphism S → S with S a scheme, we have the
relation {XS} = C · {S}. Then we also have the relation {X} = C · {S}.

Proof. If Z is a closed substack of S with complement U , it is enough to give a proof
for XZ → Z and XU → U separately. Indeed, axiom GS1 gives us the relations {X} =
{XZ} + {XU} and {S} = {Z} + {U} which then would give us the desired result. It
follows by noetherian induction that it is enough to prove that the proposition holds
over a non-empty open subset of S. Hence, by Proposition 2.1, we may assume that S
is a global quotient [S/ GLn] with S a scheme. Consider the 2-Cartesian square

XS X

S S.

The horizontal arrows are GLn-torsors, so {S} = {GLn}{S} and {XS} = {GLn}{X} by
Lemma 3.2. Combining these relations with the hypothesis about pullbacks to schemes
gives {GLn}{X} = C · {GLn}{S}. Since the factor {GLn} is invertible, we may cancel
it to get the desired result.

Remark. By using a similar kind of argument, one can prove that the homomorphism
K0(Spacek) → K0(Stackk) induced by the inclusion of Spacek in Stackk is a localisation
map with respect to inversion of the classes {GLn} for all n. For a complete proof,
see [Eke09a].

Corollary 3.4. Let G be a special group and let T → S be a G-torsor of algebraic
stacks. Then we have the relation {T } = {G}{S} in K0(Stackk). In particular, since
∗ → BG is a G-torsor, we have that 1 = {G}{BG}, so {G} is invertible in K0(Stackk).
Furthermore, if F is an algebraic G-space and E → S is an F -fibration associated to a
torsor as above, then {E} = {F}{S}.

Proof. This is a direct application of Proposition 3.3 to Proposition 3.1.
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Corollary 3.5. Let G → H be a homomorphism of algebraic groups with H special,
and let F be an algebraic G-space with its G-action factoring through H. Assume that
X → S is an F -fibration of stacks associated to a G-torsor. Then {X} = {F}{S} in
K0(Stackk).

Proof. Denote the G-torsor by T → S. Since the action of G on F factors through H,
we may view F as a H-space, which we denote HF . Then we get a natural identification
F ∼= GHH×H

HF , where GHH is just the group H regarded a (G,H)-space. The fibration
X is obtained by taking the contraction product T ×G (GHH ×H

HF ). Associativity of
the contraction product gives that X is equivalent to the HF -fibration associated to the
H-torsor T ×G

GHH . Since H is special, the result follows from Corollary 3.4.

3.3 Computing the class of a classifying stack

In the actual computations, we shall use the following special cases of the multiplicativity
results of the last section.

Proposition 3.6. Let G be an affine group over a field k acting linearly on an n-
dimensional k-vector space V . Then we have the relations

{BG} = {[V/G]} · L−n = {[P(V )/G]} ·
L − 1

Ln − 1

in K0(Stackk).

Proof. For the first equality, we apply Corollary 3.5, with GLn as our special group, the
space V as our fibre and the 1-morphism [V/G] → BG as our V -fibration associated to
the G-torsor ∗ → BG. For the second equality, we instead have the fibre P(V ) and the
P(V )-fibration [P(V )/G] → BG associated to the same torsor as above.

Proposition 3.7. Let 1 → G → E → K → 1 be an exact sequence of algebraic space
groups, flat over an algebraic stack S, with E special. Then we have the relation

{BSG} = {K}/{E}

in K0(StackS).

Proof. The action of E on K by left translation gives an E-torsor K → [K/E], so
{K} = {E}{[K/E]} by Corollary 3.4. By the same corollary, we know that the class
{E} is invertible. Hence the result follows follows from the fact that the stack [K/E] is
equivalent to BSG.

Remark. Note that since E is special, it has affine fibres. This property is stable under
taking closed subgroups, so the same is true for G. Since G is assumed to be flat, and
also of finite presentation by our default assumption, over S, it follows that its classifying
stack is algebraic with affine stabilisers. Hence the statement above makes sense.

As a direct application of Proposition 3.7, we compute the class of the classifying stack
of the group of n-th roots of unity.
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Proposition 3.8. The class of classifying stack Bµn for the group of n-th roots of unity
is trivial in K0(Stackk) for any field k.

Proof. Consider the Kummer sequence 1 → µn → Gm → Gm → 1. Since Gm is special,
the statement follows from Proposition 3.7.

For more complicated groups G, it is harder to compute the class of the classifying
stack BG. Our strategy will be to find a linear representation V and invoke Corollary 3.6.
This reduces the problem to compute the class of the stack [V/G]. Stratifying V into
locally closed G-invariant subschemes allows us to reduce the problem further. Before we
illustrate how this can be done by computing some examples, we prove some propositions
which will allow us to think of the action in a purely topological way for smooth groups
G.

Assume that G acts on a space X. Then we have two maps σ, q : G × X → X, which
are the action map and the projection on the second factor respectively. Recall that a
subsheaf Z ⊂ X is said to be invariant under the the action provided that the pullback
of Z along σ is equal to the pullback along q when viewed as subsheaves of G×X. If Z
is G-invariant, then we get a 2-Cartesian square

Z X

[Z/G] [X/G]

allowing us to descend the properties of Z → X to the induced 1-morphism [Z/G] →
[X/G].

Lemma 3.9. Let G be a smooth group acting on a scheme X of finite type over a field
k, and let Y be a reduced locally closed subscheme of X. Then Y is invariant under G
if its closed points are in the set theoretic sense.

Proof. Let σ and q denote the morphisms from G×X → X given by the action and the
second projection respectively. If we assume that Y → X is an open immersion, then
the pullbacks along σ and q will be as well. Since, under our finiteness assumptions,
an open subscheme is uniquely determined by the underlying set of closed points, the
proposition holds in this case.

If we instead assume that Y is closed and reduced, the same will hold for both pullbacks
since the group is smooth. Now the same argument as in the open case apply, since the
reduced scheme structure on a closed set is unique.

In the general case, we have a factorisation Y → Y → X of immersions with the
first being open and the second being closed and with Y reduced. Since the action is
continuous, the set of closed points in Y will be G-invariant, and the lemma follows from
the previous two cases.
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Proposition 3.10. Let G be an algebraic group acting on a reduced scheme X over a
field k containing a rational point x. Assume that G acts transitively on closed points.
Then [X/G] is equivalent to BGx, where Gx denotes the stabiliser of x under the action
of G.

Proof. The fact that the induced 1-morphism BGx → [X/G] is fully faithful is formal.
Denote the pullback of x along σ by R. In order to verify that BGx → [X/G] is also
essentially surjective, we prove that the composition

r : R → G × X
q
→ X

is faithfully flat. Note that R admits a natural G-space structure, making the morphism
r G-equivariant. On generalised points, this action is given by h · (g, e) := (gh−1, he).
Since X is reduced, it follows from generic flatness that there is an open subscheme
U ⊂ X over which r is flat. Using the G-equivariance and transitivity on points, we see
that r must be flat everywhere. The transitivity also implies that r is surjective, so r is
indeed faithfully flat.

We end the section by working out some examples using the techniques described in
this section. The results will be used in the next section.

Proposition 3.11. Consider the group G = Gm ⋊ Σ2, with Σ2 acting as the auto-
morphism group of Gm. If 2 is invertible in the field k, then {BG} = L(L2 − 1)−1 in
K0(Stackk).

Proof. To see this, consider the following action of G on P1. The subgroup Gm acts
by multiplication on the first homogeneous coordinate and by multiplication with the
inverse on the second. The subgroup Σ2 acts by permuting the homogeneous coordinates.
This action obviously comes from a linear action, so we may apply Proposition 3.6 and
get {BG} = {[P1/G]}(L + 1)−1.

The G-space P1 has two orbits. A closed orbit containing the point (1:0) and an open
orbit containing (1:1). The stabilisers of these points are Gm and µ2 × Σ2 respectively.
Stratifying the stack [P1/G] according to these orbits and applying Proposition 3.10
gives the relation {[P1/G]} = {BGm} + {B(µ2 × Σ2)}. Since Gm is special, we have
{BGm} = (L − 1)−1. Furthermore µ2 × Σ2 = µ2 × µ2 under our assumptions on the
base field, so B(µ2 × Σ2) is isomorphic to Bµ2 × Bµ2 which has class 1 according to
Proposition 3.8. Combining these relations gives the desired result.

Proposition 3.12. Consider the subgroup G = µn ⋊ Σ2 of the group Gm ⋊ Σ2 from the
previous proposition. Assume that 2 is invertible in the field k and that 4 does not divide
n. Then {BG} = 1 in K0(Stackk).

Proof. If n = 2q, with q odd, we have an isomorphism G ≃ µ2 × (µq ⋊ Σ2) which gives
BG ≃ Bµ2 × B(µq ⋊ Σ2). This reduces the problem to the case when n is odd.

By using the same representation of G on P1 as in the proof of the previous proposition,
we get the relation {BG} = {[P1/G]}(L + 1)−1. As before, we may also isolate the
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closed orbit {0,∞} to get the relation {[P1/G]} = {Bµn} + {[U/G]} = 1 + {[U/G]},
where U denotes the complement. Since the subgroup µn acts freely on U , we have
an isomorphism [U/G] ∼= [(U/µn)/Σ2]. Here U/µn

∼= Gm on which Σ2 acts as the
automorphism group of Gm. This action has two fixed points, namely ±1. The quotient
Gm/Σ2 is isomorphic to A1. Therefore, the quotient (Gm \ {±1})/Σ2 is isomorphic
to A1 minus two points. Hence the usual stratification argument gives {[Gm/Σ2]} =
2{BΣ2} + L − 2 = L. The result follows by combining the relations.

As a corollary, we get a very special case of Ekedahl’s result that {BΣn} = 1 for all n
without any assumptions on the base field k [Eke09b].

Corollary 3.13. Assume that 6 is invertible in k and that k contains the third roots of
unity. Then {BΣ3} = 1.

Remark. Note that the proof above does not work without modification for n even, since
then the subgroup µ2 < µn acts trivially on P1.

4 The classes of B PGL2 and B PGL3

In this section, we start our investigation of the classes of B PGL2 and B PGL3 in
K0(Stackk).

The group PGLn, being the automorphism group of Pn−1, has a natural action on
the space H of degree d hypersurfaces in Pn−1. In the case when d = n, this action is
induced by a linear representation of PGLn. Indeed, assume that d = n and let V be
an n-dimensional vector space. Consider the action of GL(V ) on the space (SdV )∨ of
d-forms given by

α · f = v 7→ (det α)f(α−1(v)), α ∈ GL(V ), f ∈ (SdV )∨.

Since d = n, the centre of GL(V ) acts trivially on (SdV )∨, which gives us a linear PGLn-
representation. The space H of degree d-hypersurfaces in Pn−1 is the projectivisation
P((SdV )∨). For a detailed proof of this, see [Ser06, 4.3.2].

The fact that the group action is induced by a linear representation allows us to ap-
ply Proposition 3.6. This reduces the problem of computing the class of B PGLn to
computing the class of the stack quotient [H/ PGLn]. The space H admits a strati-
fication into the open subspace Hns and the closed subspace Hsing, which denote the
spaces of non-singular and singular hypersurfaces respectively. Since this stratification
is PGLn-invariant, we get a corresponding stratification of [H/ PGLn] into [Hns/ PGLn]
and [Hsing/ PGLn].

When computing the stabilisers, it is convenient to use coordinates. When doing this,
we will use the same conventions as described in the appendix. In order to avoid non-
reduced stabiliser groups, we shall assume that n! is invertible in the base field k. We
let K denote an arbitrary field extension of k.
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4.1 The class of B PGL2

In the case n = 2, the spaces Hns and Hsing consist of one orbit each. Let xy and x2 be
representatives for these orbits and let Gxy and Gx2 denote the corresponding stabilisers.

We prove that the group Gx2 is isomorphic to Ga ⋊ Gm. This follows if we prove
that the stabiliser of the corresponding action of GL2 is the subgroup of lower triangular
matrices. This is easily seen to be true on K-points. Furthermore, a general element
I + ε(aij) of LieK GL2 takes the form x2 to x2 + 2xε(a11x + a12y). Since we are in
characteristic 6= 2, this forces a12 = 0 for an element of the stabiliser of x2. Hence the
dimensions of the Lie algebra and the group coincides. This proves that the stabiliser is
smooth and so is determined by its points.

The stabiliser of xy in GL2 is the subgroup of monomial matrices. As in the previous
case, this is first verified on points. A similar Lie-algebra computation as above, gives
that the stabiliser is smooth regardless of the characteristic of the field. Taking the
quotient with the scalar matrices gives Gxy = Gm ⋊ Σ2.

The group Ga ⋊ Gm is special, so the class of its classifying stack may be computed
directly as the inverse (L(L− 1))−1 of the class of the group by Corollary 3.4. The class
of B(Gm⋊Σ2) was shown to be L(L2−1)−1 in Proposition 3.11. Combining these results
gives the expression

(
1

L(L − 1)
+

L

L2 − 1

)
L − 1

L3 − 1
=

1

L(L2 − 1)

for the class of B PGL2. This is the inverse of the class of PGL2, which proves Theorem A.

4.2 The classes corresponding to singular plane cubics

There are eight singular cubic curves in P2 up to projective equivalence. These are listed
in the appendix. This gives a stratification of Hsing into eight orbits, each containing
rational points. Hence we get a corresponding stratification of the stack [Hsing/ PGL3]
into eight locally closed substacks, each equivalent to the classifying stack of a stabiliser.
This allows us to write the class of [Hsing/ PGL3] as the sum of the classes of these
classifying stacks. The stabiliser groups are

a) G2
a ⋊ GL2, b) G2

a ⋊ G2
m, c) G2

a ⋊ G, d) N3,
e) Gm ⋊ Σ2, f) Ga ⋊ Gm, g) Gm, h) µ3 ⋊ Σ2

and we will compute the classes of their classifying stacks to

a) L−3(L + 1)−1(L − 1)−2 b) L−2(L − 1)−2 c) L−2(L − 1)−1 d) {BN3}
e) L(L + 1)−1(L − 1)−1 f) L−1(L − 1)−1 g) (L − 1)−1 h) 1.

Most of these are easy to compute. Indeed, the groups in the cases a, b, f and g are
special, so the classes of their classifying stacks are inverses to the classes of the groups
themselves. The classes in the cases e end h are given by Proposition 3.11 and 3.12
respectively.

In case c, we have the group G2
a ⋊ G, where G is the subgroup Gm ⋊ Σ3 of GL2

generated by its centre and the embedding of Σ3 induced by its irreducible 2-dimensional
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representation. The inclusions G →֒ GL2 and G2
a ⋊ G →֒ G2

a ⋊ GL2 both give rise to
the same quotient space. Since both groups on the right hand side of these arrows are
special, we get the relation

{BG}{GL2} = {B(G2
a ⋊ G)}{G2

a ⋊ GL2}

by Proposition 3.7. This reduces the problem of computing {B(G2
a ⋊ G)} to computing

{BG}. To do this, consider the representation V given by the embedding of G in GL2

just mentioned. This gives us L2{BG} = {[V/G]}. The stack {[V/G]} may be stratified
in the substacks BG and [V0/G], where V0 denotes the subspace of V where the origin is
removed. Using the scissors relations and solving for {BG} gives {BG} = [V0/G]/(L2−1).
Note that we have an equivalence [V0/G] ∼= [P1/Σ3]. The action of Σ3 on P1 in the latter
stack quotient factors through GL2. Hence {[P1/Σ3]} = {P1}{BΣ3} = L+1. This allows
us to conclude that the class of B(G2

a ⋊ G) is L−2(L − 1)−1.

5 Some equivalences of moduli stacks

Recall that Hns denotes the space of smooth degree 3 hypersurfaces in P2. In the last
section, we saw how the class of B PGL3 was related to the class of the stack [Hns/ PGL3].
We shall now study the stack quotient [Hns/ PGL3] more closely. It may be worth noting
that in this section we will not need any restrictions on the base we are working over.
The results hold over Spec Z.

Since all degree 3 hypersurfaces in P2 are smooth genus 1 curves, it seems natural to
assume that [Hns/ PGL3] is somehow related to the moduli stack M1,1 of elliptic curves.
The main result of this section is that [Hns/ PGL3] is equivalent to the neutral gerbe
BM1,1

E [3] over M1,1 associated to the 3-torsion subgroup E [3] of the universal curve E .
We do this by first establishing the equivalence to M1,(3), the moduli stack of genus 1
curves polarised in degree 3.

5.1 Moduli of polarised genus 1 curves

Consider a smooth genus 1 curve C → S over a scheme. By a polarisation of C in
degree d, we mean a global section of the sheaf Picd

C/S . Since for any morphism S′ →

S there is a natural identification of PicC/S ×S S′ with PicCS′/S′ , we may pull back
polarisations on C → S to CS′ → S′. This allows us to define the fibred category M1,(d)

of genus one curves polarised in degree d. The objects are genus 1 curves together
with degree d polarisations, and the morphisms are Cartesian squares respecting these
polarisations. That M1,(d) is a stack follows from the sheaf property of Picd

C/S .

We want to establish an equivalence between the stack quotient [Hns/ PGL3] and
M1,(3). First we give an explicit description of the pre-stack quotient [Hns/ PGL3]pre as
a category fibred in groupoids over the category of schemes. Its object are the same as
the objects of Hns, i.e. smooth genus 1 curves embedded in P2

T over some scheme T .
Now let f : T ′ → T be a morphism of schemes and let ι′ : C ′ →֒ P2

T ′ and ι : C →֒ P2
T be

objects over T ′ and T respectively. A morphism from ι′ to ι over f is then given by a
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pair (σ, α), where α is an automorphism of P2
T ′ and σ : C ′ → C is a morphism such that

the diagram

C ′ P2
T ′

C P2
T

σ P2(f)

α ◦ ι′

ι

is Cartesian.
Now we define a 1-morphism f : [Hns/ PGL3] → M1,(3) of stacks. By the universal

property of stackification, it is enough to define it on the pre-stack quotient, which we
denote by [Hns/ PGL3]pre. It takes objects ι : C →֒ P2

T to pairs (C → T, [ι∗O(1)]) and
morphisms (σ, α) to σ. Note that f is well-defined on objects since smooth degree 3
hyper surfaces of P2 are smooth genus 1 curves and well-defined on morphisms since the
automorphism α does not affect the isomorphism class of the pulled back line bundle.

Proposition 5.1. The 1-morphisms f : [Hns/ PGL3] → M1,(3) defined in the paragraph
above is an equivalence of stacks.

Proof. Let ι : C → P2
T be an object of [Hns/ PGL3]pre over a scheme T , and denote

the structure maps to T by q : C → T and p : P2 → T respectively. We also use the
shorthand notation L for the invertible sheaf ι∗O(1). In order to prove that f is fully
faithful, it is enough to prove that it induces an isomorphism between the automorphism
group of ι : C → P2

T in [Hns/ PGL3] and the automorphism group of (q : C → T, [L ]) in
M1,(3).

First note that the OT -module homomorphism p∗O(1) → q∗L corresponding to the
embedding as described in [DG61, §4.2] is an isomorphism. Since this may be verified
locally, we may assume that we have a short exact sequence of quasi-coherent OP2-
modules

0 → O(−3) → O → ι∗OC → 0. (1)

Tensoring with the fundamental sheaf O(1) and using the projection formula on the last
term gives a new short exact sequence

0 → O(−2) → O(1) → ι∗L → 0.

Pushing this forward to T gives rise to the exact sequence

0 → p∗O(−2) → p∗O(1) → q∗L → R1p∗O(−2).

The map in the middle is the canonical map mentioned above, and it is an isomorphism
since both the first and last terms vanish [Har77, Thm. III.5.1]. This allows us to
assume that P2

T = P(q∗L ) and that the embedding ι corresponds to the canonical map
ε : q∗q∗L → L .

The functor f is faithful. To prove this, it is enough to show that for any automorphism
of ι : C → P(q∗L ) of the form (idC , α), the P(q∗L )-automorphism α is the identity. This
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may be verified locally. Hence we may assume that the automorphism α is of the form
P(β), where β is an OT -module automorphism of q∗L . The criterion that α fixes the
embedding ι is that there exists an OC -module automorphism γ of L such that the
diagram

q∗q∗L L

q∗q∗L L

q∗β γ

commutes. By using the adjunction property of the pair (q∗, q∗), we see that β must be
of the form q∗γ. The automorphism γ may be viewed as a global section of O

×
C . If we

apply p∗ to the exact sequence (1), we get the exact sequence

0 → p∗O(−3) → p∗O → q∗OC → R1p∗O(−3).

Since both p∗O(−3) and R1p∗O(−3) vanish, we see that q∗OC
∼= p∗O, with the latter

sheaf being isomorphic to OT . Hence q∗γ is a global section of O
×
T . It follows that the

automorphism α is the identity.

The functor f is full. To prove this, we need to verify that the map on automorphisms
is surjective. Let σ be a T -automorphism of C such that [σ∗L ] = [L ] in PicC/T (T ).
It is enough to show that σ locally is given by an automorphism of P(q∗L ), so we may
assume that σ∗L ≃ L . The new embedding ι◦σ then corresponds to the automorphism
α : q∗L → q∗L given by s 7→ σ∗(s). It follows that P(α) : P(q∗L ) → P(q∗L ) is our
sought automorphism.

The functor f is essentially surjective. This may also be checked fppf-locally. Hence,
given an object (q : C → T, λ) of M1,(3), we may assume that λ comes from a line bundle
L of degree 3 on C. By Proposition 2.3, the push forward q∗L is locally free of rank 3,
and we get an embedding of C into the projective bundle P(q∗L ). By extending the base
further if necessary, we may assume that this bundle is P2

T , so our object (q : C → T, λ)
comes from an object of [Hns/ PGL3]pre.

5.2 An interlude on torsors

In order to describe M1,(3) as a classifying stack, we would like to reinterpret polari-
sations in terms of torsors. It turns out that much of this may be worked out in the
general theory for torsors for abelian sheaves over an arbitrary site C. Hence we make a
short interlude, working in this generality.

Let A be a fixed sheaf of abelian groups on C. Given an A-torsor T and a positive
integer n, we have a map nT : T → T n taking a local section t of T to its n-fold contrac-
tion power (t, . . . , t). In particular, nA : A → A is the map taking a generalised point
a to its n-fold product an using the group law. The kernel of this map is the n-torsion
subgroup of A, which we denote by A[n]. If A is an n-torsion group, there is a canonical
identification of T n with A for each A-torsor T .
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Lemma 5.2. Let A be a sheaf of abelian groups on a site C and T an A-torsor. If A is
an n-torsion group, then the torsor T n has a canonical global section κ.

Proof. Fix an object S ∈ C such that T (S) is non-empty and let x, y ∈ T (S). Then
y = a · x for some group element a ∈ A(S). We have yn = (a · x)n = an · xn = xn, since
A is an n-torsion group. It follows that T n has a canonical S-point κS = xn. Taking a
covering Si such that T (Si) has sections, the canonical local sections κSi

glue together
to the global section κ.

We define the category BnA, fibred over C, as the category of pairs (T → S, λ : S →
T n), where T → S is an A-torsor over some object S in C and λ is a global section of
T n. Morphisms are pullbacks of sheaves respecting the global sections. Recall that the
inclusion A[n] → A induces a morphism BA[n] → BA taking an A[n]-torsor T to the
A-torsor T ′ = A ×A[n] T . The canonical global section κ of T n allows us to define a
canonical global section (1, κ) of (T ′)n ∼= A ×A[n] T n. Hence we get a natural map

BA[n] → BnA

through which BA[n] → BA factors. This is not an equivalence in general, but we have
the following result.

Proposition 5.3. Let A be a sheaf of abelian groups such that the map nA : A → A is
surjective. Then the natural map BA[n] → BnA is an equivalence of stacks.

Proof. We prove the equivalence by constructing a 2-inverse explicitly. Given an object
(T → S, λ), we may define the subsheaf Tλ ⊂ T over S as the pullback of nT : T → T n

along the map λ : S → T n. On S′-points, this may be described as

Tλ(S′) := {x ∈ T (S′) | xn = λ in T n(S′)}.

From this description it is straightforward to verify that the A-action on T restricts to
a well-defined A[n]-action on Tλ. This is free and transitive, making Tλ a pseudo-torsor
for A[n]. Locally, the morphism nT is just nA, so nT is surjective. Hence the same holds
for the structure map Tλ → S, which proves that Tλ actually is a torsor.

Given objects (T, λ) and T ′ in BnA and BA[n] respectively, we have natural maps

η(T,λ) : A ×A[n] Tλ → T, εT ′ : T ′ → (A ×A[n] T ′)(1,κ)

given on generalised points by (a, t) 7→ at and t 7→ (1, t) respectively. The reader may
verify that these are isomorphisms in the categories BnA and BA[n] respectively.

5.3 The stack of polarised genus 1 curves as a gerbe

Now we apply the results from the previous subsection to our situation with the stack
M1,(n) to show that it is a gerbe over M1,1. However, we cannot use the result directly,
since the base M1,1 is a stack rather than a scheme. Proposition 5.3 could be generalised
to this situation, but we shall instead just give the explicit description in this special
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case. Since it should be easy to fill in the details, we shall allow ourselves to be somewhat
sketchy.

The fibred category BM1,1
E [n] over schemes has pairs

(E → S, T → S),

as objects, where E → S is an elliptic curve and T → S is an E[n]-torsor. We will use
the rest of the section to prove the following proposition:

Proposition 5.4. The stack M1,(n) is equivalent to BM1,1
E [n].

Consider the fibred category (Bn)M1,1
E over schemes whose objects are triples

(E → S, T → S, λ : S → T n),

where E → S is an elliptic curve and T → S is an E-torsor. Now let (C → S, λ : S →
Picn

C/S) be an object of M1,(n). Since the Picard sheaf PicC/S is an extension of Pic0
C/S

by ZS, the component Pic1
C/S is an Pic0

C/S-torsor and Picn
C/S is canonically isomorphic

to its n-th contraction power. The group Pic0
C/S is an elliptic curve, being the Jacobian

of a genus 1 curve. Hence we get a well-defined 1-morphism M1,(n) → (Bn)M1,1
E over

M1,1 taking the object to

(Pic0
C/S , Pic1

C/S , λ : S → Picn
C/S).

Note that since C → S is a smooth genus 1 curve, there is a canonical isomorphism
C → Pic1

C/S , so this 1-morphism has an obvious 2-inverse.

Now we consider the functor f : BM1,1
E [n] → (Bn)M1,1

E . This is defined analogously
with the equivalence in the previous section by taking (E → S, T → S) to (E →
S,E×E[n]T, (1, κ)). For an arbitrary scheme S and a morphism S → M1,1, corresponding
to an elliptic curve E → S, the functor above pulls back to the functor fS : BSE[n] →
(Bn)SE. Since nE : E → E is an isogeny, and in particular surjective on the underlying
sheaves, we are now in the situation where we can apply Proposition 5.3. Therefore fS,
and hence also f , is an equivalence, and we are done.

6 Finishing the computation for the class of B PGL3

In this final section, we show that the class of [Hns/ PGL3] equals L in K0(Stackk) under
our hypothesis on k. This is the last piece of information we need in order to prove
Theorem B. This is done by considering the description of [Hns/ PGL3] as a classifying
stack for the 3-torsion subgroup E [3] of the universal curve over M1,1 established in the
previous section. For primes ℓ which are invertible in the structure sheaf of the base, the
Weil pairing gives the ℓ-torsion subgroup of an elliptic curve the structure of a symplectic
local system. We start by recalling this notion.

Let ℓ be an arbitrary prime. By a rank n local system over a scheme S, we mean a sheaf
V which is locally isomorphic to a rank n Fℓ-vector space considered as a constant sheaf.
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A symplectic local system is a pair (V, ω), where V is a local system and ω : V ×V → Fℓ

is a symplectic form. Assume that S is connected and that Γ = π1(S, ξ) is the étale
fundamental group of S with respect to some geometric point ξ ∈ S. Then the pair
(V, ω) corresponds to a pair consisting of an n-dimensional Γ-representation over Fℓ and
a Γ-invariant symplectic form. By abuse of notation, we denote this pair by (V, ω) as
well.

Now we fix an odd prime ℓ and a 2-dimensional symplectic local system (V, ω) over
a connected scheme S with fundamental group Γ. Let V0 ⊂ V denote the Γ-invariant
subset where the origin in V has been removed. We get a surjection from the free Γ-
module Z[V0] on the Γ-set V0 to V taking a formal sum to an actual sum. This gives
rise to an exact sequence

0 → K → Z[V0] → V → 0

of Γ-modules.

Denote the set of lines through the origin in V by P(V ). Then we have a surjection
V0 → P(V ) of Γ-sets inducing a surjection Z[V0] → Z[P(V )] of Γ-modules. The map K →
Z[P(V )] given by the obvious composition is also a surjection. Indeed, each standard
basis element (µ :λ) of Z[P(V )] lifts to 2(µ, λ) − (2µ, 2λ) in K.

The symplectic form ω allows us to define an endomorphism ϕ on Z[V0] by

v 7→
∑

ω(v,u)=1

u, v, u ∈ V0.

This is Γ-equivariant since ω is Γ-invariant. The image of ϕ lies in K. This can be seen
by choosing v′ such that ω(v, v′) = 1 and letting W be the subspace of vectors u such
that ω(v, u) = 0. Then v maps to #W · v′ +

∑
u∈W u in V , which indeed is zero.

The endomorphism ϕ descends to a corresponding endomorphism ϕ′ on Z[P(V )] given
by

P 7→
∑

ω(P,Q)6=0

Q, P,Q ∈ P(V ).

Since P(V ) has ℓ + 1 points, this endomorphism is described by an ℓ + 1 by ℓ + 1 matrix
with respect to the standard basis. All the elements of this matrix are one, except for
the elements on the main diagonal which are zero. Since such a matrix has determinant
−ℓ, it follows that ϕ′ is injective with cokernel of order ℓ. Hence we get the following
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commutative diagram with exact rows and columns

0 0 0

0 K ′′ K ′ A 0

0 Z[V0] K B 0

0 Z[P(V )] Z[P(V )] Z/ℓZ 0

0 0 0

Proposition 6.1. Let S be a scheme and let (V, ω) be an F3-symplectic local system of
rank 2 over S. Then the class {BSV ∨} = 1 in K0(StackS).

Proof. First one needs to check that A = 0 in the diagram above. A straightforward
computation gives det ϕ = −33. Here we view ϕ as an endomorphism of Z[V0]. Since K
has index ℓ2 in Z[V0], it follows that B has order ℓ. Therefore the map B → Z/ℓZ must
be an isomorphism, which indeed gives A = 0 by exactness of the last column.

Next we take the Cartier dual of the diagram. The maps Z[V0]∨ → K ′′∨ and K∨ → K ′∨

are both Z[P(V )]∨-torsors. Since Z[P(V )]∨ is quasi-split, and therefore special, we get
{Z[P(V )]∨}{K ′′∨} = {Z[V0]∨} and {Z[P(V )]∨}{K ′∨} = {K∨}. Since we have seen that
K ′ ≃ K ′′, it follows that {Z[V0]∨} = {K∨}.

But Z[V0]∨ is also a quasi-split torus. Hence the result follows by applying Proposi-
tion 3.7 to the exact sequence

0 → V ∨ → Z[V0]∨ → K∨ → 0.

Remark. The map ϕ is defined also when we have a symplectic local system of higher
rank. It does, however, not induce an isomorphism between K ′′ and K ′ in general.
Indeed this is not even true for rank 2 symplectic local systems. In this case experiments

suggest that the determinant of ϕ is given by (−1)
ℓ−1

2 ℓ(
ℓ

2
). In other words, the fact that

we get an isomorphism in the case we are interested in seems to be a coincidence.

Corollary 6.2. Let k be a field of characteristic not equal to 3 containing all third roots
of unity. Then the class of M1,(3) equals the class of M1,1 in K0(Stackk).
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Proof. Let E → S be an elliptic curve over a scheme S. Since 3 is invertible, the 3-torsion
subgroup E[3] is étale over S and locally isomorphic to (Z/3Z)2. Since also k contains
all third roots of unity, the Weil pairing gives a symplectic form on E[3] and the same
holds for the dual E[3]∨. Hence, by the previous proposition, we have {BSE[3]} = 1.
Since we have established the equivalence M1,(3) ≃ BM1,1

E [3] the result now follows by
applying Proposition 3.3 with C = 1.

Proposition 6.3. Let k be a field in which 6 is invertible. Then {M1,1} = L in
K0(Stackk).

Proof. For ease of notation, we denote M1,1 by M. There is a map j : M → A1 =
Spec k[t] to the coarse moduli space induced by the classical j-invariant. Consider the
closed points {0} and {1728} in A1, and denote their complement by U . This induces a
stratification of M into the closed substacks M0 and M1728 and the open complement
MU .

The stack MU is equivalent to BUΣ2 over U . Indeed, the inertia of MU → U is
the automorphism group of the universal elliptic curve EU → MU , which is Σ2 since
we removed the curves with j-invariants 0 or 1728. In particular, the inertia stack is
faithfully flat of finite presentation over MU , so MU → U is a gerbe. Moreover, we see
that it is the neutral gerbe since MU → U has a section. This section is induced by the
elliptic curve E defined by the equation

y2z + xyz = x3 −
36

t − 1728
xz2 −

1

t − 1728
z3

over U . It is a straightforward computation to check that E → U is an elliptic curve
whose fibres Et have j-invariant t over closed points t ∈ U .

It is of course easy to construct elliptic curves with j-invariants 0 and 1728 over k,
so both the stacks M0 and M1728 are neutral gerbes over k. Since we assume that 6 is
invertible in the base field, the automorphism groups of elliptic curves with j-invariants
0 and 1728 are µ6 and µ4 respectively [Hus04, 3.4]. It follows that M0 ≃ Bµ6 and
M1728 ≃ Bµ4.

Now it follows by Proposition 3.8 and the scissors relations that the class of M equals

{BU Σ2} + {Bµ6} + {Bµ4} = L − 2 + 1 + 1 = L

in K0(Stackk).

We are now in position to prove Theorem B.

Proof of Theorem B. Using the notation introduced in Section 4, we let H denote the
space of plane cubics, Hsing the subspace of singular cubics and Hns the space of non-
singular cubics. Since H ≃ P9, we get

{B PGL3} = {[H/ PGL3]}
L − 1

L10 − 1
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by Proposition 3.6. Since Hsing is a closed PGL3-invariant subspace of H, we get the
identity {[H/ PGL3]} = {[Hsing/ PGL3]}+{[Hns/ PGL3]} by the scissors relations. Com-
bining Corollary 6.2 and Proposition 6.3, we get {[Hns/ PGL3]} = L under the hypoth-
esis on the base field. For the readers convenience, we again list the classes of the
classifying stacks for the stabilisers of the singular curves as described in Section 4.2.

a) L−3(L + 1)−1(L − 1)−2 b) L−2(L − 1)−2 c) L−2(L − 1)−1 d) {BN3}
e) L(L + 1)−1(L − 1)−1 f) L−1(L − 1)−1 g) (L − 1)−1 h) 1.

Since {[Hsing/ PGL3]} is simply the sum of these classes, we get the desired result by
elementary algebraic manipulations.

Remark. Denote by KPGL3

0 (Stackk) the ring where we formally add the relations {T} =
{PGL3}{S} for all PGL3-torsors T → S in K0(Stackk). As a corollary of Theorem B,
we get that the class of BN3 is

L3

(L − 1)2(L + 1)(L2 + L + 1)

in KPGL3

0 (Stackk). It is possible to check this more directly by considering the natural
action of N3 on P2. This action has three orbits represented by the points (1 : 0 : 0),
(1 : 1 : 0) and (1 :1 : 1) respectively. The classes of the classifying stacks of the stabilisers
for these points are quite easily computed, even in K0(Stackk). The reader may do this
and verify that the formula for {N3} indeed is correct. Note that since the action we
considered is not induced by a linear action, we cannot apply Proposition 3.6 and get
the class in K0(Stackk) by using this representation.
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A Singular plane cubics and stabilisers

Throughout the appendix, we let k be a field in which 6 is invertible. It is a classical
result that there exist eight singular cubic curves in P2

k up to projective equivalence.
These correspond to orbits in the space of singular cubics in P2 under the natural action
of PGL3 by change of coordinates. In this appendix, we will determine the stabiliser
groups corresponding to these orbits up to isomorphism. The result is described in the
table below.

Description Standard Form Components Stabiliser

a) Triple line x3 3 · 1 G2
a ⋊ GL2

b) Double and single line x2y 2 · 1 + 1 G2
a ⋊ G2

m

c) Three lines through a point x2y + xy2 1 + 1 + 1 G2
a ⋊ G

d) Three general lines xyz 1 + 1 + 1 N3

e) Int. conic and general line xyz + z3 2 + 1 Gm ⋊ Σ2

f) Int. conic and tangent line y2z + x2y 2 + 1 Ga ⋊ Gm

g) Cuspidal cubic x2z + y3 3 Gm

h) Nodal cubic xyz + x3 + y3 3 µ3 ⋊ Σ2

The table lists the type of singular curve, the equation for a prototypical curve, and the
degrees of the components of the curve as well as the stabiliser group up to isomorphism.
The symbol N3 denotes the normaliser of the maximal torus in PGL3. Explicitly, this
group may be described as the group of monomial 3 × 3 matrices up to multiplication
by a scalar. The group denoted by G is the subgroup of GL2 generated by the scalar
matrices and the embedding of Σ3 in GL2 induced by the 2-dimensional irreducible
representation.

In characteristic zero, the stabiliser groups are determined by the points of the under-
lying topological space. In positive characteristic however, we must also account for the
possibility of the stabilisers not being reduced. Our assumption on the base field asserts
that this situation does not occur. This may be verified by determining the dimension
of the Lie algebra for the stabiliser. We will go through these arguments in detail for
the first computations only and leave the rest for the reader to verify.

When using coordinates in our arguments, we use the convention that PGL3 acts by
standard transformation of coordinates on P2 from the left. This means that the action
on forms is dual and hence is a right action. We will frequently represent elements in
PGL3 as 3 × 3-matrices. When doing so, taking the quotient by the scalar matrices
is implicit. The corresponding convention applies when we discuss the Lie algebra of
PGL3.

A.1 Three Lines

First we treat the case when the form defining the curve is a product of three linear
forms. There are four different configurations to consider.

(a) A triple line. We choose our prototypical curve such that it is defined by the form
x3. On points, this is the same as the stabiliser of the line x = 0. This consists of

39



the matrices (aij) such that a12 = a13 = 0. By normalising the coordinates by setting
a11 = 1, we get that this group is isomorphic to G2

a ⋊ GL2.

Now let A = I +ε(aij) be a general element of the Lie algebra of PGL3, i.e. a k[ε]-point
mapping to the identity. Then x3 · A is

x3 + 3εx2(a11x + a12y + a13z).

This gives the condition 3a12 = 3a13 = 0. Since we assume that 3 is invertible, we
get a12 = a13 = 0. We conclude that both the Lie-algebra and the group have the
same dimension, so the stabiliser is smooth and therefore reduced. Therefore PGL3

x3 ≃
G2

a ⋊ GL2.

(b) A double and a single line. This time we choose x2y as our standard representative.
An element (aij) of the stabiliser must preserve both the line x = 0 as well as the line
y = 0. This forces a12 = a13 = a21 = a23 = 0. By normalising a33 = 1, we see that the
reduced stabiliser is G2

a ⋊ G2
m.

Now we consider a general element A = I + ε(aij) of the Lie-algebra in the same way
as in the previous case. Then we get that x2y · A equals

x2y + ε(2xy(a11x + a12y + a13z) + x2(a21x + a22y + a23z)).

Since 2 is invertible, this gives the conditions a12 = a13 = a21 = a23 = 0. Again we see
that the dimension is right, so we get PGL3

x2y ≃ G2
a ⋊ G2

m.

(c) Three lines intersecting at a single point. Let x2y + xy2 be our standard form. An
element (aij) of the stabiliser must preserve the intersection point (0 : 0 : 1) of the three
lines. This forces a13 = a23 = 0. By normalising a33 = 1, we see that the stabiliser is a
subgroup of G2

a ⋊ GL2.

Next we determine the stabiliser of our standard form under the action of the subgroup
GL2. This corresponds to the problem of finding the stabiliser of an unordered triple of
distinct points in P1 under the standard action of GL2. Since the corresponding action
of PGL2 is simply 3-transitive, the stabiliser is an extension of Σ3 by Gm. One verifies
that this is the subgroup G as described in the introduction of this section. Since the
subgroup G2

a clearly stabilises our standard from, we get that the reduced stabiliser is
G2

a ⋊ G.

The corresponding calculation for the Lie-algebra for PGL3
x2y+xy2 as in the previous

cases leads to the relations a11 = a22 and a12 = a13 = a21 = a23 = 0. This shows that
the dimension is right regardless of characteristic, so PGL3

x2y+xy2 ≃ G2
a ⋊ G.

(d) Three lines in general position. Choose xyz as standard form. The stabiliser has
to preserve the lines x, y and z up to permutation. If we impose an ordering on the
lines, the stabiliser consists of the diagonal matrices. Since we may reorder the lines
by using permutation matrices, the group PGL3

xyz is generated by the diagonal and
the permutation matrices. One verifies that also in this case the stabiliser is smooth
regardless of characteristic. Thus the stabiliser PGL3

xyz is the group N3 described in the
introduction of the appendix.
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A.2 An integral conic and a line

There are two types of cubic curves consisting of an integral conic and a line. The line
is either tangent to the cubic or intersects it at two distinct points.

(e) Integral conic and non-tangent line. The intersection between the curves determine
an unordered pair of points P1, P2. The tangents to the conic at these points are
distinct by Bézout’s Theorem. Hence they intersect in a third point Q.

Chose xyz +z3 as the standard form defining our cubic. For this curve, the points P1,
P2 and Q as defined above have coordinates (1:0:0), (0:1:0) and (0:0:1) respectively.
Any element of the stabiliser PGL3

xyz+z3 must preserve these points, so the stabiliser is
contained in the group generated by the diagonal matrices and the permutation matrix
switching the first two coordinates.

The subgroup of the diagonal matrices diag(a : b : c) stabilising the form xyz + z3

is defined by the equation abc = c3. Hence it is isomorphic to Gm, as seen by the
parametrisation t 7→ diag(t : t−1 : 1). It follows that the stabiliser is isomorphic to
Gm ⋊ Σ2, where Σ2 acts non-trivially on Gm.

(f) Integral conic and tangent line. In this case, we let y2z + x2y be the standard
form defining our curve. The stabiliser PGL3

y2z+x2y must preserve the intersection point
(0 :0 :1) between the conic and the tangent line, as well as the tangent line y = 0 itself.
Hence it must be a subgroup of the group of projective matrices of the following form:




a11 a12 0
0 a22 0

a31 a32 a33





The additional requirement that it also should preserve the conic yz + x2 gives the
equations

a2
11 = a22a33, a2

12 + a22a32 = 0, a22a31 + 2a11a12 = 0.

This resulting subgroup is isomorphic to Ga ⋊ Gm, which may be seen by using the
parametrisation described below.

(
a 0
b 1

)
7→




a −ab 0
0 a2 0
2b −b2 1





A.3 An integral cubic

There are two types of integral singular cubics, both having exactly one singularity. The
singularity is either a node or a cusp.

(g) Cuspidal cubic. A cuspidal cubic has exactly one singularity and one inflection point.
We denote these points by P1 and P2 respectively. Consider the reduced line associated
to the tangent cone at P1 and the tangent line at P2. As a consequence of Bézout’s
Theorem, these lines are distinct. Hence they have a unique intersection point P3, which
does not lie on the line between P1 and P2.
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We choose the standard cuspidal cubic x2z + y3. In this case, the coordinates of the
points P1, P2 and P3 as described above are (0:0:1), (1:0:0) and (0:1:0) respectively.
Since the stabiliser PGL3

x2z+y3 preserves these points, it must be a subgroup of the group
of diagonal matrices. Introducing coordinates diag(a : b : c) for these matrices, we see
that the stabiliser is the subgroup defined by the equations a2c = b3. This group is
isomorphic to Gm via the parametrisation t 7→ diag(t3 :t2 :1).

(h) Nodal cubic. The standard nodal cubic xyz + x3 + y3 has the tangent cone xy = 0
at the singularity. All its three inflection points are distinct and lie at the line z = 0
at infinity. Hence the stabiliser group PGL3

xyz+x3+y3 must preserve the forms xy and
z. It is therefore a subgroup of the group generated by the diagonal matrices and
the permutation matrix exchanging the x- and y-coordinates. The diagonal matrices
diag(a :b :c) which preserve the form xyz+x3+y3 are those satisfying the equations abc =
a3 = b3. These matrices form a group isomorphic to µ3 through the parametrisation
ζ 7→ diag(ζ : ζ2 : 1), where ζ3 = 1. We conclude that PGL3

xyz+x3+y3 is isomorphic to
µ3 ⋊ Σ2.
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Études Sci. Publ. Math., (8):222, 1961.

[DG64] Michel Demazure and A. Grothendieck. Schémas en Groupes (Sém.
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