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Abstract

Using new configuration spaces, we give an explicit construction that extends Kontsevich’s Lie-
infinity quasi-isomorphism from polyvector fields to Hochschild cochains to a quasi-isomorphism of A-
infinity algebras equipped with actions by homotopy derivations of the Lie algebra of polyvector fields.
One may term this formality a formality of two-colored noncommutative Gerstenhaber homotopy al-
gebras. In our result the action of polyvector fields by homotopy derivations of the wedge product on
polyvector fields is not the adjoint action by the Schouten bracket, but a homotopy nontrivial and, in a
sense, unique deformation of that action.

As an application we give an explicit Duflo-type construction for Lie-infinity algebras that generalizes
the Duflo-Kontsevich isomorphism between the Chevalley-Eilenberg cohomology of the symmetric algebra
on a Lie algebra and the Chevalley-Eilenberg cohomology of the universal enveloping algebra of the Lie
algebra.
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1
Introduction

Kontsevich’s Formality Map is best understood as a morphism of two-colored operads

K(C(H)) → End(Tpoly,O),

where K(C(H)) is the operad of fundamental chains of a certain cellular operad C(H) of compactified
configuration spaces of points in the closed upper half-plane and End(Tpoly,O) is the standard two-
colored endomorphism operad on formal polyvector fields, Tpoly, and formal smooth functions, O, on
some chosen graded vector space. The content of this map of operads is an L∞ map from Tpoly to the

(differential) Hochschild cochain complex of O. In this note we introduce a three-colored operad CF (H)
of compactified configuration spaces of points in the closed upper half-plane equipped with a line parallel
to the real axis, and, using the same techniques as Kontsevich, a representation

K(CF (H)) → End(Tpoly, Tpoly,O)

of its fundamental chains. This representation implies

• Kontsevich’s L∞ map Tpoly → C(O,O) to the Hochschild cochain complex of the associative
algebra of functions,

• an L∞ map Tpoly → C≥1(Tpoly, Tpoly) to the Hochschild cochain complex of the associative
algebra of polyvector fields, extending the canonical adjoint action of Tpoly on itself,

• and a morphism Tpoly → C(O,O) of A∞ algebras equipped with actions of the Lie algebra
Tpoly by homotopy derivations.

These data can be concisely encoded as a quasi-isomorphism of two-colored noncommutative G∞ alge-
bras.

The three-colored operad CF (H) is closely related to the moduli spaces of quilted holomorphic disks
introduced in the context of Floer homology by Mau and Woodward in [14]. The moduli spaces of quilted
holomorphic disks form a two-colored operad that can be embedded as a suboperad of our three-colored
operad.

As an application we give an explicit strong homotopy version of the Duflo isomorphism. This
generalizes earlier work by Calaque, Kontsevich, Manchon, Pevzner, Rossi, Torossian and others; see
[13, 17, 4, 18, 11]. More specifically, we construct a universal and generically homotopy nontrivial
A∞ deformation C(g, S(g))exotic of the Chevalley-Eilenberg cochain algebra C(g, S(g)) and an A∞

quasi-isomorphism C(g, S(g))exotic → C(g, U(g)) that on the cohomology level reproduces the Duflo-
Kontsevich isomorphism of Chevalley-Eilenberg cohomologies. This implies that the Duflo-Kontsevich
isomorphism can not be universally lifted to an A∞ quasi-isomorphism C(g, S(g)) → C(g, U(g)) of the
Chevalley-Eilenberg cochain algebras.

Acknowledgement. It is a pleasure to thank Johan Gran̊aker, Bruno Vallette and Thomas Willwacher

for discussions and helpful criticism. Thanks to Malin Göteman for the TeX template. Special thanks

to my supervisor, Sergei Merkulov for valuable ideas and encouragement, and to Carlo A. Rossi for his

lucid critique of the first version of the article.
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2
Preliminaries

1. Finite sets

Given a natural number n, [n] denotes the set {1, 2, . . . , n}.
The cardinality of a finite set A is written |A|, e.g. |[n]| = n.
Given finite sets A and B, we write A+ B for their disjoint union. We customarily write 0 for the

empty set. If S is a subset of a finite set A, we customarily write A− S for the complement of S in A.
We write A/S for the set A − S + {S}. (So the cardinality of A/S is |A| − |S| + 1.) If A is an ordered
finite set, then we say S ⊂ A is a connected subset, and write S < A, if s, s′′ ∈ S and s < s′ < s′′ ∈ A
implies also s′ ∈ S.

The group of permutations of a finite set T is denoted ΣT , and Σ[n] is denoted Σn.

2. Differential graded vector spaces

In this section we state our conventions regarding differential graded (hencefort abbreviated dg)
vector spaces.

A dg vector space is an indexed collection V = {V p}p∈Z of real vector spaces together with a

collection dV = {dpV }p∈Z of linear maps dpV : V p → V p+1 such that dp+1
V ◦ dpV = 0 for all p. If v ∈ V p,

then we define |v| := p and say v is homogeneous of degree p. A graded vector space is a dg vector space
(V, dV ) with dpV = 0 for all p. A morphism of dg vector spaces f : (V, dV ) → (W,dW ) is a collection
of linear maps {fp : V p → W p}p∈Z such that fp+1 ◦ dpV = dpW ◦ fp for all p. The evident composition
rules for morphisms give us a category Ch(R) with dg vector spaces as objects and morphisms of dg
vector spaces as arrows. We shall usually omit dV from the notation and simply write V for {V p, dpV }p.
An element v of a dg vector space V , written v ∈ V , is a vector v in the vector space

⊕
d V

d.
The cohomology of a dg vector space V is the graded vector space H(V ) with Hp(V ) := H(V )p

given as the quotient ker(dpV )/im(dp−1
V ). Elements of ker(dpV ) are called cocycles of degree p and elements

of im(dp−1
V ) are called coboundaries of degree p.

Let r be some integer. The r-fold suspension of a dg vector space V is the dg vector space V [r]

with V [r]p := V p+r and dpV [r] := −sr ◦ dp+rV ◦ s−r, where sr : V [r]p → V p+r and s−r : V p+r+1 → V [r]p+1

are the canonical isomorphisms of vector spaces.
Given dg vector spaces V and W their tensor product is the dg vector space V ⊗W with (V ⊗

W )n :=
⊕

p+q=n V
p ⊗R W q and dV⊗W := dV ⊗ idW + idV ⊗ dW . The Koszul symmetry for V ⊗W

is the morphism

SV⊗W : V ⊗W →W ⊗ V

given on vectors of homogeneous degree by

SV⊗W (v ⊗ w) := (−1)|v|·|w|w ⊗ v.

The tensor product, the Koszul symmetry and the tensor unit R give Ch(R) the structure of a symmetric
monoidal category.

The space of maps from V to W is the dg vector space Map(V,W ) with

Mapn(V,W ) := Map(V,W )n :=
∏

p

HomR(V p−n,W p),
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where HomR(V p−n,W p) denotes the vector space of all linear maps from V p−n to W p, and differential
is given on φ ∈ Map(V,W )n) by dnMap(V,W )φ := dW ◦ φ − (−1)ndV ◦ φ. A vector φ of Map(V,W )n is

called a map of dg vector spaces of degree n. Note that a morphism from V to W is the same thing
as a cocycle of degree 0 of Map(V,W ). There is an adjunction formula

HomCh(R)(U ⊗ V,W ) ∼= HomCh(R)(U,Map(V,W )).

3. Operads

Let (V,⊗, I, S) be a cocomplete symmetric monoidal category and let C be a nonemtpy set. A
C-colored symmetric collection P in V is the data of

• an object P(c1, . . . , cn; c) of V, for each n ≥ 0 and (n+ 1)-tuple (c1, ..., cn; c) of elements of C,
• together with, for each σ ∈ Σn, a morphism σ∗ : P(c1, . . . , cn; c) → P(cσ(1), . . . , cσ(n); c) satis-

fying σ∗
1σ

∗
2 = (σ1σ2)

∗ for all σ1, σ2 ∈ Σn.

One refers to elements of C as colors.
A C-colored symmetric operad in V is a C-colored collection P in V together with, for each n ≥ 1,

(n+ 1)-tuple (c1, . . .n ; c) and tuples {(cj1, . . . c
j
kj

)}1≤j≤n of lengths kj ≥ 0, a composition morphism

P(c1, . . . , cn; c) ⊗
n⊗

j=1

P(cj1, . . . , c
j
kj

; cj) → P(c11, . . . , c
n
kn

; c).

The composition morphism are required to be associative in the obvious sense. A C-colored symmetric
operad is said to be unital if for each color c ∈ C there exists a 1c : I → P(c; c) which is a (two-sided)
unit for the composition morphisms.

If C has cardinality N and P is a C-colored operad, then we also say P is an N -colored operad.
Most operads used in this paper will have P(∅; c) = ∅ for all colors c. We shall also use simplified

notation of the form

P(m1, . . . ,mn; c) := P(c1, . . . , c1︸ ︷︷ ︸
m1×

, . . . , cn, . . . , cn︸ ︷︷ ︸
mn×

; c).

If the color c is clear from the context we shall employ the further simplification P(m1, . . . ,mn) :=
P(m1, . . . ,mn; c).

A C-colored cooperad in V is an operad in the opposite category Vop, i.e. it is a symmetric
collection with cocomposition morphisms that are coassociative in a suitable sense.

A dg (co)operad refers to a (co)operad in the symmetric monoidal category of dg vector spaces.

4. Semialgebraic geometry

For a thorough treatment of the material in this section, see [6].
A semialgebraic set (in Rn) is a finite union of finite intersections of solution sets out of polynomial

equations or polynomial inequalities, for real polynomials in n variables. Semialgebraic sets are topolo-
gized as subsets. A semialgebraic map is a continuous map of semialgebraic sets whose graph is itself
a semialgebraic set. The closure or interior of a semialgebraic set is again semialgebraic, and the inverse
image of a semialgebraic map is also semialgebraic. A semialgebraic manifold of dimension k is, for
our purposes, a semialgebraic set in Rk such that each point has a semialgebraic neighbourhood semi-
algebraically homeomorphic to Rk or R≥0 × Rk−1. The boundary of a semialgebraic manifold is again
semialgebraic. A smooth semialgebraic submanifold of a semialgebraic manifold is a semialgebraic
subset that is also a smooth submanifold of the ambient euclidean space.

4.1. Semialgebraic chains. Let Ωpc(R
k) denote the vector space of smooth differential p-forms on

Rk with compact support. This vector space can be topologized in a natural way, and we let C−p(Rk)
be the topological dual of Ωpc(R

k). The adjoint of the de Rham differential yields a differential graded
vector space (C−p(Rk), ∂), the complex of smooth currents on Rk.

Let X be an oriented semialgebraic manifold in Rk and define C(X) ⊂ C(Rk) to be the subspace of
currents that have support contained in X . For V1, . . . , Vr p-dimensional disjoint smooth semialgebraic
submanifolds of Rk with each closure V i compact and contained in X and integers n1, . . . , nr, there is a
a current

∑
i ni[Vi] in C−p(X) (defined by integration). The complex of semialgebraic currents on

X , denoted CSA(X), is the subcomplex of the complex of currents spanned by all currents of that form.
The association X 7→ CSA(X) is a symmetric monoidal functor from semialgebraic manifolds to

differential graded vector spaces.
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4.2. PA forms. Let X ⊂ Rk be a semialgebraic set and let f = (f0, f1, . . . , fp) : X → Rp+1 be a

semialgebraic map. This map defines a functional on C−p
SA(X) by

γ 7→ f∗(γ)(ρ · x
0dx1 ∧ · · · ∧ dxp),

for x0, . . . , xp the coordinates on Rp+1 and ρ a smooth bump function which takes the value 1 on the
support of f∗(γ). Such a functional on semialgebraic currents on X is called a minimal form on X .

Let ϕ : Y → X be a semialgebraic map. Briefly, a strongly continuous family of chains of
dimension p along ϕ is a function Φ : X → C−p

SA(Y ) such that there exists

• a finite semialgebraic stratification {Si}i∈I of X together with, for each i, a compact p-
dimensional semialgebraic manifold Fi and a semialgebraic map gi : Si × Fi → Y ,

• such that the composition φ ◦ gi is a trivial fibration Si × Fi → Si
• and Φ(x) = (gi)∗([{x} × Fi]) for each x ∈ Si.

If Φ is a strongly continuous chain of dimension p along ϕ and γ is a semialgebraic q-current on X , then
there is a trivialization of Φ (in above sense) that is adapted to γ in the sense that

γ =
∑

i

ni[Si].

Define a p+ q-chain γ ⋉ Φ by

γ ⋉ Φ :=
∑

i

ni · (gi)∗([Si × Fi]).

Take a minimal (p+ q)-form µ on Y . Define a functional
∫
Φ
µ on CqSA(X) by the formula

〈

∫

Φ

µ, γ〉 := 〈µ, γ ⋉ Φ〉.

The complex of PA forms on X is the subcomplex of the linearly dual complex of CSA(X) spanned by
all functionals of the form

∫
Φ µ (for some µ and some Φ). It is denoted ΩPA(X) and it is a differential

graded vetor space.
A semialgebraic bundle π : E → X admits local trivializations Si×Fi ∼= E|Si

. Hence the association

x 7→ [π−1(x)] defines a strongly continuous chain Fπ along π. We use the notation π∗(µ) :=
∫
Fπ
µ for a

minimal form µ on E and refer to the map π∗ as the fiber integration along π.
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3
Configuration space models for various homotopy algebras

In this section we define four different operads in the category of cellular compact semialgebraic
manifolds. Two of the operads are our invention.

1. A configuration space model for L∞

For an integer ℓ ≥ 2, let Confℓ(C) be the manifold of all injective maps of [ℓ] := {1, . . . , ℓ} into C.
The group of translations and positive dilations of the plane, C ⋊ R>0, acts on the plane and hence
(by postcomposition) on Confℓ(C). Define Cℓ(C) := Confℓ(C)/C ⋊ R>0. Let Confℓ(C) be the real
Fulton-MacPherson compactification (in the literature also called the Axelrod-Singer compactification)
of Confℓ(C), i.e. the real oriented blow-up of Cℓ along all diagonals. The action by translations and
positive dilations is smooth; hence extends uniquely to a smooth action on Confℓ(C). Define Cℓ(C) to
be the quotient of Confℓ(C) by this action. It is a compact semialgebraic manifold with codimension
one boundary ⊔

S

Cℓ−|S|+1(C) × CS(C)

given by products labelled by subsets S ⊂ [ℓ] (of cardinality 2 ≤ |S| < ℓ). Moreover, the closure of
Cℓ−|S|+1(C) × CS(C) in Cℓ(C) is the product Cℓ−|S|+1(C) × CS(C). This means that the family of

spaces C(C) = {Cℓ(C)} together with the inclusions of boundary components and permutation actions
by permutation of points assemble into the structure of an operad. We promote it to an operad of
oriented semialgebraic manifolds as follows. Let Cstd

ℓ (C) be the submanifold of Confℓ(C) consisting of

configurations x satisfying
∑ℓ

i=1 xi = 0 and
∑ℓ
i=1 |xi|

2 = 1. The manifolds Cℓ(C) and Cstd
ℓ (C) are

isomorphic. The manifold Confℓ(C) is canonically oriented; hence so is Cstd
ℓ (C). We orient Cℓ(C) by

pulling back the orientation on Cstd
ℓ (C). Requiring Stokes’ formula (without a sign) to hold defines an

orientation of the compactification Cℓ(C). It is easy to see that all permutations of [ℓ] preserve the
orienation.

The boundary description describes a canonical stratification and the face complexes of the strat-
ification of each component form an operad K(C(C)) that this is freely generated as a graded operad
by the set {[Cℓ(C)] | ℓ ≥ 2} of “fundamental chains”. We shall regard chains in the components as
semialgebraic chains. It is well-known that representations of K(C(C)) in a dg vector space V are in
one-to-one correspondence with L∞ structures on the suspension V [1] of V ; see e.g. [5].

2. A configuration space model for OCHA

Set H := R × R≥0. For integers m,n > 0, with 2m + n ≥ 2, let Confm,n(H) be the manifold of
injections of [m] + [n] into H that map [n] into the boundary R × {0} of the half-plane and [m] into
the interior. The group of translations along the boundary and positive dilations, R × R>0, acts (by
postcomposition) on Confm,n(H) and we let Cm,n(H) be the quotient of this action. The embedding

Confm,n(H) → Conf2m+n(C)

defined by sending a configuration in [m] + [n] →֒ H to its orbit under complex conjugation induces an
embedding

Cm,n(H) → C2m+n(C) ⊂ C2m+n(C).
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The compactification Cm,n(H) of Cm,n(H) was in [11] defined as the closure under this embedding. It is

a semialgebraic manifold with n! connected components. Let C
+

m,n(H) be the connected component that
has the boundary points “compatibly ordered”, by which we mean that if i < j ∈ [n] = {1 < · · · < n},
then the point labelled by i is before the point labelled by j on the boundary for the orientation of
the boundary induced by the orientation of the half-plane. This gives us a permutation-equivariant

identification Cm,n(H) ∼= C
+

m,n(H) × Σn. The codimension one boundary of C
+

m,n(H) is

⊔

I

(
C+
m−|I|+1,n(H) × CI(C)

)
⊔

⊔

S,T

(
C+
m−|S|,n−|T |+1(H) × C+

S,T (H)
)
.

Here C+
m−|I|+1,n(H) is the interior of C

+

m−|I|+1,n(H), etc. The union is over all subsets I ⊂ [m] and sub-

sets S ⊂ [m], T < [n] such that all involved spaces are defined. This description of the boundary extends,

via the identification Cm,n(H) ∼= C
+

m,n(H)×Σn, to boundary descriptions for all connected components,

and defines the structure of a two-coloured operad on the collection C(H) := {Cℓ(C), Cm,n(H)}, the
points in the interior being inputs of one color and the points on the boundary being inputs of another
color. The spaces Cm,n(H) are defined using embeddings into spaces fo the form Cℓ(C), for which we

have chosen orientations. We orient the spaces Cm,n(C) by the pullback orientations of these embeddings.
The dg operad of face complexes of the stratification defined by the boundary decomposition is

again generated by the fundamental chains. We denote this operad of fundamental chains K(C(H)).
A representation of it is referred to as an open-closed homotopy algebra, see [7, 9], henceforth
abbreviated as an OCHA. An OCHA consists of a pair of dg vector spaces V and W , an L∞ structure
on V [1], an A∞ structure on W , and an L∞ morphism from V to the Hochschild cochain complex of W .

We now define flag versions of the operads C(C) and C(H).

3. Flag version of C(C), a model for NCG∞

Since the affine group preserves collinearity and parallel lines it makes sense to say that some points
in a configuration x ∈ Cℓ(C) are collinear on a line parallel to the real axis. For integers p ≥ 0 and q ≥ 1
with p + q ≥ 2, define CFp,q(C) ⊂ C[p]+[q](C) to be the subset of configurations for which the points

labelled by [q] are collinear on a line parallel to the real axis. Define CF p,q(C) to be its closure inside

Cp+q(C). It has q! connected components. Let CF+
p,q(C) denote the interior of the connected component

that has the collinear points compatibly ordered, by which we mean that if i < j ∈ [q] = {1 < · · · < q},
then the point labelled by i is before the point labelled by j on their common line for the orientation of
the line induced by the orientation of the plane. Then CFp,q(C) ∼= CF+

p,q(C) × Σq. We deduce that the

codimension one boundary of the corresponding compact connected component, CF
+

p,q(C), is

⊔

I

(
CF+

p−|I|+1,q(C) × CI(C)
)
⊔

⊔

S,T

(
CF+

p−|S|,q−|T |+1(C) × CF+
S,T (C)

)
.

The union is over all subsets I ⊂ [p], S ⊂ [p], T < [q] for which all involved spaces are defined. One can
use the inclusions of boundary components to define a two-colored operad structure on the collection

CF (C) := {Cℓ(C), CF p,q(C)},

in a way completely analogous the previously discussed operadic structure on C(H).

Definition 3.0.1. We call CF (C) the operad of configurations on flags in the plane.

We orient the spaces of the form CF p,q(C) by the pullback orientations of the defining embeddings

into Cp+q(C). As before one then obtains a dg operad K(CF (C)) of fundamental chains. It is almost

identical to the operad K(C(H)) of OCHAs: its representations also consist of an L∞ algebra V [1], an
A∞ algebra W and an L∞ morphism from V to the Hochschild cochain complex of W . The difference
lies in that the latter operad contains chains [Cm,n(H)] with n = 0 while the former operad does not
contain any chain of the form [CFp,q(C)] with q = 0. This means that the L∞ map of an OCHA contains

components V ⊗p →W , so called curvature terms, whilst the L∞ map of a K(C(H))-representation can
not, i.e. it maps into the truncated Hochschild cochain complex C≥1(W,W ).

Definition 3.0.2. We call K(CF (C)) the operad of two-colored noncommutative G∞ algebras.
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Remark 3.0.1. Define a two-colored noncommutative Gerstenhaber algebra to be a pair
(L,A), where L[1] is a dg Lie algebra and A is a dg associative algebra, together with a dg Lie algebra
morphism L[1] → Der(A). Such algebras are representations of an operad NCG and K(CF (C)) is the
cobar construction on the Koszul dual cooperad of NCG. We prove in an appendix that NCG is Koszul.
Thus K(CF (C)) indeed deserves to be called the operad of two-colored noncommutative G∞ algebras.

We shall abbreviate “two-colored noncommutative G∞ algebra” as NCG∞ algebra.

4. Flag version of C(H), a model for flag OCHAs

There is also a flag version of the operad C(H), defined as follows. Let k,m, n ≥ 0 be integers with
2k+m+n ≥ 1 if m ≥ 1 and k+n ≥ 2 if m = 0. Let CFk,m,n(H) be the subspace of Ck+m,n(H) consisting
of all configurations wherein the points labelled by [m] are collinear on a line parallel to the boundary.
Denote by CF k,m,n(H) the closure inside Ck+m,n(H). Let CF+

k,m,n(H) be the connected component

of CFk,m,n(H) that has both the collinear points and the boundary points compatibly ordered, i.e. if
i < j in [m], then xi < xj on their common line of collinearity, and if r < s in [n], then xr < xs on the

boundary. The codimension one boundary of its compactification, CF
+

k,m,n(H), has the form

⊔

I

(
CF+

k−|I|+1,m,n(H) × CI(C)
)
⊔

⊔

P,Q

(
CF+

k−|P |,m−|Q|+1,n(H) × CF+
P,Q(C)

)

⊔
⊔

S,T,U

(
CF+

k−|S|,m−|T |,n−|U|+1(H) × CF+
S,T,U (H)

)
.

The union is over all subsets I, P, S ⊂ [k], Q, T < [m], S < [n] for which all involved spaces are defined.
These boundary factorizations define an operad structure, but now in three colors, on the collection

CF (H) := {Cℓ(C), CF p,q(C), CF k,m,n(H)}.

Definition 4.0.3. We call CF (H) the operad of configurations on flags in the half-plane.

Orient the spaces CF k,m,n(H) by the pullback orientations of the embeddings into Ck+m,n(H).

There is an associated operad K(CF (H)) of fundamental chains.

Definition 4.0.4. We call K(CF (H)) the operad of flag open-closed homotopy algebras, abbreviated
as the operad of flag OCHAs.

Lemma 4.0.1. A representation of the operad of flag open closed homotopy algebras in a triple

(L,A,B) of chain complexes is equivalent to

• an NCG∞ algebra structure on (L,A);
• an OCHA structure on (L,B);
• and a morphism from A to C(B,B) of A∞ algebras with L∞ actions of L by homotopy deriva-

tions, where the Hochschild cochain complex of B is considered with the L-action induced by

the OCHA structure.

The first two listed items are obvious. Let Mor∗(NCG)∞ be the Koszul resolution of the operad,
Mor∗(NCG), whose representations are NCGAs (L,A), (L,A′), with the same dg Lie algebra L appearing
in both pairs, and a morphism between the two dg associative algebras respecting the actions by L.
See the appendix for some comments on why Mor∗(NCG) is Koszul. The third item in the list is a
Mor∗(NCG)∞-representation on (L,A,C(B,B)). The key to this correspondence is to change from the
operadic perspective that the chains [CFk,m,n(H)] are represented as maps L⊗k ⊗A⊗m ⊗ B⊗n → B to
the perspective that they define maps

L⊗k ⊗A⊗m →Map(B⊗n, B).

(This hom-adjunction argument exactly parallels the argument used for interpreting an OCHA structure
{[Cp,q(H)] : L⊗p ⊗B⊗q → B} as an L∞ morphism L→ C(B,B), compare with [9, 7].) After this rein-
terpretation of the chains the argument reduces to (i) recognizing the induced NCG∞ algebra structure
on (L,C(B,B)) and (ii) comparing the differential on the chains to the differential on Mor∗(NCG)∞.
The details are left to the reader. We work out some more explicit details in the subsequent sections.
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Remark 4.0.2. Consider the two-colored suboperad of CF (H) on the components

{CF 0,q(C), CF 0,m,0(H), CF 0,0,n(H)}.

It is isomorphic as an operad of compact semialgebraic manifolds to the operad of quilted holomorphic
disks introduced by Mau and Woodward in [14]. Its operad of cellular chains is the operad of morphisms
of A∞ algebras.
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4
(Co)operads of graphs

Kontsevich’s proof of his Formality Conjecture and construction of a universal deformation quanti-
zation formula can be regarded[15] as the construction of

• a map of cooperads ω : Gc
C(H)

→ Ω(C(H)), where Gc
C(H)

is a cooperad of Feynman diagrams,
• and a map of operads Φ : GC(H) → End(Tpoly,O) from the dual operad of Feynman diagrams.

Dualizing the map of cooperads and composing, one gets a representation

Φ ◦ ω∗ : K(C(H)) → GC(H) → End(Tpoly,O)

of the fundamental chains of half-plane configurations, i.e. an OCHA structure on (Tpoly,O). We shall
show that Kontsevich’s construction can be extended, essentially without any changes, to a representation

Φ ◦ ω∗ : K(CF (H)) → GCF (H) → End(Tpoly, Tpoly,O)

of the operad of flag OCHAs. This is our NCG∞ Formality Theorem. The new data added by extending
Kontsevich’s OCHA to a flag OCHA is a quasi-isomorphism Tpoly → C(O,O) of A∞ algebras with
homotopy actions by Tpoly.

The first construction we need for our extension of the Kontsevich representation is a suitable operad
GCF (H).

1. Directed graphs

Choose a finite set S. Let fdgradS be the set of all injective functions Γ of the set [d] into (S×S)−∆,
for ∆ the diagonal of S. We refer to such a Γ as a directed graph with d edges on the set S and introduce
the following terminology:

• EΓ := im(Γ) is the set of edges of Γ. We consider it as ordered by the given isomorphism with
[d]. The element Γ(i) ∈ EΓ is written ei and referred to as the ith edge.

• The function sΓ : EΓ ⊂ S × S → S given by projection onto the first factor S is called the
source map of Γ. The projection tΓ : EΓ → S onto the second factor is called the target map
of Γ. An edge e is said to be directed from sΓ(e) to tΓ(e).

• The set S is called the set of vertices of Γ.
• The valence of a vertex is the number of edges having that vertex as either source or target.
• A connected component of Γ is a maximal (with respect to inclusions) subset E ⊂ EΓ with the

property that sΓ(E) ∪ tΓ(E) and sΓ(EΓ −E) ∪ tΓ(EΓ −E) are disjoint. A graph with a single
connected component is said to be connected.

Let dgradS be the subset of fdgradS of connected graphs. There is a natural action of the permutation
groups Σd and ΣS on dgradS by, respectively, reordering edges and permuting the vertices. Let sgnd be
the one-dimensional sign representation of Σd. Define, for any finite set I, of cardinality at least 2, the
graded ΣI -module

Gc
C(C)

(I) :=
⊕

j≥0

(R〈dgradI 〉 ⊗Σd
sgnd)[−d].

Elements of Gc
C(C)

(I)d may be represented as (linear combinations of) connected graphs with d
directed edges ordered up to an even permutation, |I| vertices labelled by I, without double edges and
without tadpoles (edges that begin and end at the same vertex).
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For a finite set P and a nonempty finite set Q, with |P | + |Q| ≥ 2, let dgradP,Q be a copy of the

subset of fdgradP+Q consisting of those graphs which have no connected components E ⊂ EΓ with

sΓ(E) ∪ tΓ(E) ⊂ P , and put

Gc
CF (C)

(P,Q) :=
⊕

d≥0

(R〈dgradP,Q〉 ⊗Σd
sgnd)[−d].

The vertices labelled by P of a graph in Gc
CF (C)

(P,Q) are called free vertices and the vertices labelled by
Q are called collinear vertices. Our restrictions informally say that there are no connected components
with only free vertices.

Assume given a triple of finite sets (K,M,N), with 2|K| + |M | + |N | ≥ 1 if M is nonempty, and
2|K|+ |N | ≥ 2 if M is empty. Let dgradK,M,N be a copy of the subset of dgradK,M+N consisting of graphs
Γ having no edge with source a vertex labelled by N . Set

Gc
CF (H)

(K,M,N) :=
⊕

d≥0

(R〈dgradK,M,N 〉 ⊗Σd
sgnd)[−d].

The vertices labelled by K of a graph in Gc
CF (H)

(K,M,N) are called free vertices, the vertices labelled
by M are called collinear vertices and the vertices labelled by N are called boundary vertices.

2. (Co)operad structures

We shall now describe how the vector spaces of (equivalence classes of) graphs defined above assemble
into cooperads.

Given Γ2 ∈ dgrad2S2
and Γ ∈ dgradS , where d2 ≤ d and S2 ⊂ S, we define an embedding of Γ2 as a

full subgraph of Γ to be an order-preserving inclusion f : [d2] →֒ [d] which makes

[d2] →֒ [d]
Γ
→ S × S equal [d2]

Γ2→ S2 × S2 ⊂ S × S.

An embedding of Γ2 as a full subgraph of Γ is written f : Γ2 →֒ Γ. Given an embedding f as above, we
define Γ/Γ2 ∈ dgrad−d2S/S2

to be the graph which, as a function, is the composition

[d− d2] ∼= [d] − im(f)
Γ
→ S × S → (S/S2) × (S/S2).

Here the leftmost bijection is the unique order-preserving bijection and the rightmost arrow is given by
the canonical projection of S onto S/S2 = S−S2 +{S2} (sending elements of S2 to the element {S2}). If

Γ1 = Γ/Γ2, Γ1 ∈ dgrad1S1+{v} (so S1 = S − S2 and we identify the singleton sets {v} and {S2}), then the

embedding and the quotient define a bijection [d1]+ [d2] → [d]. This defines an order on [d1]+ [d2], using
the order on [d]. This order on [d1] + [d2] is related to the lexicographic order given by [d1] < [d2] using
a unique bijection. Define ǫ(Γ2,Γ,Γ1) to be the sign of that bijection. We may now define a cooperadic
cocomposition

Gc
C(C)(I1 + I2) → Gc

C(C)(I1 + {v}) ⊗ Gc
C(C)(I2)

by

Γ 7→
∑

Γ1=Γ/Γ2

ǫ(Γ2,Γ,Γ1)Γ1 ⊗ Γ2.

The sum is over all embeddings of some Γ2 into Γ.

Conclusion 2.0.1. The collection

Gc
C(C) := {Gc

C(C)(ℓ)}

carries a cooperad structure. The componentwise linear dual, GC(C) := {Gc
C(C)

(ℓ)∗}, is an operad.

We define a full subgraph embedding of a graph Γ2 ∈ dgrad2P2,Q2
into a graph Γ ∈ dgradP,Q exactly as

before, except that we now require P2 ⊂ P and Q2 ⊂ Q (not just P2 +Q2 ⊂ P +Q). The quotient Γ/Γ2

is defined as before and regarded as an element of dgrad−d2P−P2,Q/Q2
. The sign ǫ(Γ2,Γ,Γ1) is also defined

as before. With these conventions for subgraphs and quotients, above definitions for the cocomposition
maps can be copied verbatim to define cocompositions

Gc
CF (C)

(P1 + P2, Q1 +Q2) → Gc
CF (C)

(P1, Q1 + {v}) ⊗ Gc
CF (C)

(P2, Q2).
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The definitions repeat word for word when Γ2 ∈ dgrad2I , Γ ∈ dgradP,Q and I ⊂ P , if we agree on the

convention that now Γ/Γ2 belongs to dgrad−d2P/I,Q, defining cocompositions

Gc
CF (C)

(P + I,Q) → Gc
CF (C)

(P + {v}, Q)⊗ Gc
C(C)

(I).

Conclusion 2.0.2. The collection Gc
CF (C)

:= {Gc
C(C)

(ℓ),Gc
CF (C)

(p, q)} carries a cooperad structure.
The componentwise linear dual, GCF (C) := {Gc

C(C)
(ℓ)∗,Gc

CF (C)
(p, q)∗}, is an operad.

With the evident conventions for how to color the new vertex obtained by collapsing an embedded
subgraph the same formulas define a cooperad structure on the collection

Gc
CF (H)

:= {Gc
C(C)

(ℓ),Gc
CF (C)

(p, q),Gc
CF (H)

(k,m, n)}.

Its linear dual, denoted GCF (H), is an operad.

3. de Rham field theory

Given a pair of distinct indices i, j ∈ [k] + [m] + [n] we follow Kontsevich and define a function

φhi,j : CFk,m,n(H) → S1, x+ R ⋊ R>0 7→ Arg

(
xj − xi
xj − xi

)
.

Here a barred variable denotes the complex conjugate variable. The function is smooth and extends to a
smooth function defined on the compactified configuration space. Let ϑ be the homogeneous normalized
volume form on S1.

Given a graph Γ ∈ dgradk,m,n, define

ωΓ := ∧di=1(φ
h
sΓ(ei),tΓ(ei)

)∗ϑ.

The form ωΓ is a smooth closed differential form of degree d on CF k,m,n(H). We extend ω to a map of

dg vector spaces Gc
CF (H)

(k,m, n) → Ω(CF k,m,n(H)).

Define similarly, for indices i, j ∈ [ℓ], φi,j : Cℓ(C) → S1 by

φi,j : x+ C ⋊ R>0 7→ Arg(xj − xi).

The function φ extends to the compactification. For a graph Γ ∈ dgradℓ , let

ωΓ := ∧di=1(φsΓ(ei),tΓ(ei))
∗ϑ.

This allows us to define maps of dg vector spaces ω : Gc
C(C)

(ℓ) → Ω(Cℓ(C)). By identifying CF p,q(C)

with a subset of Cp+q(C) and dgradp,q with a subset of dgradp+q we can use this to define maps of dg

vector spaces ω : Gc
CF (C)

(p, q) → Ω(CF p,q(C)) as well.
In all cases we interpret the form associated to a graph without edges as the function identically

equal to 1.

Claim 3.0.1. The de Rham complex functor Ω is only comonoidal up to quasi-isomorphism with
respect to the usual tensor product of dg vector spaces. Hence Ω(CF (H)) is only a cooperad up to
quasi-isomorphisms. This inconvenience can be ignored by working with a completed tensor product,
regarding it, say, as a cooperad in the category of chain complexes of nuclear Fréchet spaces. Our
mapping ω : Gc

CF (H)
→ Ω(CF (H)) is a morphism of cooperads in this category of cooperads.

We shall not prove this statement as it is a consequence of similar statements in [15].

4. A representation of the operad of graphs

Fix for the remainder of this section a graded vector space V , assumed finite-dimensional in each
degree.

Define the formal smooth functions on V , denoted O, to be the completed symmetric algebra
on V ∗. Define the formal polyvector fields on V , to be denoted Tpoly, as the completed symmetric
algebra on V ∗ ⊕ V [−1]. Note that O is a subalgebra of Tpoly.

Let τ be the image of idV under V ⊗ V ∗ → V ⊗ V ∗[1] ∼= (V ∗ ⊗ V [−1])∗ and regard it as a map
V ∗⊗V [−1] → R. It extends uniquely to a derivation of Tpoly. This derivation defines an endomorphism
(of degree −1) of Tpoly ⊗ Tpoly which we again denote τ . The Schouten bracket on Tpoly is the map

[ , ]S := m ◦ τ ◦ (id+ (21)),
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where m denotes the product on Tpoly. It is well-known that the Schouten bracket is a (degree −1) Lie

bracket. Given a finite set S and distinct elements s, t ∈ S, define τs,t to be the endomorphism of T⊗S
poly

acting as τ on the s-th factor times the t-th factor and as the identity on all others.
For a graph Γ ∈ dgradk,m,n, let

ΦΓ := ε ◦m ◦©d
i=1τsγ (ei),tΓ(ei) : T⊗k

poly ⊗ T⊗m
poly ⊗O⊗n → O.

Here ε is the projection of Tpoly onto O defined by the projection V ∗ ⊕ V [−1] → V ∗, we regard

T⊗k
poly ⊗ T⊗m

poly ⊗O⊗n ⊂ T⊗k+m+n
poly ,

and m : T k+m+n
poly → Tpoly is the product. For a graph Γ ∈ dgradℓ we define

ΦΓ := m ◦©d
i=1τsγ (ei),tΓ(ei) : T⊗ℓ

poly → Tpoly.

For a graph Γ ∈ dgradp,q we use the same formula,

ΦΓ := m ◦©d
i=1τsγ (ei),tΓ(ei) : T⊗p

poly ⊗ T⊗q
poly → Tpoly.

Claim 4.0.2. One verifies that these definitions define a morphism of dg operads

Φ : GCF (H) → End(Tpoly, Tpoly,O).
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5
NCG

∞
formality

Combining the previous subsections, we have a representation

Φ ◦ ω∗ : K(CF (H)) → GCF (H) → End(Tpoly, Tpoly,O).

Since K(CF (H)) is quasi-free the representation consists of a family of maps, one for each generator of
K(CF (H)), satisfying some quadratic identities coming from the boundary differential on K(CF (H)).
We shall denote the components as follows:

• λℓ := Φ ◦ ω∗([Cℓ(C)]) ∈Map3−2ℓ(T⊗ℓ
poly, Tpoly), for ℓ ≥ 2.

• νp := Φ ◦ ω∗([CF+
0,q(C)]) ∈Map2−q(T⊗q

poly, Tpoly) for q ≥ 2.

• µn := Φ ◦ ω∗([CF+
0,0,n(H)]) ∈Map2−n(O⊗n,O) for n ≥ 2.

• Vp,q := Φ ◦ ω∗([CF+
p,q(C)]) ∈Map2−2p−q(T⊗p

poly ⊗ T⊗q
poly, Tpoly) for p, q ≥ 1.

• Uk,n := Φ ◦ ω∗([CF+
k,0,n(H)]) ∈Map2−2k−n(T⊗k

poly ⊗O⊗n,O) for k ≥ 1, n ≥ 0.

• Zk,m,n := Φ ◦ ω∗([CF+
k,m,n(H)]) ∈ Map1−2k−m−n(T⊗k

poly ⊗ T⊗m
poly ⊗ O⊗n,O) for k ≥ 0, m ≥ 1,

n ≥ 0.

Recall that the Hochschild cochain complex C(A,A) of an A∞ algebra A is

Map(T (A[1]), A), where T (A[1]) =
⊕

r≥0

A[1]⊗r

The brace operations on the Hochschild cochains complex are maps

( ){. . . }p : C(A,A) ⊗

p⊗

i=1

C(A,A) → C(A,A), p ≥ 1,

defined for x ∈Map(A[1]⊗r, A), xi ∈Map(A[1]⊗ri, A), 1 ≤ i ≤ p ≤ r, n = r + r1 + · · · + rp − p, by

x{x1, . . . , xp}p(a1, . . . , an) =
∑

1≤i1<···<ip<r

±x(a1, . . . , ai1−1, x1(ai1 , . . . ), . . . , aip−1, xp(aip , . . . ), . . . , an).

The Gerstenhaber bracket on the Hochschild cochain complex is the operation

[x, y]G := x{y}1 ± y{x}1.

It is a graded Lie bracket of degree −1 in our grading on the Hochschild cochain complex. Denote
by C≥1(A,A) the subspace Map(

⊕
r≥1A[1]⊗r, A). It is a graded Lie subalgebra. Set ( ){. . . } :=∑

p≥1( ){. . . }p and define

br : C(A,A) → C≥1(C(A,A), C(A,A)), x 7→ (){x}1 + x{. . . }.

One verifies that this is a map of graded Lie algebras.
An A∞ structure on A is a Maurer-Cartan element m = d+m2 + . . . in C≥1(A,A). The differential

[m, ]G makes the Hochschild cochain complex a dg Lie algebra. It is also an A∞ algebra with A∞

structure the Maurer-Cartan element ∪m := br(m) of C≥1(C(A,A), C(A,A)). When A has a given A∞

structure m we shall usually write C(m) for C(A,A) with differential [m, ]G.
The interpretation of the components of our representation of K(CF (H)) is that
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• λ = {λℓ} is an L∞ structure on Tpoly.
• ν = {νp} is an A∞ structure on Tpoly.
• µ = {µn} is an A∞ structure on O.
• V = {Vp,q} is an L∞ map (Tpoly, λ) → C≥1(ν).
• U = {Uk,n} is an L∞ map (Tpoly, λ) → C(µ).
• Z = {Zk,m,n} is a morphism of A∞ algebras

(Tpoly, ν,V) → (C(µ),∪µ, br ◦ U)

equipped with homotopy actions by (Tpoly, λ).

This description is a result of the interpretation of the operad of flag open-closed homotopy algebras.
All the component maps have an explicit description as sums over graphs, e.g.

Vp,q =
∑

[Γ]∈[dgra2p+q−2
p,q ]

∫

CF
+
p,q(C)

ωΓΦΓ,

with [dgra2p+q−2
p,q ] the set of equivalence classes of graphs under the Σ2p+q−2-action by permutation of

edges. We shall use this description to give a more detailed description of the component maps. The
main tool is “Kontsevich’s vanishing lemma”:

Lemma 0.0.2. [11] Let X be a complex algebraic variety of dimension N ≥ 1 and Z1, ..., Z2N be

rational functions on X, not equal identically to 0. Let U be any Zariski open subset of X such that each

function Zα is well-defined and nowhere vanishing on U , and that U consists of smooth points. Then the

integral ∫

U(C)

∧2N
α=1d(Arg(Zα))

is absolutely convergent and is equal to zero.

1. Descriptions of the involved structures

1.1. The L∞ structure λ. We have

λℓ =
∑

[Γ]∈[dgra2ℓ−3
ℓ

]

∫

Cℓ(C)

ωΓΦΓ.

For ℓ ≥ 3, Cℓ(C) ∼= S1 × U , with U = (C \ {0, 1})ℓ−2 \ diagonals. This identification can be obtained
by using the translation freedom to fix the point labelled by 1, say, at the origin of C and using the
dilation freedom to put the point labelled by 2, say, on the unit circle S1. Multiplying the remaining
points by the inverse of the phase of the point labelled by 2 gives a point in U . Using this description
we can reduce every integral ∫

Cℓ(C)

ωΓ

to an integral over a circle times an integral of the type appearing in Kontsevich’s vanishing lemma.
Hence all weights vanish for ℓ ≥ 3. The configuration space C2(C) is a circle. The set of graphs dgra1

2

contains two elements; the graph with an edge from 1 to 2 and the graph with an edge from 2 to 1. Both
graphs have weight 1. It follows that λ2 is the Schouten bracket. As all higher homotopies λ≥3 vanish,
this means λ is the usual graded Schouten Lie algebra structure on Tpoly.

1.2. The A∞ structure ν. The A∞ structure ν has components

νp =
∑

[Γ]∈[dgrap−2
0,p ]

∫

CF
+
0,p(C)

ωΓΦΓ.

The angle between collinear points is constant, so the differential form associated to a graph containing
an edge connecting collinear vertices will be zero; hence no such graphs can contribute. It follows that
the only graph which contributes is the graph with two vertices and no edge. The associated differential
form is identically equal to one and we evaluate it on the one-point space CF 0,2(C). It follows that
ν = ν2 is the usual (wedge) product on Tpoly.
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1.3. The A∞ structure µ. The operation µn is given by a sum over graphs in dgran−2
0,0,n. The set

dgran−2
0,0,n is empty if n is not equal to 2 since the condition that no edge begins at a boundary vertex

forces a graph with only boundary vertices to have no edges. The space CF
+

0,0,2(H) is a point and the
differential form associated to the graph with two vertices and no edge is the function identically equal
to 1. The associated operator ΦΓ is the wedge product of polyvector fields, restricted to a product on
functions. It follows that µ = µ2 is the usual associative (and commutative) product on O.

1.4. The L∞ map V. Since

Vp,q =
∑

[Γ]∈[dgra2p+q−2
p,q ]

∫

CF
+
p,q(C)

ωΓΦΓ

and CF
+

p,1(C) ∼= Cp+1(C), the argument regarding the L∞ structure λ can be repeated to conclude that
Vp,1 = 0 for p ≥ 2, while

V1,1 : Tpoly ⊗ Tpoly → Tpoly, X ⊗ ξ 7→ [X, ξ]S .

In other words, V1,1 is the adjoint action Tpoly → Der(Tpoly) of Tpoly on itself by derivations of the wedge
product.

Using the translation freedom to put the collinear point labelled by 1 at the origin and the dilation
freedom to put the collinear point labelled by 2 at 1 identifies CF+

p,2(C) with (C \ {0, 1})p \ diagonals,
so that one may again use Kontsevich’s vanishing lemma and conclude that Vp,2 = 0 for all p ≥ 1.

Reflection of the plane in the line of collinearity induces an involution f of CF
+

p,q(C). (Choosing
representative configurations with the collinear points on the real axis identifies f with complex conju-
gation.) The map f preserves orientation if p is even and reverses it if p is odd. For Γ ∈ dgra2p+q−2

p,q ,

f∗ωΓ = (−1)2p+q−2ωΓ = (−1)qωΓ. Thus

(−1)p
∫

CF
+
p,q(C)

ωΓ = (−1)q
∫

CF
+
p,q(C)

ωΓ,

implying the integral is 0 whenever p and q have different parity, i.e. whenever p+ q is odd. This means
that the first homotopy to V1,1 is given by V1,3. The angle between collinear points is constant, so
the differential form associated to a graph containing an edge connecting collinear vertices will be zero.
The set dgra3

1,3 contains a unique graph without edges connecting collinear vertices, up to direction and
ordering of edges, namely the graph with a free vertex of valence three and three collinear vertices of
valence one. Hence there are eight (equivalence classes of) graphs (corresponding to the 23 ways to direct
the three edges) contributing to V1,3. Each of these eight equivalence classes has a representative with
the edges ordered so that ei connects the free vertex with the collinear vertex labelled by i, 1 ≤ i ≤ 3.
These representatives all have weight 1/24. To see this one may argue as follows.

Assume given a configuration in CF+
1,3(C). Use the freedom to translate along the imaginary axis

to put the line of collinearity on the real axis. Use the freedom to translate along the real axis to put
the free point on the imaginary axis. We are then left with a positive dilation that can be used to put
the free point either at +i or at −i, depending on wether it lies above or below the line of collinearity,
respectively. These two types of configurations are mapped to each other by the involution f in the line
of collinearity, discussed above. Denote the space of configurations of the first type, i.e. the subspace of
CF+

1,3(C) where the free point lies above the line of collinearity, by C. It follows from the remarks on
the involution f that the weight

∫

CF
+
1,3(C)

ωΓ

of a graph Γ entering the operation V1,3 may be calculated as

∫

CF
+
1,3(C)

ωΓ = 2

∫

C

ωΓ.
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We can identify C with the infinite open simplex {−∞ < x1 < x2 < x3 <∞} and, for Γ the graph with
the i-th edge directed from the free vertex to the i-th collinear vertex, we may then calculate∫

C

ωΓ =
1

(2π)3

∫

−∞<x1<x2<x3<∞

dArg(i− x1) ∧ dArg(i− x2) ∧ dArg(i− x3)

=
1

(2π)3

∫

−∞<x1<x2<x3<∞

d arctan(x1) ∧ d arctan(x2) ∧ d arctan(x3)

=
1

48
.

The total weight is 2/48 = 1/24.
It follows that

V1,3 =
1

24
m ◦

(
τ1,4 ◦ τ1,3 ◦ τ1,2 + τ1,4 ◦ τ1,3 ◦ τ2,1 + τ1,4 ◦ τ3,1 ◦ τ1,2 + τ4,1 ◦ τ1,3 ◦ τ1,2

+τ4,1 ◦ τ3,1 ◦ τ1,2 + τ4,1 ◦ τ1,3 ◦ τ2,1 + τ1,4 ◦ τ3,1 ◦ τ2,1 + τ4,1 ◦ τ3,1 ◦ τ2,1

)

as a map T⊗1+3
poly → Tpoly. (The first of the four copies of Tpoly acts on the last three.)

1.5. The L∞ map U . The map U is, by construction, Kontsevich’s Formality Map. Recall that
it’s first Taylor component U1 =

∑
n≥0 U1,n is the Hochschild-Kostant-Rosenberg quasi-isomorphism.

1.6. The map Z of NCG∞ algebras. Since CF
+

0,1,n(H) is isomorphic to CF
+

1,0,n(H) and dgran0,1,n
is isomorphic to dgran1,0,n, for all n, the maps Z0,1,n coincide with the maps U1,n. Hence the first Taylor
component of Z, ∑

n≥0

Z0,1,n : Tpoly → C(µ),

is the Hochschild-Kostant-Rosenberg (HKR) quasi-isomorphism. The higher components of Kontsevich’s
Formality Map U are homotopies measuring the failure of the HKR map to respect the Lie brackets. In
the same way, the higher components of Z are homotopies that keep track of the failure of the HKR map
to respect the associative products and the respective actions of Tpoly by homotopy derivations of said
associative products. Since the first component is the HKR morphism, we get the following theorem:

Theorem 1.6.1 (Main Theorem). The map Z = {Zk,m =
∑

n≥0 Zk,m,n}k≥0,m≥1 is an explicit

NCG∞ quasi-isomorphism from ((Tpoly, [ , ]S), (Tpoly,∧,V)) to ((Tpoly, [ , ]S), (C(O,O), dH + ∪, br ◦ U))

This statement implies the following A∞ formality theorem:

Corollary 1.6.1. The map A = {Am :=
∑

n≥0 Z0,m,n}m≥1 is an explicit A∞ quasi-isomorphism

from (Tpoly,∧) to (C(O,O), dH + ∪).

This result has already been demonstrated, but in a different way, by Shoikhet; see [18].
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6
The induced A

∞
structure

An NCG∞ algebra consists in an L∞ algebra (L, λ), an A∞ algebra (A, ν) and an L∞ morphism
V : L→ C≥1(ν). Let ~ be a formal parameter. The map V induces a map on the sets of Maurer-Cartan
elements,

MC(L[[~]]) → MC(C(ν)[[~]]), π 7→
∑

p≥1

1

p!
Vp,q((~π)⊗p, ).

This gives us, for each Maurer-Cartan element π of L, an A∞ structure

νV(π)
q := νq +

∑

p≥1

1

p!
Vp,q((~π)⊗p, ), q ≥ 1,

on A[[~]].
If Z : (L,A, λ,V , ν) → (L,B, λ,U , µ) is a morphism of NCG∞ algebras (the same L∞ algebra acting

on both and we assume the NCG∞ algebra morphism is the identity on the Lie-color), then, for any
Maurer-Cartan element π of L[[~]], we get an induced map of A∞ algebras

Zπ : (A[[~]], νV(π)) → (B[[~]], µU(π))

by Zπ
m := Z0,m +

∑
k≥0

1
k!Zk,m((~π)⊗k, ). See the appendix for the argument. If Z is a quasi-

isomorphism, then Zπ is as well.
Applying this general construction to our representation Φ ◦ ω∗ produces, for any Maurer-Cartan

element π ∈ Tpoly (i.e. a possibly graded Poisson structure),

• an A∞ structure νV(π) on Tpoly[[~]] with ν
V(π)
1 + ν

V(π)
2 = ~[π, ]S + ∧ as its first two Taylor

components,
• the A∞ cup product on the Hochschild cochains of O[[~]] corresponding to the Kontsevich star

product µU(π) on O[[~]] defined by π,
• and an A∞ quasi-isomorphism Zπ : (Tpoly[[~]], νV(π)) → C(µU(π))[[~]].

We record this fact as a corollary.

Corollary 0.6.2. Let π ∈ Tpoly be a Poisson structure. Then the A∞ algebra (Tpoly[[~]], νV(π))
is quasi-isomorphic as an A∞ algebra to the algebra of Hochschild cochains on O[[~]] equipped with the

cup product corresponding to the Kontsevich star product defined by π. The map Zπ is an explicit such

quasi-isomorphism.

1. Homological properties of the exotic NCG∞ algebra structure V

Let NCG be the two-colored operad of noncommutative Gerstenhaber algebras and let f : NCG →
GCF (C) be the map which sends the bracket to the (sum of) graph(s) e12+e21 ∈ GCF (C)(2) = GC(C)(2), for
e12 (e21) the graph with vertices {1, 2} and a single edge from 1 to 2 (from 2 to 1), sends the product to the
graph in GCF (C)(0, 2) which has two vertices and no edge, and sends the action to the graph in GCF (C)(1, 1)
which is e12 + e21 with the vertices in different colors. The composition Φ ◦ f : NCG → End(Tpoly, Tpoly)
is the usual structure of NCGA on polyvector fields in terms of the wedge product and the Schouten
bracket. The deformation complex of f is the mapping cone

C := Cone(Def(Lie1∞ → GC(C))[−1] → Def(Ass∞ →
∫

GCF (C))).
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See the appendix for notation and further details. The complex Def(Lie1∞ → GC(C)) is a directed version
of Kontsevich’s graph complex, GC, and quasi-isomorphic to it, as shown in [19]. The operad

∫
GCF (C)

is a directed version of the operad Graphs used by Kontsevich in his proof in [10] of the formality of the
little disks operad, and it is quasi-isomorphic to it[19]. Thomas Willwacher has proved the following:

Theorem 1.0.2. [19]

• H0(GC) ∼= grt as a graded Lie algebra.

• H1(Def(Ass∞ → Graphs)) ∼= grt ⊕ R[−1] as a vector space, where R[−1] is spanned by the

class of the sum of graphs contributing to V1,3.

• The map GC[−1] → Def(Ass∞ → Graphs) is injective on cohomology.

This theorem, together with the long exact sequence for our mapping cone, implies that Hd+1(C ) ∼=
Hd+1(Def(Ass∞ → Graphs))/Hd(GC). In particular, H1(C ) is one-dimensional, spanned by the sum
of graphs entering V1,3.

Using the representation Φ we can push this statement to a universal (or, rather, generic) statement
about structures on polyvector fields.

Corollary 1.0.3. The exotic NCG∞ algebra structure V on polyvector fields is generically not

homotopic to the usual such structure. Moreover, it represents the unique infinitesimal deformation of

the usual structure.

Corollary 1.0.4. The A∞ structures ∧+ ~[π, ] and νV(π) on Tpoly[[~]] are, generically, not homo-

topic.

We have to say generically because for some dimensions of the O-module Tpoly and for some degen-
erate Maurer-Cartan elements the corollaries might not be true.
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7
A Duflo-type theorem

Kontsevich’s paper [11] contained a (somewhat sketchy) proof that the tangential morphism of
his Formality map, applied to a finite dimensional Lie algebra, defined an isomorphism H(g, S(g)) →
H(g, U(g)) of Chevalley-Eilenberg cohomology algebras. This result was later given a detailed proof and
generalized to an arbitrary dg Lie algebra of finite type, see [13, 17, 4]. In this section we discuss a
homotopy generalization of this theorem.

Let g be a graded vector space which is of finite type (i.e. finite dimensional in each degree) and is
concentrated in non-negative degrees. Let Tpoly be the polyvector fields on g[1], so Tpoly = Sa(g

∗[−1])⊗
Sa(g). Identify Tpoly with Map(Sc(g[1]), Sa(g)). The graded Lie algebra

Def(Lie,g)[−1] := Def(Lie∞
0
→ End(g))[−1] = Map(S≥1(g[1])),g)

embeds into Tpoly as a Lie subalgebra. Denote by O = Sa(g
∗[−1]) the algebra of functions on g[1]. Its

Hoschschild cochain complex is

C(O,O) = Map(B(Sa(g
∗[−1])), Sa(g

∗[−1])) ∼= Map(Sc(g[1]),Ω(Sc(g[1]))).

Here B( ) denotes the (coassociative) bar construction and Ω( ) denotes the (associative) cobar construc-
tion. In the isomorphism we use that g is of finite type and concentrated in degrees ≥ 0. These two
assumptions ensure that Sa(g

∗[−1])∗ ∼= Sc(g[1]).
After the above identifications the following result is a straight-forward corollary to our Main The-

orem, 1.6.1.

Theorem 0.0.3. The representation Φ ◦ ω∗ : K(CF (H)) → End(Tpoly, Tpoly,O) induces an explicit

quasi-isomorphism Map(Sc(g[1]), Sa(g)) → Map(Sc(g[1]),Ω(Sc(g[1]))) of A∞ algebras equipped with

L∞ actions by the graded Lie algebra Def(Lie,g).

As before, given a Maurer-Cartan element of Def(Lie,g), we can push this to a quasi-isomorphism
of the induced A-infintity structures. The formal parameter ~ may in the present case be discarded (set
to 1). It’s purpose is only to define filtrations that ensure we never encounter diverging sums, but in the
present case one may use weight grading by tensor lengths to define such filtrations. It is a standard
argument and we omit the details.

A Maurer-Cartan element Q of Def(Lie,g) is precisely an L∞ structure on g. Assume Q given and
interpret it as a coderivation of Sc(g[1]), and denote the dg coalgebra (Sc(g[1]), Q) by C(g). The cobar
construction

Ω(C(g)) =: U∞(g)

is the derived universal enveloping algebra of the L∞ algebra (g, Q) introduced by V. Baranovsky in
[2]. (Baranovsky has shown that it is quasi-isomorphic to the usual universal enveloping algebra in the
special case that g is a dg Lie algebra.) Kontsevich’s formality map U quantizes Q to a differential on
Sa(g

∗[−1]). Denote Sa(g
∗[−1]) equipped with this differential by C(g,R). We have an isomorphism of

algebras

C(C(g,R), C(g,R)) ∼= Map(C(g), U∞(g)) =: C(g, U∞(g)).

However, the induced A∞ structure on Map(Sc(g[1]), Sa(g)) is not simply

C(g, S(g)) = Map(C(g), Sa(g)).
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Instead, we obtain an A∞ algebra C(g, S(g))exotic, which is a (generically) homotopy nontrivial defor-
mation of C(g, S(g)). The induced A∞ quasi-isomorphism is

ZQ : C(g, S(g))exotic → C(g, U∞(g)).

Remark 0.0.1. • The cohomologies H(C(g, S(g))exotic) and H(g, S(g)) are isomorphic as
associative algebras and the map on cohomology induced by ZQ coincides, by construction,
with the Duflo-Kontsevich isomorphism. Thus our theorem generalizes the Duflo-Kontsevich
statement.

• Since C(g, S(g))exotic is, generically, not quasi-isomorphic to C(g, S(g)), but–by our theorem–
is quasi-isomorphic to C(g, U∞(g)), it follows that there does not, generically, exist a quasi-
isomorphism of A∞ algebras

C(g, S(g)) → C(g, U∞(g)).

In other words, it is impossible to find a universal A∞ lift of the Duflo-Kontsevich isomorphism
on Chevalley-Eilenberg cohomologies to the Chevalley-Eilenberg cochain algebras.

There is a canonical isomorphism between Tpoly on g[1] and Tpoly on g∗. Above we used the
first graded vector space, for which O = Sa(g

∗[−1]). Application of Kontsevich’s formality to the
second case, for which O = Sa(g), quantizes an L∞ structure Q ∈ Tpoly to a (flat) A∞ structure
⋆ on S(g)[[~]]. Calaque, Felder, Ferrario and Rossi constructed in [3] a nontrivial but explicit A∞

(S(g)[[~]], ⋆)−C(g,R)[[~]]-bimodule structure K~ on R[[~]] and they proved that the derived left action

L : (S(g)[[~]], ⋆) →Map~(K~[1] ⊗ B(C(g,R))[[~]],K~[1])

is a quasi-isomorphism ofA∞ algebras. HereMap~ denotes the mapping space of maps which are linear in
~. One may formally set ~ = 1 in this quasi-isomorphism, for essentially the same reasons as those which
allowed us to do so above, and then identify the term on the right (above) with the cobar construction
Ω(C(g)). Thus the result of [3] implies that the quantization of the symmetric algebra on the L∞ algebra
g, (S(g), ⋆), is quasi-isomorphic to Baranovsky’s derived universal enveloping algebra of g. A detailed
proof of this will be contained in [1]. Together with our result this quasi-isomorphism implies that the
A∞ algebras C(g, S(g))exotic and C(g, (S(g), ⋆)) are quasi-isomorphic, though the quasi-isomorphism is
presently not explicit.
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8
Future work

This chapter is devoted to sketching a possible generalization of our results. We begin by recalling
a construction due to Merkulov[15].

1. A configuration space model for morphisms of L∞ algebras

The content of this section was invented by Merkulov; see [15].
Given x = (x1, . . . , xℓ) in Confℓ(C), define

xc :=
1

ℓ

ℓ∑

i=1

xi, ‖x‖ := |x− xc|.

The norm |x− xc| is the usual norm on vectors in Cℓ. Recall from section 1 the manifold

Cstd
ℓ (C) := {x ∈ Confℓ(C) | xc = 0, ‖x‖ = 1}.

Define for ℓ ≥ 1, C′
ℓ(C) := Confℓ(C)/C, the quotient by translations. There is an isomorphism

ψℓ : C′
ℓ(C) → Cstd

ℓ (C) × (0,∞), [x] 7→

(
x− xc
‖x‖

, ‖x‖

)
.

Given a subset I ⊂ [ℓ], of cardinality at least 2, there is a canonical forgetful projection πA : C′
ℓ(C) →

C′
I(C). Define a compactification Ĉ ′

ℓ(C) of C′
ℓ(C) as follows. If ℓ = 1, then C′

ℓ(C) is already compact

(it is a singleton) and we set Ĉ′
1(C) := C′

1(C). If ℓ ≥ 2 then we define Ĉ′
ℓ(C) as the closure of the

embedding

C′
ℓ(C)

(πI)
−→

∏

I⊂[ℓ]
|I|≥2

C′
I(C)

(ψI )
−→

∏

I⊂[ℓ]
|I|≥2

Cstd
I (C) × (0,∞) −→

∏

I⊂[ℓ]
|I|≥2

CI × [0,∞].

This differs from the Fulton-MacPherson compactification in that not only do we add limit configurations
of collapsing points, but also limit configurations where the points coalesce in clusters with finite distances

within each cluster and infinite distances between all clusters. The codimension one boundary of Ĉ′
ℓ(C)

is ⊔

I⊂[ℓ],|I|≥2

(
C′
ℓ−|I|+1(C) × CI(C)

)
⊔

⊔

k≥2,|Ji|≥1
[ℓ]=J1+...Jk

(
Ck(C) × C′

J1
(C) × . . . C′

Jk
(C)

)
.

To interpret this boundary factorization as an operad structure one has to regard the configuration spaces
CI(C) and Ck(C) (the compacifications of CI(C) and Ck(C) above) as being of different colors, say the

colors “in” and “out”, respectively, while Ĉ′
ℓ(C) interpolates the colors, representing operations with ℓ

in-inputs and an out-output. To distinguish the differently colored copies of C(C) we explicitly denote

them C
in

(C) and C
out

(C). Then boundary inclusions give the collection

Ĉ′(C) := {C
in

k (C), Ĉ ′
r(C), C

out

ℓ (C)}

a structure of two-colored operad in the category of compact semialgebraic manifolds. The components

of the form Cp(C) have already been oriented. We orient components Ĉ ′
r(C) by orienting the interior by
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the isomorphism C′
r(C) ∼= Cstd

r (C)× (0,∞) and extending the orientation to the boundary by requiring
that Stokes’ formula holds (without a sign).

The operad Ĉ′(C) is cellular and we denote the associated operad of fundamental (cellular) chains

K(Ĉ(C)).

Lemma 1.0.1. [15] The operad K(Ĉ ′(C)) is isomorphic to the Koszul resolution of the operadic

suspension of the two-colored operad of morphisms of Lie algebras. That is to say, a representation of

K(Ĉ(C)) in a pair of dg vector spaces Lin, Lout is the same thing as L∞ structures λin, λout on Lin[1],
Lout[2], respectively, and an L∞ morphism (Lin[1], λin) → (Lout[1], λout).

Another way to phrase the lemma is that K(Ĉ ′(C)) is the operad of morphisms of K(C(C))-algebras.

The lemma is almost obvious; the suboperads K(C
in

(C)) and K(C
out

(C)) are both resolutions of the

(operadic suspension) of the operad of Lie algebras. The boundary factorizations for {Ĉ′
r(C)} are exactly

the equiations for an L∞ morphism.

2. Flag version of Ĉ′(C), a model for morphisms of NCG∞ algebras

For integers r ≥ 0, q ≥ 1, define CF ′
r,s(C) to be the submanifold of C′

r+s(C) where the points
labelled by [s] are collinear on a line parallel to the real axis. This definition makes sense since the

group of translations of the plane preserve collinearity. Define the compacification ĈF ′
r,s(C) to be the

closure of C′
r+s(C) inside Ĉ′

r+s(C). Let CF ′+
r,s(C) be the connected component of CF ′

r,s(C) that has the
collinear points compatibly ordered, i.e. if i < j in [s], then xi < xj on their common line of collinearity

and let ĈF ′+
r,s(C) be the associated connected component of the compactification. The codimension one

boundary of ĈF ′+
r,s(C) is

⊔

I⊂[r]

(
CF ′+

r−|I|+1,s(C) × CI(C)
)
⊔

⊔

P⊂[r],Q⊂[s]

(
CF ′+

r−|P |,s−|P |+1(C) × CF+
P,Q(C)

)

⊔
⊔

m,n
J1+...Jm+A1+...An=[r]

B1+···+Bn=[r]

(
CF+

m,n(C) × C′
J1

(C) × · · · × C′
Jm

(C) × CF ′+
A1,B1

(C) × · · · × CF ′+
An,Bn

(C)
)
.

The unions are over all (sub)sets for which all involved spaces are defined. This boundary factorization
defines boundary factorizations of all connected components. To interpret it as an operad we need four
colors; colors we shall refer to by Ass-in, Lie-in, Ass-out and Lie-out. The component CI(C) above
is of the Lie-in-color. The component CF+

P,Q(C) has (Lie-in,Ass-in)-inputs and output Ass-in, and

the component CF+
m,n(C) has (Lie-out,Ass-out)-inputs and output Ass-out. To distinguish these two

incarnations of the operad CF (C) we denote them CF
in

(C) and CF
out

(C). The spaces C′
Jk

(C) have
inputs in the color Lie-in and output in the color Lie-out. The spaces CF ′

r,s(C) have (Lie-in,Ass-in)-
inputs and output Ass-out. We denote underlying collection of this four-colored operad as

ĈF ′(C) := {C
in

r (C), CF
in

p,q(C), Ĉ ′
ℓ(C), ĈF ′

s,t(C), C
out

k (C), CF
out

m,n(C)}.

Orient the manifolds ĈF ′
s,t(C) by the pullback orientations of the defining embeddings into Ĉ′

r+s(C).

We shall denote the associated operad of fundamental chains by K(ĈF ′(C)). The following lemma is a
simple extension of lemma 1.0.1.

Lemma 2.0.2. A representation of the operad K(ĈF ′(C)) is equivalent to two NCG∞ algebras and

an NCG∞ morphism from one to the other.

3. Cocycles from de Rham field theories

It is straight forward to extend the definitions employed in this paper to define a two-colored cooperad

of graphs Gc
bC′(C)

, whose cocompositions mimick the compositions of Ĉ′(C), together with a representation

Φ : G bC′(C) → End(Tpoly, Tpoly) of its linearly dual operad. In this paper we have constructed a map

ω : Gc
CF (H)

→ Ω(CF (H)).
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We did this by decorating edges of graphs with suitable pullbacks of the differential form dArg(z − w)
or its hyperbolic cousin

d log
(z − w)(z − w̄)

(z̄ − w)(z̄ − w̄)
.

It was claimed in [10] that it is possible to instead use the “log propagator”

d log
z − w

z̄ − w
,

a claim which is highly nontrivial since this form is singular on the compactified configuration spaces.
This claim still has no rigorous proof.

Say that a propagator de Rham field theory on Ĉ′(C) is a map of dg cooperads

ξ : Gc
bC′(C)

→ Ω(Ĉ′(C)).

which is defined by decorating edges of graphs with pullbacks of a fixed differential form. Any propagator
de Rham field theory defines a morphism of dg operads

Φ ◦ ξ∗ : K(Ĉ ′(C)) → End(Tpoly, Tpoly),

i.e. a pair of L∞ structures λin and λout on Tpoly and an L∞ morphism from λin to λout. Merkulov
showed that if ξ is a propagator de Rham field theory ξ with the property that λin and λout both equal
to Schouten bracket, then the expression

φℓ(ξ) =
∑

Γ∈[(dgra2ℓ−2
ℓ

)1vi]

∫

bC′
ℓ
(C)

ξΓΓ,

where the subscript 1vi denotes the subset of 1-vertex irreducible graphs, is a cocycle of degree 0 in the
graph complex GC. The results of Willwacher from [19] then imply that φℓ(ξ) represents an element of
the Grothendieck-Teichmüller Lie algebra. Unfortunately, there are no known non-trivial such propagator
de Rham field theories! The only good candidate is based on Kontsevich’s log propagator (defined above),
and this propagator has some unresolved convergence issues.

Assume that there is a nontrivial propagator de Rham field theory ξ such that λin and λout both
equal the Schouten bracket. One may introduce a four-colored graph cooperad Gc

dCF ′(C)
in the obvious

way together with a representation

Φ : G dCF ′(C) → End(Tpoly, Tpoly, Tpoly, Tpoly)

of its linearly dual operad. Since ĈF ′
s,t(C) embeds in Ĉ ′

r+s(C), it has to be possible to extend ξ to

ξ : Gc
dCF ′(C)

→ Ω(ĈF ′(C)).

The composition Φ◦ξ∗ then defines a universalNCG∞ automorphism F+G of ((Tpoly, [ , ]S), (Tpoly, ν),V)),
extending the L∞ automorphism F of (Tpoly, [ , ]S) defined by Merkulov’s formula. One may then, given
a Maurer-Cartan element π of (Tpoly, [ , ]S), push this to an A∞ morphism

Gπ : (Tpoly[[~]], νV(π)) → (Tpoly[[~]], νV◦F (π)).

This construction, if successful, would hopefully elucidate the relation suggested in [10] between the
Grothendieck-Teichmüller Lie algebra and the theory of Duflo automorphisms.
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A
NCG

∞
algebras

Let NCG be the two-colored operad generated by a degree −1 Lie bracket [x1, x2] in one color, call
it x, an associative degree 0 product a1 · a2 in another color, call it a, and an operation which we denote
x1 • a1, of the type (x,a) → a, which represents the bracket in derivations of the product. This is the
operad of NCGAs.

Proposition 0.0.1. The operad NCG is Koszul.

Remark 0.0.2. After the publication of the first version of the present article, Hoefel and Livernet
published a preprint[8] containing a different and detailed proof of this proposition.

Proof. We shall use the rewriting systems method of [12]. The rewriting rules are

(a1 · a2) · a3 7→ a1 · (a2 · a3)

[[x1, x2], x3] 7→ −[[x2, x3], x1] − [[x3, x1], x2]

x1 • (a1 · a2) 7→ (x1 • a1) · a2 + a1 · (x1 • a2)

[x1, x2] • a1 7→ x1 • (x2 • a1) − x2 • (x1 • a1).

The critical monomials are ((a1 · a2) · a3) · a4, [[[x1, x2], x3], x4], x1 • ((a1 · a2) · a3), [x1, x2] • (a1 · a2) and
[[x1, x2], x3] • a1. The first two are known to be confluent as the operads Lie1 and Ass are known to be
Koszul. The third critical monomial can be rewritten either as

x1 • ((a1a2)a3) 7→ (x1 • (a1a2))a3 + (a1a2)(x1 • a3)

7→ ((x1 • a1)a2)a3 + (a1(x1 • a2))a3 + a1(a2(x1 • a3))

7→ (x1 • a1)(a2a3) + a1((x1 • a2)a3) + a1(a2(x1 • a3))

or as

x1 • ((a1a2)a3) 7→ x1 • (a1(a2a3))

7→ (x1 • a)(a2a3) + a1(x1 • (a2a3))

7→ (x1 • a1)(a2a3) + a1((x1 • a2)a3) + a1(a2(x1 • a3)).

Since both ways give the same end result, x1 • ((a1a2)a3) is confluent.
The critical monomial [x1, x2] • (a1 · a2) can be rewritten either as

[x1, x2] • (a1a2) 7→ ([x1, x2] • a1)a2 + a1([x1, x2] • a2)

7→ (x1 • (x2 • a1))a2 − (x2 • (x1 • a1))a2 + a1(x1 • (x2 • a2)) − a1(x2 • (x1 • a2))

or

[x1, x2] • (a1a2) 7→ x1 • (x2 • (a1a2)) − x2 • (x1 • (a1a2))

7→ x1 • ((x2 • a1)a2) + x1 • (a1(x2 • a2)) − x2 • ((x1 • a1)a2) − x2 • (a1(x1 • a2))

7→ (x1 • (x2 • a1))a2 + (x2 • a1)(x1 • a2) + (x1 • a1)(x2 • a2) + a1(x1 • (x2 • a2))

− (x2 • (x1 • a1))a2 − (x1 • a1)(x2 • a2) − (x2 • a1)(x1 • a2) − a1(x2 • (x1 • a2)).
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These two ways to rewrite the monomial agree, so it is also confluent. Confluence of the last critical
monomial, [[x1, x2], x3] • a1, is a similar straightforward manipulation and we omit it. �

For a Koszul operad P the operad Mor(P), whose representations are pairs of P-algebras together
with a morphism of P-algebras between them, is (homotopy) Koszul by the results of [16]. An algebra for
the resolution Ω(Mor(P)¡) consists in two strong homotopy P-algebras and a strong homotopy morphism
between them. This general machinery produces a four-colored operad Ω(Mor(NCG)¡) of morphisms of
NCG∞ algebras. It has two “Lie-colors” and two “Ass-colors”. We can make it into a 3-colored operad
by identifying the two Lie colors. (A representation of that new operad will be a morphism of NCG∞

algebras having the same L∞ algebra acting on both A∞ algebras.) This operad includes generators
describing an L∞ endomorphism of the Lie-color. Quotient out these generators and get a new three-
colored operad Mor∗(NCG)∞. Its representations are morphisms of NCG∞ algebras that have the
same L∞ algebra acting on both A∞ algebras, and for which the L∞ endomorphism is the identity. It is
easy to see, knowing that Ω(Mor(NCG)¡) → Mor(NCG) is a quasi-isomorphism, that Mor∗(NCG)∞ is
quasi-isomorphic to the operad Mor∗(NCG) which has as representations two NCGAs with the same Lie
algebra acting on both associative algebras and a morphism between the NCGAs which is the identity
on the Lie algebra. Finally one can note that, in fact, Mor∗(NCG)∞ = Ω(Mor∗(NCG)¡).

Remark 0.0.3. Consider the operadNCG(1) of (one-colored) noncommutative Gerstenhaber algebras
(chain complexes that are simultaneously a dg Lie algebra, with the bracket of degree −1, and an
associative algebra, and the Lie bracket acts by derivations of the associative product). Our method to

prove Koszulity of NCG does not repeat mutatis mutandum for NCG(1). The problem is that one gets
a new critical monomial, [x1x2, x3x4], which is not confluent. This suggests (but does not prove) that

NCG(1) is not Koszul.

0.1. The deformation complex of NCG∞ → P. Recall that we denote the two colors of NCG
by x and a. Here x is the “Lie” color and a is the “Ass” color. Define NCG∞ := Ω(NCG¡).

Let P be a dg operad with colors x and a and assume given a morphism of operads f : NCG∞ → P .
We shall describe the deformation complex Def(f).

We shall simplify notation and write P(k) for P(k, 0;x) and P(p, q) for P(p, q;a). As a chain complex,

Def(f) =
∏

k≥2

P(k)Σk
[2 − 2k]⊕

∏

p≥0,q≥1
p+q≥2

P(p, q)Σp
⊗ sgnq[1 − 2p− q].

This chain complex has a degree zero graded Lie bracket defined by taking the commutator of op-
eradic composition. The map f = (fk) + (fp,q) is a Maurer-Cartan-element and the differential on
the deformation complex is the internal differential on P plus the bracket [f, ]. We can give a more
suggestive formulation of the deformation complex as follows. The components (fk) define a morphism
λf : Lie1∞ → P and

Def(λf ) =
∏

k≥2

P(k)Σk
[2 − 2k]

with differential (the internal differential on P plus) [(fk), ]. Set
∫
P(q) :=

∏

p

P(p, q)Σp
[−2p].

The collection
∫
P = {

∫
P(q)} has a structure of dg operad. (This can actually be interpreted as a

categorical end: a Σ-bimodule can be regarded as a bifunctor and we take the limit over one argument.)
The compositions of the Lie-color in P define a right action • of Def(λf ) on

∫
P by operadic derivations.

Add to the differential the term [(fp,1), ] + ( ) • (fk). The remaining mixed components of f , i.e. (fp,q)
with q ≥ 2, define a morphism µf : Ass∞ →

∫
P with µfq = (fp,q)p≥0. We have

Def(µf ) =
∏

p≥0,q≥1
p+q≥2

P(p, q)Σp
⊗ sgnq[1 − 2p− q].

The components (fp,q)p≥1 define a map of complexes ρf : Def(λf )[−1] → Def(µf ) by γ 7→ (fp,q) ◦ γ.

Remark 0.1.1. The deformation complex Def(f) is isomorphic as a chain complex to the mapping
cone of ρf and as a graded Lie algebra to Def(λf ) ⋉ Def(µf ).
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0.2. Coalgebra description of NCG∞ algebras. Algebras and morphisms for Koszul operads
can be encoded in terms of coalgebras. This section is a remark on the coalgebra description of NCG∞

algebras.
Let L and A be dg vector spaces. Denote by Tc the cofree coassociative counital algebra functor and

by Sc the symmetric, i.e. cocommutative, version. Denote the weight n homogeneous parts with respect
to the weight grading by tensor length using T nc and Snc . Introduce the coalgebra

C(L,A) :=
⊕

p≥0,q≥1
p+q≥2

Spc (L[2]) ⊗ T qc (A[1]).

Let

CoderTc(A[1])(C(L,A), Tc(A[1]))

be the dg Lie subalgebra of Coder(Sc(L[2]) ⊗ Tc(A[1])) obtained as the image of

Map(C(L,A), A[1]) → Coder(S≥1
c (L[2]) ⊗ Tc(A[1])).

It follows from the description of the deformation complex of a morphism NCG∞ → P that there is an
isomorphism of dg Lie algebras;

Def(NCG∞
0
→ End(L,A)) ∼= Coder(Sc(L[2])) ⋊ CoderTc(A[1])(C(L,A), A[1]).

From this it follows that a structure of NCG∞ algebra on (L,A) is equivalent to a degree +1

D = Q+ V ∈ Coder(Sc(L[2])) ⋊ CoderTc(A[1])(C(L,A), Tc(A[1]))

such that [D,D] = 0. Any such coderivation D defines a degree +1 coderivation of Sc(L[2]) ⊗ Tc(A[1]),
also satisfying [D,D] = 0, but the opposite is not true. (A general MC element in the dg Lie algebra
of coderivations of Sc(L[2]) ⊗ Tc(A[1]) is a (weak) OCHA structure on (L,A).) A morphism of NCG∞

algebras from (L,A,D) to (L′, A′, D′) consists of a pair

F +G ∈ Hom(S≥1
c (L[2]), L′[2]) ⊕ Hom(

⊕

p≥0,q≥1

Spc (L[2]) ⊗ T qc (A[1]), A′[1])

such that F +G lifts to a morphism of dg coalgebras

(Sc(L[2]) ⊗ Tc(A[1]), D) → (Sc(L
′[2]) ⊗ Tc(A

′[1]), D′).

0.3. Induced A∞ morphisms. Let F + G : (L,A,D) → (L′, A′, D′) be a morphism of NCG∞

algebras, as in above section. Write D = Q + V and split V =
∑

p≥0,q≥1,p+q≥2 as µ + U =
∑

q µq +∑
p,q≥1 Up,q (so muq = V ′

0,q). Similarly split D′ to Q′ + µ′ +U ′. This gives an alternative description of
an NCG∞ algebra as

• an L∞ algebra (L[1], Q),
• an A∞ algebra A, µ),
• and an L∞ morphism U : L[1] → C(µ)[1] from (L[1], Q) to the Hochschild cochain complex of

(A.µ).

If F + G is an NCG∞ morphism, then the composite L∞ morphism U ′ ◦ F : L[1] → L′[1] → C(µ′)[1]
makes (L,A′, Q′ + µ′ + U ′ ◦ F ) an NCG∞ algebra, and we obtain an NCG∞ morphism

id+G : (L,A,Q+ µ+ U) → (L,A′, Q′ + µ′ + U ′ ◦ F ).

Hence there is no essential loss of generality in assuming that F = id. With this assumption the equation
satisfied by the components Gm,n : L[2]⊗m ⊗A[1]⊗n → A′[1] (m ≥ 0, n ≥ 1) of G is

∂Map(L[2]⊗m⊗A[1]⊗n,A′[1])Gm,n

=
∑

±Gm−ℓ+1,n ◦Qℓ +
∑

±Gm−p,n−q+1 ◦ Vp,q +
∑

±V ′
s,t ◦ (Gm1,n1 , . . . , Gmt,nt

).

Let π be an MC element of L and let (. . . )π : Map(L[2]⊗m ⊗ A[1]⊗n, A′[1]) → Map(A[1]⊗n, A′[1]) be
the map Ψ 7→ Ψπ := Ψ(π⊗m, . . . ). It is immediate from the MC equation for π that

(∂Map(L[2]⊗m⊗A[1]⊗n,A′[1]))
π =

∑
±(Ψ ◦Qℓ) + ∂Map(A[1]⊗n,A′[1])(Ψ

π).

Hence Gπm,n satisfies

∂Map(A[1]⊗n,A′[1])(G
π
m,n) =

∑
±Gπm−p,n−q+1 ◦ V

π
p,q +

∑
±V ′π

s,t ◦ (Gπm1,n1
, . . . , Gπmt,nt

).
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This means that Gn =
∑
mG

π
m,n is an A∞ morphism from A with the A∞ whose q-th component is∑

p V
π
p,q to A′ with the A∞ structure whose t-th component is

∑
s V

′π
s,t. In general one should add a

formal parameter ~ to get well-defined expressions but this technicality does not affect above argument.
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