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CHAPTER 0

Preliminaries

En tycktes vara hvass, och grep mig an for stdld,
Att jag ur bocker tog, med andras tankar jéste;
Men huru vet hon det, som aldrig nansin laste?

Hedvig Charlotta Nordenflycht,
Satir emot afundsjuka fruntimmer

1. Ring Theory

The following proposition is known to mathematicians as Delsarte’s Lemma,
but there seems to be no tangible way to attach his name unto it. As it is a
very general theorem, we choose to place it here among the preliminaries, rather
than in Chapter 1, where it is applied. It holds not only for rings, but also for
groups, linear spaces, modules,. . ., with virtually identical proofs (but it is false
for monoids). Unfortunately we need to prove it twice, as we will have use for
both a ring-theoretical and an abstract nonsense version for abelian categories.
(Both are probably special cases of some as yet undiscovered Universal Delsarte’s
Lemma, which we leave as an exercise for the interested reader to find.)

Theorem 1: The Ring-Theoretical Delsarte’s Lemma. In the diagram
below, A, B and C are (commutative, unital) rings, such that C C A x B and
the projections

pc: C — A, qgc: C — B

are both onto. Then A and B have a common factor ring D which completes
the diagram into a pullback square:

Equivalently,
C = Ker(a + ).



Proof. Note that
ANC = Kerpe, BNC = Kergc,
from which the Fundamental Homomorphism Theorem gives

A=Impc=C/Kerpc=C/(ANC)
B=Imgc=C/Kergc=C/(BNC),

and hence
A/(ANC) = C’/((AQC) + (BﬂC’)) ~ B/(BNCQC).
We may therefore define
D=C/((AnC)+(BNnC()),

and let a: A — D and —b: B — D be the natural quotient maps.
To find the kernel of a + b, suppose z € A and y € B satisfy

0=a(z+ANC)+by+BNC)=z—-y+ (ANC)+ (BNO)).

This means
r4a =y+vy,

for some 2’ € ANC and y € BNC. But then
z=x+2' =y+y € ANB =0,

soin fact z = —z’ and y = —y’ are both in C. Consequently, C' = Ker(a+b). O

2. Commutative Algebra

Theorem 2: Chevalley’s Dimension Argument. When R is a finitely
generated (non-trivial) ring, the (in)equality

dimR/pR=dimQ ®z R<dimR -1

holds for all but finitely many prime numbers p. When R is an integral domain
of characteristic 0, there is in fact equality for all but finitely many primes p.

Proof. In the case of positive characteristic n, the formula will hold trivially, for
then
Q®ZR:O:R/pR7

except when p | n.
Consider now the case when R is an integral domain of characteristic 0.
We have an embedding ¢: Z — R, and a corresponding dominant morphism



Specp: Spec R — Spec Z of integral schemes, which is of finite type. Letting
Frac P denote the fraction field of R/P, we may define

C,, = {P € SpecZ | dim(Spec ) *(P) = n}
= {P € SpecZ | dim R ®z Frac P = n}
={(p) | dim R/pR =n} U {(0) | dim R ®z Q = n},
and this set, by Chevalley’s Constructibility Theorem!, will contain a dense,

open set in SpecZ if n = dim R — dim Z. Such a set must contain (0) and (p)
for all but finitely many primes p, so for those primes,

dimQ ®z R=dim R/pR=dim R — 1.

Now let R be an arbitrary ring of characteristic 0. For any prime ideal @,
R/Q will be an integral domain (but not necessarily of characteristic 0!), and
so we can apply the preceding to obtain

dim Q ®z R/Q = dim R/(Q + pR) = dim R/Q — 1,

for all but finitely many primes p. The prime ideals of Q ®z R are all of the
form Q ®z @, where @ is a prime ideal in R. Moreover,

(Q®z R)/(Q ®zQ)=Q®z R/Q.

It follows that

dimQ®z R = QenslgéRmm(Q ®z R)/(Q®Q)
= QenslgéRdlmQ®z R/Q

= Qenslgg:Rdlm R/(Q + pR)

=_ max (R/pR)/Q =dimR/pR

QeEeSpec R/pR

for all but finitely many p, because the maxima are taken over the finitely many
minimal prime ideals only. In a similar fashion,

dimQ ®z R <dimR -1,
and the theorem is proved. O

An immediate corollary is that Q-algebras are never finitely generated, which
is of course fun to know.

IThis proposition appears to belong to the folklore of algebraic geometry. An explicit
reference is Théoréme 2.3 of [11].



3. Category Theory

The following is a (not exhaustive) list of the categories we will use. Those
which are not standard will of course be defined somewhere in the text.

CRing Commutative, unital rings.

CAlg Commutative, unital algebras.
IMRing Numerical rings.

NMAlg Numerical algebras.

Mod Modules.

EMod Free modules.

XMo0 Finitely generated, free modules.
JNum Numerical functors.

G*Pol Strictly polynomial functors.
HPol Homogeneous polynomial functors.
Get Sets.

IMGSet Multisets.

Laby The labyrinth category.

When C'is a category, we let
CO
denote the opposite category. Given two objects X,Y € C, the arrow set of X
and Y will in general be denoted by

C(X,Y).

There are two exceptions to this rule. When inside a module category, the
homomorphisms between the R-modules M and N will be denoted by

Homp(M, N)

(and the letter R will be omitted if the ring is clear from the context (which it
generally is)). Also, when inside a functor category, the natural transformations
between the functors F' and G will be denoted by

Nat(F, G)

(or just Nat(F) if F = G).
Given two categories A and B, we let

Fun(A4, B)

denote the category of functors from A to B.
We now describe the abstract version of Delsarte’s Lemma.



Theorem 3: The Abstract Delsarte’s Lemma. We work inside an abelian
category.

In the diagram below, let A, B and C be such that C C A ® B and the
arrows

pc: C— A, gc: C — B

are epic. Then A and B have a common quotient object
a b
A—D=<=—RH ,

which completes the diagram into a pullback square:

Equivalently,
C =Ker(a +b).

In fact, we may take D = (A® B)/C.
Conversely, let a common quotient object
A—">D~<"—B
of A and B be given. Then the projections of
C =Ker(a+b: A® B — D)

on A and B are epimorphisms.

Proof. Quick and easy way out: diagram-chasing and an off-hand reference to
Mitchell’s Embedding Theorem.

That would be cheating, though. We prefer to do it by abstract nonsense.
Consider the following tangle, where we have defined d = Coker c:



To show a = di is epic, let « be any arrow such that xdi = xa = 0. Then
xd =xdolagp = xd(ip + jq) = xzdip + xdjq = xdjq,

from which 0 = zdc = zdjqc, but since gc is epic, it must be that xdj = 0.
Hence xzd = xzdjq = 0, from which x = 0, using that d is epic. Similarly, —b is
epic.

Since we defined d = Coker ¢, the sequence

0—>C—%A0B-L>D—>0

is exact, and it now follows from Proposition 2.53 of [8] that the above square

is in fact not only a pullback square, but a Doolittle square?.

For the converse, suppose the vee given, and define ¢ = Ker(ap+bq). Inspect

the following diagram:
A
: pT \
C—=AoB D——=X
—b
B
c is the equalizer of ap and —bq and hence the square is a pullback square. By

the Pullback Theorem (Theorem 2.54 of [8]), gc is an epimorphism since a is,
and similarly for pec. O

4. Set Theory
We will everywhere use the standard notation
[n] ={1,...,n}.

The text is pervaded by the use of multisets. They are formally introduced
in Chapter 6, and the reader may want to skip ahead when need arises.

2A Doolittle square is a square which is both a pullback and a pushout square.

10



CHAPTER 1

Numerical Rings

At the age of twenty-one he wrote a treatise upon the Binomial Theorem,
which has had a European vogue.

Sherlock Holmes’s description of Professor Moriarty;
Arthur Conan Doyle, The Final Problem

Numerical rings were (presumably) first discovered! in 2002 by Torsten Ekedahl,
see [7], who used them as a natural setting for integral homotopy theory. How-
ever, once defined, these remarkable rings were immediately put to use, and
no detailed study was ever made of their elementary properties. This is unfor-
tunate, as the numerical rings turn out to present an array of rather pleasant
properties, some of which may come somewhat as a surprise.

1. Numerical Rings

The original definition, in [7], of a numerical ring was quite a non-explicit one. It
was stated in terms of three mysterious polynomials, the exact nature of which
was never made precise. Our definition intends to remedy this.

Definition 1. A numerical ring is a commutative ring with unity equipped
with unary operations r +— (;), n € N, called binomial coefficients, satisfying
the following axioms:

()= 2,00

VEEE 5 (0

m=0 q1++gm=n
qi>1

m ()6 =56t ()6

!He uses himself the word “introduced”, but humility has always been among his chief
virtues.

11



IV. (1) =0 when n > 2.
n

v (o) e (1) e

The original definition also included a (non-explicit) formula for reducing the

<

composition ((;{)) of binomial coefficients to simple ones. Surprisingly enough,
this formula will be a consequence of the five axioms we have listed.

It follows easily from axioms I, IV and V, that when these functions are
evaluated on multiples of unity, we retrieve the ordinary binomial coefficients,

namely
m-1 :m(m—l)---(m—n—i—l).l meN
n n! ’

Since ("nl) = 1, but (2) = 0 unless n = 0, we see that a numerical ring has
necessarily characteristic 0.

The numerical structure on a given ring is always unique. This will be proved
shortly.

Example 1. Every Q-algebra is numerical with the usual definition of bino-

mial coefficients:
(7“) rir—=1)---(r—m+1)

n n!

The numerical axioms may be proved either directly, or by manipulating formal
power series. A

Example 2. For any integer m, the ring Z[m~!] is numerical. Since it inherits
the binomial coefficients from Q, it is just a matter of verifying that this ring
is closed under binomial coefficients. Because

(%) _ (G -1 (§—(n-1)) _ala—=f)---(a—(n—=-1)f)

n

n! nlfn ’
it will suffice to prove that whenever p* | n!, but pt b, then
p' | (a+0b)(a+2b)---(a+nb).
To this end, let
n=cmp™ + -+ c1p + co, 0<¢ <p-1,
be the base p representation of n. For fixed £ and 0 < d < ¢, the numbers
a4 (mp™ + - + cpp1p" T+ dpF +0)b, 1<i<p”, (1.1)

will form a set of representatives for the congruence classes modulo p*, as do of
course the numbers

emp™ 4+ P+ dph 4 1<i<ph (1.2)

12



Note that if z =y mod p* and j < k, then p? | z iff p/ | y. Hence there are at
least as many factors p among the numbers (1.1) as among the numbers (1.2).
The claim now follows. A

Example 3. As a special case m = 1 of the preceding example, Z is a numer-
ical ring. For this ring there is actually another way of proving the numerical
axioms. We shall indiate how they may be arrived at as solutions to problems
of enumerative combinatorics:

Azxiom I. We have balls of two types: round balls, square balls. If
we have a round balls and b square balls, in how many ways may we
choose n balls? Let p be the number of round balls chosen, and ¢
the number of square balls.

Aziom II.  We have a chocolate box containing a rectangular a x b
array of pralines, and we wish to eat n of these. In how many ways
can this be done? Suppose the pralines we choose to feast upon
are located in m of the a rows, and let g; be the number of chosen
pralines in row number ¢ of these m.

Axiom III.  We are given a mathematicians, of which m do analysis
and n algebra. Naturally there exist people who do both. How many
possible distributions of skills are possible? Let k£ be the number of
mathematicians who do only algebra.

Aziom IV V. Clear.

Example 4. The set
S={feQlz]|f(Z) cZ}

of numerical maps on Z is numerical. Addition and multiplication of functions
are evaluated pointwise, as are binomial coefficients:

(f) . (f(x)) @@ 1) () —n+ 1)

n n n!

We will see later that S is also the free numerical ring (on the singleton set {x}).
Seizing the opportunity, we recall that any numerical map may be written
uniquely as a numerical polynomial

f(x) =ch(z), cn € Z.

This example may be generalized to any set of variables, and will later be seen
to constitute the free numerical ring. AN

Example 5. The operations r — (7’;), being given by rational polynomials,
are continuous as maps Q, — Q, in the p-adic topology. It should be well

13



known that Z is dense in the ring Z,, and that Z, is closed in Q,. Since the
binomial coefficients leave Z invariant, the same must then be true of Z,, which
is thus a numerical ring.

This provides an alternative proof of the fact that Z[m~™!] is closed under
biomial coefficients. For this is evidently true of the localizations Z,) = QNZ,,
and therefore also for

Z[m_l] = ﬂ Z(p).

ptm
A

Example 6. Products of numerical rings are numerical. More generally, pro-
jective limits of numerical rings are numerical. A

Example 7. It is shown in [7] that the tensor product of two numerical rings
over Z is numerical. In fact, a more general statement is proved, namely that
if R — S and R — T are homomorphisms of numerical rings, then S ® g T is
numerical and is the categorical pushout. A

2. Elementary Identities

Theorem 1. The following formule are valid in any numerical ring:

N (r) :r(r—l)---(r—n—i-l)

when r € Z.
n n!

2. n'<;> =r(r—1)--(r—n+1).

3. n(;) :(r—n—i—l)(nil).

Proof. The map

i (R,+) = (L+ R[], ),  re— > <;>t”
n=0

is by axioms I and V a group homomorphism. Therefore, when r € Z,

p(r) = ()" = (1+1),
which expands as usual (with ordinary binomial coefficients) by the Binomial

Theorem. This proves equation 1. An inductive proof will also work.
To prove equations 2 and 3, we proceed differently. By axiom III,

()= Go) O -2 6o C6)

14



()0 GO0
==, 7)) (),

which reduces to equation 3.
Equation 2 then follows inductively from equation 3. O

It may be noted, that axiom II has so far not been needed. Consequently,
whenever a Q-algebra comes equipped with unary operations r — (7’;) satisfying
the axioms I, III, IV and V), it follows that in fact

(r) r(r—1)(r—n+1)

n n!

3. Torsion

In this section we shall prove that numerical rings lack torsion, referring of
course to Z-torsion.
First some lemmata concerning binomial and multinomial coefficients:

Lemma 1. Let m be an integer. If p is prime and p' | m, but p | k, then
A m
P (k)

Proof. p' divides the right-hand side of

m m—1
k =
and therefore also the left-hand side. But p' is relatively prime to k, so in fact
A m
P () O

Lemma 2. Let mq,ma,... be integers. If n = > 2, m;i is prime and m =

S, then
1 ()

unless m1 = m =n, and all other m; = 0.

Proof. Let a prime power p' | m. Because of the relation n = > m;i, not all m;
can be divisible by p, unless we are in the exceptional case mi = m =p =n
given above. Say p t m;; then

({7:}) B (:;) (?Jﬁ)

is divisible by p' according to Lemma 1. The claim follows. O

Lemma 3. Let R be a numerical ring, r € R, and m,n € N. If nr =0, also
mn(;) =0.

15



Proof. Follows inductively, since if nr = 0, then
r r r
=n(r—m+1 =—n(m—1 .
mn (m) n(r—m+1) (m - 1) n(im—1) (m - 1)

Theorem 2. Numerical rings are torsionfree.

Proof. Suppose nr = 0 in R and, without any loss of generality, that n is prime.

-O-0)-50) T (0)0)

m=0 Q1+t gm=n

()1 ()

() 2

mi;=m A

> myi=n

where, for given numbers ¢;, we let m; denote the number of these that are
equal to ¢ (of course ¢ > 1 and m; > 0). Given the numbers m;, values may be
distributed to the numbers ¢; in ({:111-}) ways, which accounts for the multinomial
coefficient above.

We claim the inner sum is divisible by mn when m > 2. For when 2 <m <
n—1,m| ({;Z}) by Lemma 2; also, there must exist some 0 < 7 < n such that

m; > 0, and for this j, Lemma 1 says n | (?)m] In the case m = n, obviously all

m; = 0 for ¢ > 2, and mq = n, so the inner sum equals (T)n which is divisible
by n? = mn.

We can now employ Lemma 3 to kill all terms except m = 1. But this term
is simply (;) = r, which is then equal to 0. O

This theorem is surprising indeed. We know of no other example of a variety
of algebras, of which the axioms imply absense of torsion in a non-trivial way;
that is, without implying a Q-algebra structure. Not only that, the theorem
is also a most crucial result in the theory of numerical rings. Over the course
of the following sections, we will deduce several corollaries, seemingly without
effort.

4. Uniqueness

Theorem 3. There is at most one numerical ring structure on a given ring.
Proof. We know that n!() =7(r —1)---(r —n+ 1), and that n! is not a zero
divisor. O

16



5. Embedding into Q-Algebras

Theorem 4. Fvery numerical ring may be embedded in a Q-algebra, where
the binomial coefficients are given by the usual formula

<7~> r(r—1)-(r—n+1)

n n!

Proof. If R is torsionfree, the map R — Q ®z R is an embedding. O

We point out that this gives an alternative characterization of numerical
rings, namely as torsionfree rings R which are closed in Q ®z R under the

operations
rir—1)---(r—n+1)

T )
n!

6. Iterated Binomial Coefficients

In Z, there “exists” a formula for iterated binomial coefficients:

(5)-En()

in the sense that there are unique integers g; making the formula valid for every
r € Z. There seems to be no closed formula for them, however; confer [9]. Note,
however, that (1.3) is a polynomial identity with rational coefficients, which
means it must hold in any Q-algebra, and therefore in any numerical ring;:

(7‘) mn r
m I
(%) -2 ()
k=1
for iterated binomial coefficients that is valid in Z, is valid in every numerical
Ting.

Theorem 5. The formula

7. Numerical Ring Homomorphisms

Definition 2. A numerical ring homomorphism ¢: R — S between nu-
merical rings is a ring homomorphism preserving binomial coefficients:

(()-62)

S is then a numerical algebra over R. o

17



We denote by 9MRing the category of numerical rings, and by gJAlg, or
simply 91lg, the category of numerical algebras over some fixed numerical base
ring R.

Theorem 6. FEvery ring homomorphism of numerical rings is numerical, so
that YYRing is a full subcategory of CRing.

Proof. Let a ring homomorphism ¢: R — S of numerical rings be given. Be-
cause of the lack of torsion, the equation

o (7)) = (n1(])) et = 1eeetr=n 1)

=) (e(r) —=1)---(¢(r) —n+1) =n! <‘P(T)>

n

implies ¢ ((7)) = (“"nr)), so that ¢ is numerical. O

8. Free Numerical Rings

Definition 3. Given a set X, the free numerical ring on X is the numerical
ring Z()_() satisfying

NRing (z <)_( ) , R> ~ Get(X, R)

functorially in the numerical ring R. o

This is the usual construction of a free object. We now provide an explicit
description.

Recall from Example 4, that a numerical polynomial in the variables x1, ...,
xy, is a formal (finite) linear combination

X1 Tk
f(.’I]) = Z Cnyyong (TL1> te (nk)u Cny,...,nyp (S Z,

that a numerical map is a rational polynomial mapping Z to itself, and that
these two concepts are essentially one and the same.
Let E(X) be the set of all finite words that can be formed from the alphabet

XU{+,—,~,O,1, (‘) neN},
n

where 4+ and - are binary, — and (;) are unary, and 0 and 1 are nullary (this is
the so-called term algebra of universal algebra; confer Definition I1.10.4 of [3]).
Impose (divide away) the axioms of a commutative ring with unity, as well as
the numerical axioms, to create a numerical ring E(X).

18



Theorem 7. We have the following isomorphisms:
X [a¥) ~J X
Z| )= EX)={feQX]|f(Z")cZ},

so that every element of Z(i{) may be uniquely expressed as a numerical poly-
nomial (or viewed as a numerical map).

Proof. The numerical axioms, together with the formula for iterated binomial
coefficients, can be used to reduce any element of E(X) to a numerical polyno-
mial. The fact that the ring of numerical maps exists and is numerical, proves
that the numerical polynomials are also linearly independent, so that the ex-
pression of an element as a numerical polynomial is also unique.

From this it is evident that F(X) is free on X, for any set map ¢p: X — R
may be uniquely extended to F(X) by setting

(S () (o)) = Zemen (50 (50)

9. Numerical Universality

Theorem 8: The Numerical Universality Principle. A numerical poly-
nomial identity p(z1, ..., xx) = 0 universally valid in Z is valid in every numer-

ical Ting.
Proof. View p as an element of Z(”“";”w"). It is the zero numerical map, and
therefore also the zero numerical polynomial. O

We thus have a canonical embedding

Z(.%'l,...,.%'k) _)sz

p(xla v 7$/€) — (p(n17 ce 7n7€))(n1,...,nk)€zk'

Example 8. Numerical rings are special A-rings in the sense of [10]. (A more
readable account is [12].) First recall that a A-ring (called pre-A-ring by some)
is a commutative ring with unity, equipped with unary operations A", n € N,
satisfying the following axioms:

1. A%a) = 1.
2. A\(a) = a.
3N (a+b)= Y AN(a)A(b).

ptg=n

19



For a numerical ring we can clearly put A"(a) = (%)

The definition of a special A-ring (called just special A-ring by others) in-
volves three more axioms, which are quite cumbersome, and will not be stated
here. They are, however, of a polynomial nature, so their verification in a nu-
merical ring will simply consist in verifying a number of numerical polynomial
identities. As these are valid in Z (for Z itself is well known to be a A-ring),
they will hold in every numerical ring by Numerical Universality. A

10. The Nilradical

Yet another pleasant property of numerical rings is the following.

Theorem 9: Fermat’s Little Theorem. In numerical rings,
a’? —a=0 modp
for any prime p.

Proof. Since f(z) = m%m is a numerical map, it may be written as a numerical
polynomial f(z) € Z("). But then evidently a? — a = pf(a) € pR. O

Example 9. The polynomial f may in fact be given explicitly. For when
a € N, we may calculate the number of maps [p] — [a] as

a? = és(p,k)@),

where S(p, k) denotes the number of onto functions [p] — [k]. By enumerative
combinatorics, the numbers S(p, k), except for S(p,1) = 1, are all divisible by

p, and so
a? —a i S(p, k) (a)
p — b \k

It follows from the Numerical Universality Principle that this formula is valid
in every numerical ring. A

Theorem 10. The nilradical of a numerical ring is divisible, and hence a
vector space over Q.

Proof. Let p be a prime and suppose r lies in the nilradical of R. Fermat’s Little
Theorem states p | r(rP~1 — 1), from which it inductively follows that

p ("= 1)

for all m € N. A large enough m will kill r, and we conclude that p | r. O
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11. Numerical Ideals and Factor Rings

We shall now make a (very) short survey of numerical ideals and factor rings.

Theorem 11. Let I be an ideal of the numerical ring R. Defining
(7))
n n
will yield a well-defined numerical structure on R/ iff

()=

Proof. The condition is clearly necessary. To show sufficiency, note that, when
re€ Rand e € I,

()= 2 G =) = () o

ptg=n

for every e € I and n # 0.

when (j) € I for j > 0. The numerical axioms in R/I then follow immediately
from those in R. o
Definition 4. An ideal I of a numerical ring satisfying the condition of the

previous theorem will be called a numerical ideal. o

Example 10. Z does not possess any non-trivial numerical ideals, because all
its non-trivial factor rings have torsion. Neither do the rings Z[m™!]. A

Theorem 12. Suppose R is a (commutative, unital) ring, having an ideal I
which is a vector space over Q, and for which R/I is numerical. Then R itself
is numerical.

Proof. Since I and R/I are both torsionfree, so is R, and there is a commutative
diagram with exact rows:

0 1 R R/I 0

N

0—>Q®zI:I—>Q®zR—>Q®zR/I—>O

It suffices to show that R is closed under the formation of binomial coefficients
in Q®z R. Let r € R.

r(r—1)~-7~1§7’—n—|—1)+[: (r:1>

when calculated in the ring Q ®z R/I. Since (TZI) in fact lies in R/I, it must
be that w € R, and we are finished. O

Note that the quotient map R — R/I will automatically be a numerical ring
homomorphism.
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12. Finitely Generated Numerical Rings

Lemma 4. If a ring R is torsionfree and finitely generated as an abelian group,
its fraction ring is Q ®z R.

Proof. By the Structure Theorem for Finitely Generated Abelian Groups, R =2
Z" for some n, considered as a group. Let a € Z™. Multiplication by a is a
linear transformation on Z", and so may be considered an integer matrix A.
The condition that a not be a zero divisor corresponds to A being non-singular.
It then has an inverse, with rational entries, and the inverse of a is given by

a'=4"11e€Q"=Q®zR
where 1 denotes the column vector which is the multiplicative identity of R. O

Lemma 5. Let A be the algebraic integers in the field K O Q. If K is finitely
generated over Q, A is finitely generated over Z.

The following theorem (with proof) is due to Torsten Ekedahl. It classifies
completely those numerical rings which are finitely generated as rings (forget-
ting the numerical structure). Recall from Example 2 that Z[m™!] inherits a
numerical structure from Q, and that products of numerical rings are numer-
ical, with componentwise evaluation of binomial coefficients. Recall also the
infamous Delsarte’s Lemma. We proved it for rings, but the same proof goes
through for numerical rings.

Theorem 13: The Structure Theorem for Finitely Generated Numer-
ical Rings. Let R be a numerical ring which is finitely generated as a ring.
Then there exist unique positive integers maq, ..., my such that

R=Zmi'] x - x Z[m; "]

Proof. We first impose the stronger hypothesis that R be finitely generated as
an abelian group, so that R = Z" as groups.

If ¥™ = 0, then r is divisible by p for all primes p > n because of Fermat’s
Little Theorem. But in Z™ this can only be if » = 0, so R is reduced. By the
lemma above, the fraction ring of R is Q ®z R. As this is reduced and artinian,
being finite-dimensional over Q, it is a product [] K of fields. The projections
of R on the factors K; will then each be numerical.

Hence, we first consider the special case when R is included in a field, in
which we let A be the algebraic integers. Let us examine the subgroup AN R of
A. Since A C Q ®z R, an arbitrary element of A will have an integer multiple
lying in R. This means A/(A N R) is a torsion group. Also, the fraction ring
Q ®z R is finitely generated over Q, so from the lemma above, we deduce
that A is finitely generated over Z. Because the factor group A/(A N R) is
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both finitely generated and torsion, it is killed by a single integer N, so that
N(A/(ANR)) =0, and as a consequence

(ANR)N~' = AN

Now let z € A and let p be a prime. The element z € A[N~1] = (ANR)[N 1]
can be written z = %, where a € AN R and k € N. Using Fermat’s Little
Theorem(s)

(N¥)? = N* + pn
a? =a+ pb
for some n € Z and b € R. Observe that pb belongs to AN R, hence to A[N 1]

so that b € A, as long as p does not divide N.
We then have

3

aP a a + pb a

== - —
Nkp Nk Nk4pn Nk
_ (a+pb)N¥ —a(N¥+pn)  N¥b—na  NFb—na
B (N* + pn)N* ~PNF S pn)NF T PN DR

so that pu = 2P — z € A for some u € A[N~!], assuming p { N. But then in fact
u € A.

Consequently, for all z € A and all sufficiently large primes p, 2P — z € pA,
so that 2P = z in A/pA. Being reduced and artinian, A/pA may be written as
a product of fields, and because of the equation zP = z, these fields must all
equal Z/p, which means all sufficiently large primes split completely in A. It is
then a consequence of Tchebotarev’s Density Theorem? that Q ®z R = Q, and
consequently that R = Z (recall that R was assumed finitely generated as an
abelian group). This concludes the proof in this special case.

In the general case, recall that R = [[ R; was included in product of nu-
merical rings, each of which is isomorphic to Z[m™!] according to the above
argument. But these rings have no non-trivial (numerical) ideals, so by Del-
sarte’s Lemma, R must be the whole product.

Finally, we abandon the assumption that R be finitely generated as a group,
and assume it finitely generated as a ring only. Because of the relation p | r? —r,
R/pR will be a finitely generated torsion group, and hence zero-dimensional,
for each prime p. It then follows from Chevalley’s Dimension Argument that
dim Q ®z R = 0, so that Q ®z R is a finite-dimensional vector space over Q.
Only finitely many denominators are employed in a basis, so there exists an
integer M for which R[M ~!] is finitely generated over Z[M ~1].

We can now more or less repeat the previous argument. R[M ~!] will still be
reduced, and as before, Q®z R[M ~!] will be finite-dimensional, hence a product
of fields, and we may reduce to the case when Q ®z R[M '] is a field. Letting

2(A special case of) Tchebotarev’s Density Theorem states the following: The density of
the primes that split completely in a number field K equals m In our case, this set
has density 1.
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A denote the algebraic integers in Q ®z R[M 1], the factor group A/R[M ~!]
will be finitely generated and torsion, and hence killed by some integer, so that
again we are lead to R[N ~!] = A[N~!]. As before, we may draw the conclusion
that Q ®z R = Q, and consequently that R = Z[N~!]. This concludes the
proof in the general case. O

13. Modules

A most elegant application of the Structure Theorem for Finitely Generated
Numerical Rings is to classify torsionfree modules.

Lemma 6. For a ring homomorphism p: R — S, where R is numerical and
S is torsionfree, Ker ¢ will be a numerical ideal.

Proof.
nle (<n>) —y (m(n)) (1) (r =+ 1)) =0,

if r € Kery and n > 0. Thus (2) € Ker ¢, which is then numerical. O
Let M be a torsionfree module over the numerical ring R, with module
structure given by the group homomorphism p: R — End M. We have the

following commutative diagram:

e
0 Kerp R R/Kerpy ——=0
ul /
End M

End M is torsionfree, so by the lemma Ker p is a numerical ideal. Therefore
R/ Ker p will be a numerical ring, over which M is also a module.

Assume now also that End M is finitely generated as a module over Z[N 1]
for some integer N. Because Z[N 1] is a noetherian ring, End M is a noetherian
module. Hence its submodule R/ Ker y is finitely generated as a module over
Z[N~1], and therefore also as a ring. Not only that, but R/Kerpy is in fact
numerical, so by the Structure Theorem,

R/Kerp = Z[m '] x - x Zim; '],

for unique numbers my,...,mi. The module M itself will split up as a direct
sum

M =M & © My,
with each M, a module over Z[mj_l]. M; is torsionfree, and therefore in fact
free over Z[mj_l], because of these rings being principal. We have thus proved:
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Theorem 14. QOver a numerical ring, let M a torsionfree module, which is
finitely generated over Z[N~1] for some integer N. Then there exist positive
integers m;,r; such that

M= Zm "™ © - @ Zmy '™

as a module over
Zim' x - x Zlmg ).

14. The Binomial Theorem

Given a numerical ring and a (commutative, unital) algebra A over R, we have
an induced ezponentiation on 1++/0, given by the following binomial expansion:

(1+2) = 2 (;)x”

The sum is of course a finite one.
The numerical axioms imply the following properties for this exponentiation:

L (14+2)(1+z)=1+z)"
IL (1+2)")" =1 +a).

v

- (
L (1+2)"(1+y)" = ((1+2)(1+y))"
()t =1+

- (

V. (1+2z)" =147z mod (v0)2

Exponentiation will thus make the abelian group (1 ++/0,-) into an R-module.
Indeed, property III shows that exponentiation by r gives an endomorphism
e(r) of the group, and properties I, IT and IV show that

€a: R — End(1+ V0,
is a unital ring homomorphism.
This module structure is natural in the following sense. Given two algebras

A and B and an algebra homomorphism ¢: A — B, the following diagram
commutes for any r € R:

1+ 02 4 46

1+ %ﬁu Y0

We now reverse the procedure:
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Theorem 15: The Binomial Theorem.

Given a numerical ring R, the equation

1+2) = 2 <;> " (1.4)

defines a module structure on (1 + /0,-), which is natural in R-algebras
A, and satisfies
(1+2)"=1+rz mod (V0)2. (1.5)

Conversely, given a ring R and a natural module structure on (14 /0, ")
(for all R-algebras A) satisfying (1.5), there is a (necessarily unique) nu-
merical ring structure on R, fulfilling the equation (1.4).

Proof. There remains to establish the second part. So, let a natural mod-
ule structure be given, and consider e4: R — End(1 + %,-), where A =
R[t]/(#N*+1), and N is some large number. We have

)1 +t)=1+t)" =ap+art+---+ant”,

and clearly the coefficients a,, are independent of V. Therefore, we may without
ambiguity define (:l) = a,. This will make the binomial expansion identity hold
in A, and then it will hold everywhere by naturality.

It is now immediate that the axioms for a numerical ring hold, as they are
simply direct translations of the module axioms. For example, identification of
the coefficients of ¢" in

g <:>t§:0 (;)tj =14t A+t =1+t = 2 <T-£S>tn

proves axiom I. (Proving IIT will of course involve the polynomial ring in two
variables.) 0

And this little “treatise on the Binomial Theorem” closes the chapter on
numerical rings.
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CHAPTER 2

Polynomial Maps

[...] je donnerais bien cent sous au mathématicien qui me démontrerait
par une équation algébrique ’existence de l'enfer.

Honoré de Balzac, La Peau de chagrin

In this and the succeeding chapters, we will consider a fixed base ring of scalars,
commutative and unital and which, when referred to by name, will be called R.
We adopt the following conventions:

I. All modules will be R-modules, and all algebras will be commutative and
unital R-algebras.

II. We will use 900 to denote the category of R-modules, and €lg for the
category of commutative, unital R-algebras.

ITI. All tensor products will be computed over R, unless otherwise stated.

IV. “Homomorphism” with no further qualification will denote an R-module
homomorphism (or R-linear map).

V. When discussing non-strict polynomiality, R will also be assumed numer-
ical, and 9tAlg will denote the category of numerical R-algebras.

At his leisure, the reader may put R = Z, and anywhere substitute “abelian
group” for “module”.

We shall consider maps f: M — N between modules, and they shall almost
never be homomorphisms. Indeed, they shall be generalizations of ordinary
polynomial maps as defined on fields. The problem is how to form “polynomials”
on general modules, where there is no multiplication in sight. We recall the
following quibble!:

And God said unto the animals: “Go out into the world and multiply!”

But the snake answered: “How could I? I am an adder!”

In some versions of this myth, it is said that God constructed a table made of wood for
the snakes to crawl upon, since even adders can multiply on a log table. God does not seem
to be familiar with tensor products.
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Returning to the modules, two different approaches present themselves. We
may choose to talk about (let us phrase it carefully) “polynomial-like?” maps
as maps satisfying certain equations that are somehow thought to character-
ize polynomials. This road will indeed be explored; for these equations to be
sensible, a numerical base ring is required.

A completely different method, with the advantage of producing entities that
actually look like polynomials, is to use scalar extension. Quoting from [14],
“[...] la généralisation en vue devrait conduire a associer, & «quelque chosey qui
s'écrirait : 171 + - - - 2T}, une «autre chose» qui s’écrirait

q
Zy'LQZ(Th e aT;D)a
i=1

les @; étant cette fois des polynomes. Manifestement s’introduisent ici les mo-
dules produits tensoriels [. ..].” This seems to be the most elegant solution, and
is used to define strict polynomial maps (called polynomial laws) in [14].

Classically, (non-strict) polynomial maps were defined using the first method,
but this was before numerical rings were discovered. With this new class of rings
at our disposal, we shall be able to use the method of scalar extension also for
non-strict maps, which will provide a beautiful unification of the two notions of
polynomiality.

1. Polynomiality

We shall begin by making an extremely general discussion of polynomiality, and
then identify the two definitions which will actually be used in the sequel.

Let D be a finitary algebraic category, so that it is an equational class in
the sense of universal algebra (and hence a variety of algebras by the HSP
Theorem; see for example [3]). We require D to be a subcategory of 200, so
that the objects of D are first of all R-modules.

For a set of variables V', we let (V)p denote the free algebra on V in D.

Definition 1. A D-polynomial over a module M (not necessarily in D) in
the variables z1,...,xk, is an element of

M ® <.’L‘1,...,$k>p.
A linear form over M in these same variables is a polynomial of the form
D @,
for some u; € M. o

Theorem 1: Ekedahl’s Esoteric Polynomiality Principle. Let two mod-
ules M and N be given, and a family of maps

faaM®A—N®A, AeD.

The following statements are equivalent:

2P3a svenska: polynomaktiga.

28



A. For every D-polynomial p(xz) = p(xy,...,x5) over M there is a unique
D-polynomial q(z) = q(x1,...,x,) over N, such that for all A € D and
all a; € A,

B. For every linear form l(x) over M there is a unique D-polynomial q(x)

over N, such that for all A€ D and all a; € A,
fa(l(a)) = q(a).

C. The map
ffMR—-——N®-—

is a natural transformation between functors D — Get.

Proof. Tt is trivial that A implies B. Given statement B, and a homomorphism
¢: A — B mapping a; to b;, the following commutative diagram proves the
naturality of f:

MoA—>NgA Youj ®a; —q(a)
1®sai il@w l l
B

Finally, suppose f natural. Given
p(r) € M ® (x1,...,2k) D,

define
q(fE) = f<$1,...,wk>D (p('r)) I
and for any A € D and a; € A, define the homomorphism

w: {x1,...,xK)p — A, Tj > aj.

Then by naturality of f, the following diagram commutes:

f(m ,,,,, xp)
M®<:171,...,xk>%N(@(m,...,xk} p(z) —q(x)
1 ®Lpl ll Rp
M® A " N® A p(a) ........... > q(a)
q is evidently unique, which proves A. O

Definition 2. When the conditions of the theorem are fulfilled, we call f a
D-polynomial map from M to N. o
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When f is D-polynomial, part B of the theorem tells us that

> uj®a;— qla)

for some D-polynomial q. Naively, if we want the coefficients a; of the elements
u; to transform as generalized polynomials, formed using some operations, the
correct setting is the category of algebras using these same operations.

Example 1. A 2Mod-polynomial map f: M — N is just a linear transforma-
tion M — N. This is because, by B above, fg will map > u; @ r; to > v; 1
for all r; € R, and such a map is easily seen to be linear. Conversely, any
module homomorphism induces a natural transformation M @ — - N®@ —. A

Example 2. Let S be an R-algebra. An g9tod-polynomial map M — N is a
transformation

M®A—N®A,
natural in the S-module A, which is the same as a natural transformation
(M®S)®s—— (N®@S)®s —.

This is simply an ¢9od-polynomial map M ® S — N ® S, or, as we noted in
the previous example, an S-linear map from M ® S to N ® S. A

The last two examples will be the important ones:

Example 3. A €2lg-polynomial map M — N is a strict polynomial map, or
polynomial law in the sense of |14]. For every linear form > u; ® z; over M
there are unique elements v, € N, p running over all multi-indices, such that
for all algebras A and all a; € A,

fa (Zuj®aj) => v, @ad.

Intuitively, the coefficients of the elements u; “transform as ordinary polynomi-
als”. A

Example 4. Suppose now that the base ring R is numerical, and consider the
category DMAlg of numerical algebras over R. An 9t[g-polynomial map M — N
is what will be called a polynomial map. For every linear form ) u; ® x; over
M there are unique elements v,, € N, p running over all multi-indices, such that
for all algebras A and all a; € A,

fa (Zuj@@aj) = (Z)

Intuitively, the coefficients of the elements u; “transform as numerical polyno-
mials”. A
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2. Polynomial Maps

The key to understanding polynomials is the following property of ordinary
polynomials f (over some field): If f(z) = a is constant, clearly

flx) = f(0)=0

for all z. If f(z) = a + bz is linear, then

fle+y) = f@) = fly)+ f(0) =0

for all x,y. A generalization to arbitrary degrees is immediate and leads to the
following definition, presumably first explicitly stated by Eilenberg and Mac
Lane in [6]:

Definition 3. The nth deviation of a map f: M — N is the map

fmro-omp) = Z (=1)n -y (Z%)

IC[n+1] iel
of n + 1 variables. o

The idea here is that the nth deviation measures how much f deviates from
being polynomial of degree n. We have for example

flwoy) = flz+y) - fx) = fly) + f(0)
flox) = f(x) — £(0),

and, of course,

We let
! ((2:10) =flzo---ox).

n

Definition 4. The map f: M — N is polynomial of degree n if its nth
deviation vanishes:
f($1<>"'<>$n+1) =0

for any z; € M. o

Let us, for clarity, point out, that the diamond sign itself does not work as
an operator; the entity x ¢ y does not have a life of its own, and cannot exist
outside the scope of an argument of a map.
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3. Numerical Maps

After defining the deviation, a polynomial map of degree n between abelian
groups is classically® defined as a map of which the nth deviation vanishes.
While this works well enough for modules over Z, we would like to include
modules over more general rings.

Recall that an extra condition

flrz) =rf(z)

need be imposed on a group homomorphism to make it a module homomorphism
(but that this is automatic when the base ring is Z). Using binomial coefficients,
we generalize to arbitrary numerical modules. The base ring R of scalars is now
of course assumed numerical.

Definition 5. The map f: M — N is numerical of degree at most n if it
satisfies the following two equations, for all x;,z € M and all r € R:

F@10- 0Tni1) =0

=50 r)

k

<

It is of course straightforward to define what it means for f to have degree
ezactly n, but this is never needed. Therefore, when we speak of a map as being
of degree n, it is to be understood: degree n or less.

Example 5. A map is of degree 0 iff it is constant. It is of degree 1 iff it is a
homomorphism translated by a constant. A

Example 6. The numerical maps f: Z — Z of degree n, are precisely the
ones given by numerical polynomials of degree n:

f(:E)ZchC:).

n
k=0
A

Lemma 1. For r in a numerical ring and natural numbers m > n, the follow-
ing formula holds:

() - ()

Proof. Induction (and, optionally, a quick reference to the Numerical Univer-
sality Principle). O

30f course, [6] itself never bothers to make this definition, but instead moves on to more
important topics.
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Theorem 2. The map f: M — N is numerical of degree n iff its nth devia-
tions vanish, and it satisfies the equation

f(re) = mZ_ O (m) ( e 1)f<mx>,

0
foranyr € R and x € M.

Proof. This follows from the lemma:

> ()7 (6) - 2 () v (e

i)(—l)m <§<—1)’“<,’;> (h )) f(ma)
s

m:O( () e

m

4. The Augmentation Algebra

We now wish to find an alternative way of describing these numerical maps.
Recall that the free module on a set M is the set

R[M] = {Zaj[xj] ] a; €R, z; € M}

of formal (finite) linear combinations of elements of M. It obviously has a
module structure, and if M is itself a module, it also carries a multiplication,
namely the sum multiplication

[z][y] = [z + y],

extended by linearity. It makes R[M] into a commutative, associative algebra
with unity [0], called the augmentation algebra.

When M additionally has an algebra structure, there is another canonical
operation on the augmentation algebra, namely the product multiplication,
defined by

[z] * [y] = [zy].
This multiplication has identity element [1], but is of course commutative only
if M is. The latter operation will make an apparition later on, in the context of
Morita equivalence.

In the present discussion, we assume M to be a module only, and hence use
the sum multiplication. The map

M—RM), [,
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is a map between modules, and so we may form its nth deviation

(1, Tpg1) > [T10 ... O Tpga]-
The following lemma then follows easily from the definition of deviation.

Lemma 2.

[z10. . omnpa] = ([21] = [0]) -~ ([2n4a] = [0]) -

Defining a filtration in R[M] (a decreasing sequence of ideals) by

In=([x10...0@ns1] | 71 € M)+ ([m] —kz:(;;) bx}

and then letting

reR,xeM),

we have a canonical map

On: M — R[M],

[,

which is numerical of degree n. And not only that:

Theorem 3. The map &, is the universal numerical map of degree n, in that
every numerical map f: M — N of degree n has a unique factorization through
it.

M —% R[M],,

\v
N

Proof. Given a map f: M — N, we extend it linearly to f: R[M] — N, by
which procedure it automatically becomes a homomorphism. The theorem then
amounts to the trivial observation that f is numerical of degree n iff it kills I,,,
so that it factors through R[M],,. O

The augmentation quotients of a free module M are given by the next the-
orem.

Theorem 4. In the polynomial algebra R[ty, ..., tx], let J, be the ideal gen-
erated by monomials of degree greater than n. Then

R[R*],, = R[t1,...,t1]/Jn

as algebras. In particular, R[R*], is a free module.
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Proof. Each t; is nilpotent in Rty ..., tx]/Jn, and so we may define exponenti-
ation (14 t;)" for any r € R. Accordingly define, for a tuple (r1,...,7r) € R,

©: R[R*] — Rlt1,... t]
[(r1,yre)] = (T At)™ - (1 t) ™

Using multi-index notation ¢ = (r1,...,7%), we may write this more succinctly
as

[o] — (1 +1)°.
The map ¢ is linear by definition, and also multiplicative, since

([dlo]) = ¢(le+o]) = L+ 1T = (L+ 1)1 +1)7 = (o) (o).

It maps I, into .J,,, because, when o1, ..., 0,41 € R”,

ploro--oonn])= Y (=)™ Vg [ |37y,

JC[n+1] jeJ
= > (i pRese
JC[n+1]
n+1
ST @ene -1y
j=1

Also, for s € R and o € RF,

m=0 j=0

e mz_:o (2) é(_ma‘(])u L 1ye
= (1+1t)% - mz::o (;L) (A+pe-1)"

— (1) + 1) - mz_ (oo,

where, in the last step, we let p(t) = (1 +¢)¢ — 1. By the Binomial Theorem,

o o+ 17 = > (2 )otor

m=0

but since the terms of index n+1 and higher yield an (n+1)st degree polynomial,
the above difference will belong to J,,. We therefore have an induced map
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We now define a map
¢: Ry, ..., tg] — R[RF],

oy Uy 2 [Epy @00 0 €p,,]

in the reverse direction. Again, v is additive by definition, and multiplicative
because of Lemma 2. The vanishing of ¥ on J,, induces a map

Vi Rt1,. .., ty]/Jn — R[R"],,.
It is easy to verify that ¢ and v are inverse to each other. O

For future reference, we also explore the grading of R[M] induced by the
filtration I,,.

Theorem 5. Let M be free on k generators e1,...,er. The map
&S (M) — I,1/1,

eyt et e {0610"'0061@]4-171

ny n
gives an isomorphism
SM)—>I1/Iy® I/ ®---
of graded algebras.

Proof. Under the isomorphism R[RF], = R[ti,...,t4]/Jn, the ideal I,_; will
correspond to J,_1, and consequently I,,_1/I, = J,_1/J,. Under this cor-
respondence, ¢ simply takes e” — ¢”, and is of course an isomorphism. (An
alternative is to use Theorem 2 directly.) O

5. Properties of Numerical Maps

We now elaborate on the behaviour of numerical maps. To begin with, we note
that not only do the nth deviations of an nth degree map vanish, but its lower
order deviations are also quite pleasant.

Theorem 6. The map f: M — N is numerical of degree n iff for any a1, ...,
ar € R and x1,...,x € M, the following equation holds:

flarzy oo apwy) Z H <eg3> <jé>5$j>7

#S=[k] jE#S
|SI<n

where the sum is taken over multisets S.
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Proof. If f is of degree n, calculate in the augmentation algebra R[M],:

[a1z1 0. ..0apxk] = ([arz1] — [0]) - - - ([axxk] — [0])
-2 () en] 2 () e
— 1 e xk
=1 <(J1 q a=1 qk qk
52 ()l eee
=1 an=1 q1 gk q1 qk
The theorem now follows after application of f. The converse is trivial. O

This proof is pure magic! It is absolutely vital that the calculation be carried
out in the augmentation algebra, as there would have been no way to perform
the above trick had the map f been applied directly.

We now turn our attention towards the binomial coefficients themselves and
prove that, considered as maps R — R, they are numerical. This is of course
hardly surprising, as they are more or less given by polynomials (in the envelop-
ing Q-algebra).

Theorem 7. The binomial coefficient x +— (Z) is numerical of degree n.

Proof. 1t is numerical of degree n in Z, and therefore also in R by the Numerical
Universality Principle. O

We now have the following description of numerical maps.

Theorem 8. The map f: M — N is numerical of degree n iff for any uq, ...
ur € M there exist unique elements v, € N, p varying over all multi-indices
with |u| < n, such that

3

for any r1,...,71 € R.

Proof. We assume f is numerical of degree n, and suppose first that M = R*
is free of rank k and u; = e;. By the preceding theorems, numerical maps
f: R¥ — N of degree n correspond to linear maps

f:R[t1,...,t,]/Jn — N.
We have the following factorization:

n

' RIRM, = Rlt1,... 1] /]n

\lf

N

Rk
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Say the monomial #* is mapped to v, € N; then [(r1,...,rx)] € R[RF],, corre-
sponds in R[ty,...,t;]/Jn to

- () (2(2))

my

and so is mapped by f (or f) to

Z T‘l e T‘k; v
my mp (mi,...,mg)"

f(rl,...,rk)zz<r>vu,

as desired. In this case the elements v, are clearly unique.
In the general case, when M is allowed to be any module, we study the
composition

Thus, the action of f is

RF - M — N:
(r1,..yrg) = riug 4+ -+ reuk — flriug + -0 4 rgug).
By the preceding argument, this map is of the desired form, and the v, will

again be unique.
The converse is trivial. O

Finally, we make the promised connection with JM2Alg-polynomiality. Let
f: M — N be an 91lg-polynomial map. From the Polynomiality Principle, we
know that for every linear form [(x) over M there is a unique 912lg-polynomial
g(z) over N, such that for all A € 9M2Alg and all a; € A4,

fa(l(a)) = q(a).

We say that f is of bounded degree n if the degree of the polynomial ¢ is
uniformly bounded above ny n (independent of [).
The main theorem linking the two notions of polynomiality states:

Theorem 9. f: M — N is numerical of degree n iff it may be extended to a
(unique) NAlg-polynomial map of bounded degree n.

Proof. Given a numerical map f, fix the elements v, from the preceding theo-
rem. We then have a map

faAAM®A—N®A, Z’UJJ'®CEJ"—>ZU#®<Z),
m

By the Polynomiality Principle, f4 is a natural transformation. The converse
is trivial. O
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Example 7. Here is an example to show that requiring bounded degree is
necessary. Let U = (uj,us,...) be free on an infinite basis. The map

a
fa:URA—-URA, Zuk®ak»—>2uk®<;)
is MAlg-polynomial, but not numerical of any finite degree n. A

6. Strict Polynomial Maps

We no longer assume a numerical base ring R, as we turn our attention to-
ward strict polynomial maps. Norbert Roby invented these (he called them
polynomial laws), and all the facts stated in this section may be found in [14].

Definition 6. A strict polynomial map between modules f: M — N is a
CAlg-polynomial map; that is, a natural transformation

M®—-—N®-—
between functors €Alg — Set. o

Some elementary facts we shall need about a strict polynomial map f: M —
N are the following:

1. From the Polynomiality Principle, the following proposition is immediately

deduced: For any w1, ..., u;r € M there exist unique elements v,, € N (only
finitely many of which are non-zero), with p varying over all multi-indices,
such that

fn@ai 4+ +up@ay) = Yy v, @

v

for all z; in all algebras. We shall write f,.; = v,.
2. f is said to have degree (at most) n, if f,»; =0 when |v| > n.

3. f is said to be homogeneous of degree n if f(az) = a™f(z) for all a in
all algebras A and all z € M ® A. This amounts to saying that f,.; # 0
only when |v| =n.

4. When f is homogeneous of degree n, note that
fu["] = f(u)

5. Any f has a unique decomposition into homogeneous components, namely:

%)
f(u1®xl++uk®xk)zz Z fu[y]®$y

n:0|y‘:n

(only a finite number of terms being non-zero).
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6. Finally, there is a fundamental relationship between homogeneous maps
and divided power algebras: For any module M there is a universal ho-
mogeneous map

Yn: M — T™(M), Zui®xi»—> Zu[”]@)x”
lv|=n

of degree n, through which every map f: M — N of degree n factors

uniquely:
MeA—>T"(M)® A S ® 1 ——= 2o ul @ ¥
Y

NeA 2iv)=n furr © 27

In other words, there is a canonical isomorphism between the module of
homogeneous polynomial maps of degree n from M to N and the module
of homomorphisms from I'"*(M) to N.

7. Pray note that the map
r"M)— N
wl! — Foi

is a module homomorphism (for fixed f).

7. The Divided Power Algebra

The elementary theory of divided power modules (and ditto algebras) can be
found in [14].

When A is an algebra, the nth divided power module I'"(A) comes equipped
with a natural multiplication. First of all, note that there is a canonical map

§:Ax A=TMA)@I™(4), (z,y)— M@y,

which is universal for bihomogeneous maps of bidegree (n,n) out of A x A.
Because the map

CGCAXA-TA®A), (1,y)— @y,

is bihomogeneous of degree (n,n), it will have a unique factorization through
I'"(A) ® T (A), as in the following diagram:

Ax A—25T"(A) @ T(A)

(4 ® A) —= I"(4)
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Composition with the canonical (linear) map
MA®A) —TI"4),  (zoy)" e (@),
results in the following multiplication on I'™(A):
I"(A) @A) = T"(4), 2@yl (2

It will be called the product multiplication on I'(A).
Contrast this with the divided power multiplication, defined on T'(M)
for any module M, which is simply juxtaposition:

Zlml . yln] = glmlyfn],

The components I'(M) are not even closed under this operation.

It deserves to be pointed out, and emphasized strongly, that the nth divided
power module I'™(M) is not generated by the pure divided powers 27 for
z € M, as the following example shows.

Example 8. Consider in I'*(Z?) a pure power

(arer + a262)[3] = ai’e[l?’} + a?a2€[12]€2 + alageleg] + age[;’}.
Observe that the coefficients of 6[12]62 and 616[22] have the same parity. Therefore
it is impossible to write 6[12]62 as a linear combination of pure powers. A

I'™(M) is, however, “universally” generated by pure powers over all algebras,
in the following sense:

Theorem 10: The Divided Power Lemma.

A natural transformation
¢:T"(M)® ——> N® —,

between functors CAlg — Mod, is uniquely determined by its effect on
pure divided powers =™ (when z € M ® A for some algebra A).

More generally, a natural transformation

CIMM) QT (M) ® — — N @ —

[m]

is uniquely determined by its effect on tensor products 2™ @ wl™ of pure

powers.
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Proof. Tt suffices to show that if { vanishes on pure powers, it is identically zero.
Indeed, linear maps I'"(M) — N correspond to homogeneous maps M — N

M"(M)®A—>NoA (Yuw @)™ —=0
’Y’Vl _
= 7
M®A Doui @ X

Since ¢ = 0, also ¢ = 0.
For the second part, proceed similarly, noting that linear maps I'™(M) ®
I'"(M) — N correspond to bihomogeneous maps M & M — N. O
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CHAPTER 3

Polynomial Functors

Och nér jag stod dér gripen, kall av skrack
och fylld av dngslan infor hennes tillstand
begynte plotsligt mimans fonoglob

att tala till mig pa den dialekt

ur hégre avancerad tensorlira

som hon och jag till vardags brukar mest.

— Harry Martinson, Aniara

In this chapter, we turn to interpreting our different notions of polynomiality in
terms of functors. We are convinced that the two “correct” notions are numerical
and strict polynomial functors. Non-strict polynomiality, the original concept,
works well enough over Z, but is much too weak a notion over a general base
ring. But the price to pay for upgrading to the stronger notion is the restriction
to numerical base rings.

We recall our convention of a fixed base ring R, over which all modules,
algebras, tensor products, etc., are taken, and which is assumed numerical when
discussing numericality.

1. Module Functors

By a module functor, we shall understand a functor F': 900 — 2Mod mapping
modules to modules. We shall mostly be content to consider functors defined
only on the most simple of modules, namely the free and finitely generated ones.
They constitute a subcategory of 900, which will be denoted by X900 (the
letter X intended to suggest “eXtra nice modules”). We shall let 900 be the
category of free modules, be they finitely or infinitely generated.

As it turns out, a functor defined on the subcategory X9tod has a unique
“well-behaved” extension to the whole module category. In this introductory
section we shall describe this extension process, and thus convince ourselves
that there is no serious imposition in considering only functors X9tod — MMo0,
as will be done hereafter.

First, let us recall what it means for a functor, not necessarily additive, to
be right-exact:
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Definition 1. A functor F' between abelian categories is right-exact if for
any exact sequence:

a B
A B C 0
the associated sequence:
F(a+13)
F(1 F
FlAeB) —2  ppy 2 pey 0
is also exact. o

This definition agrees with the usual one in the case of an additive functor.
In fact, the usual definition actually implies additivity of the functor, which is
why it is useless to us.

We now state the main result on module functors, along with an outline of
the proof:

Theorem 1.

1. Any functor X9Mod — IMod has a unique extension to a functor FMod —
Mo, which commutes with inductive limits.

2. Any functor FIMod — Mod has a unique right-exact extension to a functor
Moo — IMod.

The first part follows from Lazard’s Theorem, stating that every flat mod-
ule is an inductive limit of finitely generated free modules. Given a functor
G: XMod — MNMod, we may hence define G: FNod — NMod by

G(lim M,) = lim G(Ma),

for an inductive limit lim M, of finitely generated free modules. This definition
is probably independent of the inductive system.

The second part of the theorem is an immediate consequence of Theorem
2.14 in [2]. (The crucial properties are the closure of 000 under direct sums,
and that its objects are projective and generate 9100.) The extension proce-
dure (which essentially uses parts of the Dold Puppe construction originally
presented in [5]) may be summarized thus: Given a module M, choose a reso-
lution of free modules P and Q:

QwP M 0

Define the extension F': 9tod — Mod of F: FMod — Mod by the equation

F(M) = F(P)/ [F(w)(KerF(W + ¢§))} :
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where 7 and & are the canonical projections:

pP<tf—PaQ—>0Q

This definition extends F', because for free M, we may take the free resolu-
tion:
0—2> M M 0

with m = 17 and £ = 0, so that

F(M) = F(M) / [F(m) (Ker F(x +0€))] = F(M) / [P (L) (Ker F(140))

= F(M) / [1rean (Ker Tran)| = F(M)/0 = F(M).

2. The Cross-Effects

An arbitrary module functor may be analysed in terms of its cross-effects. These
may be defined as either of four modules, neither more canonical than the others.
Given a direct sum M = M; @ --- ® M, let

mit M — M
be projection on the jth summand,
0 M — M/M,
retraction from the jth summand, and
it M/M; — M
insertion of 0 into the jth summand. We then have:

Theorem 2. For a module functor I, the following four modules are naturally
isomorphic:

A Im [F(mio--om,): F(M) — F(M)].

B. Ker [(F(01),...,F(0n)): F(M) — @ F(M/Mj;)].

C. Coker [F(11) + -+ F(m): @ F(M/M;) — F(M)].
D. Coim [F(m o---om,): F(M) — F(M)].

Proof. We only show the modules in A and B to be equal, and leave the rest to
the reader.

45



Suppose z € Ker(F(g1),...,F(on)). Note that if j # i, then m;0; = m;, and
consequently, if j ¢ I, then

F (Z 7Ti> (Z) =F <Z 7Ti> F(QJ)(Z) =0.
i€l el
It follows that

F(myo-om)(z) = Z (‘UnimF <Z 7Ti> (2)

iel

=F(m+-+m)(()=F1)(z) ==z

Conversely, assume z € Im F/(m, ¢ -+ o mp,), so that 2 = F(m; o+ o m,)(y).
Then, since
Uy lf] 7& Z
=

0 0 ifj=1i

we get

F(0))(2) = F(gj)F(mio---om)(y) = Y _ (-1 MIF <Qj Zm) )

IC[n) i€l
= > (Rl Y m | (m) =0,
IC[n] ieI\{j}
because sets I with and without j will cancel each other out. O

Definition 2. We define the nth cross-effect of F' as the multifunctor
FU(My|...|M,)=ImF(m 0---0om,)

of n arguments (it could be defined as any of the four modules above). We shall
use the short-hand notation
F1(M;lier)

for the |I]’th cross-effect of the modules M;. o

In each of the four cases above, it is implicit how the resulting cross-effect
functor will act on arrows. For example, if the cross-effect is viewed as Im F'(m; ¢
-+ omy,), then for given a;: M; — Mj, the following diagram will commute:

F( M) 22 p( v

F(O Lnri)l/ lF(O L;ﬂ';)
F(D M) F( M;)

F(D o)
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Therefore, there will be an induced map
Fi(aq|...|an) : ImF (O 1m;) — Im F (O i) .
Similar arguments may be constructed for the other three possibilities.

Theorem 3: The Cross-Effect Decomposition.

FMi®---®M,)= @ FY(Mjlicr).
ICn]

Proof. See [6]. O

3. Polynomial Functors

We now turn to interpreting our three notions of polynomiality, in order from
the weakest to the strongest. We begin with plain polynomiality, of which the
defining property is classically taken as the vanishing of the cross-effects.

Definition 3. The functor F: X900 — o0 is said to be polynomial of
degree (at most) n if every arrow map

F: Hom(M,N) — Hom(F (M), F(N))
is. o

Examples will be found later on, as all numerical and strict polynomial
functors are also polynomial.

Theorem 4. F is polynomial of degree n iff its (n—+1)st cross-effect vanishes.

Proof. Suppose the (n + 1)st cross-effect vanishes and consider n + 1 maps
oj: M — N. Create n + 1 modules M; = M and n + 1 modules N; = N, let

e @NiHNj, Lj:NjH@Ni
denote the jth projection and inclusion, respectively, and define
o: @Ni =N, (Y1, s Ynt1) — Zyl
The following equality is easily checked:
F(N) —F (EB Ni) — F (EB Ni) — F(M):
Flajo--0apt1) =F(0)o F(ym ¢+ -0 tny1Tnr1) o F((a1, ..., qny1))

But the middle component is zero by assumption, and we are done.
The converse is trivial. O
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4. Numerical Functors

We now assume a numerical base ring.

Definition 4. The functor F': X900 — Mod is said to be numerical of
degree (at most) n if every arrow map

F: Hom(M, N) — Hom(F (M), F(N))

Note the inconspicuous assumption on uniformly bounded degree of the
arrow maps. We shall presently see what happens when this assumption is
dropped.

Also note that, over the base ring Z, the notions of polynomial and numerical
functor coincide.

Example 1. The numerical functors F' of degree 0 are the constant ones:
F(M) =K.
The functors of degree 1 are those of the form
F(M)=Ka@E(M),
where K is a fixed module and F is R-linear. A

Example 2. The tensor power 7" (M ), the symmetric power S™(M), the exte-
rior power A" (M), and the divided power I'"(M) are all nth degree functors. A

A natural transformation 7n: F' — G of numerical functors is a family
n=nm: F(M)— G(M) | M € XIMod)

such that for any modules M and N, any numerical algebra A, and any w €
A ® Hom(M, N), the following diagram commutes:

A F(M) 2™ A0 G(M) (3.1)

F(w)l lG(w)

We let 9tum,, be the category whose objects are numerical functors of degree
(at most) n, with arrows natural transformations. It is easy to see that it is
abelian (the case R = Z is well known). It is also closed under direct sums, and
we will see in Chapter 4 that it possesses a compact progenerator. By Morita
equivalence, it is equivalent to a module category.
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5. Properties of Numerical Functors

Let us hasten to point out, that our definition of natural transformation is
unnecessarily complicated. A consequence of Theorem 8 of Chapter 2 is that a
polynomial functor is uniquely determined by its underlying functor. In view
of this, the following theorem is hardly surprising. The reason for adopting
the more complicated condition as definition, is to conform to the situation for
strict polynomial functors. These, it may be recalled, are not determined by
their underlying functors.

Theorem 5. The diagram (3.1) commutes for any natural transformation
n: F—G.

Proof. Consider homomorphisms ag,...,ar: M — N. Assume
al (477
A ® 4+t ar® = . ®
womtrmoa =2 (1) (o) o
aq Q.
G e — . 7
(a1 ®@ o1+ +ap ® ag) ZV: (m) (nk) ® Yy
for any aq, . .., ax in any numerical algebra A, where we denote p = (my, ..., mg)
and v = (nq,...,ng). The naturality of 7 ensures that
ay ag ai ag
2 (o) (e =32 () (o
m my mp -\ ng
Specialize first to the case ap = a3 = --- = 0, to obtain
a o ai
Z (ml)ﬁNﬂmlo... = Z <n1>%10...77M-
mi ni
By successively letting a; = 0,1,2,..., it will be seen that

NN Bmy,0,...) = V(m1,0,...)M
for all my. It is now easy to show inductively, that
NN B = Yulm
for all p. The commutativity of the diagram (3.1), for
w=a1Q@ay+- -+ ar o,

is then demonstrated by the following instantiation:

b b ® nu(z)

| o

ay ag Zu (mll) o (r?zi)b(@ n 6#(I>
) Gt — | S5y )
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Theorem 6. The following conditions are equivalent on a polynomial functor
F of degree n.

A. .
r
F(ra) = Z (k:)F ((g a) :
k=0
for any homomorphism o and r € R (numerical functor).
B.
- r r—m-—1
F = -1 F
v =S ()7, e
for any homomorphism « and r € R.
A
" /r
1 71 1 n
o =3 () (g1 ).
k=0
forr € R.
B.
= r—m-—1
1 n F * 1 n
e B () (275 e
forr € R.

Proof. That A and B are equivalent follows from Theorem 2 of Chapter 2, as
does the equivalence of A’ with B’. Clearly B implies B, so there remains to
establish that B’ implies B. Hence assume B’.

If ¢ < n, the equation

F(r-1pa) Zn: ( )(T;Tn_ll)p(m.lm)

m=0

holds, because 1rq factors through 1z~. Putting

zm) = o (D) (L),

we calculate for ¢ > n

F(r-lpe)=F(rm +---+rmy)

=— Y (~pliFp (Z””)

IC[q] el
= - Z )4 Il i Z(m)F (me)
IC[q] m=0 iel
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i€l

=Y Zm) Y (-1 (Z mm)
Z(m)F(m - 1ga).

The third and sixth steps are because the gth deviation vanishes, and the fourth
step is by induction (on ¢). Finally, the equation will also hold for an arbitrary
homomorphism «: R? — R?, because

F(ra)=F(r-1g«)F(a)

I
NE

Z(m)F(m - 1gra)F(a)

m=0
= Z Z(m)F (ma).
m=0
O
Theorem 7. The module functor F is numerical of degree n iff for any rq,
...,Tk € R and homomorphisms o, ..., ay, the following equation holds:
r
F(riago---orpag) = 7R a; |,
e = 2 (degj) (J—SS J)
#S=[k] jEF#S
IS|<n

where the sum is taken over multisets S.

Proof. Theorem 6 of Chapter 2. o

6. The Hierarchy of Numerical Functors

We shall say that a map f, or a family of such, is multiplicative if

f(2)f(w) = f(zw)

whenever z and w are entities («quelques chosesy ) such that the equation makes
sense, and also

fFa) =1,

where the symbol 1 is to be interpreted in a natural way. An ordinary functor
is by definition multiplicative.

Also, we say that a family of maps is polynomial of bounded degree, if
every map is numerical of some fixed degree n.

Theorem 8. Consider the following constructs, where A ranges over all nu-
merical algebras:

o1



A. A family of ordinary functors Ea: 4X9M0od — 49M0d, commuting with
extension of scalars.

B. A functor J: XIMod — Moo of which the arrow functions are multiplica-
tive maps

Ja: Homp(A® M,A® N) — Homu(A® J(M),A® J(N)),
natural in A.

C. A functor F: X9M0od — 9Mo0 of which the arrow functions are multiplica-
tive maps

Fa: A® Homg(M,N) — A® Hompg(F(M), F(N)),
natural in A (numerical maps).

Constructs A and B are equivalent, but weaker than C. If, in addition, the
arrow functions are assumed to have uniformly bounded degree, all three are
equivalent.

Proof. Given E, define J by
J(M) = Er(M)

and the following diagram:

Homa (A ® M, A® N) —22> Homa(Ea(A® M), EA(A® N))

Homy(A® J(M),A® J(N))

The properties required of J are immediate.
Conversely, given J, define the E by the equation

Es(A@M)=A® J(M)
and the diagram:

Homa(E4(A® M), E4(A® N))

7
Ea o7 H

Homa(A® M, A® N) Homu(A® J(M), A® J(N))
Also, it is easy to define J from F', using the following diagram:

A ®@Homp(M,N) A @ Hompg(F(M),F(N))

! |

Homa(A® M,A® N) o> Homa (A @ J(M), A® J(N))
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The left column in the diagram is an isomorphism as long as M and N are free.

So far the proofs have been completely straightforward, but we now turn to
the more difficult procedure of defining F' from J, modelled on the correspond-
ing proof for strict polynomial functors in [15]. Given M and N, find a free
resolution:

R™ R J(M) 0

Apply the contravariant, left-exact functor Homa (A ® —, A ® J(N)), where A
is any numerical algebra:

0 — Homy(A® J(M),A® J(N)) ——= (A® J(N))* —Z— (A® J(N))*
|
A Hom(M, N) — + A& R[Hom(M, N)].
The homomorphism
tJ: A Hom(M,N) - (A® J(N))"
may be split up into components
(td)g: A®@ Hom(M,N) - A® J(N),

for each k € k. These are numerical of degree n, and will factor over §,, via
some linear ;. Together these yield a linear map

(: A® R[Hom(M,N)], — (A® J(N))"

making the above square commute.
Now, 0(d,, = ovJ = 0, which gives 0¢ = 0. Using the exactness of the upper
row in the diagram, ¢ factors via some

¢: R[Hom(M, N)],, — Hom(J(M), J(N)),

and because of the injectivity of ¢, also J will factor over ¢,,. The following
diagram will therefore commute:

Hom(J (M), J(N)) ‘ J(N)(#)

Hom(M, N) ——"» R[Fom(M, N)],

Because J factors over R[Hom(M, N)],, it is numerical of degree n, and so may
be used to construct the F' above. O

We thus obtain the following hierarchy of functors:
Numerical functors are required to satisfy all three conditions A, B and

C, and to be of bounded degree.
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A functor satisfying condition C, with no assumption on the degree, could
rightly be called locally numerical, but this concept will not be used in
the sequel.

A functor satisfying the weaker conditions A and B, again without any
assumption on the degree, will be called analytic.

Example 3. The functors S, T, I" and A are all analytic. Of these, only A is
locally numerical. A

7. Strict Polynomial Functors

We now develop the theory for strict polynomial functors, to make it run in
parallel with that of non-strict functors. The base ring R is no longer assumed
numerical.

Definition 5. The functor F': X900 — 900 is said to be strictly polyno-
mial of degree n if every arrow map

F: Hom(M,N) — Hom(F (M), F(N))
is. o

Example 4. The functors T, S™, A™ and I'” are in fact strict polynomial
functors of degree n. A

By a natural transformation n: F — G of strict polynomial functors, we
mean a family

n=mm: F(M)— G(M) | M € X9od)

such that for any modules M and N, any algebra A, and any w € A ®
Hom(M, N), the following diagram commutes:

Ae F(M) 2™ A0 G(M)

F(w)l \LG(w)

We let &Pol,, be the category whose objects are strict polynomial functors
of degree (at most) n, with arrows natural transformations. It is well known to
be abelian.

It is clear that every strict polynomial functor is also numerical of the same
degree.
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8. The Hierarchy of Strict Polynomial Functors

As for numerical functors, we have the following three characterizations of strict
polynomial functors.

Theorem 9. Consider the following constructs, where A ranges over all alge-
bras:

A. A family of ordinary functors Ea: sX9M00 — 4900, commuting with
extension of scalars.

B. A functor J: X9Mod — IMod of which the arrow functions are multiplica-
tive maps

Ja: Hompg(A® M, A® N) — Homu(A® J(M),A® J(N)),
natural in A.

C. A functor F: X90od — 9Mo0 of which the arrow functions are multiplica-
tive maps

Fa: A® Homg(M,N) — A® Hompg(F(M), F(N)),
natural in A (strict polynomial maps).

Constructs A and B are equivalent, but weaker than C. If, in addition, the
arrow functions are assumed to have uniformly bounded degree, all three are
equivalent.

Proof. The proof is exactly analogous to the one given for polynomial functors,
except that, in the proof that B implies C, the module

@5 r* Hom(M, N)
k=0
is used in place of R[Hom(M, N)],,. The details are found in [15]. O

As in the numerical case, we obtain the following hierarchy:

Strict polynomial functors are required to satisfy all three conditions A,
B and C, and to be of bounded degree.

A functor satisfying condition C, with no assumption on the degree, could
be called locally strict polynomial, but this concept will not be used
in the sequel.

A functor satisfying the weaker conditions A and B, again without any
assumption on the degree, will be called strictly analytic.
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9. Homogeneous Polynomial Functors

Rather than considering arbitrary strict polynomial functors, we shall from now
on limit our attention to homogeneous ones.

Definition 6. The functor F': X900 — o0 is said to be homogeneous of
degree n if every arrow map

F: Hom(M, N) — Hom(F (M), F(N))
is. o

The subcategory of homogeneous functors will be denoted by HPBol,,. It is
abelian, and nothing essential will be lost by considering such functors only, as
the following theorem shows. It is proved in [15].

Theorem 10. A strict polynomial functor decomposes as a unique direct sum
of homogeneous functors. The only possible natural transformation between ho-
mogeneous functors of different degrees is the zero transformation.

Like Dum,,, HPol,, will shortly be proved to possess a compact progenera-
tor and to be closed under direct sums, and hence be equivalent to a module
category.

10. Analytic Functors

We here make a close examination of the analytic functors. We opt not to prove
the first of these results, as it should be well known. The second result can
likely be improved upon. It seems rather probable that the analytic functors
are precisely the inductive limits of numerical functors.

Theorem 11. The strict analytic functors are precisely the infinite direct sums
(or, equivalently, inductive limits) of strict polynomial functors.

Theorem 12. Quer a noetherian base ring, the analytic functors are precisely
the inductive limits of locally numerical functors.

Proof. Inductive limits of numerical, or even analytic, functors will clearly be
analytic. For if the functors Fj, for ¢ € I, are analytic, then for any a €
Homy(A® M, A® N), we have

E(Oz): A®FZ(M) — A®FZ(N)

['herefore
lim F;(o): A® lim F;(M) — A ® lim F;(N),
— — —

since tensor products commute with inductive limits, which yields a map

lim F;: Homa(A® M,A® N) — Homa(A ® lim F;(M), A ® lim F;(N)).
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Suppose now conversely that F' is analytic; the maps
F: Homa(A® M,A® N) - Homy(A® F(M),A® F(N))

are then multiplicative and natural in A. To show F' is the inductive limit of
locally numerical functors, it is sufficient to construct, given a module P and an
element u € F(P), a locally numerical subfunctor G of F such that u belongs
to G(P).

To this end, define the functor G' by

G(M) = (F(a)(u) | a: P — M),

and observe that the modules G(M) are invariant under the action of F'. Thus,
G is indeed a subfunctor of F, and clearly u € G(P). To see that G is locally
numerical, let {1, ..., €, } be a basis for Hom(P, M). Let A = R(tl":tm). Then

F(Ztk®ek):A®F(P)—>A®F(M), 1®u'—>z<;)®vu,

for finitely many elements v, € F(M). Specializing ¢ — ar € R, we get

F (Z am) L F(P) » F(M), u—Y (Z) Vs

which shows

G(M) = (F(a)(u) | a: P — M)

G ) (5 (e

is finitely generated. Since R is noetherian, G(M) is also finitely presented. We
have therefore the following commutative diagram, where the right column is
an isomorphism, for any flat numerical algebra A:

A Hom(M, N) —% > Homa(A® G(M), A® G(N))

|

46 Tom(G(M), G(N))

The existence of the diagonal map for flat A is enough for G to be locally
numerical. O

11. The Deviations

We shall here make a more detailed study of deviations in the context of functors.
We introduce the notation
MCX XY,

to denote that M is a subset of X x Y, and that both the canonical projections
are onto.
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Lemma 1. Let m and n be natural numbers, L C [m] X [n], and let Y (m,n, k)
denote the number of sets K of cardinality k satisfying

LC KC[m]x[n].

Then
Z(—l)kY(m, n, k) =0,

k
unless L is of the form P x Q, for P C [m], Q C [n].

Proof. If L is not of the given form, there exists an (a, b) which is not in L, but
such that some (a, j) and some (4,b) are in L. Then, for any set K C [m] x [n]
containing (a,b), K itself will satisfy the given set inclusions iff K\ {(a,b)} does.
Because the cardinalities of these sets differ by one, the corresponding terms in
the above sum will have opposing signs, and hence cancel. O

Lemma 2. Let m, n, p and q be natural numbers, and let Y (m,n, k) denote
the number of sets K of cardinality k satisfying

[p] x [¢] € K C [m] x [n].

Then
Z(_l)ky(m’n’ k) — (_1)m+n+p+q+pq'
k

Proof. The formula is evidently true for m = p and n = ¢, for then Y (p, ¢, pq) =
1 and all other Y'(p, ¢, k) = 0. We now do recursion. Consider the pair (m,n) €
[m] x [n]. The sets K containing (m,n) will fall into two classes: those where
(m,n) is mandatory in order to satisfy K C [m] X [n], and those where it is not.
For the latter class we may proceed as in the preceding proof: Taking such a
K and removing (m,n) will yield another set counted in the sum above, but of
cardinality decreased by one. Since these two types of sets exactly pair off, with
opposing signs, their contribution to the given sum is zero.

Consider then those K of which (m,n) is a mandatory element. They fall
into three categories:

e Some (m,j) € K,for1<j<n-—1,butno (i,n) € K, for1 <i<m-—1.
The number of such sets is Y (m,n — 1,k — 1).

e No (m,j) € K,for 1 <j<mn-—1,but some (i,n) € K,for 1 <i<m-—1.
The number of such sets is Y (m — 1,n,k — 1).

e No (m,j) € K,for1<j<n-—1and no (i,n) € K,for 1 <i<m—1.
The number of such sets is Y(m —1,n — 1,k —1).

Assuming the proposed formula is valid for lesser values of m and n, we calculate
by induction:

> (=D)FY (m,n, k)

k
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=> (DY (mn—1k-1)+Y(m-1,nk-1)+Y(m-1n-1k-1))
k
= ((_1)m+n*1+p+q+pq 4 (_1)m*1+n+p+q+pq + (_1)m71+n71+P+q+PQ)

— (_ 1)m+n+p+q+pq ,

as desired. 0

With these combinatorial prerequisites, we may state and prove our main
result on deviations.

Theorem 13: The Deviation Formula. For a module functor F', and ho-
momorphisms o, ..., Qm,B1,. .., On,

Flago--oam)F(f1o---00,) = Z F((Q Oéz'ﬁj)-

KClmlxfa) NP

Proof. We have

3 F( o aiﬁ])_ CHFHHE [ S 4,
) NG

KC[m]x[n Li)eK CK (,5)EL

_ Z \K\ Ll Oczﬂj
LQ[m]X[n]LQKE[m]X[n] (i,4)EL

= DEE( S aip (—1)! Kl
LC {m]X[n] (4,5)€L LQKE[ ]x[n]

= Z (_1)\PIIQIF Z o3 (_1)m+n+|P\+IQI+\PIIQI
PxQC[m]x[n] (i,))EPXQ

- 3 e () 5 coer (s
PC[m] iep QC[n] Jj€Q

=Flago--oam)F(Bro- -0 Bn),

where in the fifth step the lemmata were used to evaluate the inner sum. O

12. The Multicross-Effects

Given a direct sum M = M; & --- ® M, let m;: M — M denote the ith
projection. Recall that the cross-effects of a module functor F' are given by the

formula
FY(M;lic;) =ImF(m0---0om,),

for I C [n].
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The cross-effects of a strict polynomial functor may in fact be dissected
further into so called multicross-effects. These are described using the language
of multisets, which are formally introduced in Chapter 6.

Let F be a strict polynomial functor and let a;;: M — N be homomorphisms.
We recall that the maps F, 1. : F(M) — F(N), for multi-indices p, are defined
by the universal validity of the equation

F(Zai®ai) = Za“@FaM

Definition 7. Let A be a multiset with |A| = n and #A = [n]. We define the
multicross-effect of F' of type A to be the multifunctor

Fl(My]...|M,) =Tm Fy
of n arguments. o

Theorem 14: The Multicross-Effect Decomposition. For F a strict
polynomial (or strict analytic) functor,

FT(My|...|My)= @ FiOn|...|M,),
#A=n]
|[Al=n

and consequently,

FMi®---&M,) = @ F,Z(Ma|a€#x4)'

#AC[n]
|Al=n

Proof. The equation defining the F_ . is

F(Z%@m) Zza”®Fﬂ[u],

from which it immediately follows that

1=F(1)=F (Z m-) =3 Fu.
Furthermore, the equation
Z at'b” @ FLywFo = F (Z a; ® 7T1') F (Z b; ® 7Tj)
=F (Z arbr ® 7Tk) = Z(ab)}‘ ® F_

shows that F_ .y F, ) = 0 whenever p # v, and also that Fj[u] = F 1. Conse-
quently, the images of the maps F ., form a direct sum decomposition. O
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Note in particular the following special case:

F(R") = €D Fh(Rlacya),
#AC([n]
[Al=n
which we choose to write more succinctly as
F(R") = @ Fi(R"),

#AC[n]
|Al=n
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CHAPTER 4

Module Representations

Et la glace ou se fige un réel mouvement

Reste froide malgré son détestable ouvrage.

La force du miroir trompa plus d’'un amant
Qui crut aimer sa belle et n’aima qu’un mirage.

Guillaume Apollinaire, La Force du Miroir

T. I. Pirashvili, [13], showed in 1988 how polynomial functors may be viewed
as modules. Fifteen years later, Ekedahl and Salomonsson, [15], came to realize
that also strict polynomial functors admit a module interpretation. In this
chapter we describe these two module categories.

As before, we assume a fixed base ring R, which is assumed to be numerical
when dealing with numerical functors.

1. The Fundamental Numerical Functor

Two numerical functors of supreme importance are the following.

Theorem 1. The functor R[—],, given by

M — R[M],
v [ BIM), = BN,
x: M~ N] 2] — [x(x)]

is numerical of degree n, as is the functor R[Hom(K,—)], for a fized module
K.

Proof. The first functor is immediately seen to be of degree n, for if x;: M — N,
and z € M, then

1o oxnm]([z]) = Da(z) o - o xnsa1(2)] = 0;
and if a € R and x: M — N, then

() = lox) = 3 (1) fox] =3 (£) [ox] @,

k=0 k=0

The second functor is the composition of an nth degree functor with a linear
one and is therefore also of degree n. O
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The latter functor R[Hom(K, —)],, above takes

M +— R[Hom(K, M)],

[x+]: R[Hom(K, M)], — R[Hom(K, N)],

i M= NJ o] = [x ol

and certainly deserves to be called the fundamental numerical functor of
degree n, for reasons that will presently be made clear.

Example 1. As an example of a functor which is polynomial, but not numer-
ical, of degree 1, let the base ring be R, and define for real vector spaces

F:g9Mod — gMod, V= R[V]|/{z+y]—[z] - [y]).

Clearly F is additive, its first deviation vanishes, and therefore also its second
cross-effect. But F' is not numerical (of any degree), for

F(V2: R —=R): [1] — [V2]
V2F(1: R — R): [1] — V2[1],
and these are not equal in

FR) =RI[R]/([z+y] - [z] - [v]).
In fact, F is not numerical of any degree, as it is impossible to express F(v/2)

as a linear combination of F(0), F(1),.... A

2. Yoneda Correspondence for Numerical Functors

The functors R[Hom(K, —)],, just introduced are to numerical functors what the
Hom-functors are to ordinary functors, in that we have the following Yoneda
Lemma for natural transformations between R[Hom (K, —)], and an arbitrary
nth degree functor F':

Theorem 2: The Numerical Yoneda Lemma. Let K be a fized module
and F' a numerical functor of degree n. The map

T: Nat (R[Hom(K, )], F) — F(K)
n = i ([1x])
is an isomorphism of modules.

Proof. The proof is the usual one. Consider the commutative diagram:

K R[Hom(K,K)), == F(K) [lx] ———nx([1x])

N

nm

M R[Hom(K, M)}, — F(M) [a] —=nu([e]) = Fa)(nx ([1k]))
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Upon inspection, we find that T has the inverse

s R[Hom(K, M), — F(M)
[a] = F(a)(y)
Here we use the numericality of F' to ensure that the map
Hom(K, M) — Hom(F(K), F(M))
will factor through R[Hom(K, M)],. O

’yl—)

In particular, we have a module isomorphism
Nat(R[Hom(K, —)],) & R[Hom(K, K)],, = R[End K],
given by the map
n— k(1))
with inverse
na: R[Hom(K, M)),, — R[Hom(K, M)],
[a] — [aoa].

[o] =

We recall that R[End K] and its quotients R[End K],, feature two distinct
multiplications, namely the sum multiplication [¢][7] = [¢ + 7] and the product
multiplication [o][r] = [ro]. The Yoneda map does not respect the former in
any way, but it will reverse the latter.

Theorem 3. Under the Yoneda correspondence, the rings
(End R[Hom(K, —)],)° = R[End K],
where the latter is equipped with the product multiplication.

3. Morita Equivalence for Numerical Functors

We shall now specialize the fundamental functor to the case K = R™. But first,
a preliminary lemma:

Lemma 1. A polynomial nth degree functor that vanishes on R™ is identically
zero.

Proof. For ¢ < n, 1ga factors via R™, so that 1p(re)y = F(1re) = 0 factors via
F(R™) =0.

Now proceed by induction and suppose F(RI~!) = 0 for some ¢ > n + 1.
Decompose 1ga = 1171+ - +147g, Where m;: R — R denotes the jth projection
and ¢;: R — RY the jth inclusion. Since F'is of degree ¢ — 1,

0= F(Llﬂ'l O -'<>Lq7Tq) = Z (—1)q_|X‘F <Z Lj7Tj> .
X

XC{um,..., LqTq}

If | X| < qg—1, F(O ytm) = 0, since Yy ¢;m; factors via RI™! and we
assumed F(R?!) = 0. The only remaining term in the sum above is then
0=F(um + -+ 14my) = F(1ga) = 1p(Ra)- O
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Theorem 4. R[Hom(R",—)], is a compact progenerator' for Num,,, through
which there is a Morita equivalence:

Num,, ~ g(rnxn), Mo,

where R[R"*"],, carries the product multiplication.
More precisely, the functor F corresponds to the abelian group F(R™), with
module structure given by the equation

Proof. To show R[Hom(R™,—)], is projective, we must show that
P = Nat(R[Hom(R", —)]n, —)

is right-exact, or preserves epimorphisms. Hence let n: F' — G be epic, so that
each 7y is onto. From the following diagram, constructed by aid of the Yoneda
Lemma, it follows that 7, is epic:

N

Nat(R[Hom(R", —)]n, F) — Nat(R[Hom(R", —)],, G)

<] I

F(R") o G(R")

To show R[Hom(R™, —)], is a generator, we use the lemma.
0 = Nat(R[Hom(R", =), F) = F(R")

implies F' = 0, so P fails to kill non-zero objects.
Compactness of R[Hom(R™, —)], follows from the computation

Nat (R[Hom(R", s @Fk) o (@ Fk) (R") = D Fu(R™)
= @Nat (R[Hom(R"™, —)|n, Fi),

again using the Yoneda Lemma (twice).
As Dtum,, is closed under direct sums, we have a Morita equivalence:

Nat(R[Hom(R",—)]n,—)

Num,, Moo
v
R[Hom(R™,—)]n®—

where S = (Nat R[Hom(R", —)],)° = R[End R"],, = R[R"*"],.

LA progenerator of an abelian category is a projective generator. It is compact when the
corresponding Hom-functor commutes with arbitrary direct sums.
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To prove the last assertion of the theorem, we first note that F' corresponds
to
Nat(R[Hom(R", —)|,, F) = F(R"),
again by the celebrated Yoneda Lemma. We now investigate on the module
structure on F(R™). Under the Yoneda map, an element x € F(R™) will corre-
spond to the natural transformation

n: R[Hom(R"™, —)|,
N R[Hom(R™, M)],
[a] = F(a)(x)

F
F(M) )

—
—

extended by linearity. Likewise, [s] € R[R"*"],, will correspond to

o: R[Hom(R™, —)],, — R[Hom(R"™, —)],
o R[Hom(R™, M)}, — R[Hom(R"™, M)], | ,

[o] = [0 s]
again extended by linearity. Multiplying (the scalar) o with n in the module
Nat(R[Hom(R", —)]n, F)
gives as product the transformation
noo: R[Hom(R", )], — F
(no0)ar: RHom(R", M)}, — F(M)|
[o] = F(aos)(z)
which under the Yoneda map corresponds to
(moo)rn([Lrn]) = F(1gn os)(x) = F(s)(x)
in F(R™). The scalar multiplication on F'(R™) is therefore given by the formula
[s]lz = F(s)(x),
and the proof is finished. O

Example 2. Consider the constant functor C': R¥ — R and the identity func-
tor I: R¥ — RF. They are both of the first degree (of course, C' is in fact of
degree zero), which means they will both under the Morita equivalence corre-
spond to the abelian group C(R) = I(R) = R. Their module structures over
R[R]; = ([0g],[1g]) will differ, however. For C, the scalar multiplication is

given by
(a[Og] + b[1g))z = C(a|0g] + b[1g])(x) = aC(0r)(x) + bC(1g)(x)

alp(z) +blr(z) = (a + b)x,

whereas for I the action is

(alOr] + b[1g])x = I(a[0g] + b[1R])(x) = al(0g)(x) + bI(1R)(x)
=alg(x) + blg(x) = bx.
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4. The Fundamental Homogeneous Functor

With modifications, the above theory for numerical functors will have a strictly
polynomial counterpart. The appropriate progenerator will of course no longer
be R[Hom(R™, —)],, but will involve the divided power functor I'".

The strict polynomiality of I'” is of course an immediate consequence of the
fact that it commutes with extension of scalars:

I™(A® M) =A@ T"(M).

We would, however, like to examine its behaviour a little more closely. In order
to do so, we define a representation

I'"Hom(M, N) — Hom(I'"(M),T"™(N)).

Given a; € A (where is A is some algebra) and «; € Hom(M, N) (where M
and N are modules), let the equation

Fn' El ai®ai N Z|u\:n aV®Oé[V]
" |e A® Hom(M, N) € A®Hom(I'™(M),T™(N))|’
define the homomorphisms

oYl T (M) — T™(N).

Thus, the symbol o) may be interpreted either as an element of I Hom (M, N)
or as a map I'""(M) — I'"(N) (and sometimes both).
We state the following theorem, which should be well known:

Theorem 5. The functor I'™, given by
M —T™(M)

(Ciai®a)™ =3, 2, " ®al’

2010 ®ay } .
€ A ® Hom(I™(M),T"(N))

€ A®@ Hom(M, N)

is strictly polynomial of homogeneous degree n, as is the functor T™ Hom(K, —)

for a fized module K.

We define the fundamental homogeneous polynomial functor to be
' Hom(K, —), given by the following formula:

M — T" Hom(K, M)

(0 ® (i)™ = 30y, 0" @ ()

Zi a; ® a; :| s |=n
€ A® Hom(I'" Hom(K, M), Hom(K, N))|

€ A®@Hom(M, N)
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5. Yoneda Correspondence for Homogeneous Functors

Parallelling the development for polynomial functors, we state and prove the
Yoneda Lemma for homogeneous polynomial functors. Note that the module K
is here required to be free.

Theorem 6: The Homogeneous Yoneda Lemma. Let K be a fized, free
module and F a homogeneous functor of degree n. The map

T: Nat(I" Hom(K, —), F) — F(K)
0 k(1)
is an isomorphism of modules.
Proof. Since all the modules involved are free, we may without difficulty define

Cyv: T Hom(K, M) — F(M)
B = Faui(y) '

Pray note that Fyny = F(8). (u is evidently a well-defined group homomor-

Ziy—

phism, being the composite of Sl — Faun with evaluation at y.
¢ is natural, because of the following commutative diagram:

C M

M T"Hom(K,M) > F(M) Bl ——————— Faui(y)

e

N ' Hom(K, N) LS F(N) (aB) ) — Flogyim (y) = Fomgi (y)

Now we show the above formula indeed gives the inverse of Y. On the one
hand, it is clear that

TE(y) = () = k(1) = Fiu ) = F(Lx) W) = v.

On the other hand, starting from 7 and letting y = Y(n) = nK(l[;]) define

= Z(y), we see that

(B = Fa(y) = Fara (ne (1)) = F(B) (i (150)) = mar (81,

where the last equality is due to the following commutative diagram:

n 7 n n
K THom(K,K) M F(K) 1l —— (1l

N

nm

M T"Hom(K,M)—>F(M) g —py(8ln) = F(8)(nx (110))

n and ¢ then agree everywhere by the Divided Power Lemma. O
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In particular, we have a module isomorphism
Nat(I'" Hom(K, —)) 2 I'" Hom(K, K) =T"(End K),

given by the map
0= e (15)

with inverse

|0 ' Hom(K, M) — I' Hom(K, M)

[
g al"l i (a0 o))

As in the numerical case, this is a ring isomorphism when I'"(End K) is equipped

with the reverse product multiplication:

Theorem 7. Let K be free. Under the Yoneda correspondence, the rings
(Nat(I'"™ Hom(K, —)))° = I'"(End K),

where the latter is equipped with the product multiplication.

6. Morita Equivalence for Homogeneous Functors

Again, we specialize to the case K = R™ to obtain a compact progenerator:

Theorem 8. T Hom(R"™,—) is a compact progenerator for HPol,,, through
which there is a Morita equivalence:

where T (R™*™) carries the product multiplication.
More precisely, the functor F corresponds to the abelian group F(R™), with
module structure given by the equation

st"(x) = F(s)(x)

Proof. The proof is virtually identical to the one for numerical functors and
therefore omitted. O
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CHAPTER 5

Mazes

Labyrinth of Fun

The quartet Baues, Dreckmann, Franjou and Pirashvili, [1], discovered in 2001
how to combinatorially encode Z-module functors, and in particular polyno-
mial ones. Their design was to establish a two-way correspondence (category
equivalence) between module functors zX90d — zMod and Mackey functors
Q — zMo0, where € is the category of finite sets and surjections.

Unfortunately, the argument does not generalize to an arbitrary base ring,
as it is not apparent what category should play the role of 2. To remedy
this situation, we explore here the theory of mazes. We will later (Chapter 7)
recapture the Q-construction of [1].

The construction we describe is quite general. It does not require the base
ring to be numerical, and not even commutative. So until we start discussing
polynomiality, R is just assumed to be a unital ring.

1. Mazes

Consider two finite sets X and Y. A passage from z € X toy € Y is a (formal)
arrow p from z to y, tagged with an element of R, denoted by p. This we write
as

p-r—Y,
or

€T L y .
Definition 1. A maze from X to Y is a multiset of passages from X to Y. It
is required that there be at least one passage leading from every element of X,

and at least one passage leading to every element of Y (we, so to speak, wish
to prevent dead ends from forming). o

Because a maze is a multiset, there can be (and, in general, will be) multiple
passages between any two given elements.

Definition 2. Wesay P: X — Y is asubmaze of Q: X — Y, if P C Q as
multisets. ©
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Definition 3. If P: X — Y is a maze, the restriction of P to X' — Y’, for
subsets X’ C X and Y’ C Y, is the maze (if indeed it is one) from X’ to Y’
containing only those passages of P that begin in X’ and end in Y’. It will be
denoted by
P ’ X'—=Y'’”
o

We shall sometimes abuse notation, and use the symbol P | /.y even when

this is not neccessarily a maze. We will take this liberty when summing over
submazes, with the tacit understanding, that if P ‘ ~/_y 18 not itself a maze,
of course it has no submazes either, so the sum will be empty.
Note that P |, ., is not a submaze of P (unless X' =XandY' =Y.
Passages p: y — z and ¢: * — y are said to be composable, because one
ends where the other begins.

Definition 4. If P: Y — Z and Q: X — Y are mazes, we define the carte-
sian product P (@ to be the multiset of all pairs of composable passages:

pa={(s2o] [yta])|[s2s]er n [sta] <a)

For a subset U C P (@, we shall write
UCP Q@

to indicate that the projections on P and @ are both onto. Note that such a
set U naturally gives rise to a new maze, namely

e [([s 2w ] [y e ]) v}

The surjectivity condition on the projections will prevent dead ends from form-
ing.

When we write P @, we will sometimes refer to the cartesian product,
and sometimes its associated maze, and hope the circumstances will make clear
which is meant.

Definition 5. The product or composition of the mazes P and () is defined

as the formal sum
PQ= Y U
UCP Q
o

That multiplication is associative follows easily from the observation that
(PQ)R and P(QR) both equal

oW

WCP Q R
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There exist identity mazes
Ix = {[c La] [z X}
Note, by the by, that it is perfectly legal to consider the empty maze
I=0:0—-10
with no passages. It is the only maze into or out of ().

Example 1. Consider the two mazes

Ty
Q: /Z , P: z
Y v

P Q ={([x<_z][z<_x])([y<d_z][Z<_x])
(o] [e20]) ([vs] [ 20]) }

which we identify with the maze
ac
r——
7
C
><z& ’
Yy——r=v

and their product is

PQ \"\ ya ><bc1
= z =
7N\ ad

/ N\ - s
Yy y y bdy
B ac ] B ac ] ac T
r——=x r——-2 €T > 7T

r——-2X x X
b1
C
+ + ><
ad

y——v| |v v |
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2. The Labyrinth Category

Definition 6. The labyrinth category £aby is the R-category! obtained in
the following way: Its objects are the finite sets. Given two sets, their arrow set
is the free module of mazes between them, with the following relations imposed
(i. e. divided away), for multiset P of passages:

I
PU{*—2>x }] =0.
IL.
PU{*—"sx}|+ PU{*—b>*} + PU{*:GZ*}].
b
(The unions are to be interpreted in a multiset-theoretic way.) o

We first state two elementary formula for this category, proved by induction.

Theorem 1. In the labyrinth category, the following equations hold:

PU{*Z?_IT*}]_ Z Z'GI}]
PCIC[n]
a 1§z§n}] = Z(_l)n7|l| PU{*ZI—EIZ*}]

PU{ ¥ L s
IC[n]

PU{*&*

3. Operations on Mazes

There are some more (as yet nameless) operations on mazes which will occa-
sionally be useful to us.
IfP:Y —>Zand Q: X — Y are mazes, we define

P oo={[.2m,]

zEZ,xeX},

where the sum is taken over all pairs [z < y] € P and [y <~ z] € Q of composable
passages. This new maze will have at most one passage running between any
given z € X and z € Z.

We immediately have the following formula relating the operations and

1By an R-category we understand a category enriched over 9100, so that its arrow sets are
in fact R-modules. A Z-category is just a preadditive category.
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Theorem 2.

V= Z W.
VCP Q WCP Q

Proof. For W C P @, define
EW)={VCP Q|3 zr—2]€V « Tx—z]eW}
Then apply the first of the formulee of Theorem 1 to each passage of E(W) to

show
Yo v=w,
VeRE(W)

which proves the theorem. O

Passages p: * — y and ¢: = — y are said to be parallel, because they share
starting and ending points.

Definition 7. We say that mazes P,@: X — Y are similar if they contain
no parallel passages and

Vie X,yeY:[z—>yleP < [z—y|leq.
o

Essentially P and @ have the same passages, except that their labels may
differ.
When P and @ are similar mazes, we define

Pa={ls2ny]|[»2oy]er[stoy]ea),
and obtain without effort the following theorem.

Theorem 3. Let Pi,..., P, be similar mazes, and let the passages of P; be
Dily - Pim- Then

Pl Pn:Z{plj|(Z5.])€K}v
K

where the sum is taken over all K C [n] X [m] such that the projection on the
second variable is onto.

4. Module Functors

We shall now establish a remarkable equivalence between two kinds of functors.
On the one hand, we consider module functors X9Mtod — M0, which may be
of an arbitrary nature (additive, polynomial, numerical, and what not). On the
other hand, we shall have functors £aby — 9t00. These shall always be assumed
R-linear.
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Given a direct sum RX and z € X, let 1, denote the unity of the zth
component R. We let
oyr: R — RY

be the homomorphism that takes 1, to 1, and every other 1, to 0. We shall
make extensive use of these maps, as they turn out to be the skeletal components
of the module category.

Definition 8. Given a linear map

s = E SbaOba . RA — RB,
acA,beB

(a B x A matrix) we let its associated maze S: A — B be

S:{[aﬂ> } ‘aeA,beB}.
&

Note that if but a single component sy, vanishes, the associated maze S = 0.
Note also that the associated maze of a composition sot is none other than S T,
and that of a sum s+t is S T, which motivates our interest in these operations,
as well as our choice of notation.

In the continuation, we will make no formal difference between a linear map
and its associated maze, and denote them both by the same symbol, as long as
it is clear which one is meant.

We wish now to define a functor (which will eventually turn out to be an
equivalence)

®: Fun(XMod, Mod) — Fun(Laby, Mod).

Given a module functor F': X900 — o0, the corresponding labyrinth functor
should take finite sets to the corresponding cross-effects:

X — FY(R|x).
Also, mazes should be interpreted as deviations, in the following sense:

[P: X —>Y]— |F ({ O ]_?Uym)

p: x—y|EP

FI(R|x)—=FT(Rly)

But it is in fact unnecessary to restrict the action to the appropriate cross-effects,
as the following lemma shows.

Lemma 1. The map

F( O T?Uym> : F(RX) — F(RY)
[p: z—yleP

is in fact a map FT(R|x) — FT(R|y), in the sense that all other components
are 0.
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Proof. We use Theorem 2 of Chapter 3. Precomposition with F(7,), where 7,
is any insertion with z € X, and postcomposition with F(p,), where g, is any
retraction with y € Y, both yield 0, because 0,7, = 0,0yz = 0. o

The homomorphism

()
[p: x—yleP

may thus be interpreted both as a map R — RY, and as a map FT(R|x) —
FT(Rly), depending on the circumstances. We hence define ®(F): £aby — Dod
by the following formulae:

X — FY'(R|x)

PoX Y] {F < o ]Epmm) . F(Rlx) — FI(Rly)

[p: a—y
Lemma 2. O(F) is a functor from the labyrinth category.

Proof. That ®(F') respects the relations in Laby follows from
B(F) <Pu{x—0>y}) =F(---00)=0
and
#(F) (PU (220} ) = Flovo (ot 8)0,0)
=F(--0a0yy) + F(---0boyg) + F(--- 0 aoy, ©boys)

:@(F)(Pu{x—“>y})+<1>(F) (PU{x—b>y})
+ ®(F) <Pu{x$y}>.

Functoriality follows from the Deviation Formula. O

We now define ®((), for a natural transformation {: F' — G, by restriction
to the appropriate cross-effects:

®(Q)x = (px: FI(R|x) — GT(R|x).
Lemma 3. ® is a functor.

Proof. Because natural transformation are linear, they preserve deviations, and
hence cross-effects. Hence, for X and Y of different cardinality, the component

¢: FT(R|x) — GY(R]y)

is 0. From this, multiplicativity of the functor ® follows. O
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Lemma 4. & is fully faithful.

Proof. Given n: ®(F) — ®(G), the only possible candidate for a {: F — G,
such that ®(¢) =7, is
Cry = EP v

YCX
O

Now comes the hard part: showing & is essentially surjective. Let an
H: Laby — Mod be given. Define its inverse image @~ (H): XMod — Mod by
letting

N (H)(RY) = P H(Y)
yCa
and, given
s = Z SbaOba RA — RB,
a€A,beB
letting the H(Y) — H(Z) part of ®~'(H)(s) be given by

> H(P),

res|,_,

where S is the associated maze of s. Note that

-1
O (H)(s) | H(Y)—H(Z) — 0
if Y =0 # Z, or conversely, but
-1
e (H)(s) ‘ HO)—H®) — H(Iy).

We will show that ®(®~1(H)) = H. Note, however, that in general ®~1®(F)
# F, despite the notation. ®~! will only be a pseudo-inverse to ® (inverse up
to natural isomorphism).

Lemma 5. & 1(H) is a functor.
Proof. Given

S = g Sevoer: RE — R, T= E thaOba: R — RE,
beB,ceC a€A,beB

we calculate, for X C A and Z C C, the H(X) — H(Z) component of
O (H)(S) o @ 1 (H)(T)

as:
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The last step follows from noting that every submaze of (S T | x_.z is obtained

as VC P @, forsome P and Q. Since the H(X) — H(Z) part of

@71(H)(ST) = @71(H) Z (Z Scbtba> Oca

acA,ceC \beB

>, HW)= > HW),

wes |, wees

the functoriality of ®~1(H) follows. O

Lemma 6.

O(@ 1 (H)) = H.
Proof. We first write down the well-known (and easily established) formula
Pl it p_
S (-1l = {(—1)| L if P=0Q,
olsep 0 else,

where P and () are finite sets.
Given a maze P: X — Y, we want to calculate the deviation of the module
functor ®~1(H) corresponding to the maze P:

@1<H>( 0 ﬁaym>—2(—1)'PS‘1’l(H) S o | ()

lp: e—yleP scp pES

The H(Z1) — H(Z3) component of ®~1(H) (ZPGS]_?UW) is

> HQ).

Qcs|,, .y,

The component H(Z,) — H(Z3) of (5.1) is then

Py B = Y CD)PHE) Y ()Pl

SCP Q§S| Q§P| QCSCP

Zy—Zoy Z1—Zo
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The inner sum vanishes if P # Q. Tt equals (—1)I”l if P = @Q, but at the same
time @ C P|Z1HZ2, soinfact Z1=X,Zy=Y and Q =P = P|Xﬂy. Thus

i (o ) _

[p: z—y

{H(P) if Z1=Xand Z, =Y,

0 else.
H(Z1)—H(Z2)

From this it follows instantly, both that

(@ (H))(X) = & (H)| (Rlx) = Im &~ (H) (mgx m>

= Tm H(Ix) = Im1z(x) = H(X),

S~ (H)T(R[x)—®~ (H)(R]y)

— H(P).

O

It is now only a matter of putting these lemmata together, to obtain the
following truly marvellous theorem:

Theorem 4. The functor
D oqpy: Fun(XMod, PWod) — Fun(Laby, Mod),
where Pgqpy (F): Laby — Mod takes
X — F'(R|x)

Pex =¥ [P0 o) s PRI — Pl

[p: x—yleP

1S a category equivalence.

5. Polynomial Functors

The preceding section dealt with module functors in general. Since the passages
of a maze correspond to deviations, the following simple characterization of
polynomiality should come as no surprise.

Theorem 5. The module functor F is polynomial of degree n iff ®gqpy(F)
vanishes on sets with more than n elements.
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Proof. Clearly enough, if F' is polynomial functor of degree n, then ®gqp,(F)
will vanish on mazes with more than n passages, since applying ®gqpy(F) to
such a maze will involve an nth deviation.

Suppose now conversely that ®¢qpy(F') vanishes on mazes with more than
n passages, and let there be given n 4+ 1 homomorphisms

A B
al,...,an+1:R — R

with associated mazes
Pl,...,Pn_HZ A — B.
These mazes can be made similar by adding in extra passages labelled 0, if need
be, and we may label the passages of P; by
Pi1s .- Pim-

Let sets X C A and Y C B be fixed.
Note that if

{pi; | 7€ J}
is a legitimate submaze of P; for one particular 7, it is so for all choices of 1.
When this is the case, we say that the set J C [m] is admissible. Then also

{Zpij JE€ J}
is a legitimate submaze of

1€l
P ‘ = P oy
i€l X—=Y el

(the associated maze of the sum »°,_; a;) for any I C [n 4 1].
We are now ready to calculate the deviation of F':

Flaz o oamg)| Fi(R|x)—Ft(R|y)
= Y (~yrtHip (Z ozl-)
IC[n+1] i€l F1(R|x)—F1(Rly)
- Z (=1)n =l Z D eany (F)(Q)
IC[n+1] QC( ier P) Ny
= Z (_1)n+1*|1| Z (I)f,abn(F) ({Zpij jE J}) )
IC[n+1] JC[m] el

where the inner sum is taken over admissible J only. Letting K; denote the
projection of the set K C I x J on the [th component, we may use Theorem 3
to transform the latter sum to

F(Oq DAY an+1) ’ FT(R|x)—Ft(R|y)
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ST (=0 EST N Bqny (F)({pig | (i,4) € K)

IC[n+1] JCm] KCDJ
p

Z Z (-1 n+1 . < Z Peavy (F)({pij | (i,4) € K})>

KC[n+1]x[m] \K1CIC[n+1] J=K3

= E DPeany(F){pij | (i,5) € K}).
K C[n+1]x[m]
Ki=[n+1]

The condition K; = [n + 1] implies |K| > n+ 1, and so all the mazes
{pij | (i,4) € K}

will contain more than n passages. The sum will therefore equal 0, by the
hypothesis on ®gqpy (F). O

6. Numerical Functors

We now investigate how to interpret numericality in the labyrinthine setting.
First some notation. For P a maze and a a scalar, let @ P be the maze
obtained from P by multiplying the labels of all passages by a:

o P={[a—y][[a—y]er).
Given a multiset A supported by the maze P, we let E4 denote the maze
Es= U { a——sa } ,
acA

with the passages multiplied according to the degree function of A, and uni-
formly given the label 1. (This is an example of a simple maze; we will see later
that the simple mazes form bases for the arrow sets of the labyrinth category.)

Lemma 7. Let r lie in a numerical ring, n be a natural number, and w; be
positive integers satsfying wi + --- 4+ wqg < n. Then

I(0) -3 () Sev=() ()

Proof. We prove the formula when r is an integer, and then refer to the Numer-
ical Universality Principle.



-y (—1)IMI-IK] f[l (Zj)

MC[r] KCM
[M|<n
q
_ Z(—U'K'H('K,|> (L
KC[r] i=1 NI ke
[M|<n

When 0 < r < n, the requirement |M| < n is superfluous, and K must equal
[r], lest the inner sum vanish. We then have

(1)

S (1 KH<|K) Z 1yl

K=[r] KCM

)T >

The formula is thus true when 0 < r < n. But then it must hold everywhere,
since both sides are polynomials of degree n. O

Theorem 6. The functor F is polynomial of degree n iff the equation

branP)P) = Y TT (o)) BanP)(E)

#A=P peP
|A|<n

holds for all mazes P.

Proof. By Theorem 7 of Chapter 3, a polynomial functor will certainly satisfy
this. The converse is trickier.

First note that if ®gqpy(F') satisfies the equation, then it will vanish on
mazes with more than n elements, whence F' is polynomial of degree n. We
wish to use Theorem 6 of Chapter 3, and thus evaluate

FT 1Rn = Z ‘I)Qabn )
PCr Iy

The component
P eavy () (X) = Peapy (F)(Y)

of thisis 0if X 2 Y. If X =Y, we may without loss of generality assume
X =Y = [g]. Then the component

Dany (F)([a]) = Peavy (F)([9))
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is

Pen(P)e T = 1 (qer ;) B2omFIE)

=[q] j=1
\A\<n

-y H( Josmin(F)(E)

wy+-- +wq<ng 1

where we let w; = deg, j > 1. Similarly, the component

D caby (F)([a]) = Peann (F)([g])

Zn: <;)F <7<7>L an> = mzi: (;) é(—l)mk (?)F(k 1pn)

m=0 =0

is
n

EOE ), S A

wi+-Fwe<n =1

It is now only a matter of using the lemma, to establish the equality

F(r-1pn) _mio (7;>F (21Rn) .

Consequently, F' is numerical. O

Definition 9. The nth quotient labyrinth category Laby,, is defined as the
quotient category obtained from £abty when the following relations are divided
away:

11
P =0,

whenever P contains more than n passages.

IV.

-2 H( gAp) o

#A=P peP
lAl<n

for all mazes P.

<

The theorem may then be rephrased as: F is numerical of degree n iff
D ¢qpy (F) factors through Laby,,. Or, equivalently:
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Theorem 7. The functor ®gqpy induces a category equivalence

MNum,, — Fun(Laby,,, No0).

A few examples of labyrinth representations are in order. We take [n] as the
canonical representative of sets of cardinality n.

Example 2. Let C(R") = K be a constant functor. ®gqp,(C) will take
() — K, and all non-empty sets to 0. A

Example 3. Let F(R") =K @ L" be a linear functor. ®g¢qpy(F) will take
[0] — K, 1] — L, [2],13],...— 0,

and map the maze
[1—1] -1

7. Quadratic Functors

We here determine the structure of 9Qtumy by classifying the quadratic numerical
functors. To find the labyrinthine descriptions of quadratic functors, we first
draw the (skeletal) structure of the category Labu,:

and
(a)<b)
- \1/\u
b b
k ———> % * —— %

(the simple mazes generate the category), every maze in Laby, can be reduced
to (linear combinations of) identity mazes and the following:

1—>1 1—>1

A= \1« B- /”1
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o | A B ¢ S
A I+S5 24

B|C B
c| - 2B 2C -
S| A - - 1

Table 5.1: Multiplication table for Laby,.

1
c-[1==1| s-
1
2 L2

Even these are not independent. Their multiplication table is given in Table
5.1. Clearly we can do with only A, B and S, and we obtain the following
explicit description of Dtums.

Theorem 8. A quadratic numerical functor is equivalent to the following data:
modules K, X and Y, together with homomorphisms a, 3, o as indicated:

N
K X\B/YQU

These homomorphisms are subject to the following four relations:

af =1+ o, Bo = 0, oo = a, o2 =1.

The reader will note, that we can in fact also dispense with ¢ = a3 —1, and
instead let o and 3 be subject to a meagre two relations:

Baf = 20, afa = 2a.

We now describe the four classical quadratic functors. Because they are of
the second degree, and because they are all pointed?, the module K = 0. We
will denote Ry = (e1), and Ry = (e3).

Example 4. The functor ®gqp,(7?) will take
X =T (R)=(e1®er), Y =(T?)(Ri|Ry) =(e1@e2,e20e1)
and map

a: e1®ejr—er ey +er®e
B: e1®ezea®@e e e

o: e1Qexr~ea®e;, ex®e— e esr.

2A pointed functor maps 0 to 0.
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Example 5.

and map

Example 6.

and map

Example 7.

and map

The functor ®gqpy(S?) will take
X = <6%>, Y = <€1€2>

a: €3 2eem)

B: ereq — e%

o €1€2 — €1€9.

The functor ®gqpy(A?) will take

X:<61/\61>:0, Y:<€1/\62>

a: 0
G: 0

o: e1Neg— —ep Nes.

The functor ®gqpy,(I'?) will take

X = <e[12]> , Y = (ereq)

2]

[ €1 €162
2
e1eg — 26[1]

O: e1eg > ejeéo.
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CHAPTER 6

Multisets

Ar du en enhet eller delar?
Jag béafvar, mod och sansning felar,
Min fraga gor mig stel och stum.

Hedvig Charlotta Nordenflycht, Ofver Andra Mosebok
XXXIII:18,20; XXXIV:5,6

1. Multisets

A multiset is a set with possibly repeated elements. More formally:

Definition 1. A multiset is a pair
M = (#Ma degM)7

where #M is a set and
degy;: #M — Z7

is a function, called the degree (or multiplicity) function. o

The underlying set #M is called the support of M. We call deg,, a the
degree or multiplicity of an object a € #M; it counts the “number of times
a occurs in M”. The degree of the whole multiset M we define to be

deg M = H (deg 2)!.
cEHM

We tacitly assume all multisets under discussion to be finite, as these are the
only ones we will ever need. The cardinality of M is its number of elements,
counted with multiplicity:

|M| = Z deg x.

cEHM

Example 1. The multiset {a,a,b} has cardinality 3 and support {a,b}. We
have dega = 2, degb =1 and degc = 0. A

87



The union A U B of two multisets A and B is precisely what it should be,
namely, the elements of A together with those of B. More formally,

AUB = (#AU#B, degy pg: ¢+ degy x + degp x).

The direct product of two multisets A and B is also precisely what it should
be, namely the multiset of all possible pairs of elements of A and B:

AX B=(#Ax#B, degs,p: v deg, x-deggx).

There is also a natural notion of submultisets': Say A C Bif deg, x < degg
for all x, so that all elements of A are in B.

We adopt the following convention: Whenever we quantify over a multiset
each element should be counted as many times as its multiplicity indicates. (If
we do wish to count each element only once, we will quantify over the support.)

Thus, for example,
H{a, a,b} = H x = a’b.
z€{a,a,b}

Finally, recall that the Principle of Inclusion and Exclusion states, in one
form, the following: If f and g are functions such that

> FX) =g(Y),
XCY

then

FY) =3 ()" Hlg(x).

XCY

Here X and Y range over sets, but a generalization to multisets is immediate.

Theorem 1: The Multiset Principle of Inclusion and Exclusion. If f
and g are functions such that

Y f(A) =g(Y),

#ACY
|Al=n
then
> oA =) (g,
e o

where A ranges over multisets, and X and Y over sets.

ISome people call these multisubsets.
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2. Multations

Let A and B be multisets of equal cardinality. A multation ¢: A — B is a
pairing of their elements. We shall write multations as two-row matrices, with
the elements of A on top of those of B, the way ordinary permutations are

usually written:
o a’l DY a,n
Y= b, - by,

The order of the columns is of course irrelevant.

Observe that ¢ under no circumstances can be regarded as an ordinary
“function”, since identical copies of some element of A may very well be paired
off with distinct elements of B.

¢ will, however, be a submultiset of A x B, such that every element of A
occurs exactly once as the first component of a pair in ¢, and each element of
B exactly once as a second component. (This may serve as a formal definition.)
The degree deg,,(a, b) counts the number of times a € A is paired off with b € B.

As a notational convenience, we adopt the following (purely formal) conven-

tion: If
- a/l PR an
Y= b, - by,
is a multation, define
a/l PR an . al PR an
<b1 bn) = (deg¢) {bl bn] :
Also, given a multation

a; ap as Qa2 ...
bi b1 ... b2 b2 ’

aj
b
tive of viewing it as a formal product

a1 [ma] ag [m2]
by by

of divided powers. Thus, the expression

mi ma
ay ai ag Qg _ a1 ag
R i) Rl P B ] [
will denote the corresponding product of ordinary powers. The rationale behind
this formalism is that, when composing multations, the round-bracket notation

provides a natural way of handling the diverse degrees of the multations involved,
which would otherwise be quite cumbersome.

with m; appearances of the column { ] , we may sometimes adopt the perspec-
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Example 2. There exist two multations from the multiset {a,a,b} to itself,

namely:
a a b a a b
[a a b} |:CL b a]

The degree of (a,b) is 0 with respect to the first of these, and 1 with respect to
the second.
In this case, we have

and

3. The Multiset Category

Consider a diagram of multations and multisets of equal cardinality:

[n] — A

N

B

We say that the pair (a, 5) induces the multation ¢, if the diagram “commutes”,
in the sense that
B) = pa(j)

for all j. The idea is that the multations a and § provide two compatible
“enumerations” of A and B.

We now proceed to define the composition of two multations. We choose
to define the composition of two round-bracket multations, and then extend by
linearity. So consider two such multations

(a(l) - Oé(n)) (7(1) s ”Y(”))
pay -+ Bn))” 6(1) -+ d(n))”
with the first one going A — B and being induced by the pair (a, ), and the

second going B — C and induced by (v, ). We define their composition by
“summing over all possibilities of composing them”:

Gy 3w) G0 B0) - a)

where the sum is to be taken over all permutations o: [n] — [n] such that
B(5) =~o(j) for all j.
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Example 3. For example, we have:

pqqoaab_aab+aab
T Ty p q q)] \z T vy z y z)°
The possible permutations o: [3] — [3] are () and (2, 3).
It follows that

il d-C
r Ty p qg q €z

¢

8]
< Q
N
o
N
IS
2
= o
~—

8
< o
N——
_l’_
—
8

<L e

A

It is not immediately obvious that composition of two multations will result
in an integer sum of multations. That this is indeed the case, is a consequence
of the following lemma.

Lemma 1: The Multation Lemma. Let P and QQ be multisets, and suppose
that the multation x: P — Q is induced by the multations (: [n] — P and
n: [n] — Q. The number of permutations o: [n] — [n] such that ¢ and no
induce the same multation x is exactly

deg Pdeg @
degx
Proof. The multation x is represented by the array

b ot )

The number of permutations o7: [n] — [n] that leave the first row invariant
(¢(43) = Co1(y) for all j) is precisely deg P. Similarly, the number of permuta-
tions o9 that leave the second row invariant (n(j) = noa(j) for all j) is precisely
deg Q. Then every possible permutation o: [n] — [n] will arise as a composition
0201_1, and will be counted exactly deg x times. O

The identity multation (“identitation”) ¢4 of a multiset A is the multation
in which every element is paired off with itself. It is clear that composition
is associative and that the identity multations act as identities. Recalling our
long-running convention of a fixed base ring R of scalars, we may thus define:

Definition 2. The nth multiset category is defined in the following way.
The objects are the multisets of cardinality exactly n. Given two multisets A
and B, the arrow set MSet, (A4, B) will be the free module generated by the
multations A — B. o
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4. The Divided Power Functors

Multisets have a canonical representation as functors. For A a multiset, we let
-Qr
a€A

Definition 3. The nth divided power category ©,, is the full subcate-
gory of HPol,, consisting only of the functors T4, where A € MGet,,. o

Theorem 2. The functor
= MGet,, — DO,

taking the multiset A to the functor T'4, and a multation p: A — B with
deg,, (a,b) = gap to the natural transformation @: T2 — T'4 given by the formula

® yl[)Zae#Adeggo(avb)] e ® H yl[)dcgw(a,b)],

be#B ac#Abe#B
1S a category anti-isomorphism.

Proof. Let the multation ¢: A — B satisfy degw(a,b) = gqp for a € #A and
b € #B, so that it will correspond to the natural transformation @: I'? — I'4

given by
® ylE ae#Agab] ® H y[gab]

be#B aEH#AVEH#DB

Suppose also that a ¢: B — C is given, with deg,(b,c) = hy. for b € #B
and ¢ € #C, so that it corresponds to the following natural transformation

Y: T¢ - I'B:
® :E[czbe#B Pacl — ® H x[ch“].

ce#C bE#B ce#C
We first calculate . Let

a: [n] — A, B:[n] — B, ~v: [n] — B, §:[n]—C

be multations, such that («, ) induces ¢, and (v, d) induces 1.
_ @ 7(71)} [ (1)

vo=3 o) o] st

Y

deggpdegw (5

" degpdeg ¥ deg w
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where the sum is taken over all bijections o: [n] — [n] such that Go(j) = 8(j)
for all j. Now fix natural numbers kg4, and consider only those o having exactly
kape indices j for which

a(j)=a,  B()=po(j) =b,  yo(j) =c
By the Multation Lemma, there are exactly

deg p deg
Ha,b,c kabc!

such bijections, so from these, we get a contribution

1 H a] =0 Fere _ H > b Kave | [a 20y Kabe 6.1)
Ha,b,c kabc! a,c ¢ B a.c {kabc}b c '

to Y.
We now want to find the action of @ o). Letting y, = > e Shee, We get the
following action of ©:

[gab]

> gabl
® (z ) - ®I1 (z ) 6
b c a b c
To find what % o ¢/ does to an element

® .ILZZ? el ,

c

@I+
b ¢
in the left-hand side of (6.2), which is
H SZC*’C.
b,c

The answer is then the coefficient of this in the right-hand side of (6.2). This
coefficient may be collected in different ways. Choosing sfg"c from the factor

[gab]
<Z Sbcxc>

kac abe
@ng[ckabc] _ @1:[ (%cibc}bb)x‘[;bk b ]7

in @ o4, which is exactly what (6.1) predicts.

This proves the functoriality of =. It should be more or less clear that every
natural transformation I'? — T'4 is of the form designated, and uniquely so,
which proves = is full and faithful. O

we seek first the coefficient of

leads to a term
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The proof is complicated, and is best understood by means of studying
examples. An alternative, conceptually simpler, proof appears in [15].

b

corresponds to the natural transformation I'! ® T'! — I'? given by

Example 4. The multation

21 g 1) oy g1yl

b

corresponds to the transformation I'> — I'' ® I'' mapping

while the multation

22 1) @ .

For another example, consider the two multisets {1, 1,2} and {1, 2,2}. They
correspond to the divided power functors I'? @ I'! and I'' @ I'?, respectively. The

two multations
1 1 2 1 1 2
2 2 1 2 1 2

correspond to the two natural transformations I'' ® I'? — I'2 ® I'! given by
RPN W 1 SN 1| O S PR Y PAev)

respectively. A

5. Homogeneous Polynomial Functors

We now turn to combinatorially interpreting homogeneous polynomial functors,
and cite [15] as our reference. But first we state and prove yet another Yoneda
Lemma.

Theorem 3: The Multihomogeneous Yoneda Lemma. Let A be a mul-
tiset with |A| =n and #A = [n], and F be a homogeneous functor of degree n.
The map

T: Nat(D4, F) — F} (R")
0= nan (1914)
is an isomorphism of modules.
Proof. We have, by the Homogeneous Yoneda Lemma,
D Fir"=F(R")

#AC[n]
|Al=n
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=~ Nat(I'" Hom(R", —), F)

=Nat| € T F
#AC[n]
|Al=n

= @ Nat(r*,F),
#AC[n]
|Al=n

and it is easy to see that the map Y is the A-component of the original Yoneda
map. O

Theorem 4. The functor
DPopaet,, : HPol, — Fun(MGet,,, Mod),
where Ponget,, (F): MSet, — Mod takes
A Natgypor (I, F) = F(R#4) 4
[p: A— B] = [¢*: Natgyor, (I, F) — Natggor, (7, F)]

>~

is a category equivalence (note that, by virtue of the anti-isomorphism D,
MSet? , the multation ¢ may also be viewed as a natural transformation T —
r4).

Proof. Let ® = ®opg,(, map the natural transformation 6: F — G to ®(0):
U(F) — U(G), given by

D(0) 4 = 01 Natggqor, (I'*, F) — Natgqor, (T4, G).

Functoriality of ® is obvious.
Note that the functor

Natgpor, (I, F): MSet,, — Mod

corresponds, under the category anti-isomorphism D9, = MGet, , to the func-
tor
Naty)qgo[n (—, F) 1 D, — Moo,

and it follows that

Nat(®(F), $(G)) = Nat(Natgpor, (I, F), Natggor, (I, G))
= Nat(Natyﬂgo[n (-, G), Naty)qgo[n (—, F)) = Naty)qgo[n (F,G),

when applying the (ordinary) Yoneda Lemma. This proves that ® is fully faith-
ful.
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To show U is essentially surjective, let J: MSet, — Mod be given, and
define F': X9od — MMod by

F(RY)— P J(4)
#ACX
|[Al=n
(where, of course, X is a set, but A ranges over multisets). Also, given

S=> sy0y: RX = RY,

let the J(A) — J(B) component of F(S) be given by

Z (H S«p(a)a) J (),

¢: A—>B

(the sum is taken over all multations ¢: A — B). Here, as before, we let
Oyz: RX — RY denote the homomorphism that takes 1, to 1, and every other
1. to 0.

Showing this is a functor is left for the reader, and we instead concentrate
on showing ®(F) = J. For a multation ¢: A — B, define a (formal) divided

power by
olel — H U}[/dmcggo(m,y)]'
A little thought shows that ¢* takes
Nat(T4, F) = F(R*) 4 3y F,1.(y) € F(R*B)p = Nat(T'2, F),
and also that J(¢) = F, .. Hence
(F)(A) =ImF =ImF,n, =ImJ(14) =Im1;04) = J(A)

and

6. Homogeneous Quadratic Functors

We here determine the structure of $HBol, by classifying the quadratic func-
tors. To find the multiset descriptions of quadratic functors, we first draw the
(skeletal) structure of the category IMSety:

A
P

{1,1} {1,2} )s
\E/
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o | A B S
A L+ 5

B | 2 B
S| A - L

Table 6.1: Multiplication table for 9MGet,.

Every multation reduces to a linear combination of identity multations and the

following;:
11 1 2 1 2
e 1) oG

The multiplication table is given in Table 6.1. Compare this with Table 5.1 —
the only difference lies in the value of the product BA.

Theorem 5. A quadratic homogeneous functor is equivalent to the following
data: modules X and Y, together with homomorphisms o, 3, o as indicated:

o
27N
X Y e
N~
B
These homomorphisms are subject to the following four relations:

af=1+oc Bo =73 oo =« o2=1

Evidently 0 = a8 — ¢ is dispensable. It is enough to have a and 3, subject
to the single relation
Boa = 2.
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CHAPTER 7

Numerical versus Strict Polynomial Functors

[-- -] le plus beau projet de notre académie,
Une entreprise noble et dont je suis ravie,

Un dessein plein de gloire, et qui sera vanté
Chez tous les beaux esprits de la postérité |[. .. |

Moliére, Les Femmes savantes

1. The Ariadne Functor

To state and prove the main result of this section, we need some heavy notation.
For the duration of this section, let n be a fixed natural number.
Let P be a maze. A multiplicity assignment (of degree n) is a function

u: P —7Z%,
such that

> up) =n.

peP

Note that P is a multiset; when we say “function”, we must therefore imagine the
passages of P to be labelled and distinguished, for example by some multation
[n] — P. Exactly how this is done will not matter, since we will always sum
over all possible multiplicity assignments.

If P had been a set, a multiplicity assignment would amount to no more than
specifying a multiset structure. But P is not a set, and we certainly wish to
avoid speaking of multisets supported by multisets, hence the new terminology.

The degree of the multiplicity assignment g is defined to be

degp =[] n(p)!

peP

(as for multisets).
To a given P with multiplicity assignment u: P — Z*, we associate a mul-

tation )
w(p
T T
=deg -
1 M g1 [y

[p: x—yleP [p: x—yleP

} [k(p)]
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Because ) p pu(p) = n, this will always be a multation on a set with n elements
(but not always on the same set).

We now define our main object of study. Given a maze P, we let A,,(P) be
the following sum of multations:

w(p)
_ xZ
4P = 3 I o M , (1)
w: P—Z+ \[p: z—yl€P

This will provide a functor from Laby to MSet,,, which we now set out to
prove. We first prove that A, respects the relations in L£aby. It is clear that
An(P) =0 if a single passage of P is labelled 0. Now to show that

A(PU{—>}> _
An<pu{u$v}> +A,,<pu{ugv}> +An<pu{u%v })

This is an immediate consequence of the equation

m w(p)
[m] |¥ Hlue)] [T
(a +b) M I M
[p: z—yleP
m w(p)
N O )] |
S E
[p: x—yleP
m 1 (p)
[m] |U =lu(p)] |
" [v] I 7 [y]
[p: z—yleP
[i]pla] | @ " @) | Hw)
+ > allpl I :
v
i+j=m [p: z—yleP 4
6,521

where, for a fix multiplicity assignment
u:PU{ua—M>U}—>Z+,

we have let
a-+b
m = /1,( U ——"ov )

Finally, let P: Y — Z and Q: X — Y be two mazes. To show that A, is
functorial, we calculate

A,PQ)=A, | Y S

SCP Q
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&)
D [ st m

SEP Q ¢: S—Zt \[s: z—z]€S

Similarly,

An(P) © An(Q)

y 1(p) 279
- 0 o M o I @@ [y]

v \[p: y—z]€P lq: z—yleQ
Z 1 H y w(p) H - v(q)
= P D o q .
o di) M)
o CCBRACEY | ep N la: o—yleq N Y

Using the Multation Lemma, these two expressions are easily seen to be equal.
We thus obtain:

Theorem 1. The formule

)
AP = Y I o m 7

w: P—Z+ \[p: z—y]lEP
for X a set and P a maze, provide a linear functor

A, Laby — MGet,,.

Definition 1. This functor is called the nth Ariadne functor o

Theorem 2. Over a numerical base ring, the Ariadne functor factors through
the quotient category Laby,, :

A,: Laby, — MSet,,.

Proof. We must show that A,, respects the relations defining the quotient cat-
egory Laby,,. It is clear that A, (P) =0 when |P| > n, for then no multiplicity
assignments on P exist.

To prove that A, respects the relation

P = Z H<dﬁ )EA,

e
#a—ppep \1BAD
[A]<n
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we note first of all, that it is enough to prove it respects the special case

Pu{u—“ﬂ;}:i(Z)

k=1

PUU{U_%U}].
k

To do that, we apply the Ariadne functor. By considering only those multiplicity
assignments p satisfying p(a) = m, for some fixed m, and acting in a certain
fixed manner on P, we see (after some computation) that our task reduces to
establishing the equality

[m] _ o~ (@ [6(5)]
=3 (1) X I
k=1 §: [k]—2Z+ jE[K]
where the sum is taken over those § fulfilling >~ §(j) = m. But
WS (f) X =3 (3) X () -
=\ e, —\k) 2 \{80)}
: [k]—Z+ jE[k] k=1 5: [k]—Z

This is because the inner sum counts the number of ways m distinct objects
may be placed in k distinct boxes, with no box left empty. The total sum then
counts the number of ways to distribute the m objects into a total of a boxes.
The proof is finished. O

2. Out of the Labyrinth

The Ariadne functor leads the way out of the labyrinth category. More pre-
cisely, it leads to the following theorem on how to pass from a multiset functor
J: MGSet,, — Mod to a labyrinth functor H: Laby — Mod. The functor (A,)*
is in effect the forgetful functor

HPol,, — Num,,,

and reflects combinatorially what happens when we take a homogeneous functor,
and view it simply as a numerical one.

Theorem 3.
(I)f'“b‘? © (I)E;JIlGetn = (An)*

Proof. We must show that, for a functor J: 9Get,, — o0,
PeabyPoneer, (J) = J 0 Ay

Denoting H = (I)Eabn(bs_nleetn(‘])v we have, for a finite set X,
H(X) = g, (1) (Blx) = Im @iy, () (ESX 7”)
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—Imz ‘X| |Y‘<I> 1 Zﬂ'y

YCX yey

The J(A) — J(B) component of

S gl () [ Yo,

YCX yey
is
X|-y
PBICEED DIN( | W RC
YCX ¢: A—B
where we have defined
v 1 ifa=beY
6ba =
0 else.

The only surviving components will therefore be those where A = B, ¢ = 14,
and #A C Y. Hence

Imz \XI Y] Z J(1a)

YCX #ACY
|Al=n
IHIE: \XIDW 2: Lrca)
YCX #ACY
|Al=n
=Im Y lyu= P J(A) =JA.(X).
#A=X #A=X
|Al=n |Al=n

The fourth step was due to the Multiset Principle of Inclusion and Exclusion.
Turning to H(P), where P: X — Y is a maze, we first suppose that P has
no parallel passages. We may label the passages as p;: x; — y;, for 1 <i < k.

H(P) = @y, (1) (0Pi0y,a,)

_ Z Dl ( )<Z;Tiayimi>,

IC[K] icl

of which the J(A) — J(B) component is

SIS (TTokwa) I(9)

IC[k] p: A—B

= Y [ S ORI P | Te) (72)

p: A—=B \IC[k]
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where we have defined

Pva =

I p; ifa=x;andb=vy; foriecl
0 else.

We see that, for the coefficient of J(¢) to be non-zero, all elements of the
multation ¢ must “correspond” to passages in P. The converse also holds,
namely that all passages of P must be represented in . This is because, if
a passage p; be “missing” from ¢, sets I with and without j in (7.2) will give
rise to terms of alternating signs, which will cancel each other out. Hence the
coefficient of J(p) will survive only if ¢ is of the form

7 [ma]
=T[5

for positive integers mi + --- + my = n. Furthermore, we observe that only
I = [k] will yield a non-zero contribution in (7.2), so consequently,

> ) (mf]”)

mi+--+mrp=n [

2 ey (nf])

= JA,(P).

H(P)

Consider now a maze with a pair of parallel passages
a
Q=PUJu_—_=Zv
b
a+b a b
:PU{U—>U}—PU{U—>U}—PU{U—>U},
where we inductively assume the equations

i (pufutteu ) —aa, (Pufustu )

H(Pulu—sv})=sa, (Pu{u—ts0})

i(pufutoo ) —ga, (Pu{u—teu})

hold. Then
H(Q) = JAW(P U {a+b}) — JA(PU {a}) — JA,(P U {b})

_ _ x . a+b) u
-y g 10 M (a + bl 1[v

:| n(a+b)
p: Pu{a+b}—2Z+ [p: z—yleP
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w(a)
_ E Hu@)] [T . @] |¥
/ H i [y} o [U]

w: PU{a}—Z+ [p: z—yleP
" MY

-y o e { ]  plu(®)] M

w: PU{b}—Z+ [p: z—yleP Y

() (b)

I N m . (@) plu(®) H

w: Pu{a,b}—Z+ [p: z—yleP 4 v

as desired. O

3. Simple Mazes

In the preceding section we saw how the Ariadne functor provides the bridge
between homogeneous and numerical functors. We shall here see how it may be
used as a numerical invariant, which can shed light on the internal structure of
the labyrinth categories.

Definition 2. A maze of which all passages carry the label 1, is called a
simple maze. o

Theorem 4. Given finite sets X and Y, the simple mazes are linearly inde-
pendent in the module Laby(X,Y).

Proof. Suppose we have a relation

Z n, i P, + Z an41,jPrt1,;+---=0
J J

in Laby(X,Y"), where a; ; € R and each P; ; denotes a simple maze of cardinality
i. All P; ; are of course assumed to be distinct. The nth Ariadne functor will kill
all mazes with cardinality greater than n, and the end result after application

will be
Z an,jAn(Pn)j) =0.
J

But since the P, ; are distinct simple mazes, the A, (P, ;) will all denote distinct
multations. Hence all a,, ; = 0. The claim now follows by induction. |

Theorem 5. Let the base ring be numerical. Given finite sets X and Y, the
simple mazes constitute a basis for the module Laby, (Z)(X,Y), which is thus
free.

Proof. The above proof for linear independence goes through exactly as before,
because the Ariadne functor factors through the quotient category Laby,,. Using
the defining equation for Laby,, we see that any maze will reduce to simple
ones. o
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And as an immediate corollary:

Theorem 6.

Laby,, (R) =2 R ®z Laby,, (Z).

4. The Wedge Category

For reference, we devote this section to investigating the connection between
our mazes and the category of surjections explored by Pirashvili et al. in [1].

Let C be a category possessing weak pullbacks; that is, a finite number of
universal ways to complete an incomplete pullback square. For two objects
X,Y € C, a wedge! from X to Y is a diagram (read from left to right):

X=<==U—Y

We identify the top and bottom wedges in the following commutative diagram,
with the middle column an isomorphism:

X<=—U—">Y

| ]

X<~=—V—Y

Define the wedge category C’, based on C, in the following way: Its objects
will be those of C. Tts arrows will be formal sums of wedges of C' (identified
under the just described equivalence relation), in the free monoid they generate.
Composition of wedges amounts to summing weak pullbacks:

(X< U—=Y<V—=2z]=> [X=W—>Z]
where the sum is taken over all weak pullbacks:

N

U v
N N
X Y z

(If C' does indeed possess pullbacks, there is no need to revert to these formal
sums, and composition can be defined simply as the pullback.) It will now be
observed, confer [1], that C is a preadditive category.

The category € of finite sets and surjections possesses weak pullbacks. Na-
mely, the square:

[1] uses fléeche, a word which is usually used to denote a single arrow.

105



is a weak pullback iff
WECAxpB={(ab)e Ax B|a(a)=p5(0)},

so that the projections on A and B are both onto. We call A x p B (the pullback
in Get) the principal pullback.

The existence of weak pullbacks ensures that the wedge category Q may be
created. We form a quotient category €2, by forcing all wedges:

X<==U—Y

of which |U| > n, to equal 0. It turns out that this category is already known
to us as Laby,, (Z).

Theorem 7.

Q,, = Laby, (Z).

Proof. The objects of both categories are finite sets, and each set will of course
correspond to itself. Wedges will correspond to simple mazes; more precisely,
the wedge

*

in Qn will correspond to the simple maze X — Y, of which the passages © — y
number exactly

|(*, 04) M, y)|
(the cardinality of the fibre above (z,y) € X xY). Since the simple mazes from
X to Y form a basis, this correspondence is full and faithful.
It remains to show functoriality. Suppose

are two wedges, corresponding to the mazes P: X — Y and Q: Y — Z, where
the number of passages  — y in P equals

(", 0) " @ y)ls
and the number of passages y — z in @ equals
(", ) "y, 2)].

The theorem then follows from the observation that U Xy V may be naturally
identified with @ P, and subsets W C U xy V with submazes RC @ P. O

The main result of [1] is, in our language, the following?:

2They restrict their attention to pointed functors, that is, functors that take 0 to itself.
We have circumvented this restriction by considering () to be a finite set.
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Theorem 8.

Num,,(Z) ~ Fun(§2,, zMod).

Proof. Follows immediately from the preceding theorem and the equivalence
Num,, ~ Fun(Laby,,, Mod). O
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