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CHAPTER 0PreliminariesEn tyktes vara hvass, oh grep mig an för stöld,Att jag ur böker tog, med andras tankar jäste;Men huru vet hon det, som aldrig nånsin läste?� Hedvig Charlotta Norden�yht,Satir emot afundsjuka fruntimmer1. Ring TheoryThe following proposition is known to mathematiians as Delsarte's Lemma,but there seems to be no tangible way to attah his name unto it. As it is avery general theorem, we hoose to plae it here among the preliminaries, ratherthan in Chapter 1, where it is applied. It holds not only for rings, but also forgroups, linear spaes, modules,. . . , with virtually idential proofs (but it is falsefor monoids). Unfortunately we need to prove it twie, as we will have use forboth a ring-theoretial and an abstrat nonsense version for abelian ategories.(Both are probably speial ases of some as yet undisovered Universal Delsarte'sLemma, whih we leave as an exerise for the interested reader to �nd.)Theorem 1: The Ring-Theoretial Delsarte's Lemma. In the diagrambelow, A, B and C are (ommutative, unital) rings, suh that C ⊆ A × B andthe projetions
pc : C → A, qc : C → Bare both onto. Then A and B have a ommon fator ring D whih ompletesthe diagram into a pullbak square:

A
a

##F
FFF

FF
FFF

C

##F
FF

FF
FFF

F
�

� c //

;;xxxxxxxxx
A×B

p

OO

q

��

D

B

−b

;;xxxxxxxxxEquivalently,
C = Ker(a+ b).5



Proof. Note that
A ∩ C = Ker pc, B ∩ C = Ker qc,from whih the Fundamental Homomorphism Theorem gives
A = Im pc ∼= C/Kerpc = C/(A ∩ C)

B = Im qc ∼= C/Ker qc = C/(B ∩ C),and hene
A/(A ∩C) ∼= C/

(
(A ∩ C) + (B ∩ C)

) ∼= B/(B ∩C).We may therefore de�ne
D = C/

(
(A ∩ C) + (B ∩C)

)
,and let a : A→ D and −b : B → D be the natural quotient maps.To �nd the kernel of a+ b, suppose x ∈ A and y ∈ B satisfy

0 = a(x+A ∩ C) + b(y +B ∩ C) = x− y +
(
(A ∩C) + (B ∩ C)

)
.This means

x+ x′ = y + y′,for some x′ ∈ A ∩C and y′ ∈ B ∩ C. But then
z = x+ x′ = y + y′ ∈ A ∩B = 0,so in fat x = −x′ and y = −y′ are both in C. Consequently, C = Ker(a+b).2. Commutative AlgebraTheorem 2: Chevalley's Dimension Argument. When R is a �nitelygenerated (non-trivial) ring, the (in)equality

dimR/pR = dimQ⊗Z R ≤ dimR− 1holds for all but �nitely many prime numbers p. When R is an integral domainof harateristi 0, there is in fat equality for all but �nitely many primes p.Proof. In the ase of positive harateristi n, the formula will hold trivially, forthen
Q⊗Z R = 0 = R/pR,exept when p | n.Consider now the ase when R is an integral domain of harateristi 0.We have an embedding ϕ : Z → R, and a orresponding dominant morphism6



Specϕ : SpecR → SpecZ of integral shemes, whih is of �nite type. Letting
FracP denote the fration �eld of R/P , we may de�ne

Cn = {P ∈ SpecZ | dim(Specϕ)−1(P ) = n}
= {P ∈ SpecZ | dimR⊗Z FracP = n}
= {(p) | dimR/pR = n} ∪ {(0) | dimR⊗Z Q = n},and this set, by Chevalley's Construtibility Theorem1, will ontain a dense,open set in SpecZ if n = dimR − dimZ. Suh a set must ontain (0) and (p)for all but �nitely many primes p, so for those primes,

dimQ⊗Z R = dimR/pR = dimR− 1.Now let R be an arbitrary ring of harateristi 0. For any prime ideal Q,
R/Q will be an integral domain (but not neessarily of harateristi 0!), andso we an apply the preeding to obtain

dimQ⊗Z R/Q = dimR/(Q+ pR) = dimR/Q− 1,for all but �nitely many primes p. The prime ideals of Q ⊗Z R are all of theform Q⊗Z Q, where Q is a prime ideal in R. Moreover,
(Q⊗Z R)

/
(Q⊗Z Q) = Q⊗Z R/Q.It follows that

dimQ⊗Z R = max
Q∈SpecR

dim(Q⊗Z R)
/
(Q⊗Q)

= max
Q∈SpecR

dimQ⊗Z R/Q

= max
Q∈SpecR

dimR/(Q+ pR)

= max
Q∈SpecR/pR

(R/pR)
/
Q = dimR/pRfor all but �nitely many p, beause the maxima are taken over the �nitely manyminimal prime ideals only. In a similar fashion,

dimQ⊗Z R ≤ dimR− 1,and the theorem is proved.An immediate orollary is thatQ-algebras are never �nitely generated, whihis of ourse fun to know.1This proposition appears to belong to the folklore of algebrai geometry. An expliitreferene is Théorème 2.3 of [11℄.
7



3. Category TheoryThe following is a (not exhaustive) list of the ategories we will use. Thosewhih are not standard will of ourse be de�ned somewhere in the text.
CRing Commutative, unital rings.
CAlg Commutative, unital algebras.
NRing Numerial rings.
NAlg Numerial algebras.
Mod Modules.
FMod Free modules.
XMod Finitely generated, free modules.
Num Numerial funtors.
SPol Stritly polynomial funtors.
HPol Homogeneous polynomial funtors.
Set Sets.
MSet Multisets.
Laby The labyrinth ategory.When C is a ategory, we let

C◦denote the opposite ategory. Given two objets X,Y ∈ C, the arrow set of Xand Y will in general be denoted by
C(X,Y ).There are two exeptions to this rule. When inside a module ategory, thehomomorphisms between the R-modules M and N will be denoted by

HomR(M,N)(and the letter R will be omitted if the ring is lear from the ontext (whih itgenerally is)). Also, when inside a funtor ategory, the natural transformationsbetween the funtors F and G will be denoted by
Nat(F,G)(or just Nat(F ) if F = G).Given two ategories A and B, we let
Fun(A,B)denote the ategory of funtors from A to B.We now desribe the abstrat version of Delsarte's Lemma.8



Theorem 3: The Abstrat Delsarte's Lemma. We work inside an abelianategory.In the diagram below, let A, B and C be suh that C ⊆ A ⊕ B and thearrows
pc : C → A, qc : C → Bare epi. Then A and B have a ommon quotient objet

A
a // // D B

boooo ,whih ompletes the diagram into a pullbak square:
A

a

##F
FF

FFF
FFF

C

## ##F
FFF

FF
FF

F
�

� c //

;; ;;xxxxxxxxx
A⊕B

p

OO

d // //

q

��

D

B

−b

;;xxxxxxxxxEquivalently,
C = Ker(a+ b).In fat, we may take D = (A⊕B)/C.Conversely, let a ommon quotient objet

A
a // // D B

booooof A and B be given. Then the projetions of
C = Ker(a+ b : A⊕B → D)on A and B are epimorphisms.Proof. Quik and easy way out: diagram-hasing and an o�-hand referene toMithell's Embedding Theorem.That would be heating, though. We prefer to do it by abstrat nonsense.Consider the following tangle, where we have de�ned d = Coker c:

A
a

##F
FF

FFF
FFF

i

��
C

## ##F
FF

FF
FF

FF
�

� c //

;; ;;xxxxxxxxx
A⊕B

p

OO

d // //

q

��

D
x // X

B

j

OO

−b

;;xxxxxxxxx 9



To show a = di is epi, let x be any arrow suh that xdi = xa = 0. Then
xd = xd ◦ 1A⊕B = xd(ip+ jq) = xdip+ xdjq = xdjq,from whih 0 = xdc = xdjqc, but sine qc is epi, it must be that xdj = 0.Hene xd = xdjq = 0, from whih x = 0, using that d is epi. Similarly, −b isepi.Sine we de�ned d = Coker c, the sequene

0 // C
c // A⊕B d // D // 0is exat, and it now follows from Proposition 2.53 of [8℄ that the above squareis in fat not only a pullbak square, but a Doolittle square2.For the onverse, suppose the vee given, and de�ne c = Ker(ap+bq). Inspetthe following diagram:
A

a

##F
FF

FFF
FFF

C

##F
FF

FF
FF

FF
�

� c //

;;xxxxxxxxx
A⊕B

p

OO

q

��

D
x // X

B

−b

;;xxxxxxxxx

c is the equalizer of ap and −bq and hene the square is a pullbak square. Bythe Pullbak Theorem (Theorem 2.54 of [8℄), qc is an epimorphism sine a is,and similarly for pc. 4. Set TheoryWe will everywhere use the standard notation
[n] = {1, . . . , n}.The text is pervaded by the use of multisets. They are formally introduedin Chapter 6, and the reader may want to skip ahead when need arises.

2A Doolittle square is a square whih is both a pullbak and a pushout square.10



CHAPTER 1Numerial RingsAt the age of twenty-one he wrote a treatise upon the Binomial Theorem,whih has had a European vogue.� Sherlok Holmes's desription of Professor Moriarty;Arthur Conan Doyle, The Final ProblemNumerial rings were (presumably) �rst disovered1 in 2002 by Torsten Ekedahl,see [7℄, who used them as a natural setting for integral homotopy theory. How-ever, one de�ned, these remarkable rings were immediately put to use, andno detailed study was ever made of their elementary properties. This is unfor-tunate, as the numerial rings turn out to present an array of rather pleasantproperties, some of whih may ome somewhat as a surprise.1. Numerial RingsThe original de�nition, in [7℄, of a numerial ring was quite a non-expliit one. Itwas stated in terms of three mysterious polynomials, the exat nature of whihwas never made preise. Our de�nition intends to remedy this.De�nition 1. A numerial ring is a ommutative ring with unity equippedwith unary operations r 7→ (
r
n

), n ∈ N, alled binomial oe�ients, satisfyingthe following axioms:I. (a+ b

n

)

=
∑

p+q=n

(
a

p

)(
b

q

).II. (ab
n

)

=

n∑

m=0

(
a

m

)
∑

q1+···+qm=n
qi≥1

(
b

q1

)

· · ·
(
b

qm

).III. ( a
m

)(
a

n

)

=
n∑

k=0

(
a

m+ k

)(
m+ k

n

)(
n

k

).1He uses himself the word �introdued�, but humility has always been among his hiefvirtues. 11



IV. (1

n

)

= 0 when n ≥ 2.V. (a
0

)

= 1 and (a
1

)

= a.
⋄The original de�nition also inluded a (non-expliit) formula for reduing theomposition ((a

m)
n

) of binomial oe�ients to simple ones. Surprisingly enough,this formula will be a onsequene of the �ve axioms we have listed.It follows easily from axioms I, IV and V, that when these funtions areevaluated on multiples of unity, we retrieve the ordinary binomial oe�ients,namely
(
m · 1
n

)

=
m(m− 1) · · · (m− n+ 1)

n!
· 1, m ∈ NSine (n·1n ) = 1, but (0n) = 0 unless n = 0, we see that a numerial ring hasneessarily harateristi 0.The numerial struture on a given ring is always unique. This will be provedshortly.Example 1. Every Q-algebra is numerial with the usual de�nition of bino-mial oe�ients: (

r

n

)

=
r(r − 1) · · · (r − n+ 1)

n!
.The numerial axioms may be proved either diretly, or by manipulating formalpower series. △Example 2. For any integerm, the ring Z[m−1] is numerial. Sine it inheritsthe binomial oe�ients from Q, it is just a matter of verifying that this ringis losed under binomial oe�ients. Beause

( a
f

n

)

=

a
f (af − 1) · · · (af − (n− 1))

n!
=
a(a− f) · · · (a− (n− 1)f)

n!fn
,it will su�e to prove that whenever pi | n!, but p ∤ b, then

pi | (a+ b)(a+ 2b) · · · (a+ nb).To this end, let
n = cmp

m + · · ·+ c1p+ c0, 0 ≤ ci ≤ p− 1,be the base p representation of n. For �xed k and 0 ≤ d < ck, the numbers
a+ (cmp

m + · · ·+ ck+1p
k+1 + dpk + i)b, 1 ≤ i ≤ pk, (1.1)will form a set of representatives for the ongruene lasses modulo pk, as do ofourse the numbers

cmp
m + · · ·+ ck+1p

k+1 + dpk + i, 1 ≤ i ≤ pk. (1.2)12



Note that if x ≡ y mod pk and j ≤ k, then pj | x i� pj | y. Hene there are atleast as many fators p among the numbers (1.1) as among the numbers (1.2).The laim now follows. △Example 3. As a speial ase m = 1 of the preeding example, Z is a numer-ial ring. For this ring there is atually another way of proving the numerialaxioms. We shall indiate how they may be arrived at as solutions to problemsof enumerative ombinatoris:Axiom I. We have balls of two types: round balls, square balls. Ifwe have a round balls and b square balls, in how many ways may wehoose n balls? Let p be the number of round balls hosen, and qthe number of square balls.Axiom II. We have a hoolate box ontaining a retangular a× barray of pralines, and we wish to eat n of these. In how many waysan this be done? Suppose the pralines we hoose to feast uponare loated in m of the a rows, and let qi be the number of hosenpralines in row number i of these m.Axiom III. We are given a mathematiians, of whih m do analysisand n algebra. Naturally there exist people who do both. How manypossible distributions of skills are possible? Let k be the number ofmathematiians who do only algebra.Axiom IV � V. Clear.
△Example 4. The set

S = {f ∈ Q[x] | f(Z) ⊆ Z}of numerial maps on Z is numerial. Addition and multipliation of funtionsare evaluated pointwise, as are binomial oe�ients:
(
f

n

)

(x) =

(
f(x)

n

)

=
f(x)(f(x) − 1) · · · (f(x) − n+ 1)

n!
.We will see later that S is also the free numerial ring (on the singleton set {x}).Seizing the opportunity, we reall that any numerial map may be writtenuniquely as a numerial polynomial

f(x) =
∑

cn

(
x

n

)

, cn ∈ Z.This example may be generalized to any set of variables, and will later be seento onstitute the free numerial ring. △Example 5. The operations r 7→ (
r
n

), being given by rational polynomials,are ontinuous as maps Qp → Qp in the p-adi topology. It should be well13



known that Z is dense in the ring Zp, and that Zp is losed in Qp. Sine thebinomial oe�ients leave Z invariant, the same must then be true of Zp, whihis thus a numerial ring.This provides an alternative proof of the fat that Z[m−1] is losed underbiomial oe�ients. For this is evidently true of the loalizations Z(p) = Q∩Zp,and therefore also for
Z[m−1] =

⋂

p∤m

Z(p).

△Example 6. Produts of numerial rings are numerial. More generally, pro-jetive limits of numerial rings are numerial. △Example 7. It is shown in [7℄ that the tensor produt of two numerial ringsover Z is numerial. In fat, a more general statement is proved, namely thatif R → S and R → T are homomorphisms of numerial rings, then S ⊗R T isnumerial and is the ategorial pushout. △2. Elementary IdentitiesTheorem 1. The following formulæ are valid in any numerial ring:1. (r
n

)

=
r(r − 1) · · · (r − n+ 1)

n!
when r ∈ Z.2. n!

(
r

n

)

= r(r − 1) · · · (r − n+ 1).3. n(r
n

)

= (r − n+ 1)

(
r

n− 1

).Proof. The map
ϕ : (R,+)→ (1 + tR[[t]], ·), r 7→

∞∑

n=0

(
r

n

)

tnis by axioms I and V a group homomorphism. Therefore, when r ∈ Z,
ϕ(r) = ϕ(1)r = (1 + t)r,whih expands as usual (with ordinary binomial oe�ients) by the BinomialTheorem. This proves equation 1. An indutive proof will also work.To prove equations 2 and 3, we proeed di�erently. By axiom III,

r

(
r

n− 1

)

=

(
r

n− 1

)(
r

1

)

=
1∑

k=0

(
r

n− 1 + k

)(
n− 1 + k

1

)(
1

k

)14



=

(
r

n− 1

)(
n− 1

1

)(
1

0

)

+

(
r

n

)(
n

1

)(
1

1

)

= (n− 1)

(
r

n− 1

)

+ n

(
r

n

)

,whih redues to equation 3.Equation 2 then follows indutively from equation 3.It may be noted, that axiom II has so far not been needed. Consequently,whenever a Q-algebra omes equipped with unary operations r 7→ (
r
n

), satisfyingthe axioms I, III, IV and V, it follows that in fat
(
r

n

)

=
r(r − 1) · · · (r − n+ 1)

n!
.3. TorsionIn this setion we shall prove that numerial rings lak torsion, referring ofourse to Z-torsion.First some lemmata onerning binomial and multinomial oe�ients:Lemma 1. Let m be an integer. If p is prime and pl | m, but p ∤ k, then

pl |
(
m
k

).Proof. pl divides the right-hand side of
k

(
m

k

)

= m

(
m− 1

k − 1

)

,and therefore also the left-hand side. But pl is relatively prime to k, so in fat
pl |

(
m
k

).Lemma 2. Let m1,m2, . . . be integers. If n =
∑∞

i=1mii is prime and m =
∑
mi, then

m |
(

m

{mi}

)

,unless m1 = m = n, and all other mi = 0.Proof. Let a prime power pl | m. Beause of the relation n =
∑
mii, not all mian be divisible by p, unless we are in the exeptional ase m1 = m = p = ngiven above. Say p ∤ mj ; then

(
m

{mi}i

)

=

(
m

mj

)(
m−mj

{mi}i6=j

)is divisible by pl aording to Lemma 1. The laim follows.Lemma 3. Let R be a numerial ring, r ∈ R, and m,n ∈ N. If nr = 0, also
mn
(
r
m

)
= 0. 15



Proof. Follows indutively, sine if nr = 0, then
mn

(
r

m

)

= n(r −m+ 1)

(
r

m− 1

)

= −n(m− 1)

(
r

m− 1

)

.Theorem 2. Numerial rings are torsionfree.Proof. Suppose nr = 0 in R and, without any loss of generality, that n is prime.
0 =

(
0

n

)

=

(
nr

n

)

=

n∑

m=0

(
r

m

)
∑

q1+···+qm=n
qi≥1

(
n

q1

)

· · ·
(
n

qm

)

=

n∑

m=0

(
r

m

)
∑

P

mi=m
P

mii=n

(
m

{mi}

)
∏

i

(
n

i

)mi

,where, for given numbers qi, we let mi denote the number of these that areequal to i (of ourse i ≥ 1 and mi ≥ 0). Given the numbers mi, values may bedistributed to the numbers qi in ( m
{mi}

) ways, whih aounts for the multinomialoe�ient above.We laim the inner sum is divisible by mn when m ≥ 2. For when 2 ≤ m ≤
n− 1, m | ( m

{mi}

) by Lemma 2; also, there must exist some 0 < j < n suh that
mj > 0, and for this j, Lemma 1 says n | (nj)mj . In the asem = n, obviously all
mi = 0 for i ≥ 2, and m1 = n, so the inner sum equals (n1)n, whih is divisibleby n2 = mn.We an now employ Lemma 3 to kill all terms exept m = 1. But this termis simply (r1) = r, whih is then equal to 0.This theorem is surprising indeed. We know of no other example of a varietyof algebras, of whih the axioms imply absense of torsion in a non-trivial way;that is, without implying a Q-algebra struture. Not only that, the theoremis also a most ruial result in the theory of numerial rings. Over the ourseof the following setions, we will dedue several orollaries, seemingly withoute�ort. 4. UniquenessTheorem 3. There is at most one numerial ring struture on a given ring.Proof. We know that n!

(
r
n

)
= r(r − 1) · · · (r − n+ 1), and that n! is not a zerodivisor.

16



5. Embedding into Q-AlgebrasTheorem 4. Every numerial ring may be embedded in a Q-algebra, wherethe binomial oe�ients are given by the usual formula
(
r

n

)

=
r(r − 1) · · · (r − n+ 1)

n!
.Proof. If R is torsionfree, the map R→ Q⊗Z R is an embedding.We point out that this gives an alternative haraterization of numerialrings, namely as torsionfree rings R whih are losed in Q ⊗Z R under theoperations

r 7→ r(r − 1) · · · (r − n+ 1)

n!
.6. Iterated Binomial Coe�ientsIn Z, there �exists� a formula for iterated binomial oe�ients:

(( r
m

)

n

)

=

mn∑

k=1

gk

(
r

k

)

, (1.3)in the sense that there are unique integers gk making the formula valid for every
r ∈ Z. There seems to be no losed formula for them, however; onfer [9℄. Note,however, that (1.3) is a polynomial identity with rational oe�ients, whihmeans it must hold in any Q-algebra, and therefore in any numerial ring:Theorem 5. The formula

(( r
m

)

n

)

=

mn∑

k=1

gk

(
r

k

)for iterated binomial oe�ients that is valid in Z, is valid in every numerialring. 7. Numerial Ring HomomorphismsDe�nition 2. A numerial ring homomorphism ϕ : R → S between nu-merial rings is a ring homomorphism preserving binomial oe�ients:
ϕ

((
r

n

))

=

(
ϕ(r)

n

)

.

S is then a numerial algebra over R. ⋄17



We denote by NRing the ategory of numerial rings, and by RNAlg, orsimply NAlg, the ategory of numerial algebras over some �xed numerial basering R.Theorem 6. Every ring homomorphism of numerial rings is numerial, sothat NRing is a full subategory of CRing.Proof. Let a ring homomorphism ϕ : R → S of numerial rings be given. Be-ause of the lak of torsion, the equation
n!ϕ

((
r

n

))

= ϕ

(

n!

(
r

n

))

= ϕ(r(r − 1) · · · (r − n+ 1))

= ϕ(r)(ϕ(r) − 1) · · · (ϕ(r) − n+ 1) = n!

(
ϕ(r)

n

)implies ϕ ((rn)) =
(
ϕ(r)
n

), so that ϕ is numerial.8. Free Numerial RingsDe�nition 3. Given a set X , the free numerial ring on X is the numerialring Z
(
X
−

) satisfying
NRing

(

Z

(
X

−

)

, R

)

∼= Set(X,R)funtorially in the numerial ring R. ⋄This is the usual onstrution of a free objet. We now provide an expliitdesription.Reall from Example 4, that a numerial polynomial in the variables x1, . . . ,
xk is a formal (�nite) linear ombination

f(x) =
∑

cn1,...,nk

(
x1

n1

)

· · ·
(
xk
nk

)

, cn1,...,nk
∈ Z,that a numerial map is a rational polynomial mapping Z to itself, and thatthese two onepts are essentially one and the same.Let Ẽ(X) be the set of all �nite words that an be formed from the alphabet

X ∪
{

+,−, ·, 0, 1,
(−
n

) ∣
∣
∣
∣
n ∈ N

}

,where + and · are binary, − and (−n) are unary, and 0 and 1 are nullary (this isthe so-alled term algebra of universal algebra; onfer De�nition II.10.4 of [3℄).Impose (divide away) the axioms of a ommutative ring with unity, as well asthe numerial axioms, to reate a numerial ring E(X).18



Theorem 7. We have the following isomorphisms:
Z

(
X

−

)

∼= E(X) ∼= {f ∈ Q[X ] | f(ZX) ⊆ Z},so that every element of Z
(
X
−

) may be uniquely expressed as a numerial poly-nomial (or viewed as a numerial map).Proof. The numerial axioms, together with the formula for iterated binomialoe�ients, an be used to redue any element of E(X) to a numerial polyno-mial. The fat that the ring of numerial maps exists and is numerial, provesthat the numerial polynomials are also linearly independent, so that the ex-pression of an element as a numerial polynomial is also unique.From this it is evident that E(X) is free on X , for any set map ϕ : X → Rmay be uniquely extended to E(X) by setting
ϕ

(
∑

cn1,...,nk

(
x1

n1

)

· · ·
(
xk
nk

))

=
∑

cn1,...,nk

(
ϕ(x1)

n1

)

· · ·
(
ϕ(xk)

nk

)

.9. Numerial UniversalityTheorem 8: The Numerial Universality Priniple. A numerial poly-nomial identity p(x1, . . . , xk) = 0 universally valid in Z is valid in every numer-ial ring.Proof. View p as an element of Z
(
x1,...,xk

−

). It is the zero numerial map, andtherefore also the zero numerial polynomial.We thus have a anonial embedding
Z

(
x1, . . . , xk
−

)

→ ZZ
k

p(x1, . . . , xk) 7→ (p(n1, . . . , nk))(n1,...,nk)∈Zk .Example 8. Numerial rings are speial λ-rings in the sense of [10℄. (A morereadable aount is [12℄.) First reall that a λ-ring (alled pre-λ-ring by some)is a ommutative ring with unity, equipped with unary operations λ
n, n ∈ N,satisfying the following axioms:1. λ

0(a) = 1.2. λ
1(a) = a.3. λ
n(a+ b) =

∑

p+q=n

λ
p(a)λq(b). 19



For a numerial ring we an learly put λ
n(a) =

(
a
n

).The de�nition of a speial λ-ring (alled just speial λ-ring by others) in-volves three more axioms, whih are quite umbersome, and will not be statedhere. They are, however, of a polynomial nature, so their veri�ation in a nu-merial ring will simply onsist in verifying a number of numerial polynomialidentities. As these are valid in Z (for Z itself is well known to be a λ-ring),they will hold in every numerial ring by Numerial Universality. △10. The NilradialYet another pleasant property of numerial rings is the following.Theorem 9: Fermat's Little Theorem. In numerial rings,
ap − a ≡ 0 mod pfor any prime p.Proof. Sine f(x) = xp−x

p is a numerial map, it may be written as a numerialpolynomial f(x) ∈ Z
(
x
−

). But then evidently ap − a = pf(a) ∈ pR.Example 9. The polynomial f may in fat be given expliitly. For when
a ∈ N, we may alulate the number of maps [p]→ [a] as

ap =

p
∑

k=1

S(p, k)

(
a

k

)

,where S(p, k) denotes the number of onto funtions [p] → [k]. By enumerativeombinatoris, the numbers S(p, k), exept for S(p, 1) = 1, are all divisible by
p, and so

ap − a
p

=

p
∑

k=2

S(p, k)

p

(
a

k

)

.It follows from the Numerial Universality Priniple that this formula is validin every numerial ring. △Theorem 10. The nilradial of a numerial ring is divisible, and hene avetor spae over Q.Proof. Let p be a prime and suppose r lies in the nilradial of R. Fermat's LittleTheorem states p | r(rp−1 − 1), from whih it indutively follows that
p | r(r2m(p−1) − 1)for all m ∈ N. A large enough m will kill r, and we onlude that p | r.

20



11. Numerial Ideals and Fator RingsWe shall now make a (very) short survey of numerial ideals and fator rings.Theorem 11. Let I be an ideal of the numerial ring R. De�ning
(
r + I

n

)

=

(
r

n

)

+ Iwill yield a well-de�ned numerial struture on R/I i�
(
e

n

)

∈ Ifor every e ∈ I and n 6= 0.Proof. The ondition is learly neessary. To show su�ieny, note that, when
r ∈ R and e ∈ I,

(
r + e

n

)

=
∑

p+q=n

(
r

p

)(
e

q

)

≡
(
r

n

)(
e

0

)

=

(
r

n

)

mod I,when (ej) ∈ I for j > 0. The numerial axioms in R/I then follow immediatelyfrom those in R.De�nition 4. An ideal I of a numerial ring satisfying the ondition of theprevious theorem will be alled a numerial ideal. ⋄Example 10. Z does not possess any non-trivial numerial ideals, beause allits non-trivial fator rings have torsion. Neither do the rings Z[m−1]. △Theorem 12. Suppose R is a (ommutative, unital) ring, having an ideal Iwhih is a vetor spae over Q, and for whih R/I is numerial. Then R itselfis numerial.Proof. Sine I and R/I are both torsionfree, so is R, and there is a ommutativediagram with exat rows:
0 // I

��

// R

��

// R/I

��

// 0

0 // Q⊗Z I = I // Q⊗Z R // Q⊗Z R/I // 0It su�es to show that R is losed under the formation of binomial oe�ientsin Q⊗Z R. Let r ∈ R.
r(r − 1) · · · (r − n+ 1)

n!
+ I =

(
r + I

n

)when alulated in the ring Q⊗Z R/I. Sine (r+In ) in fat lies in R/I, it mustbe that r(r−1)···(r−n+1)
n! ∈ R, and we are �nished.Note that the quotient map R→ R/I will automatially be a numerial ringhomomorphism. 21



12. Finitely Generated Numerial RingsLemma 4. If a ring R is torsionfree and �nitely generated as an abelian group,its fration ring is Q⊗Z R.Proof. By the Struture Theorem for Finitely Generated Abelian Groups, R ∼=
Zn for some n, onsidered as a group. Let a ∈ Zn. Multipliation by a is alinear transformation on Zn, and so may be onsidered an integer matrix A.The ondition that a not be a zero divisor orresponds to A being non-singular.It then has an inverse, with rational entries, and the inverse of a is given by

a−1 = A−11 ∈ Qn = Q⊗Z Rwhere 1 denotes the olumn vetor whih is the multipliative identity of R.Lemma 5. Let A be the algebrai integers in the �eld K ⊇ Q. If K is �nitelygenerated over Q, A is �nitely generated over Z.The following theorem (with proof) is due to Torsten Ekedahl. It lassi�esompletely those numerial rings whih are �nitely generated as rings (forget-ting the numerial struture). Reall from Example 2 that Z[m−1] inherits anumerial struture from Q, and that produts of numerial rings are numer-ial, with omponentwise evaluation of binomial oe�ients. Reall also theinfamous Delsarte's Lemma. We proved it for rings, but the same proof goesthrough for numerial rings.Theorem 13: The Struture Theorem for Finitely Generated Numer-ial Rings. Let R be a numerial ring whih is �nitely generated as a ring.Then there exist unique positive integers m1, . . . ,mk suh that
R ∼= Z[m−1

1 ]× · · · × Z[m−1
k ].Proof. We �rst impose the stronger hypothesis that R be �nitely generated asan abelian group, so that R ∼= Zn as groups.If rn = 0, then r is divisible by p for all primes p > n beause of Fermat'sLittle Theorem. But in Zn this an only be if r = 0, so R is redued. By thelemma above, the fration ring of R is Q⊗ZR. As this is redued and artinian,being �nite-dimensional over Q, it is a produt ∏Kj of �elds. The projetionsof R on the fators Kj will then eah be numerial.Hene, we �rst onsider the speial ase when R is inluded in a �eld, inwhih we let A be the algebrai integers. Let us examine the subgroup A∩R of

A. Sine A ⊆ Q⊗Z R, an arbitrary element of A will have an integer multiplelying in R. This means A/(A ∩ R) is a torsion group. Also, the fration ring
Q ⊗Z R is �nitely generated over Q, so from the lemma above, we deduethat A is �nitely generated over Z. Beause the fator group A/(A ∩ R) is22



both �nitely generated and torsion, it is killed by a single integer N , so that
N(A/(A ∩R)) = 0, and as a onsequene

(A ∩R)[N−1] = A[N−1].Now let z ∈ A and let p be a prime. The element z ∈ A[N−1] = (A∩R)[N−1]an be written z = a
Nk , where a ∈ A ∩ R and k ∈ N. Using Fermat's LittleTheorem(s),

(Nk)p = Nk + pn

ap = a+ pbfor some n ∈ Z and b ∈ R. Observe that pb belongs to A∩R, hene to A[N−1],so that b ∈ A, as long as p does not divide N .We then have
zp − z =

ap

Nkp
− a

Nk
=

a+ pb

Nk + pn
− a

Nk

=
(a+ pb)Nk − a(Nk + pn)

(Nk + pn)Nk
= p

Nkb− na
(Nk + pn)Nk

= p
Nkb− na
N (p+1)k

,so that pu = zp− z ∈ A for some u ∈ A[N−1], assuming p ∤ N . But then in fat
u ∈ A.Consequently, for all z ∈ A and all su�iently large primes p, zp − z ∈ pA,so that zp = z in A/pA. Being redued and artinian, A/pA may be written asa produt of �elds, and beause of the equation zp = z, these �elds must allequal Z/p, whih means all su�iently large primes split ompletely in A. It isthen a onsequene of Thebotarev's Density Theorem2 that Q⊗Z R = Q, andonsequently that R = Z (reall that R was assumed �nitely generated as anabelian group). This onludes the proof in this speial ase.In the general ase, reall that R =

∏
Rj was inluded in produt of nu-merial rings, eah of whih is isomorphi to Z[m−1] aording to the aboveargument. But these rings have no non-trivial (numerial) ideals, so by Del-sarte's Lemma, R must be the whole produt.Finally, we abandon the assumption that R be �nitely generated as a group,and assume it �nitely generated as a ring only. Beause of the relation p | rp−r,

R/pR will be a �nitely generated torsion group, and hene zero-dimensional,for eah prime p. It then follows from Chevalley's Dimension Argument that
dimQ ⊗Z R = 0, so that Q ⊗Z R is a �nite-dimensional vetor spae over Q.Only �nitely many denominators are employed in a basis, so there exists aninteger M for whih R[M−1] is �nitely generated over Z[M−1].We an now more or less repeat the previous argument. R[M−1] will still beredued, and as before, Q⊗ZR[M−1] will be �nite-dimensional, hene a produtof �elds, and we may redue to the ase when Q⊗Z R[M−1] is a �eld. Letting2(A speial ase of) Thebotarev's Density Theorem states the following: The density ofthe primes that split ompletely in a number �eld K equals 1

|Gal(K/Q)|
. In our ase, this sethas density 1. 23



A denote the algebrai integers in Q ⊗Z R[M−1], the fator group A/R[M−1]will be �nitely generated and torsion, and hene killed by some integer, so thatagain we are lead to R[N−1] = A[N−1]. As before, we may draw the onlusionthat Q ⊗Z R = Q, and onsequently that R = Z[N−1]. This onludes theproof in the general ase. 13. ModulesA most elegant appliation of the Struture Theorem for Finitely GeneratedNumerial Rings is to lassify torsionfree modules.Lemma 6. For a ring homomorphism ϕ : R → S, where R is numerial and
S is torsionfree, Kerϕ will be a numerial ideal.Proof.

n!ϕ

((
r

n

))

= ϕ

(

n!

(
r

n

))

= ϕ(r(r − 1) · · · (r − n+ 1)) = 0,if r ∈ Kerϕ and n > 0. Thus (rn) ∈ Kerϕ, whih is then numerial.Let M be a torsionfree module over the numerial ring R, with modulestruture given by the group homomorphism µ : R → EndM . We have thefollowing ommutative diagram:
0

{{wwwwwwwww

0 // Kerµ // R //

µ

��

R/Kerµ

yyrrrrrrrrrr

// 0

EndM

EndM is torsionfree, so by the lemma Kerµ is a numerial ideal. Therefore
R/Kerµ will be a numerial ring, over whih M is also a module.Assume now also that EndM is �nitely generated as a module over Z[N−1]for some integerN . Beause Z[N−1] is a noetherian ring, EndM is a noetherianmodule. Hene its submodule R/Kerµ is �nitely generated as a module over
Z[N−1], and therefore also as a ring. Not only that, but R/Kerµ is in fatnumerial, so by the Struture Theorem,

R/Kerµ ∼= Z[m−1
1 ]× · · · × Z[m−1

k ],for unique numbers m1, . . . ,mk. The module M itself will split up as a diretsum
M = M1 ⊕ · · · ⊕Mk,with eah Mj a module over Z[m−1

j ]. Mj is torsionfree, and therefore in fatfree over Z[m−1
j ], beause of these rings being prinipal. We have thus proved:24



Theorem 14. Over a numerial ring, let M a torsionfree module, whih is�nitely generated over Z[N−1] for some integer N . Then there exist positiveintegers mj , rj suh that
M ∼= Z[m−1

1 ]r1 ⊕ · · · ⊕ Z[m−1
k ]rkas a module over

Z[m−1
1 ]× · · · × Z[m−1

k ].14. The Binomial TheoremGiven a numerial ring and a (ommutative, unital) algebra A over R, we havean indued exponentiation on 1+
√

0, given by the following binomial expansion:
(1 + x)r =

∞∑

n=0

(
r

n

)

xn.The sum is of ourse a �nite one.The numerial axioms imply the following properties for this exponentiation:I. (1 + x)r(1 + x)s = (1 + x)r+s.II. ((1 + x)r
)s

= (1 + x)rs.III. (1 + x)r(1 + y)r =
(
(1 + x)(1 + y)

)r.IV. (1 + x)1 = 1 + x.V. (1 + x)r ≡ 1 + rx mod (
√

0)2.Exponentiation will thus make the abelian group (1 +
√

0, ·) into an R-module.Indeed, property III shows that exponentiation by r gives an endomorphism
ǫ(r) of the group, and properties I, II and IV show that

ǫA : R→ End(1 +
A
√

0, ·)is a unital ring homomorphism.This module struture is natural in the following sense. Given two algebras
A and B and an algebra homomorphism ϕ : A → B, the following diagramommutes for any r ∈ R:

1 + A
√

0
ǫA(r) //

ϕ

��

1 + A
√

0

ϕ

��
1 + B
√

0
ǫB(r)

// 1 + B
√

0We now reverse the proedure: 25



Theorem 15: The Binomial Theorem.Given a numerial ring R, the equation
(1 + x)r =

∞∑

n=0

(
r

n

)

xn (1.4)de�nes a module struture on (1 + A
√

0, ·), whih is natural in R-algebras
A, and satis�es

(1 + x)r ≡ 1 + rx mod (
√

0)2. (1.5)Conversely, given a ring R and a natural module struture on (1 + A
√

0, ·)(for all R-algebras A) satisfying (1.5), there is a (neessarily unique) nu-merial ring struture on R, ful�lling the equation (1.4).Proof. There remains to establish the seond part. So, let a natural mod-ule struture be given, and onsider ǫA : R → End(1 + A
√

0, ·), where A =
R[t]/(tN+1), and N is some large number. We have

ǫ(r)(1 + t) = (1 + t)r = a0 + a1t+ · · ·+ aN t
N ,and learly the oe�ients an are independent of N . Therefore, we may withoutambiguity de�ne (rn) = an. This will make the binomial expansion identity holdin A, and then it will hold everywhere by naturality.It is now immediate that the axioms for a numerial ring hold, as they aresimply diret translations of the module axioms. For example, identi�ation ofthe oe�ients of tn in

∞∑

i=0

(
r

i

)

ti
∞∑

j=0

(
s

j

)

tj = (1 + t)r(1 + t)s = (1 + t)r+s =
∞∑

n=0

(
r + s

n

)

tnproves axiom I. (Proving III will of ourse involve the polynomial ring in twovariables.)And this little �treatise on the Binomial Theorem� loses the hapter onnumerial rings.
26



CHAPTER 2Polynomial Maps[...℄ je donnerais bien ent sous au mathématiien qui me démontreraitpar une équation algébrique l'existene de l'enfer.� Honoré de Balza, La Peau de hagrinIn this and the sueeding hapters, we will onsider a �xed base ring of salars,ommutative and unital and whih, when referred to by name, will be alled R.We adopt the following onventions:I. All modules will be R-modules, and all algebras will be ommutative andunital R-algebras.II. We will use Mod to denote the ategory of R-modules, and CAlg for theategory of ommutative, unital R-algebras.III. All tensor produts will be omputed over R, unless otherwise stated.IV. �Homomorphism� with no further quali�ation will denote an R-modulehomomorphism (or R-linear map).V. When disussing non-strit polynomiality, R will also be assumed numer-ial, and NAlg will denote the ategory of numerial R-algebras.At his leisure, the reader may put R = Z, and anywhere substitute �abeliangroup� for �module�.We shall onsider maps f : M → N between modules, and they shall almostnever be homomorphisms. Indeed, they shall be generalizations of ordinarypolynomial maps as de�ned on �elds. The problem is how to form �polynomials�on general modules, where there is no multipliation in sight. We reall thefollowing quibble1:And God said unto the animals: �Go out into the world and multiply!�But the snake answered: �How ould I? I am an adder!�1In some versions of this myth, it is said that God onstruted a table made of wood forthe snakes to rawl upon, sine even adders an multiply on a log table. God does not seemto be familiar with tensor produts. 27



Returning to the modules, two di�erent approahes present themselves. Wemay hoose to talk about (let us phrase it arefully) �polynomial-like2� mapsas maps satisfying ertain equations that are somehow thought to harater-ize polynomials. This road will indeed be explored; for these equations to besensible, a numerial base ring is required.A ompletely di�erent method, with the advantage of produing entities thatatually look like polynomials, is to use salar extension. Quoting from [14℄,�[. . . ℄ la généralisation en vue devrait onduire à assoier, à �quelque hose� quis'érirait : x1T1 + · · ·xpTp, une �autre hose� qui s'érirait
q
∑

i=1

yiQi(T1, . . . , Tp),les Qi étant ette fois des polynomes. Manifestement s'introduisent ii les mo-dules produits tensoriels [. . . ℄.� This seems to be the most elegant solution, andis used to de�ne strit polynomial maps (alled polynomial laws) in [14℄.Classially, (non-strit) polynomial maps were de�ned using the �rst method,but this was before numerial rings were disovered. With this new lass of ringsat our disposal, we shall be able to use the method of salar extension also fornon-strit maps, whih will provide a beautiful uni�ation of the two notions ofpolynomiality. 1. PolynomialityWe shall begin by making an extremely general disussion of polynomiality, andthen identify the two de�nitions whih will atually be used in the sequel.Let D be a �nitary algebrai ategory, so that it is an equational lass inthe sense of universal algebra (and hene a variety of algebras by the HSPTheorem; see for example [3℄). We require D to be a subategory of Mod, sothat the objets of D are �rst of all R-modules.For a set of variables V , we let 〈V 〉D denote the free algebra on V in D.De�nition 1. A D-polynomial over a module M (not neessarily in D) inthe variables x1, . . . , xk, is an element of
M ⊗ 〈x1, . . . , xk〉D.A linear form over M in these same variables is a polynomial of the form

∑

uj ⊗ xj ,for some uj ∈M . ⋄Theorem 1: Ekedahl's Esoteri Polynomiality Priniple. Let two mod-ules M and N be given, and a family of maps
fA : M ⊗A→ N ⊗A, A ∈ D.The following statements are equivalent:2På svenska: polynomaktiga. 28



A. For every D-polynomial p(x) = p(x1, . . . , xk) over M there is a unique
D-polynomial q(x) = q(x1, . . . , xk) over N , suh that for all A ∈ D andall aj ∈ A,

fA(p(a)) = q(a).B. For every linear form l(x) over M there is a unique D-polynomial q(x)over N , suh that for all A ∈ D and all aj ∈ A,
fA (l(a)) = q(a).C. The map

f : M ⊗− → N ⊗−is a natural transformation between funtors D → Set.Proof. It is trivial that A implies B. Given statement B, and a homomorphism
ϕ : A → B mapping aj to bj, the following ommutative diagram proves thenaturality of f :

M ⊗A fA //

1⊗ϕ

��

N ⊗A
1⊗ϕ

��

∑
uj ⊗ aj

��

// q(a)

��
M ⊗B

fB

// N ⊗B
∑
uj ⊗ bj // q(b)Finally, suppose f natural. Given

p(x) ∈M ⊗ 〈x1, . . . , xk〉D,de�ne
q(x) = f〈x1,...,xk〉D

(p(x)) ,and for any A ∈ D and aj ∈ A, de�ne the homomorphism
ϕ : 〈x1, . . . , xk〉D → A, xj 7→ aj .Then by naturality of f , the following diagram ommutes:

M ⊗ 〈x1, . . . , xk〉
f〈x1,...,xk〉 //

1⊗ϕ

��

N ⊗ 〈x1, . . . , xk〉
1⊗ϕ

��

p(x)

��

// q(x)

��
M ⊗A

fA

// N ⊗A p(a) // q(a)

q is evidently unique, whih proves A.De�nition 2. When the onditions of the theorem are ful�lled, we all f a
D-polynomial map from M to N . ⋄29



When f is D-polynomial, part B of the theorem tells us that
∑

uj ⊗ aj 7→ q(a)for some D-polynomial q. Naïvely, if we want the oe�ients aj of the elements
uj to transform as generalized polynomials, formed using some operations, theorret setting is the ategory of algebras using these same operations.Example 1. A Mod-polynomial map f : M → N is just a linear transforma-tion M → N . This is beause, by B above, fR will map∑ uj ⊗ rj to ∑ vj ⊗ rjfor all rj ∈ R, and suh a map is easily seen to be linear. Conversely, anymodule homomorphism indues a natural transformationM ⊗− → N ⊗−. △Example 2. Let S be an R-algebra. An SMod-polynomial map M → N is atransformation

M ⊗A→ N ⊗A,natural in the S-module A, whih is the same as a natural transformation
(M ⊗ S)⊗S − → (N ⊗ S)⊗S −.This is simply an SMod-polynomial map M ⊗ S → N ⊗ S, or, as we noted inthe previous example, an S-linear map from M ⊗ S to N ⊗ S. △The last two examples will be the important ones:Example 3. A CAlg-polynomial map M → N is a strit polynomial map, orpolynomial law in the sense of [14℄. For every linear form ∑

uj ⊗ xj over Mthere are unique elements vµ ∈ N , µ running over all multi-indies, suh thatfor all algebras A and all aj ∈ A,
fA

(∑

uj ⊗ aj
)

=
∑

vµ ⊗ aµ.Intuitively, the oe�ients of the elements uj �transform as ordinary polynomi-als�. △Example 4. Suppose now that the base ring R is numerial, and onsider theategory NAlg of numerial algebras over R. An NAlg-polynomial mapM → Nis what will be alled a polynomial map. For every linear form ∑
uj ⊗ xj over

M there are unique elements vµ ∈ N , µ running over all multi-indies, suh thatfor all algebras A and all aj ∈ A,
fA

(∑

uj ⊗ aj
)

=
∑

vµ ⊗
(
a

µ

)

.Intuitively, the oe�ients of the elements uj �transform as numerial polyno-mials�. △30



2. Polynomial MapsThe key to understanding polynomials is the following property of ordinarypolynomials f (over some �eld): If f(x) = a is onstant, learly
f(x)− f(0) = 0for all x. If f(x) = a+ bx is linear, then

f(x+ y)− f(x)− f(y) + f(0) = 0for all x, y. A generalization to arbitrary degrees is immediate and leads to thefollowing de�nition, presumably �rst expliitly stated by Eilenberg and MaLane in [6℄:De�nition 3. The nth deviation of a map f : M → N is the map
f(x1 ⋄ · · · ⋄ xn+1) =

∑

I⊆[n+1]

(−1)n+1−|I|f

(
∑

i∈I

xi

)of n+ 1 variables. ⋄The idea here is that the nth deviation measures how muh f deviates frombeing polynomial of degree n. We have for example
f(x ⋄ y) = f(x+ y)− f(x)− f(y) + f(0)

f(⋄x) = f(x)− f(0),and, of ourse,
f(⋄) = f(0).We let

f

(

♦
n
x

)

= f(x ⋄ · · · ⋄ x
︸ ︷︷ ︸

n

).De�nition 4. The map f : M → N is polynomial of degree n if its nthdeviation vanishes:
f(x1 ⋄ · · · ⋄ xn+1) = 0for any xi ∈M . ⋄Let us, for larity, point out, that the diamond sign itself does not work asan operator; the entity x ⋄ y does not have a life of its own, and annot existoutside the sope of an argument of a map.

31



3. Numerial MapsAfter de�ning the deviation, a polynomial map of degree n between abeliangroups is lassially3 de�ned as a map of whih the nth deviation vanishes.While this works well enough for modules over Z, we would like to inludemodules over more general rings.Reall that an extra ondition
f(rx) = rf(x)need be imposed on a group homomorphism to make it a module homomorphism(but that this is automati when the base ring is Z). Using binomial oe�ients,we generalize to arbitrary numerial modules. The base ring R of salars is nowof ourse assumed numerial.De�nition 5. The map f : M → N is numerial of degree at most n if itsatis�es the following two equations, for all xi, x ∈M and all r ∈ R:

f(x1 ⋄ · · · ⋄ xn+1) = 0

f(rx) =
n∑

k=0

(
r

k

)

f

(

♦
k
x

)

.

⋄It is of ourse straightforward to de�ne what it means for f to have degreeexatly n, but this is never needed. Therefore, when we speak of a map as beingof degree n, it is to be understood: degree n or less.Example 5. A map is of degree 0 i� it is onstant. It is of degree 1 i� it is ahomomorphism translated by a onstant. △Example 6. The numerial maps f : Z → Z of degree n, are preisely theones given by numerial polynomials of degree n:
f(x) =

n∑

k=0

ck

(
x

k

)

.

△Lemma 1. For r in a numerial ring and natural numbers m ≥ n, the follow-ing formula holds:
n∑

k=m

(−1)k
(
r

k

)(
k

m

)

= (−1)n
(
r

m

)(
r −m− 1

n−m

)

.Proof. Indution (and, optionally, a quik referene to the Numerial Univer-sality Priniple).3Of ourse, [6℄ itself never bothers to make this de�nition, but instead moves on to moreimportant topis. 32



Theorem 2. The map f : M → N is numerial of degree n i� its nth devia-tions vanish, and it satis�es the equation
f(rx) =

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

f(mx),for any r ∈ R and x ∈M .Proof. This follows from the lemma:
n∑

k=0

(
r

k

)

f

(

♦
k
x

)

=

n∑

k=0

(
r

k

) k∑

m=0

(−1)k−m
(
k

m

)

f(mx)

=
n∑

m=0

(−1)−m

(
n∑

k=m

(−1)k
(
r

k

)(
k

m

))

f(mx)

=

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

f(mx).4. The Augmentation AlgebraWe now wish to �nd an alternative way of desribing these numerial maps.Reall that the free module on a set M is the set
R[M ] =

{∑

aj[xj ]
∣
∣
∣ aj ∈ R, xj ∈M

}of formal (�nite) linear ombinations of elements of M . It obviously has amodule struture, and if M is itself a module, it also arries a multipliation,namely the sum multipliation
[x][y] = [x+ y],extended by linearity. It makes R[M ] into a ommutative, assoiative algebrawith unity [0], alled the augmentation algebra.When M additionally has an algebra struture, there is another anonialoperation on the augmentation algebra, namely the produt multipliation,de�ned by
[x] ⋆ [y] = [xy].This multipliation has identity element [1], but is of ourse ommutative onlyif M is. The latter operation will make an apparition later on, in the ontext ofMorita equivalene.In the present disussion, we assume M to be a module only, and hene usethe sum multipliation. The map

M → R[M ], x 7→ [x],33



is a map between modules, and so we may form its nth deviation
(x1, . . . , xn+1) 7→ [x1 ⋄ . . . ⋄ xn+1].The following lemma then follows easily from the de�nition of deviation.Lemma 2.

[x1 ⋄ . . . ⋄ xn+1] = ([x1]− [0]) · · · ([xn+1]− [0]) .De�ning a �ltration in R[M ] (a dereasing sequene of ideals) by
In = ([x1 ⋄ . . . ⋄ xn+1] | xi ∈M) +

(

[rx] −
n∑

k=0

(
r

k

)[

♦
k
x

]
∣
∣
∣
∣
∣
r ∈ R, x ∈M

)

,and then letting
R[M ]n = R[M ]/In,we have a anonial map
δn : M → R[M ]n

x 7→ [x],whih is numerial of degree n. And not only that:Theorem 3. The map δn is the universal numerial map of degree n, in thatevery numerial map f : M → N of degree n has a unique fatorization throughit.
M

δn //

f
##F

FF
FF

FFF
F

R[M ]n

��
NProof. Given a map f : M → N , we extend it linearly to f : R[M ] → N , bywhih proedure it automatially beomes a homomorphism. The theorem thenamounts to the trivial observation that f is numerial of degree n i� it kills In,so that it fators through R[M ]n.The augmentation quotients of a free module M are given by the next the-orem.Theorem 4. In the polynomial algebra R[t1, . . . , tk], let Jn be the ideal gen-erated by monomials of degree greater than n. Then

R[Rk]n ∼= R[t1, . . . , tk]/Jnas algebras. In partiular, R[Rk]n is a free module.34



Proof. Eah ti is nilpotent in R[t1, . . . , tk]/Jn, and so we may de�ne exponenti-ation (1 + ti)
r for any r ∈ R. Aordingly de�ne, for a tuple (r1, . . . , rk) ∈ Rk,

ϕ : R[Rk]→ R[t1, . . . , tk]

[(r1, . . . , rk)] 7→ (1 + t1)
r1 · · · (1 + tk)

rk .Using multi-index notation ̺ = (r1, . . . , rk), we may write this more suintlyas
[̺] 7→ (1 + t)̺.The map ϕ is linear by de�nition, and also multipliative, sine

ϕ([̺][σ]) = ϕ([̺+ σ]) = (1 + t)̺+σ = (1 + t)̺(1 + t)σ = ϕ(̺)ϕ(σ).It maps In into Jn, beause, when ̺1, . . . , ̺n+1 ∈ Rk,
ϕ([̺1 ⋄ · · · ⋄ ̺n+1]) =

∑

J⊆[n+1]

(−1)n+1−|J|ϕ








∑

j∈J

̺j









=
∑

J⊆[n+1]

(−1)n+1−|J|(1 + t)
P

j∈J ̺j

=

n+1∏

j=1

(
(1 + t)̺j − 1

)
∈ Jn.Also, for s ∈ R and ̺ ∈ Rk,

ϕ

(

[s̺]−
n∑

m=0

(
s

m

)[

♦
m
̺

])

= ϕ



[s̺]−
n∑

m=0

(
s

m

) m∑

j=0

(−1)m−j

(
m

j

)

[j̺]





= (1 + t)s̺ −
n∑

m=0

(
s

m

) m∑

j=0

(−1)m−j

(
m

j

)

(1 + t)j̺

= (1 + t)s̺ −
n∑

m=0

(
s

m

)
(
(1 + t)̺ − 1

)m

= (p(t) + 1)s −
n∑

m=0

(
s

m

)

p(t)m,where, in the last step, we let p(t) = (1 + t)̺ − 1. By the Binomial Theorem,we have
(p(t) + 1)s =

∞∑

m=0

(
s

m

)

p(t)m,but sine the terms of index n+1 and higher yield an (n+1)st degree polynomial,the above di�erene will belong to Jn. We therefore have an indued map
ϕ : R[Rk]n → R[t1, . . . , tk]/Jn.35



We now de�ne a map
ψ : R[t1, . . . , tk]→ R[Rk]n

tp1 · · · tpm
7→ [ep1 ⋄ · · · ⋄ epm

]in the reverse diretion. Again, ψ is additive by de�nition, and multipliativebeause of Lemma 2. The vanishing of ψ on Jn indues a map
ψ : R[t1, . . . , tk]/Jn → R[Rk]n.It is easy to verify that ϕ and ψ are inverse to eah other.For future referene, we also explore the grading of R[M ] indued by the�ltration In.Theorem 5. Let M be free on k generators e1, . . . , ek. The map

ξ : Sn(M)→ In−1/In

en1
1 · · · enk

k 7→
[

♦
n1

e1 ⋄ · · · ⋄ ♦
nk

ek

]

+ Ingives an isomorphism
S(M)→ I−1/I0 ⊕ I0/I1 ⊕ · · ·of graded algebras.Proof. Under the isomorphism R[Rk]n ∼= R[t1, . . . , tk]/Jn, the ideal In−1 willorrespond to Jn−1, and onsequently In−1/In ∼= Jn−1/Jn. Under this or-respondene, ξ simply takes eν 7→ tν , and is of ourse an isomorphism. (Analternative is to use Theorem 2 diretly.)5. Properties of Numerial MapsWe now elaborate on the behaviour of numerial maps. To begin with, we notethat not only do the nth deviations of an nth degree map vanish, but its lowerorder deviations are also quite pleasant.Theorem 6. The map f : M → N is numerial of degree n i� for any a1, . . . ,

ak ∈ R and x1, . . . , xk ∈M , the following equation holds:
f(a1x1 ⋄ · · · ⋄ akxk) =

∑

#S=[k]
|S|≤n

∏

j∈#S

(
aj

deg j

)

f

(

♦
j∈S

xj

)

,where the sum is taken over multisets S.36



Proof. If f is of degree n, alulate in the augmentation algebra R[M ]n:
[a1x1 ⋄ . . . ⋄ akxk] = ([a1x1]− [0]) · · · ([akxk]− [0])

=

∞∑

q1=1

(
a1

q1

)[

♦
q1
x1

]

· · ·
∞∑

qk=1

(
ak
qk

)[

♦
qk

xk

]

=

∞∑

q1=1

· · ·
∞∑

qk=1

(
a1

q1

)

· · ·
(
ak
qk

)[

♦
q1
x1 ⋄ · · · ⋄ ♦

qk

xk

]

.The theorem now follows after appliation of f . The onverse is trivial.This proof is pure magi! It is absolutely vital that the alulation be arriedout in the augmentation algebra, as there would have been no way to performthe above trik had the map f been applied diretly.We now turn our attention towards the binomial oe�ients themselves andprove that, onsidered as maps R → R, they are numerial. This is of oursehardly surprising, as they are more or less given by polynomials (in the envelop-ing Q-algebra).Theorem 7. The binomial oe�ient x 7→ (
x
n

) is numerial of degree n.Proof. It is numerial of degree n in Z, and therefore also in R by the NumerialUniversality Priniple.We now have the following desription of numerial maps.Theorem 8. The map f : M → N is numerial of degree n i� for any u1, . . . ,
uk ∈ M there exist unique elements vµ ∈ N , µ varying over all multi-indieswith |µ| ≤ n, suh that

f(r1u1 + · · ·+ rkuk) =
∑

µ

(
r

µ

)

vµ,for any r1, . . . , rk ∈ R.Proof. We assume f is numerial of degree n, and suppose �rst that M = Rkis free of rank k and uj = ej . By the preeding theorems, numerial maps
f : Rk → N of degree n orrespond to linear maps

f : R[t1, . . . , tk]/Jn → N.We have the following fatorization:
Rk

δn //

f
((RRRRRRRRRRRRRRRRR R[Rk]n ∼= R[t1, . . . , tk]/Jn

f

��
N37



Say the monomial tµ is mapped to vµ ∈ N ; then [(r1, . . . , rk)] ∈ R[Rk]n orre-sponds in R[t1, . . . , tk]/Jn to
(1 + t1)

r1 · · · (1 + tk)
rk =

(
∑

m1

(
r1
m1

)

tm1
1

)

· · ·
(
∑

mk

(
rk
mk

)

tmk

k

)

,and so is mapped by f (or f) to
∑

m1,...,mk

(
r1
m1

)

· · ·
(
rk
mk

)

v(m1,...,mk).Thus, the ation of f is
f(r1, . . . , rk) =

∑

µ

(
r

µ

)

vµ,as desired. In this ase the elements vµ are learly unique.In the general ase, when M is allowed to be any module, we study theomposition
Rk →M → N :

(r1, . . . , rk) 7→ r1u1 + · · ·+ rkuk 7→ f(r1u1 + · · ·+ rkuk).By the preeding argument, this map is of the desired form, and the vµ willagain be unique.The onverse is trivial.Finally, we make the promised onnetion with NAlg-polynomiality. Let
f : M → N be an NAlg-polynomial map. From the Polynomiality Priniple, weknow that for every linear form l(x) overM there is a unique NAlg-polynomial
q(x) over N , suh that for all A ∈ NAlg and all aj ∈ A,

fA (l(a)) = q(a).We say that f is of bounded degree n if the degree of the polynomial q isuniformly bounded above ny n (independent of l).The main theorem linking the two notions of polynomiality states:Theorem 9. f : M → N is numerial of degree n i� it may be extended to a(unique) NAlg-polynomial map of bounded degree n.Proof. Given a numerial map f , �x the elements vµ from the preeding theo-rem. We then have a map
fA : M ⊗A→ N ⊗A,

∑

uj ⊗ xj 7→
∑

µ

vµ ⊗
(
x

µ

)

,By the Polynomiality Priniple, fA is a natural transformation. The onverseis trivial. 38



Example 7. Here is an example to show that requiring bounded degree isneessary. Let U = 〈u1, u2, . . .〉 be free on an in�nite basis. The map
fA : U ⊗A→ U ⊗ A,

∑

uk ⊗ ak 7→
∑

uk ⊗
(
ak
k

)is NAlg-polynomial, but not numerial of any �nite degree n. △6. Strit Polynomial MapsWe no longer assume a numerial base ring R, as we turn our attention to-ward strit polynomial maps. Norbert Roby invented these (he alled thempolynomial laws), and all the fats stated in this setion may be found in [14℄.De�nition 6. A strit polynomial map between modules f : M → N is a
CAlg-polynomial map; that is, a natural transformation

M ⊗− → N ⊗−between funtors CAlg→ Set. ⋄Some elementary fats we shall need about a strit polynomial map f : M →
N are the following:1. From the Polynomiality Priniple, the following proposition is immediatelydedued: For any u1, . . . , uk ∈M there exist unique elements vν ∈ N (only�nitely many of whih are non-zero), with µ varying over all multi-indies,suh that

f(u1 ⊗ x1 + · · ·+ uk ⊗ xk) =
∑

ν

vν ⊗ xνfor all xj in all algebras. We shall write fu[ν] = vν .2. f is said to have degree (at most) n, if fu[ν] = 0 when |ν| > n.3. f is said to be homogeneous of degree n if f(az) = anf(z) for all a inall algebras A and all z ∈ M ⊗A. This amounts to saying that fu[ν] 6= 0only when |ν| = n.4. When f is homogeneous of degree n, note that
fu[n] = f(u).5. Any f has a unique deomposition into homogeneous omponents, namely:

f(u1 ⊗ x1 + · · ·+ uk ⊗ xk) =

∞∑

n=0

∑

|ν|=n

fu[ν] ⊗ xν(only a �nite number of terms being non-zero).39



6. Finally, there is a fundamental relationship between homogeneous mapsand divided power algebras: For any module M there is a universal ho-mogeneous map
γn : M → Γn(M),

∑

ui ⊗ xi 7→
∑

|ν|=n

u[ν] ⊗ xνof degree n, through whih every map f : M → N of degree n fatorsuniquely:
M ⊗A γn //

f
%%KKKKKKKKKKKK

Γn(M)⊗A

��

∑
ui ⊗ xi

''OOOOOOOOOOOO
//
∑

|ν|=n u
[ν] ⊗ xν

��
N ⊗A

∑

|ν|=n fu[ν] ⊗ xνIn other words, there is a anonial isomorphism between the module ofhomogeneous polynomial maps of degree n from M to N and the moduleof homomorphisms from Γn(M) to N .7. Pray note that the map
Γn(M)→ N

u[ν] 7→ fu[ν]is a module homomorphism (for �xed f).7. The Divided Power AlgebraThe elementary theory of divided power modules (and ditto algebras) an befound in [14℄.When A is an algebra, the nth divided power module Γn(A) omes equippedwith a natural multipliation. First of all, note that there is a anonial map
δ : A×A→ Γn(A)⊗ Γn(A), (x, y) 7→ x[n] ⊗ y[n],whih is universal for bihomogeneous maps of bidegree (n, n) out of A × A.Beause the map
ζ : A×A→ Γn(A⊗A), (x, y) 7→ (x⊗ y)[n],is bihomogeneous of degree (n, n), it will have a unique fatorization through

Γn(A)⊗ Γn(A), as in the following diagram:
A×A δ //

ζ ''NNNNNNNNNNN
Γn(A) ⊗ Γn(A)

��
Γn(A⊗A) // Γn(A)40



Composition with the anonial (linear) map
Γn(A⊗A)→ Γn(A), (x ⊗ y)[n] 7→ (xy)[n],results in the following multipliation on Γn(A):

Γn(A)⊗ Γn(A)→ Γn(A), x[n] ⊗ y[n] 7→ (xy)[n].It will be alled the produt multipliation on Γn(A).Contrast this with the divided power multipliation, de�ned on Γ(M)for any module M , whih is simply juxtaposition:
x[m] · y[n] = x[m]y[n].The omponents Γn(M) are not even losed under this operation.It deserves to be pointed out, and emphasized strongly, that the nth dividedpower module Γn(M) is not generated by the pure divided powers z[n], for

z ∈M , as the following example shows.Example 8. Consider in Γ3(Z2) a pure power
(a1e1 + a2e2)

[3] = a3
1e

[3]
1 + a2

1a2e
[2]
1 e2 + a1a

2
2e1e

[2]
2 + a3

2e
[3]
2 .Observe that the oe�ients of e[2]1 e2 and e1e[2]2 have the same parity. Thereforeit is impossible to write e[2]1 e2 as a linear ombination of pure powers. △

Γn(M) is, however, �universally� generated by pure powers over all algebras,in the following sense:Theorem 10: The Divided Power Lemma.A natural transformation
ζ : Γn(M)⊗− → N ⊗−,between funtors CAlg → Mod, is uniquely determined by its e�et onpure divided powers z[n] (when z ∈M ⊗A for some algebra A).More generally, a natural transformation

ζ : Γm(M)⊗ Γn(M)⊗− → N ⊗−is uniquely determined by its e�et on tensor produts z[m] ⊗ w[n] of purepowers.
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Proof. It su�es to show that if ζ vanishes on pure powers, it is identially zero.Indeed, linear maps Γn(M)→ N orrespond to homogeneous maps M → N :
Γn(M)⊗A ζ // N ⊗A (∑

ui ⊗ xi
)[n] // 0

M ⊗A

γn

OO

ζ

99ssssssssssss ∑
ui ⊗ xi

OO
::ttttttttttttSine ζ = 0, also ζ = 0.For the seond part, proeed similarly, noting that linear maps Γm(M) ⊗

Γn(M)→ N orrespond to bihomogeneous maps M ⊕M → N .
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CHAPTER 3Polynomial FuntorsOh när jag stod där gripen, kall av skräkoh fylld av ängslan inför hennes tillståndbegynte plötsligt mimans fonoglobatt tala till mig på den dialektur högre avanerad tensorlärasom hon oh jag till vardags brukar mest.� Harry Martinson, AniaraIn this hapter, we turn to interpreting our di�erent notions of polynomiality interms of funtors. We are onvined that the two �orret� notions are numerialand strit polynomial funtors. Non-strit polynomiality, the original onept,works well enough over Z, but is muh too weak a notion over a general basering. But the prie to pay for upgrading to the stronger notion is the restritionto numerial base rings.We reall our onvention of a �xed base ring R, over whih all modules,algebras, tensor produts, et., are taken, and whih is assumed numerial whendisussing numeriality. 1. Module FuntorsBy amodule funtor, we shall understand a funtor F : Mod→Mod mappingmodules to modules. We shall mostly be ontent to onsider funtors de�nedonly on the most simple of modules, namely the free and �nitely generated ones.They onstitute a subategory of Mod, whih will be denoted by XMod (theletter X intended to suggest �eXtra nie modules�!). We shall let FMod be theategory of free modules, be they �nitely or in�nitely generated.As it turns out, a funtor de�ned on the subategory XMod has a unique�well-behaved� extension to the whole module ategory. In this introdutorysetion we shall desribe this extension proess, and thus onvine ourselvesthat there is no serious imposition in onsidering only funtors XMod→Mod,as will be done hereafter.First, let us reall what it means for a funtor, not neessarily additive, tobe right-exat: 43



De�nition 1. A funtor F between abelian ategories is right-exat if forany exat sequene:
A

α // B
β // C // 0the assoiated sequene:

F (A⊕B)

F (α+1B)
−F (1B) // F (B)

F (β) // F (C) // 0is also exat. ⋄This de�nition agrees with the usual one in the ase of an additive funtor.In fat, the usual de�nition atually implies additivity of the funtor, whih iswhy it is useless to us.We now state the main result on module funtors, along with an outline ofthe proof:Theorem 1.1. Any funtor XMod→Mod has a unique extension to a funtor FMod→
Mod, whih ommutes with indutive limits.2. Any funtor FMod→Mod has a unique right-exat extension to a funtor
Mod→Mod.The �rst part follows from Lazard's Theorem, stating that every �at mod-ule is an indutive limit of �nitely generated free modules. Given a funtor

G : XMod→Mod, we may hene de�ne G : FMod→Mod by
G(lim−→Mα) = lim−→G(Mα),for an indutive limit lim−→Mα of �nitely generated free modules. This de�nitionis probably independent of the indutive system.The seond part of the theorem is an immediate onsequene of Theorem2.14 in [2℄. (The ruial properties are the losure of FMod under diret sums,and that its objets are projetive and generate Mod.) The extension proe-dure (whih essentially uses parts of the Dold�Puppe onstrution originallypresented in [5℄) may be summarized thus: Given a module M , hoose a reso-lution of free modules P and Q:
Q

ψ // P // M // 0De�ne the extension F : Mod→Mod of F : FMod→Mod by the equation
F (M) = F (P )

/[

F (π)
(
KerF (π + ψξ)

)]

,44



where π and ξ are the anonial projetions:
P P ⊕Qπoo ξ // QThis de�nition extends F , beause for free M , we may take the free resolu-tion:
0

0 // M // M // 0with π = 1M and ξ = 0, so that
F (M) = F (M)

/[

F (π)
(
KerF (π + ψξ)

)]

= F (M)

/[

F (1M )(KerF (1M ))
]

= F (M)

/[

1F (M)(Ker 1F (M))
]

= F (M)/0 ∼= F (M).2. The Cross-E�etsAn arbitrary module funtor may be analysed in terms of its ross-e�ets. Thesemay be de�ned as either of four modules, neither more anonial than the others.Given a diret sum M = M1 ⊕ · · · ⊕Mn, let
πj : M →Mbe projetion on the jth summand,

̺j : M →M/Mjretration from the jth summand, and
τj : M/Mj →Minsertion of 0 into the jth summand. We then have:Theorem 2. For a module funtor F , the following four modules are naturallyisomorphi:A. Im

[
F (π1 ⋄ · · · ⋄ πn) : F (M)→ F (M)

].B. Ker
[
(F (̺1), . . . , F (̺n)) : F (M)→⊕

F (M/Mj)
].C. Coker

[
F (τ1) + · · ·+ F (τn) :

⊕
F (M/Mj)→ F (M)

].D. Coim
[
F (π1 ⋄ · · · ⋄ πn) : F (M)→ F (M)

].Proof. We only show the modules in A and B to be equal, and leave the rest tothe reader. 45



Suppose z ∈ Ker(F (̺1), . . . , F (̺n)). Note that if j 6= i, then πi̺j = πi, andonsequently, if j /∈ I, then
F

(
∑

i∈I

πi

)

(z) = F

(
∑

i∈I

πi

)

F (̺j)(z) = 0.It follows that
F (π1 ⋄ · · · ⋄ πn)(z) =

∑

I⊆[n]

(−1)n−|I|F

(
∑

i∈I

πi

)

(z)

= F (π1 + · · ·+ πn) (z) = F (1)(z) = z.Conversely, assume z ∈ ImF (π1 ⋄ · · · ⋄ πn), so that z = F (π1 ⋄ · · · ⋄ πn)(y).Then, sine
̺jπi =

{

πi if j 6= i,
0 if j = i,we get

F (̺j)(z) = F (̺j)F (π1 ⋄ · · · ⋄ πn)(y) =
∑

I⊆[n]

(−1)n−|I|F

(

̺j
∑

i∈I

πi

)

(y)

=
∑

I⊆[n]

(−1)n−|I|F




∑

i∈I\{j}

πi



 (y) = 0,beause sets I with and without j will anel eah other out.De�nition 2. We de�ne the nth ross-e�et of F as the multifuntor
F † (M1| . . . |Mn) = ImF (π1 ⋄ · · · ⋄ πn)of n arguments (it ould be de�ned as any of the four modules above). We shalluse the short-hand notation

F †(Mi|i∈I)for the |I|'th ross-e�et of the modules Mi. ⋄In eah of the four ases above, it is impliit how the resulting ross-e�etfuntor will at on arrows. For example, if the ross-e�et is viewed as ImF (π1⋄
· · · ⋄ πn), then for given αj : Mj →M ′

j , the following diagram will ommute:
F (
⊕
Mi)

F (♦ ιiπi)

��

F (
L

αi) // F (
⊕
M ′
i)

F(♦ ι′iπ
′
i)

��
F (
⊕
Mi)

F (
L

αi)
// F (
⊕
M ′
i)46



Therefore, there will be an indued map
F † (α1| . . . |αn) : ImF (♦ ιiπi)→ ImF (♦ ι′iπ

′
i) .Similar arguments may be onstruted for the other three possibilities.Theorem 3: The Cross-E�et Deomposition.

F (M1 ⊕ · · · ⊕Mn) =
⊕

I⊆[n]

F †(Mi|i∈I).Proof. See [6℄. 3. Polynomial FuntorsWe now turn to interpreting our three notions of polynomiality, in order fromthe weakest to the strongest. We begin with plain polynomiality, of whih thede�ning property is lassially taken as the vanishing of the ross-e�ets.De�nition 3. The funtor F : XMod → Mod is said to be polynomial ofdegree (at most) n if every arrow map
F : Hom(M,N)→ Hom(F (M), F (N))is. ⋄Examples will be found later on, as all numerial and strit polynomialfuntors are also polynomial.Theorem 4. F is polynomial of degree n i� its (n+1)st ross-e�et vanishes.Proof. Suppose the (n + 1)st ross-e�et vanishes and onsider n + 1 maps

αj : M → N . Create n+ 1 modules Mj = M and n+ 1 modules Nj = N , let
πj :

⊕

Ni → Nj, ιj : Nj →
⊕

Nidenote the jth projetion and inlusion, respetively, and de�ne
σ :
⊕

Ni → N, (y1, . . . , yn+1) 7→
∑

yi.The following equality is easily heked:
F (N)← F

(⊕

Ni

)

← F
(⊕

Ni

)

← F (M) :

F (α1 ⋄ · · · ⋄ αn+1) = F (σ) ◦ F (ι1π1 ⋄ · · · ⋄ ιn+1πn+1) ◦ F ((α1, . . . , αn+1))But the middle omponent is zero by assumption, and we are done.The onverse is trivial. 47



4. Numerial FuntorsWe now assume a numerial base ring.De�nition 4. The funtor F : XMod → Mod is said to be numerial ofdegree (at most) n if every arrow map
F : Hom(M,N)→ Hom(F (M), F (N))is. ⋄Note the inonspiuous assumption on uniformly bounded degree of thearrow maps. We shall presently see what happens when this assumption isdropped.Also note that, over the base ring Z, the notions of polynomial and numerialfuntor oinide.Example 1. The numerial funtors F of degree 0 are the onstant ones:

F (M) = K.The funtors of degree 1 are those of the form
F (M) = K ⊕ E(M),where K is a �xed module and E is R-linear. △Example 2. The tensor power T n(M), the symmetri power Sn(M), the exte-rior power Λn(M), and the divided power Γn(M) are all nth degree funtors. △A natural transformation η : F → G of numerial funtors is a family

η = (ηM : F (M)→ G(M) |M ∈ XMod)suh that for any modules M and N , any numerial algebra A, and any ω ∈
A⊗Hom(M,N), the following diagram ommutes:

A⊗ F (M)

F (ω)

��

1⊗ηM // A⊗G(M)

G(ω)

��
A⊗ F (N)

1⊗ηN

// A⊗G(N)

(3.1)
We let Numn be the ategory whose objets are numerial funtors of degree(at most) n, with arrows natural transformations. It is easy to see that it isabelian (the ase R = Z is well known). It is also losed under diret sums, andwe will see in Chapter 4 that it possesses a ompat progenerator. By Moritaequivalene, it is equivalent to a module ategory.48



5. Properties of Numerial FuntorsLet us hasten to point out, that our de�nition of natural transformation isunneessarily ompliated. A onsequene of Theorem 8 of Chapter 2 is that apolynomial funtor is uniquely determined by its underlying funtor. In viewof this, the following theorem is hardly surprising. The reason for adoptingthe more ompliated ondition as de�nition, is to onform to the situation forstrit polynomial funtors. These, it may be realled, are not determined bytheir underlying funtors.Theorem 5. The diagram (3.1) ommutes for any natural transformation
η : F → G.Proof. Consider homomorphisms α1, . . . , αk : M → N . Assume

F (a1 ⊗ α1 + · · ·+ ak ⊗ αk) =
∑

µ

(
a1

m1

)

· · ·
(
ak
mk

)

⊗ βµ

G(a1 ⊗ α1 + · · ·+ ak ⊗ αk) =
∑

ν

(
a1

n1

)

· · ·
(
ak
nk

)

⊗ γν ,for any a1, . . . , ak in any numerial algebraA, where we denote µ = (m1, . . . ,mk)and ν = (n1, . . . , nk). The naturality of η ensures that
∑

µ

(
a1

m1

)

· · ·
(
ak
mk

)

ηNβµ =
∑

ν

(
a1

n1

)

· · ·
(
ak
nk

)

γνηM .Speialize �rst to the ase a2 = a3 = · · · = 0, to obtain
∑

m1

(
a1

m1

)

ηNβm10... =
∑

n1

(
a1

n1

)

γn10...ηM .By suessively letting a1 = 0, 1, 2, . . . , it will be seen that
ηNβ(m1,0,... ) = γ(m1,0,... )ηMfor all m1. It is now easy to show indutively, that

ηNβµ = γµηMfor all µ. The ommutativity of the diagram (3.1), for
ω = a1 ⊗ α1 + · · ·+ ak ⊗ αk,is then demonstrated by the following instantiation:

b⊗ x

��

// b⊗ ηM (x)

��
∑

µ

(
a1

m1

)
· · ·
(
ak

mk

)
b⊗ βµ(x) //

[ ∑

µ

(
a1

m1

)
· · ·
(
ak

mk

)
b⊗ ηNβµ(x)

=
∑

µ

(
a1

m1

)
· · ·
(
ak

mk

)
b⊗ γµηM (x)

]
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Theorem 6. The following onditions are equivalent on a polynomial funtor
F of degree n.A.

F (rα) =
n∑

k=0

(
r

k

)

F

(

♦
k
α

)

,for any homomorphism α and r ∈ R (numerial funtor).B.
F (rα) =

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

F (mα),for any homomorphism α and r ∈ R.A′.
F (r · 1Rn) =

n∑

k=0

(
r

k

)

F

(

♦
k

1Rn

)

,for r ∈ R.B′.
F (r · 1Rn) =

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

F (m · 1Rn),for r ∈ R.Proof. That A and B are equivalent follows from Theorem 2 of Chapter 2, asdoes the equivalene of A′ with B′. Clearly B implies B′, so there remains toestablish that B′ implies B. Hene assume B′.If q ≤ n, the equation
F (r · 1Rq) =

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

F (m · 1Rq)holds, beause 1Rq fators through 1Rn . Putting
Z(m) = (−1)n−m

(
r

m

)(
r −m− 1

n−m

)

,we alulate for q > n

F (r · 1Rq) = F (rπ1 + · · ·+ rπq)

= −
∑

I⊂[q]

(−1)q−|I|F

(
∑

i∈I

rπi

)

= −
∑

I⊂[q]

(−1)q−|I|
n∑

m=0

Z(m)F

(
∑

i∈I

mπi

)50



= −
n∑

m=0

Z(m)
∑

I⊂[q]

(−1)q−|I|F

(
∑

i∈I

mπi

)

=

n∑

m=0

Z(m)F (mπ1 + · · ·+mπq) =

n∑

m=0

Z(m)F (m · 1Rq).The third and sixth steps are beause the qth deviation vanishes, and the fourthstep is by indution (on q). Finally, the equation will also hold for an arbitraryhomomorphism α : Rp → Rq, beause
F (rα) = F (r · 1Rq)F (α)

=
n∑

m=0

Z(m)F (m · 1Rq)F (α)

=

n∑

m=0

Z(m)F (mα).Theorem 7. The module funtor F is numerial of degree n i� for any r1,
. . . , rk ∈ R and homomorphisms α1, . . . , αk, the following equation holds:

F (r1α1 ⋄ · · · ⋄ rkαk) =
∑

#S=[k]
|S|≤n

∏

j∈#S

(
rj

deg j

)

F

(

♦
j∈S

αj

)

,where the sum is taken over multisets S.Proof. Theorem 6 of Chapter 2.6. The Hierarhy of Numerial FuntorsWe shall say that a map f , or a family of suh, is multipliative if
f(z)f(w) = f(zw)whenever z and w are entities (�quelques hoses�) suh that the equation makessense, and also

f(1) = 1,where the symbol 1 is to be interpreted in a natural way. An ordinary funtoris by de�nition multipliative.Also, we say that a family of maps is polynomial of bounded degree, ifevery map is numerial of some �xed degree n.Theorem 8. Consider the following onstruts, where A ranges over all nu-merial algebras: 51



A. A family of ordinary funtors EA : AXMod → AMod, ommuting withextension of salars.B. A funtor J : XMod →Mod of whih the arrow funtions are multiplia-tive maps
JA : HomA(A⊗M,A⊗N)→ HomA(A⊗ J(M), A⊗ J(N)),natural in A.C. A funtor F : XMod→Mod of whih the arrow funtions are multiplia-tive maps

FA : A⊗HomR(M,N)→ A⊗HomR(F (M), F (N)),natural in A (numerial maps).Construts A and B are equivalent, but weaker than C. If, in addition, thearrow funtions are assumed to have uniformly bounded degree, all three areequivalent.Proof. Given E, de�ne J by
J(M) = ER(M)and the following diagram:

HomA(A⊗M,A⊗N)
EA //

J ++

HomA(EA(A⊗M), EA(A⊗N))
OO

��
HomA(A⊗ J(M), A⊗ J(N))The properties required of J are immediate.Conversely, given J , de�ne the E by the equation

EA(A⊗M) = A⊗ J(M)and the diagram:
HomA(EA(A⊗M), EA(A⊗N))

HomA(A⊗M,A⊗N)

EA

33

J
// HomA(A⊗ J(M), A⊗ J(N))Also, it is easy to de�ne J from F , using the following diagram:

A⊗HomR(M,N)
OO

��

F // A⊗HomR(F (M), F (N))

��
HomA(A⊗M,A⊗N)

J
// HomA(A⊗ J(M), A⊗ J(N))52



The left olumn in the diagram is an isomorphism as long asM and N are free.So far the proofs have been ompletely straightforward, but we now turn tothe more di�ult proedure of de�ning F from J , modelled on the orrespond-ing proof for strit polynomial funtors in [15℄. Given M and N , �nd a freeresolution:
R(λ) // R(κ) // J(M) // 0Apply the ontravariant, left-exat funtor HomA(A ⊗ −, A⊗ J(N)), where Ais any numerial algebra:

0 // HomA(A⊗ J(M), A⊗ J(N))
ι // (A⊗ J(N))κ

σ // (A⊗ J(N))λ

A⊗Hom(M,N)

J

OO

δn // A⊗R[Hom(M,N)]n

ζ

OOThe homomorphism
ιJ : A⊗Hom(M,N)→ (A⊗ J(N))κmay be split up into omponents
(ιJ)k : A⊗Hom(M,N)→ A⊗ J(N),for eah k ∈ κ. These are numerial of degree n, and will fator over δn viasome linear ζk. Together these yield a linear map
ζ : A⊗R[Hom(M,N)]n → (A⊗ J(N))κmaking the above square ommute.Now, σζδn = σιJ = 0, whih gives σζ = 0. Using the exatness of the upperrow in the diagram, ζ fators via some
ξ : R[Hom(M,N)]n → Hom(J(M), J(N)),and beause of the injetivity of ι, also J will fator over δn. The followingdiagram will therefore ommute:
Hom(J(M), J(N))

ι // J(N)(κ)

Hom(M,N)

J

OO

δn // R[Hom(M,N)]n

ζ

OO
ξ

iiBeause J fators over R[Hom(M,N)]n, it is numerial of degree n, and so maybe used to onstrut the F above.We thus obtain the following hierarhy of funtors:Numerial funtors are required to satisfy all three onditions A, B andC, and to be of bounded degree.53



A funtor satisfying ondition C, with no assumption on the degree, ouldrightly be alled loally numerial, but this onept will not be used inthe sequel.A funtor satisfying the weaker onditions A and B, again without anyassumption on the degree, will be alled analyti.Example 3. The funtors S, T , Γ and Λ are all analyti. Of these, only Λ isloally numerial. △7. Strit Polynomial FuntorsWe now develop the theory for strit polynomial funtors, to make it run inparallel with that of non-strit funtors. The base ring R is no longer assumednumerial.De�nition 5. The funtor F : XMod→Mod is said to be stritly polyno-mial of degree n if every arrow map
F : Hom(M,N)→ Hom(F (M), F (N))is. ⋄Example 4. The funtors T n, Sn, Λn and Γn are in fat strit polynomialfuntors of degree n. △By a natural transformation η : F → G of strit polynomial funtors, wemean a family
η = (ηM : F (M)→ G(M) |M ∈ XMod)suh that for any modules M and N , any algebra A, and any ω ∈ A ⊗

Hom(M,N), the following diagram ommutes:
A⊗ F (M)

F (ω)

��

1⊗ηM // A⊗G(M)

G(ω)

��
A⊗ F (N)

1⊗ηN

// A⊗G(N)We let SPoln be the ategory whose objets are strit polynomial funtorsof degree (at most) n, with arrows natural transformations. It is well known tobe abelian.It is lear that every strit polynomial funtor is also numerial of the samedegree.
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8. The Hierarhy of Strit Polynomial FuntorsAs for numerial funtors, we have the following three haraterizations of stritpolynomial funtors.Theorem 9. Consider the following onstruts, where A ranges over all alge-bras:A. A family of ordinary funtors EA : AXMod → AMod, ommuting withextension of salars.B. A funtor J : XMod →Mod of whih the arrow funtions are multiplia-tive maps
JA : HomA(A⊗M,A⊗N)→ HomA(A⊗ J(M), A⊗ J(N)),natural in A.C. A funtor F : XMod→Mod of whih the arrow funtions are multiplia-tive maps

FA : A⊗HomR(M,N)→ A⊗HomR(F (M), F (N)),natural in A (strit polynomial maps).Construts A and B are equivalent, but weaker than C. If, in addition, thearrow funtions are assumed to have uniformly bounded degree, all three areequivalent.Proof. The proof is exatly analogous to the one given for polynomial funtors,exept that, in the proof that B implies C, the module
n⊕

k=0

Γk Hom(M,N)is used in plae of R[Hom(M,N)]n. The details are found in [15℄.As in the numerial ase, we obtain the following hierarhy:Strit polynomial funtors are required to satisfy all three onditions A,B and C, and to be of bounded degree.A funtor satisfying ondition C, with no assumption on the degree, ouldbe alled loally strit polynomial, but this onept will not be usedin the sequel.A funtor satisfying the weaker onditions A and B, again without anyassumption on the degree, will be alled stritly analyti.55



9. Homogeneous Polynomial FuntorsRather than onsidering arbitrary strit polynomial funtors, we shall from nowon limit our attention to homogeneous ones.De�nition 6. The funtor F : XMod→Mod is said to be homogeneous ofdegree n if every arrow map
F : Hom(M,N)→ Hom(F (M), F (N))is. ⋄The subategory of homogeneous funtors will be denoted by HPoln. It isabelian, and nothing essential will be lost by onsidering suh funtors only, asthe following theorem shows. It is proved in [15℄.Theorem 10. A strit polynomial funtor deomposes as a unique diret sumof homogeneous funtors. The only possible natural transformation between ho-mogeneous funtors of di�erent degrees is the zero transformation.Like Numn, HPoln will shortly be proved to possess a ompat progenera-tor and to be losed under diret sums, and hene be equivalent to a moduleategory. 10. Analyti FuntorsWe here make a lose examination of the analyti funtors. We opt not to provethe �rst of these results, as it should be well known. The seond result anlikely be improved upon. It seems rather probable that the analyti funtorsare preisely the indutive limits of numerial funtors.Theorem 11. The strit analyti funtors are preisely the in�nite diret sums(or, equivalently, indutive limits) of strit polynomial funtors.Theorem 12. Over a noetherian base ring, the analyti funtors are preiselythe indutive limits of loally numerial funtors.Proof. Indutive limits of numerial, or even analyti, funtors will learly beanalyti. For if the funtors Fi, for i ∈ I, are analyti, then for any α ∈

HomA(A⊗M,A⊗N), we have
Fi(α) : A⊗ Fi(M)→ A⊗ Fi(N).Therefore

lim−→Fi(α) : A⊗ lim−→Fi(M)→ A⊗ lim−→Fi(N),sine tensor produts ommute with indutive limits, whih yields a map
lim−→Fi : HomA(A⊗M,A⊗N)→ HomA(A⊗ lim−→Fi(M), A⊗ lim−→Fi(N)).56



Suppose now onversely that F is analyti; the maps
F : HomA(A⊗M,A⊗N)→ HomA(A⊗ F (M), A⊗ F (N))are then multipliative and natural in A. To show F is the indutive limit ofloally numerial funtors, it is su�ient to onstrut, given a module P and anelement u ∈ F (P ), a loally numerial subfuntor G of F suh that u belongsto G(P ).To this end, de�ne the funtor G by

G(M) = 〈F (α)(u) | α : P →M〉 ,and observe that the modules G(M) are invariant under the ation of F . Thus,
G is indeed a subfuntor of F , and learly u ∈ G(P ). To see that G is loallynumerial, let {ǫ1, . . . , ǫm} be a basis for Hom(P,M). Let A = R

(
t1,...,tm

−

). Then
F
(∑

tk ⊗ ǫk
)

: A⊗ F (P )→ A⊗ F (M), 1⊗ u 7→
∑

(
t

µ

)

⊗ vµ,for �nitely many elements vµ ∈ F (M). Speializing tk 7→ ak ∈ R, we get
F
(∑

akǫk

)

: F (P )→ F (M), u 7→
∑

(
a

µ

)

vµ,whih shows
G(M) = 〈F (α)(u) | α : P →M〉

=
〈

F
(∑

akǫk

)

(u)
∣
∣
∣ ak ∈ R

〉

=

〈
∑

(
a

µ

)

vµ

∣
∣
∣
∣
ak ∈ R

〉is �nitely generated. Sine R is noetherian, G(M) is also �nitely presented. Wehave therefore the following ommutative diagram, where the right olumn isan isomorphism, for any �at numerial algebra A:
A⊗Hom(M,N)

G //

**

HomA(A⊗G(M), A⊗G(N))
OO

��
A⊗Hom(G(M), G(N))The existene of the diagonal map for �at A is enough for G to be loallynumerial. 11. The DeviationsWe shall here make a more detailed study of deviations in the ontext of funtors.We introdue the notation

M ⊑ X × Y,to denote that M is a subset of X ×Y , and that both the anonial projetionsare onto. 57



Lemma 1. Let m and n be natural numbers, L ⊆ [m]× [n], and let Y (m,n, k)denote the number of sets K of ardinality k satisfying
L ⊆ K ⊑ [m]× [n].Then ∑

k

(−1)kY (m,n, k) = 0,unless L is of the form P ×Q, for P ⊆ [m], Q ⊆ [n].Proof. If L is not of the given form, there exists an (a, b) whih is not in L, butsuh that some (a, j) and some (i, b) are in L. Then, for any set K ⊆ [m]× [n]ontaining (a, b), K itself will satisfy the given set inlusions i� K \{(a, b)} does.Beause the ardinalities of these sets di�er by one, the orresponding terms inthe above sum will have opposing signs, and hene anel.Lemma 2. Let m, n, p and q be natural numbers, and let Y (m,n, k) denotethe number of sets K of ardinality k satisfying
[p]× [q] ⊆ K ⊑ [m]× [n].Then ∑

k

(−1)kY (m,n, k) = (−1)m+n+p+q+pq.Proof. The formula is evidently true for m = p and n = q, for then Y (p, q, pq) =
1 and all other Y (p, q, k) = 0. We now do reursion. Consider the pair (m,n) ∈
[m] × [n]. The sets K ontaining (m,n) will fall into two lasses: those where
(m,n) is mandatory in order to satisfy K ⊑ [m]× [n], and those where it is not.For the latter lass we may proeed as in the preeding proof: Taking suh a
K and removing (m,n) will yield another set ounted in the sum above, but ofardinality dereased by one. Sine these two types of sets exatly pair o�, withopposing signs, their ontribution to the given sum is zero.Consider then those K of whih (m,n) is a mandatory element. They fallinto three ategories:
• Some (m, j) ∈ K, for 1 ≤ j ≤ n− 1, but no (i, n) ∈ K, for 1 ≤ i ≤ m− 1.The number of suh sets is Y (m,n− 1, k − 1).
• No (m, j) ∈ K, for 1 ≤ j ≤ n− 1, but some (i, n) ∈ K, for 1 ≤ i ≤ m− 1.The number of suh sets is Y (m− 1, n, k − 1).
• No (m, j) ∈ K, for 1 ≤ j ≤ n − 1, and no (i, n) ∈ K, for 1 ≤ i ≤ m − 1.The number of suh sets is Y (m− 1, n− 1, k − 1).Assuming the proposed formula is valid for lesser values ofm and n, we alulateby indution:

∑

k

(−1)kY (m,n, k) 58



=
∑

k

(−1)k
(
Y (m,n− 1, k − 1) + Y (m− 1, n, k − 1) + Y (m− 1, n− 1, k − 1)

)

= −
(
(−1)m+n−1+p+q+pq + (−1)m−1+n+p+q+pq + (−1)m−1+n−1+p+q+pq

)

= (−1)m+n+p+q+pq,as desired.With these ombinatorial prerequisites, we may state and prove our mainresult on deviations.Theorem 13: The Deviation Formula. For a module funtor F , and ho-momorphisms α1, . . . , αm, β1, . . . , βn,
F (α1 ⋄ · · · ⋄ αm)F (β1 ⋄ · · · ⋄ βn) =

∑

K⊑[m]×[n]

F

(

♦
(i,j)∈K

αiβj

)

.Proof. We have
∑

K⊑[m]×[n]

F

(

♦
(i,j)∈K

αiβj

)

=
∑

K⊑[m]×[n]

∑

L⊆K

(−1)|K|−|L|F




∑

(i,j)∈L

αiβj





=
∑

L⊆[m]×[n]

∑

L⊆K⊑[m]×[n]

(−1)|K|−|L|F




∑

(i,j)∈L

αiβj





=
∑

L⊆[m]×[n]

(−1)|L|F




∑

(i,j)∈L

αiβj




∑

L⊆K⊑[m]×[n]

(−1)|K|

=
∑

P×Q⊆[m]×[n]

(−1)|P ||Q|F




∑

(i,j)∈P×Q

αiβj



 (−1)m+n+|P |+|Q|+|P ||Q|

=
∑

P⊆[m]

(−1)m−|P |F

(
∑

i∈P

αi

)
∑

Q⊆[n]

(−1)n−|Q|F




∑

j∈Q

βj





= F (α1 ⋄ · · · ⋄ αm)F (β1 ⋄ · · · ⋄ βn),where in the �fth step the lemmata were used to evaluate the inner sum.12. The Multiross-E�etsGiven a diret sum M = M1 ⊕ · · · ⊕ Mn, let πi : M → M denote the ithprojetion. Reall that the ross-e�ets of a module funtor F are given by theformula
F †(Mi|i∈I) = ImF (π1 ⋄ · · · ⋄ πn),for I ⊆ [n]. 59



The ross-e�ets of a strit polynomial funtor may in fat be dissetedfurther into so alled multiross-e�ets. These are desribed using the languageof multisets, whih are formally introdued in Chapter 6.Let F be a strit polynomial funtor and let αi : M → N be homomorphisms.We reall that the maps Fα[µ] : F (M)→ F (N), for multi-indies µ, are de�nedby the universal validity of the equation
F
(∑

ai ⊗ αi
)

=
∑

aµ ⊗ Fα[µ] .De�nition 7. Let A be a multiset with |A| = n and #A = [n]. We de�ne themultiross-e�et of F of type A to be the multifuntor
F †
A (M1| . . . |Mn) = ImFπ[A]of n arguments. ⋄Theorem 14: The Multiross-E�et Deomposition. For F a stritpolynomial (or strit analyti) funtor,

F † (M1| . . . |Mn) =
⊕

#A=[n]
|A|=n

F †
A (M1| . . . |Mn) ,and onsequently,

F (M1 ⊕ · · · ⊕Mn) =
⊕

#A⊆[n]
|A|=n

F †
A(Ma|a∈#A).Proof. The equation de�ning the Fπ[µ] is

F
(∑

ai ⊗ πi
)

=
∑

aµ ⊗ Fπ[µ] ,from whih it immediately follows that
1 = F (1) = F

(∑

πi

)

=
∑

Fπ[µ] .Furthermore, the equation
∑

aµbν ⊗ Fπ[µ]Fπ[ν] = F
(∑

ai ⊗ πi
)

F
(∑

bj ⊗ πj
)

= F
(∑

akbk ⊗ πk
)

=
∑

(ab)λ ⊗ Fπ[λ]shows that Fπ[µ]Fπ[ν] = 0 whenever µ 6= ν, and also that F 2
π[µ] = Fπ[µ] . Conse-quently, the images of the maps Fπ[µ] form a diret sum deomposition.60



Note in partiular the following speial ase:
F (Rn) =

⊕

#A⊆[n]
|A|=n

F †
A(R|a∈#A),whih we hoose to write more suintly as

F (Rn) =
⊕

#A⊆[n]
|A|=n

F †
A(Rn),
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CHAPTER 4Module RepresentationsEt la glae où se �ge un réel mouvementReste froide malgré son détestable ouvrage.La fore du miroir trompa plus d'un amantQui rut aimer sa belle et n'aima qu'un mirage.� Guillaume Apollinaire, La Fore du MiroirT. I. Pirashvili, [13℄, showed in 1988 how polynomial funtors may be viewedas modules. Fifteen years later, Ekedahl and Salomonsson, [15℄, ame to realizethat also strit polynomial funtors admit a module interpretation. In thishapter we desribe these two module ategories.As before, we assume a �xed base ring R, whih is assumed to be numerialwhen dealing with numerial funtors.1. The Fundamental Numerial FuntorTwo numerial funtors of supreme importane are the following.Theorem 1. The funtor R[−]n, given by
M 7→ R[M ]n

[
χ : M → N

]
7→
[
[χ] : R[M ]n → R[N ]n

[x] 7→ [χ(x)]

]is numerial of degree n, as is the funtor R[Hom(K,−)]n for a �xed module
K.Proof. The �rst funtor is immediately seen to be of degree n, for if χj : M → N ,and x ∈M , then

[χ1 ⋄ · · · ⋄ χn+1]([x]) = [χ1(x) ⋄ · · · ⋄ χn+1(x)] = 0;and if a ∈ R and χ : M → N , then
[aχ]([x]) = [aχ(x)] =

n∑

k=0

(
a

k

)[

♦
k
χ(x)

]

=

n∑

k=0

(
a

k

)[

♦
k
χ

]

([x]).The seond funtor is the omposition of an nth degree funtor with a linearone and is therefore also of degree n. 62



The latter funtor R[Hom(K,−)]n above takes
M 7→ R[Hom(K,M)]n

[
χ : M → N

]
7→
[
[χ∗] : R[Hom(K,M)]n → R[Hom(K,N)]n

[α] 7→ [χ ◦ α]

]and ertainly deserves to be alled the fundamental numerial funtor ofdegree n, for reasons that will presently be made lear.Example 1. As an example of a funtor whih is polynomial, but not numer-ial, of degree 1, let the base ring be R, and de�ne for real vetor spaes
F : RMod→ RMod, V 7→ R[V ]/ 〈[x+ y]− [x]− [y]〉 .Clearly F is additive, its �rst deviation vanishes, and therefore also its seondross-e�et. But F is not numerial (of any degree), for

F (
√

2: R→ R) : [1] 7→ [
√

2]
√

2F (1 : R→ R) : [1] 7→
√

2[1],and these are not equal in
F (R) = R[R]/ 〈[x+ y]− [x]− [y]〉 .In fat, F is not numerial of any degree, as it is impossible to express F (

√
2)as a linear ombination of F (0), F (1), . . . . △2. Yoneda Correspondene for Numerial FuntorsThe funtors R[Hom(K,−)]n just introdued are to numerial funtors what theHom-funtors are to ordinary funtors, in that we have the following YonedaLemma for natural transformations between R[Hom(K,−)]n and an arbitrary

nth degree funtor F :Theorem 2: The Numerial Yoneda Lemma. Let K be a �xed moduleand F a numerial funtor of degree n. The map
Υ: Nat

(
R[Hom(K,−)]n, F

)
→ F (K)

η 7→ ηK([1K ])is an isomorphism of modules.Proof. The proof is the usual one. Consider the ommutative diagram:
K

α

��

R[Hom(K,K)]n

[α∗]

��

ηK // F (K)

F (α)

��

[1K ]

��

// ηK([1K ])

��
M R[Hom(K,M)]n

ηM // F (M) [α] // ηM ([α]) = F (α)(ηK ([1K ]))63



Upon inspetion, we �nd that Υ has the inverse
y 7→

[
ηM : R[Hom(K,M)]n → F (M)

[α] 7→ F (α)(y)

]

.Here we use the numeriality of F to ensure that the map
Hom(K,M)→ Hom(F (K), F (M))will fator through R[Hom(K,M)]n.In partiular, we have a module isomorphism

Nat(R[Hom(K,−)]n) ∼= R[Hom(K,K)]n = R[EndK]n,given by the map
η 7→ ηK([1K ])with inverse

[σ] 7→
[
ηM : R[Hom(K,M)]n → R[Hom(K,M)]n

[α] 7→ [α ◦ σ].

]

.We reall that R[EndK] and its quotients R[EndK]n feature two distintmultipliations, namely the sum multipliation [σ][τ ] = [σ+ τ ] and the produtmultipliation [σ][τ ] = [τσ]. The Yoneda map does not respet the former inany way, but it will reverse the latter.Theorem 3. Under the Yoneda orrespondene, the rings
(
EndR[Hom(K,−)]n

)◦ ∼= R[EndK]n,where the latter is equipped with the produt multipliation.3. Morita Equivalene for Numerial FuntorsWe shall now speialize the fundamental funtor to the ase K = Rn. But �rst,a preliminary lemma:Lemma 1. A polynomial nth degree funtor that vanishes on Rn is identiallyzero.Proof. For q ≤ n, 1Rq fators via Rn, so that 1F (Rq) = F (1Rq ) = 0 fators via
F (Rn) = 0.Now proeed by indution and suppose F (Rq−1) = 0 for some q ≥ n + 1.Deompose 1Rq = ι1π1+· · ·+ιqπq, where πj : Rq → R denotes the jth projetionand ιj : R→ Rq the jth inlusion. Sine F is of degree q − 1,

0 = F (ι1π1 ⋄ · · · ⋄ ιqπq) =
∑

X⊆{ι1π1,...,ιqπq}

(−1)q−|X|F

(
∑

X

ιjπj

)

.If |X | ≤ q − 1, F (
∑

X ιjπj) = 0, sine ∑X ιjπj fators via Rq−1 and weassumed F (Rq−1) = 0. The only remaining term in the sum above is then
0 = F (ι1π1 + · · ·+ ιqπq) = F (1Rq) = 1F (Rq).64



Theorem 4. R[Hom(Rn,−)]n is a ompat progenerator1 for Numn, throughwhih there is a Morita equivalene:
Numn ∼ R[Rn×n]nMod,where R[Rn×n]n arries the produt multipliation.More preisely, the funtor F orresponds to the abelian group F (Rn), withmodule struture given by the equation

[s]x = F (s)(x).Proof. To show R[Hom(Rn,−)]n is projetive, we must show that
P = Nat(R[Hom(Rn,−)]n,−)is right-exat, or preserves epimorphisms. Hene let η : F → G be epi, so thateah ηM is onto. From the following diagram, onstruted by aid of the YonedaLemma, it follows that η∗ is epi:

Nat(R[Hom(Rn,−)]n, F )
OO

Υ

��

η∗ // Nat(R[Hom(Rn,−)]n, G)
OO

Υ

��
F (Rn)

ηRn // G(Rn)To show R[Hom(Rn,−)]n is a generator, we use the lemma.
0 = Nat(R[Hom(Rn,−)]n, F ) ∼= F (Rn)implies F = 0, so P fails to kill non-zero objets.Compatness of R[Hom(Rn,−)]n follows from the omputation

Nat
(

R[Hom(Rn,−)]n,
⊕

Fk

)

∼=
(⊕

Fk

)

(Rn) =
⊕

Fk(R
n)

∼=
⊕

Nat (R[Hom(Rn,−)]n, Fk) ,again using the Yoneda Lemma (twie).As Numn is losed under diret sums, we have a Morita equivalene:
Numn

Nat(R[Hom(Rn,−)]n,−)

**
SMod

R[Hom(Rn,−)]n⊗−

jjwhere S =
(
NatR[Hom(Rn,−)]n

)◦ ∼= R[EndRn]n = R[Rn×n]n.1A progenerator of an abelian ategory is a projetive generator. It is ompat when theorresponding Hom-funtor ommutes with arbitrary diret sums.65



To prove the last assertion of the theorem, we �rst note that F orrespondsto
Nat(R[Hom(Rn,−)]n, F ) ∼= F (Rn),again by the elebrated Yoneda Lemma. We now investigate on the modulestruture on F (Rn). Under the Yoneda map, an element x ∈ F (Rn) will orre-spond to the natural transformation




η : R[Hom(Rn,−)]n → F
ηM : R[Hom(Rn,M)]n → F (M)

[α] 7→ F (α)(x)



 ,extended by linearity. Likewise, [s] ∈ R[Rn×n]n will orrespond to




σ : R[Hom(Rn,−)]n → R[Hom(Rn,−)]n
σM : R[Hom(Rn,M)]n → R[Hom(Rn,M)]n

[α] 7→ [α ◦ s]



 ,again extended by linearity. Multiplying (the salar) σ with η in the module
Nat(R[Hom(Rn,−)]n, F )gives as produt the transformation





η ◦ σ : R[Hom(Rn,−)]n → F
(η ◦ σ)M : R[Hom(Rn,M)]n → F (M)

[α] 7→ F (α ◦ s)(x)



 ,whih under the Yoneda map orresponds to
(η ◦ σ)Rn([1Rn ]) = F (1Rn ◦s)(x) = F (s)(x)in F (Rn). The salar multipliation on F (Rn) is therefore given by the formula

[s]x = F (s)(x),and the proof is �nished.Example 2. Consider the onstant funtor C : Rk 7→ R and the identity fun-tor I : Rk 7→ Rk. They are both of the �rst degree (of ourse, C is in fat ofdegree zero), whih means they will both under the Morita equivalene orre-spond to the abelian group C(R) = I(R) = R. Their module strutures over
R[R]1 = 〈[0R], [1R]〉 will di�er, however. For C, the salar multipliation isgiven by

(a[0R] + b[1R])x = C(a[0R] + b[1R])(x) = aC(0R)(x) + bC(1R)(x)

= a 1R(x) + b 1R(x) = (a+ b)x,whereas for I the ation is
(a[0R] + b[1R])x = I(a[0R] + b[1R])(x) = aI(0R)(x) + bI(1R)(x)

= a0R(x) + b 1R(x) = bx.

△66



4. The Fundamental Homogeneous FuntorWith modi�ations, the above theory for numerial funtors will have a stritlypolynomial ounterpart. The appropriate progenerator will of ourse no longerbe R[Hom(Rn,−)]n, but will involve the divided power funtor Γn.The strit polynomiality of Γn is of ourse an immediate onsequene of thefat that it ommutes with extension of salars:
Γn(A⊗M) = A⊗ Γn(M).We would, however, like to examine its behaviour a little more losely. In orderto do so, we de�ne a representation

Γn Hom(M,N)→ Hom(Γn(M),Γn(N)).Given ai ∈ A (where is A is some algebra) and αi ∈ Hom(M,N) (where Mand N are modules), let the equation
Γn :

[ ∑

i ai ⊗ αi
∈ A⊗Hom(M,N)

]

7→
[ ∑

|ν|=n a
ν ⊗ α[ν]

∈ A⊗Hom(Γn(M),Γn(N))

]

,de�ne the homomorphisms
α[ν] : Γn(M)→ Γn(N).Thus, the symbol α[ν] may be interpreted either as an element of Γn Hom(M,N)or as a map Γn(M)→ Γn(N) (and sometimes both).We state the following theorem, whih should be well known:Theorem 5. The funtor Γn, given by

M 7→ Γn(M)
[ ∑

i ai ⊗ αi
∈ A⊗Hom(M,N)

]

7→
[

(
∑

i ai ⊗ αi)
[n]

=
∑

|ν|=n a
ν ⊗ α[ν]

∈ A⊗Hom(Γn(M),Γn(N))

]is stritly polynomial of homogeneous degree n, as is the funtor Γn Hom(K,−)for a �xed module K.We de�ne the fundamental homogeneous polynomial funtor to be
Γn Hom(K,−), given by the following formula:

M 7→ Γn Hom(K,M)
[ ∑

i ai ⊗ αi
∈ A⊗Hom(M,N)

]

7→
[

(
∑

i ai ⊗ (αi)∗)
[n] =

∑

|ν|=n a
ν ⊗ (α∗)

[ν]

∈ A⊗Hom(Γn Hom(K,M),ΓnHom(K,N))

]

.
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5. Yoneda Correspondene for Homogeneous FuntorsParallelling the development for polynomial funtors, we state and prove theYoneda Lemma for homogeneous polynomial funtors. Note that the module Kis here required to be free.Theorem 6: The Homogeneous Yoneda Lemma. Let K be a �xed, freemodule and F a homogeneous funtor of degree n. The map
Υ: Nat(Γn Hom(K,−), F )→ F (K)

η 7→ ηK(1
[n]
K )is an isomorphism of modules.Proof. Sine all the modules involved are free, we may without di�ulty de�ne

Ξ: y 7→
[
ζM : Γn Hom(K,M)→ F (M)

β[µ] 7→ Fβ[µ](y)

]

.Pray note that Fβ[n] = F (β). ζM is evidently a well-de�ned group homomor-phism, being the omposite of β[µ] 7→ Fβ[µ] with evaluation at y.
ζ is natural, beause of the following ommutative diagram:
M

α

��

Γn Hom(K,M)

(α∗)[n]

��

ζM // F (M)

F
α[n]

��

β[µ]

��

// Fβ[µ](y)

��
N Γn Hom(K,N)

ζN // F (N) (αβ)[µ] // F(αβ)[µ](y) = Fα[n]β[µ](y)Now we show the above formula indeed gives the inverse of Υ. On the onehand, it is lear that
ΥΞ(y) = Υ(ζ) = ζK(1

[n]
K ) = F

1
[n]
K

(y) = F (1K)(y) = y.On the other hand, starting from η and letting y = Υ(η) = ηK(1
[n]
K ) de�ne

ζ = Ξ(y), we see that
ζM (β[n]) = Fβ[n](y) = Fβ[n](ηK(1

[n]
K )) = F (β)(ηK(1

[n]
K )) = ηM (β[n]),where the last equality is due to the following ommutative diagram:

K

β

��

Γn Hom(K,K)

(β∗)[n]

��

ηK // F (K)

F (β)

��

1
[n]
K

��

// ηK(1
[n]
K )

��
M Γn Hom(K,M)

ηM // F (M) β[n] // ηM (β[n]) = F (β)(ηK (1
[n]
K ))

η and ζ then agree everywhere by the Divided Power Lemma.68



In partiular, we have a module isomorphism
Nat(Γn Hom(K,−)) ∼= Γn Hom(K,K) = Γn(EndK),given by the map

η 7→ ηK(1
[n]
K )with inverse

σ[n] 7→
[
ηM : Γn Hom(K,M)→ Γn Hom(K,M)

α[n] 7→ (α ◦ σ)[n]

]

.As in the numerial ase, this is a ring isomorphism when Γn(EndK) is equippedwith the reverse produt multipliation:Theorem 7. Let K be free. Under the Yoneda orrespondene, the rings
(
Nat(Γn Hom(K,−))

)◦ ∼= Γn(EndK),where the latter is equipped with the produt multipliation.6. Morita Equivalene for Homogeneous FuntorsAgain, we speialize to the ase K = Rn to obtain a ompat progenerator:Theorem 8. Γn Hom(Rn,−) is a ompat progenerator for HPoln, throughwhih there is a Morita equivalene:
HPoln ∼ Γn(Rn×n)Mod,where Γn(Rn×n) arries the produt multipliation.More preisely, the funtor F orresponds to the abelian group F (Rn), withmodule struture given by the equation

s[n](x) = F (s)(x)Proof. The proof is virtually idential to the one for numerial funtors andtherefore omitted.
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CHAPTER 5MazesLabyrinth of FunThe quartet Baues, Drekmann, Franjou and Pirashvili, [1℄, disovered in 2001how to ombinatorially enode Z-module funtors, and in partiular polyno-mial ones. Their design was to establish a two-way orrespondene (ategoryequivalene) between module funtors ZXMod → ZMod and Makey funtors
Ω→ ZMod, where Ω is the ategory of �nite sets and surjetions.Unfortunately, the argument does not generalize to an arbitrary base ring,as it is not apparent what ategory should play the r�le of Ω. To remedythis situation, we explore here the theory of mazes. We will later (Chapter 7)reapture the Ω-onstrution of [1℄.The onstrution we desribe is quite general. It does not require the basering to be numerial, and not even ommutative. So until we start disussingpolynomiality, R is just assumed to be a unital ring.1. MazesConsider two �nite sets X and Y . A passage from x ∈ X to y ∈ Y is a (formal)arrow p from x to y, tagged with an element of R, denoted by p. This we writeas

p : x→ y,or
x

p // y .De�nition 1. Amaze from X to Y is a multiset of passages from X to Y . Itis required that there be at least one passage leading from every element of X ,and at least one passage leading to every element of Y (we, so to speak, wishto prevent dead ends from forming). ⋄Beause a maze is a multiset, there an be (and, in general, will be) multiplepassages between any two given elements.De�nition 2. We say P : X → Y is a submaze of Q : X → Y , if P ⊆ Q asmultisets. ⋄70



De�nition 3. If P : X → Y is a maze, the restrition of P to X ′ → Y ′, forsubsets X ′ ⊆ X and Y ′ ⊆ Y , is the maze (if indeed it is one) from X ′ to Y ′ontaining only those passages of P that begin in X ′ and end in Y ′. It will bedenoted by
P


X′→Y ′ .

⋄We shall sometimes abuse notation, and use the symbol P
X′→Y ′ even whenthis is not neessarily a maze. We will take this liberty when summing oversubmazes, with the tait understanding, that if P

X′→Y ′ is not itself a maze,of ourse it has no submazes either, so the sum will be empty.Note that P
X′→Y ′ is not a submaze of P (unless X ′ = X and Y ′ = Y ).Passages p : y → z and q : x → y are said to be omposable, beause oneends where the other begins.De�nition 4. If P : Y → Z and Q : X → Y are mazes, we de�ne the arte-sian produt P Q to be the multiset of all pairs of omposable passages:

P Q =
{([

z y
poo

]

,
[

y x
qoo

]) ∣
∣
∣

[

z y
poo

]

∈ P ∧
[

y x
qoo

]

∈ Q
}

.

⋄For a subset U ⊆ P Q, we shall write
U ⊑ P Qto indiate that the projetions on P and Q are both onto. Note that suh aset U naturally gives rise to a new maze, namely

{[

z x
pqoo

] ∣
∣
∣

([

z y
poo

]

,
[

y x
qoo

])

∈ U
}

.The surjetivity ondition on the projetions will prevent dead ends from form-ing.When we write P Q, we will sometimes refer to the artesian produt,and sometimes its assoiated maze, and hope the irumstanes will make learwhih is meant.De�nition 5. The produt or omposition of the mazes P and Q is de�nedas the formal sum
PQ =

∑

U⊑P Q

U.

⋄That multipliation is assoiative follows easily from the observation that
(PQ)R and P (QR) both equal

∑

W⊑P Q R

W.71



There exist identity mazes
IX =

{[

x
1−→ x

] ∣
∣
∣ x ∈ X

}

.Note, by the by, that it is perfetly legal to onsider the empty maze
I∅ = ∅ : ∅ → ∅with no passages. It is the only maze into or out of ∅.Example 1. Consider the two mazes

Q =





x a&&LL
z

y b

99tt



 , P =





x
z
c 88rr

d
%%JJ y



 .Their artesian produt is
P Q =

{([

x z
coo

]

,
[

z x
aoo

])

,
([

y z
doo

]

,
[

z x
aoo

])

,

([

x z
coo

]

,
[

z yboo
])

,
([

y z
doo

]

,
[

z yboo
])}

,whih we identify with the maze







x
ac //

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

bd
// y







,and their produt is

PQ =








x
a

??

��??
x

z
c��

??��

d
>>

��
y

b��

@@��

y








=








x
ac //

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

bd
// y








+








x
ac // x

y

bcyyyyyy

<<yy

bd
// y








+








x
ac //

ad
EE

EE
EE

""EE

x

y
bd

// y








+







x
ac //

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

y







+







x

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

bd
// y







+








x
ac // x

y
bd

// y








+







x

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

y






.
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2. The Labyrinth CategoryDe�nition 6. The labyrinth ategory Laby is the R-ategory1 obtained inthe following way: Its objets are the �nite sets. Given two sets, their arrow setis the free module of mazes between them, with the following relations imposed(i. e. divided away), for multiset P of passages:I. [

P ∪ { ∗ 0 // ∗ }
]

= 0.II.
[

P ∪ { ∗ a+b // ∗ }
]

=

[

P ∪ { ∗ a // ∗ }
]

+

[

P ∪ { ∗ b // ∗ }
]

+

[

P ∪ { ∗
a //
b

// ∗ }
]

.(The unions are to be interpreted in a multiset-theoreti way.) ⋄We �rst state two elementary formulæ for this ategory, proved by indution.Theorem 1. In the labyrinth ategory, the following equations hold:
[

P ∪
{

∗
Pn

i=1 ai// ∗
}]

=
∑

∅⊂I⊆[n]

[

P ∪
{

∗ ai // ∗
∣
∣
∣
∣
i ∈ I

}]

[

P ∪
{

∗ ai // ∗
∣
∣
∣
∣

1 ≤ i ≤ n
}]

=
∑

I⊆[n]

(−1)n−|I|

[

P ∪
{

∗
P

i∈I ai// ∗
}]

3. Operations on MazesThere are some more (as yet nameless) operations on mazes whih will oa-sionally be useful to us.If P : Y → Z and Q : X → Y are mazes, we de�ne
P Q =

{[

z x
P

pqoo
] ∣
∣
∣ z ∈ Z, x ∈ X

}

,where the sum is taken over all pairs [z
p← y] ∈ P and [y

q← x] ∈ Q of omposablepassages. This new maze will have at most one passage running between anygiven x ∈ X and z ∈ Z.We immediately have the following formula relating the operations and. 1By an R-ategory we understand a ategory enrihed over Mod, so that its arrow sets arein fat R-modules. A Z-ategory is just a preadditive ategory.73



Theorem 2. ∑

V⊆P Q

V =
∑

W⊆P Q

W.Proof. For W ⊆ P Q, de�ne
E(W ) = {V ⊆ P Q | ∃[x→ z] ∈ V ↔ ∃[x→ z] ∈W}.Then apply the �rst of the formulæ of Theorem 1 to eah passage of E(W ) toshow ∑

V ∈E(W )

V = W,whih proves the theorem.Passages p : x→ y and q : x→ y are said to be parallel, beause they sharestarting and ending points.De�nition 7. We say that mazes P,Q : X → Y are similar if they ontainno parallel passages and
∀x ∈ X, y ∈ Y : [x→ y] ∈ P ↔ [x→ y] ∈ Q.

⋄Essentially P and Q have the same passages, exept that their labels maydi�er.When P and Q are similar mazes, we de�ne
P Q =

{[

x
p+q // y

] ∣
∣
∣

[

x
p // y

]

∈ P,
[

x
q // y

]

∈ Q
}

,and obtain without e�ort the following theorem.Theorem 3. Let P1, . . . , Pn be similar mazes, and let the passages of Pi be
pi1, . . . , pim. Then

P1 · · · Pn =
∑

K

{pij | (i, j) ∈ K},where the sum is taken over all K ⊆ [n] × [m] suh that the projetion on theseond variable is onto. 4. Module FuntorsWe shall now establish a remarkable equivalene between two kinds of funtors.On the one hand, we onsider module funtors XMod → Mod, whih may beof an arbitrary nature (additive, polynomial, numerial, and what not). On theother hand, we shall have funtors Laby→Mod. These shall always be assumed
R-linear. 74



Given a diret sum RX and x ∈ X , let 1x denote the unity of the xthomponent R. We let
σyx : RX → RXbe the homomorphism that takes 1x to 1y and every other 1z to 0. We shallmake extensive use of these maps, as they turn out to be the skeletal omponentsof the module ategory.De�nition 8. Given a linear map

s =
∑

a∈A,b∈B

sbaσba : RA → RB,(a B ×A matrix) we let its assoiated maze S : A→ B be
S =

{[

a
sba // b

] ∣
∣
∣ a ∈ A, b ∈ B

}

.

⋄Note that if but a single omponent sba vanishes, the assoiated maze S = 0.Note also that the assoiated maze of a omposition s◦t is none other than S T ,and that of a sum s+t is S T , whih motivates our interest in these operations,as well as our hoie of notation.In the ontinuation, we will make no formal di�erene between a linear mapand its assoiated maze, and denote them both by the same symbol, as long asit is lear whih one is meant.We wish now to de�ne a funtor (whih will eventually turn out to be anequivalene)
Φ: Fun(XMod,Mod)→ Fun(Laby,Mod).Given a module funtor F : XMod→Mod, the orresponding labyrinth funtorshould take �nite sets to the orresponding ross-e�ets:

X 7→ F †(R|X).Also, mazes should be interpreted as deviations, in the following sense:
[P : X → Y ] 7→



F

(

♦
[p : x→y]∈P

pσyx

)
∣
∣
∣
∣
∣
F †(R|X)→F †(R|Y )



 .But it is in fat unneessary to restrit the ation to the appropriate ross-e�ets,as the following lemma shows.Lemma 1. The map
F

(

♦
[p : x→y]∈P

pσyx

)

: F (RX)→ F (RY )is in fat a map F †(R|X) → F †(R|Y ), in the sense that all other omponentsare 0. 75



Proof. We use Theorem 2 of Chapter 3. Preomposition with F (τx), where τxis any insertion with x ∈ X , and postomposition with F (̺y), where ̺y is anyretration with y ∈ Y , both yield 0, beause σyxτx = ̺yσyx = 0.The homomorphism
F

(

♦
[p : x→y]∈P

pσyx

)may thus be interpreted both as a map RX → RY , and as a map F †(R|X) →
F †(R|Y ), depending on the irumstanes. We hene de�ne Φ(F ) : Laby→Modby the following formulæ:

X 7→ F †(R|X)

[P : X → Y ] 7→
[

F

(

♦
[p : x→y]∈P

pσyx

)

: F †(R|X)→ F †(R|Y )

]

.Lemma 2. Φ(F ) is a funtor from the labyrinth ategory.Proof. That Φ(F ) respets the relations in Laby follows from
Φ(F )

(

P ∪ { x 0 // y }
)

= F (· · · ⋄ 0) = 0and
Φ(F )

(

P ∪ { x a+b // y }
)

= F (· · · ⋄ (a+ b)σyx)

= F (· · · ⋄ aσyx) + F (· · · ⋄ bσyx) + F (· · · ⋄ aσyx ⋄ bσyx)

= Φ(F )
(

P ∪ { x a // y }
)

+ Φ(F )

(

P ∪ { x b // y }
)

+ Φ(F )

(

P ∪ { x
a //
b

// y }
)

.Funtoriality follows from the Deviation Formula.We now de�ne Φ(ζ), for a natural transformation ζ : F → G, by restritionto the appropriate ross-e�ets:
Φ(ζ)X = ζRX : F †(R|X)→ G†(R|X).Lemma 3. Φ is a funtor.Proof. Beause natural transformation are linear, they preserve deviations, andhene ross-e�ets. Hene, for X and Y of di�erent ardinality, the omponent

ζ : F †(R|X)→ G†(R|Y )is 0. From this, multipliativity of the funtor Φ follows.76



Lemma 4. Φ is fully faithful.Proof. Given η : Φ(F ) → Φ(G), the only possible andidate for a ζ : F → G,suh that Φ(ζ) = η, is
ζRX =

⊕

Y⊆X

ηY .Now omes the hard part: showing Φ is essentially surjetive. Let an
H : Laby→Mod be given. De�ne its inverse image Φ−1(H) : XMod→Mod byletting

Φ−1(H)(RA) =
⊕

Y⊆A

H(Y )and, given
s =

∑

a∈A,b∈B

sbaσba : RA → RB,letting the H(Y )→ H(Z) part of Φ−1(H)(s) be given by
∑

P⊆S



Y →Z

H(P ),where S is the assoiated maze of s. Note that
Φ−1(H)(s)



H(Y )→H(Z)

= 0if Y = ∅ 6= Z, or onversely, but
Φ−1(H)(s)



H(∅)→H(∅)

= H(I∅).We will show that Φ(Φ−1(H)) = H . Note, however, that in general Φ−1Φ(F )
6= F , despite the notation. Φ−1 will only be a pseudo-inverse to Φ (inverse upto natural isomorphism).Lemma 5. Φ−1(H) is a funtor.Proof. Given

S =
∑

b∈B,c∈C

scbσcb : R
B → RC , T =

∑

a∈A,b∈B

tbaσba : RA → RB,we alulate, for X ⊆ A and Z ⊆ C, the H(X)→ H(Z) omponent of
Φ−1(H)(S) ◦ Φ−1(H)(T )as:

∑

Y⊆B






∑

P⊆S



Y →Z

H(P )











∑

Q⊆T



X→Y

H(Q)




 =

∑

Y⊆B

∑

P⊆S



Y →Z

Q⊆T



X→Y

H(PQ)77



=
∑

Y⊆B

∑

P⊆S



Y →Z

Q⊆T



X→Y

H




∑

V⊑P Q

V



 =
∑

V⊆(S T )



X→Z

H(V ).The last step follows from noting that every submaze of (S T )


X→Z

is obtainedas V ⊑ P Q, for some P and Q. Sine the H(X)→ H(Z) part of
Φ−1(H)(ST ) = Φ−1(H)




∑

a∈A,c∈C

(
∑

b∈B

scbtba

)

σca



is ∑

W⊆(S T )



X→Z

H(W ) =
∑

W⊆(S T )



X→Z

H(W ),the funtoriality of Φ−1(H) follows.Lemma 6.
Φ(Φ−1(H)) = H.Proof. We �rst write down the well-known (and easily established) formula

∑

Q⊆S⊆P

(−1)|S| =

{

(−1)|P | if P = Q,
0 else,where P and Q are �nite sets.Given a maze P : X → Y , we want to alulate the deviation of the modulefuntor Φ−1(H) orresponding to the maze P :

Φ−1(H)

(

♦
[p : x→y]∈P

pσyx

)

=
∑

S⊆P

(−1)|P |−|S|Φ−1(H)




∑

p∈S

pσyx



 . (5.1)The H(Z1)→ H(Z2) omponent of Φ−1(H)
(
∑

p∈S pσyx

) is
∑

Q⊆S



Z1→Z2

H(Q).The omponent H(Z1)→ H(Z2) of (5.1) is then
∑

S⊆P

(−1)|P |−|S|
∑

Q⊆S



Z1→Z2

H(Q) =
∑

Q⊆P



Z1→Z2

(−1)|P |H(Q)
∑

Q⊆S⊆P

(−1)|S|.
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The inner sum vanishes if P 6= Q. It equals (−1)|P | if P = Q, but at the sametime Q ⊆ P
Z1→Z2

, so in fat Z1 = X , Z2 = Y and Q = P = P


X→Y

. Thus
Φ−1(H)

(

♦
[p : x→y]∈P

pσyx

)
∣
∣
∣
∣
∣
H(Z1)→H(Z2)

=

{

H(P ) if Z1 = X and Z2 = Y ,
0 else.From this it follows instantly, both that

Φ(Φ−1(H))(X) = Φ−1(H)†(R|X) = ImΦ−1(H)

(

♦
x∈X

πx

)

= ImH(IX) = Im1H(X) = H(X),and that
Φ(Φ−1(H))(P ) = Φ−1(H)

(

♦
[p : x→y]∈P

pσyx

)
∣
∣
∣
∣
∣
Φ−1(H)†(R|X )→Φ−1(H)†(R|Y )

= Φ−1(H)

(

♦
[p : x→y]∈P

pσyx

)
∣
∣
∣
∣
∣
H(X)→H(Y )

= H(P ).It is now only a matter of putting these lemmata together, to obtain thefollowing truly marvellous theorem:Theorem 4. The funtor
ΦLaby : Fun(XMod,Mod)→ Fun(Laby,Mod),where ΦLaby(F ) : Laby→Mod takes

X 7→ F †(R|X)

[P : X → Y ] 7→
[

F

(

♦
[p : x→y]∈P

pσyx

)

: F †(R|X)→ F †(R|Y )

]

,is a ategory equivalene. 5. Polynomial FuntorsThe preeding setion dealt with module funtors in general. Sine the passagesof a maze orrespond to deviations, the following simple haraterization ofpolynomiality should ome as no surprise.Theorem 5. The module funtor F is polynomial of degree n i� ΦLaby(F )vanishes on sets with more than n elements.79



Proof. Clearly enough, if F is polynomial funtor of degree n, then ΦLaby(F )will vanish on mazes with more than n passages, sine applying ΦLaby(F ) tosuh a maze will involve an nth deviation.Suppose now onversely that ΦLaby(F ) vanishes on mazes with more than
n passages, and let there be given n+ 1 homomorphisms

α1, . . . , αn+1 : RA → RBwith assoiated mazes
P1, . . . , Pn+1 : A→ B.These mazes an be made similar by adding in extra passages labelled 0, if needbe, and we may label the passages of Pi by

pi1, . . . , pim.Let sets X ⊆ A and Y ⊆ B be �xed.Note that if
{pij | j ∈ J}is a legitimate submaze of Pi for one partiular i, it is so for all hoies of i.When this is the ase, we say that the set J ⊆ [m] is admissible. Then also

{
∑

i∈I

pij

∣
∣
∣
∣
∣
j ∈ J

}is a legitimate submaze of
(

i∈I

Pi

) ∣
∣
∣
∣
X→Y

=
i∈I

Pi


X→Y(the assoiated maze of the sum ∑

i∈I αi) for any I ⊆ [n+ 1].We are now ready to alulate the deviation of F :
F (α1 ⋄ · · · ⋄ αn+1)



F †(R|X)→F †(R|Y )

=
∑

I⊆[n+1]

(−1)n+1−|I|F

(
∑

i∈I

αi

)




F †(R|X)→F †(R|Y )

=
∑

I⊆[n+1]

(−1)n+1−|I|
∑

Q⊆( i∈I Pi)



X→Y

ΦLaby(F )(Q)

=
∑

I⊆[n+1]

(−1)n+1−|I|
∑

J⊆[m]

ΦLaby(F )

({
∑

i∈I

pij

∣
∣
∣
∣
∣
j ∈ J

})

,where the inner sum is taken over admissible J only. Letting Kl denote theprojetion of the set K ⊆ I × J on the lth omponent, we may use Theorem 3to transform the latter sum to
F (α1 ⋄ · · · ⋄ αn+1)



F †(R|X)→F †(R|Y ) 80



=
∑

I⊆[n+1]

(−1)n+1−|I|
∑

J⊆[m]

∑

K⊆I×J
K2=J

ΦLaby(F )({pij | (i, j) ∈ K})

=
∑

K⊆[n+1]×[m]




∑

K1⊆I⊆[n+1]

(−1)n+1−|I|





(
∑

J=K2

ΦLaby(F )({pij | (i, j) ∈ K})
)

=
∑

K⊆[n+1]×[m]
K1=[n+1]

ΦLaby(F )({pij | (i, j) ∈ K}).The ondition K1 = [n+ 1] implies |K| ≥ n+ 1, and so all the mazes
{pij | (i, j) ∈ K}will ontain more than n passages. The sum will therefore equal 0, by thehypothesis on ΦLaby(F ). 6. Numerial FuntorsWe now investigate how to interpret numeriality in the labyrinthine setting.First some notation. For P a maze and a a salar, let a P be the mazeobtained from P by multiplying the labels of all passages by a:

a P =
{[

x
ap // y

] ∣
∣
∣

[

x
p // y

]

∈ P
}

.Given a multiset A supported by the maze P , we let EA denote the maze
EA =

⋃

a∈A

{

a
1 // a

}

,with the passages multiplied aording to the degree funtion of A, and uni-formly given the label 1. (This is an example of a simple maze; we will see laterthat the simple mazes form bases for the arrow sets of the labyrinth ategory.)Lemma 7. Let r lie in a numerial ring, n be a natural number, and wj bepositive integers satsfying w1 + · · ·+ wq ≤ n. Then
q
∏

j=1

(
r

wj

)

=

n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

) q
∏

j=1

(
k

wj

)

.Proof. We prove the formula when r is an integer, and then refer to the Numer-ial Universality Priniple.
n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

) q
∏

j=1

(
k

wj

)

=

n∑

m=0

(
r

m

)
∑

K⊆[m]

(−1)m−|K|
q
∏

j=1

(|K|
wj

)81



=
∑

M⊆[r]
|M|≤n

∑

K⊆M

(−1)|M|−|K|
q
∏

j=1

(|K|
wj

)

=
∑

K⊆[r]

(−1)|K|
q
∏

j=1

(|K|
wj

)
∑

K⊆M⊆[r]
|M|≤n

(−1)|M|.When 0 ≤ r ≤ n, the requirement |M | ≤ n is super�uous, and K must equal
[r], lest the inner sum vanish. We then have

n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

) q
∏

j=1

(
k

wj

)

=
∑

K=[r]

(−1)|K|
q
∏

j=1

(|K|
wj

)
∑

K⊆M⊆[r]

(−1)|M|

= (−1)r
q
∏

j=1

(
r

wj

)

(−1)r =

q
∏

j=1

(
r

wj

)

.The formula is thus true when 0 ≤ r ≤ n. But then it must hold everywhere,sine both sides are polynomials of degree n.Theorem 6. The funtor F is polynomial of degree n i� the equation
ΦLaby(F )(P ) =

∑

#A=P
|A|≤n

∏

p∈P

(
p

degA p

)

ΦLaby(F )(EA)holds for all mazes P .Proof. By Theorem 7 of Chapter 3, a polynomial funtor will ertainly satisfythis. The onverse is trikier.First note that if ΦLaby(F ) satis�es the equation, then it will vanish onmazes with more than n elements, whene F is polynomial of degree n. Wewish to use Theorem 6 of Chapter 3, and thus evaluate
F (r · 1Rn) =

∑

P⊆r I[n]

ΦLaby(F )(P ).The omponent
ΦLaby(F )(X)→ ΦLaby(F )(Y )of this is 0 if X 6= Y . If X = Y , we may without loss of generality assume

X = Y = [q]. Then the omponent
ΦLaby(F )([q])→ ΦLaby(F )([q])82



is
ΦLaby(F )(r I[q]) =

∑

#A=[q]
|A|≤n

q
∏

j=1

(
r

degA j

)

ΦLaby(F )(EA)

=
∑

w1+···+wq≤n

q
∏

j=1

(
r

wj

)

ΦLaby(F )(Ew),where we let wj = degA j ≥ 1. Similarly, the omponent
ΦLaby(F )([q])→ ΦLaby(F )([q])of

n∑

m=0

(
r

m

)

F

(

♦
m

1Rn

)

=

n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

)

F (k · 1Rn)is
n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

)
∑

w1+···+wq≤n

q
∏

j=1

(
k

wj

)

ΦLaby(F )(Ew).It is now only a matter of using the lemma, to establish the equality
F (r · 1Rn) =

n∑

m=0

(
r

m

)

F

(

♦
m

1Rn

)

.Consequently, F is numerial.De�nition 9. The nth quotient labyrinth ategory Labyn is de�ned as thequotient ategory obtained from Laby when the following relations are dividedaway:III.
P = 0,whenever P ontains more than n passages.IV.

P =
∑

#A=P
|A|≤n

∏

p∈P

(
p

degA p

)

EA,for all mazes P .
⋄The theorem may then be rephrased as: F is numerial of degree n i�

ΦLaby(F ) fators through Labyn. Or, equivalently:83



Theorem 7. The funtor ΦLaby indues a ategory equivalene
Numn → Fun(Labyn,Mod).A few examples of labyrinth representations are in order. We take [n] as theanonial representative of sets of ardinality n.Example 2. Let C(Rn) = K be a onstant funtor. ΦLaby(C) will take

∅ 7→ K, and all non-empty sets to 0. △Example 3. Let F (Rn) = K ⊕ Ln be a linear funtor. ΦLaby(F ) will take
[0] 7→ K, [1] 7→ L, [2], [3], . . . 7→ 0,and map the maze

[

1
c // 1

]

7→ [c : L→ L] .

△7. Quadrati FuntorsWe here determine the struture of Num2 by lassifying the quadrati numerialfuntors. To �nd the labyrinthine desriptions of quadrati funtors, we �rstdraw the (skeletal) struture of the ategory Laby2:
[0]I
''

[1]

A
$$

I

33

C
��

[2]

B

dd

S

ss

I

SSSine we in Laby2 have the relations
[

∗ a // ∗
]

=

(
a

1

)[

∗ 1 // ∗
]

+

(
a

2

)[

∗
1 //
1

// ∗
]and 





∗ a // ∗

∗ b // ∗







=

(
a

1

)(
b

1

)







∗ a // ∗

∗ b // ∗





(the simple mazes generate the ategory), every maze in Laby2 an be reduedto (linear ombinations of) identity mazes and the following:

A =








1
1 //

1 ��>
>>

>>
>>

1

2








B =








1
1 // 1

2

1

@@�������
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◦ A B C S
A � I + S 2A �
B C � � B
C � 2B 2C �
S A � � ITable 5.1: Multipliation table for Laby2.

C =

[

1
1 //
1

// 1

]

S =







1

1
��>

>>
>>

>>
1

2

1 @@�������
2





Even these are not independent. Their multipliation table is given in Table5.1. Clearly we an do with only A, B and S, and we obtain the followingexpliit desription of Num2.Theorem 8. A quadrati numerial funtor is equivalent to the following data:modules K, X and Y , together with homomorphisms α, β, σ as indiated:

K X

α
!!
Y

β

aa σffThese homomorphisms are subjet to the following four relations:
αβ = 1 + σ, βσ = β, σα = α, σ2 = 1.The reader will note, that we an in fat also dispense with σ = αβ− 1, andinstead let α and β be subjet to a meagre two relations:

βαβ = 2β, αβα = 2α.We now desribe the four lassial quadrati funtors. Beause they are ofthe seond degree, and beause they are all pointed2, the module K = 0. Wewill denote R1 = 〈e1〉, and R2 = 〈e2〉.Example 4. The funtor ΦLaby(T
2) will take

X = (T 2)†(R1) = 〈e1 ⊗ e1〉 , Y = (T 2)†(R1|R2) = 〈e1 ⊗ e2, e2 ⊗ e1〉and map
α : e1 ⊗ e1 7→ e1 ⊗ e2 + e2 ⊗ e1
β : e1 ⊗ e2, e2 ⊗ e1 7→ e1 ⊗ e1
σ : e1 ⊗ e2 7→ e2 ⊗ e1, e2 ⊗ e1 7→ e1 ⊗ e2.

△2A pointed funtor maps 0 to 0. 85



Example 5. The funtor ΦLaby(S
2) will take

X =
〈
e21
〉
, Y = 〈e1e2〉and map

α : e21 7→ 2e1e2)

β : e1e2 7→ e21

σ : e1e2 7→ e1e2.

△Example 6. The funtor ΦLaby(Λ
2) will take

X = 〈e1 ∧ e1〉 = 0, Y = 〈e1 ∧ e2〉and map
α : 0

β : 0

σ : e1 ∧ e2 7→ −e1 ∧ e2.

△Example 7. The funtor ΦLaby(Γ
2) will take

X =
〈

e
[2]
1

〉

, Y = 〈e1e2〉and map
α : e

[2]
1 7→ e1e2

β : e1e2 7→ 2e
[2]
1

σ : e1e2 7→ e1e2.

△
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CHAPTER 6MultisetsÄr du en enhet eller delar?Jag bäfvar, mod oh sansning felar,Min fråga gör mig stel oh stum.� Hedvig Charlotta Norden�yht, Öfver Andra MosebokXXXIII:18,20; XXXIV:5,61. MultisetsA multiset is a set with possibly repeated elements. More formally:De�nition 1. A multiset is a pair
M = (#M, degM ),where #M is a set and
degM : #M → Z+is a funtion, alled the degree (or multipliity) funtion. ⋄The underlying set #M is alled the support of M . We all degM a thedegree or multipliity of an objet a ∈ #M ; it ounts the �number of times

a ours in M �. The degree of the whole multiset M we de�ne to be
degM =

∏

x∈#M

(deg x)!.We taitly assume all multisets under disussion to be �nite, as these are theonly ones we will ever need. The ardinality of M is its number of elements,ounted with multipliity:
|M | =

∑

x∈#M

deg x.Example 1. The multiset {a, a, b} has ardinality 3 and support {a, b}. Wehave deg a = 2, deg b = 1 and deg c = 0. △87



The union A ∪ B of two multisets A and B is preisely what it should be,namely, the elements of A together with those of B. More formally,
A ∪B = (#A ∪#B, degA∪B : x 7→ degA x+ degB x).The diret produt of two multisets A and B is also preisely what it shouldbe, namely the multiset of all possible pairs of elements of A and B:
A×B = (#A×#B, degA×B : x 7→ degA x · degB x).There is also a natural notion of submultisets1: Say A ⊆ B if degA x ≤ degB xfor all x, so that all elements of A are in B.We adopt the following onvention: Whenever we quantify over a multiseteah element should be ounted as many times as its multipliity indiates. (Ifwe do wish to ount eah element only one, we will quantify over the support.)Thus, for example,

∏

{a, a, b} =
∏

x∈{a,a,b}

x = a2b.Finally, reall that the Priniple of Inlusion and Exlusion states, in oneform, the following: If f and g are funtions suh that
∑

X⊆Y

f(X) = g(Y ),then
f(Y ) =

∑

X⊆Y

(−1)|Y |−|X|g(X).Here X and Y range over sets, but a generalization to multisets is immediate.Theorem 1: The Multiset Priniple of Inlusion and Exlusion. If fand g are funtions suh that
∑

#A⊆Y
|A|=n

f(A) = g(Y ),then ∑

#A=Y
|A|=n

f(A) =
∑

X⊆Y

(−1)|Y |−|X|g(X),where A ranges over multisets, and X and Y over sets.1Some people all these multisubsets.
88



2. MultationsLet A and B be multisets of equal ardinality. A multation ϕ : A → B is apairing of their elements. We shall write multations as two-row matries, withthe elements of A on top of those of B, the way ordinary permutations areusually written:
ϕ =

[
a1 · · · an
b1 · · · bn

]The order of the olumns is of ourse irrelevant.Observe that ϕ under no irumstanes an be regarded as an ordinary�funtion�, sine idential opies of some element of A may very well be pairedo� with distint elements of B.
ϕ will, however, be a submultiset of A × B, suh that every element of Aours exatly one as the �rst omponent of a pair in ϕ, and eah element of

B exatly one as a seond omponent. (This may serve as a formal de�nition.)The degree degϕ(a, b) ounts the number of times a ∈ A is paired o� with b ∈ B.As a notational onveniene, we adopt the following (purely formal) onven-tion: If
ϕ =

[
a1 · · · an
b1 · · · bn

]is a multation, de�ne
(
a1 · · · an
b1 · · · bn

)

= (degϕ)

[
a1 · · · an
b1 · · · bn

]

.Also, given a multation
[
a1 a1 . . . a2 a2 . . .
b1 b1 . . . b2 b2 . . .

]

,with mj appearanes of the olumn [aj
bj

], we may sometimes adopt the perspe-tive of viewing it as a formal produt
[
a1

b1

][m1] [a2

b2

][m2]

. . .of divided powers. Thus, the expression
(
a1 a1 . . . a2 a2 . . .
b1 b1 . . . b2 b2 . . .

)

=

[
a1

b1

]m1
[
a2

b2

]m2

. . . ,will denote the orresponding produt of ordinary powers. The rationale behindthis formalism is that, when omposing multations, the round-braket notationprovides a natural way of handling the diverse degrees of the multations involved,whih would otherwise be quite umbersome.89



Example 2. There exist two multations from the multiset {a, a, b} to itself,namely: [
a a b
a a b

] [
a a b
a b a

]The degree of (a, b) is 0 with respet to the �rst of these, and 1 with respet tothe seond.In this ase, we have
(
a a b
a a b

)

= 2

[
a a b
a a b

]and (
a a b
a b a

)

=

[
a a b
a b a

]

.

△3. The Multiset CategoryConsider a diagram of multations and multisets of equal ardinality:
[n]

α //

β   @
@@

@@
@@

A

ϕ

��
BWe say that the pair (α, β) indues the multation ϕ, if the diagram �ommutes�,in the sense that

β(j) = ϕα(j)for all j. The idea is that the multations α and β provide two ompatible�enumerations� of A and B.We now proeed to de�ne the omposition of two multations. We hooseto de�ne the omposition of two round-braket multations, and then extend bylinearity. So onsider two suh multations
(
α(1) · · · α(n)
β(1) · · · β(n)

)

,

(
γ(1) · · · γ(n)
δ(1) · · · δ(n)

)

,with the �rst one going A → B and being indued by the pair (α, β), and theseond going B → C and indued by (γ, δ). We de�ne their omposition by�summing over all possibilities of omposing them�:
(
γ(1) · · · γ(n)
δ(1) · · · δ(n)

)

◦
(
α(1) · · · α(n)
β(1) · · · β(n)

)

=
∑

σ

(
α(1) · · · α(n)
δσ(1) · · · δσ(n)

)

,where the sum is to be taken over all permutations σ : [n] → [n] suh that
β(j) = γσ(j) for all j. 90



Example 3. For example, we have:
(
p q q
x x y

)

◦
(
a a b
p q q

)

=

(
a a b
x x y

)

+

(
a a b
x y x

)

.The possible permutations σ : [3]→ [3] are () and (2, 3).It follows that
[
p q q
x x y

]

◦
[
a a b
p q q

]

=

(
p q q
x x y

)

◦
(
a a b
p q q

)

=

(
a a b
x x y

)

+

(
a a b
x y x

)

= 2

[
a a b
x x y

]

+

[
a a b
x y x

]

.

△It is not immediately obvious that omposition of two multations will resultin an integer sum of multations. That this is indeed the ase, is a onsequeneof the following lemma.Lemma 1: The Multation Lemma. Let P and Q be multisets, and supposethat the multation χ : P → Q is indued by the multations ζ : [n] → P and
η : [n] → Q. The number of permutations σ : [n] → [n] suh that ζ and ησindue the same multation χ is exatly

degP degQ

degχ
.Proof. The multation χ is represented by the array

[
ζ(1) ζ(2) . . .
η(1) η(2) . . .

]

.The number of permutations σ1 : [n] → [n] that leave the �rst row invariant(ζ(j) = ζσ1(j) for all j) is preisely degP . Similarly, the number of permuta-tions σ2 that leave the seond row invariant (η(j) = ησ2(j) for all j) is preisely
degQ. Then every possible permutation σ : [n]→ [n] will arise as a omposition
σ2σ

−1
1 , and will be ounted exatly degχ times.The identity multation (�identitation�) ιA of a multiset A is the multationin whih every element is paired o� with itself. It is lear that ompositionis assoiative and that the identity multations at as identities. Realling ourlong-running onvention of a �xed base ring R of salars, we may thus de�ne:De�nition 2. The nth multiset ategory is de�ned in the following way.The objets are the multisets of ardinality exatly n. Given two multisets Aand B, the arrow set MSetn(A,B) will be the free module generated by themultations A→ B. ⋄91



4. The Divided Power FuntorsMultisets have a anonial representation as funtors. For A a multiset, we let
ΓA =

⊗

a∈A

Γa.De�nition 3. The nth divided power ategory DPn is the full subate-gory of HPoln onsisting only of the funtors ΓA, where A ∈MSetn. ⋄Theorem 2. The funtor
Ξ: MSetn → DPn,taking the multiset A to the funtor ΓA, and a multation ϕ : A → B with

degϕ(a, b) = gab to the natural transformation ϕ : ΓB → ΓA given by the formula
⊗

b∈#B

y
[
P

a∈#A degϕ(a,b)]

b 7→
⊗

a∈#A

∏

b∈#B

y
[degϕ(a,b)]

b ,is a ategory anti-isomorphism.Proof. Let the multation ϕ : A → B satisfy degϕ(a, b) = gab for a ∈ #A and
b ∈ #B, so that it will orrespond to the natural transformation ϕ : ΓB → ΓAgiven by

⊗

b∈#B

y
[
P

a∈#A gab]

b 7→
⊗

a∈#A

∏

b∈#B

y
[gab]
b .Suppose also that a ψ : B → C is given, with degψ(b, c) = hbc for b ∈ #Band c ∈ #C, so that it orresponds to the following natural transformation

ψ : ΓC → ΓB:
⊗

c∈#C

x
[
P

b∈#B hbc]
c 7→

⊗

b∈#B

∏

c∈#C

x[hbc]
c .We �rst alulate ψϕ. Let

α : [n]→ A, β : [n]→ B, γ : [n]→ B, δ : [n]→ Cbe multations, suh that (α, β) indues ϕ, and (γ, δ) indues ψ.
ψϕ =

[
γ(1) · · · γ(n)
δ(1) · · · δ(n)

]

◦
[
α(1) · · · α(n)
β(1) · · · β(n)

]

=
1

degϕdegψ

(
γ(1) · · · γ(n)
δ(1) · · · δ(n)

)

◦
(
α(1) · · · α(n)
β(1) · · · β(n)

)

=
1

degϕdegψ

∑

σ

(
α(1) · · · α(n)
δσ(1) · · · δσ(n)

)
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where the sum is taken over all bijetions σ : [n] → [n] suh that βσ(j) = β(j)for all j. Now �x natural numbers kabc, and onsider only those σ having exatly
kabc indies j for whih

α(j) = a, β(j) = βσ(j) = b, γσ(j) = c.By the Multation Lemma, there are exatly
degϕdegψ
∏

a,b,c kabc!suh bijetions, so from these, we get a ontribution
1

∏

a,b,c kabc!

∏

a,c

[
a
c

]P

b kabc

=
∏

a,c

(∑

b kabc
{kabc}b

)[
a
c

]P

b kabc (6.1)to ψϕ.We now want to �nd the ation of ϕ ◦ ψ. Letting yb =
∑

c sbcxc, we get thefollowing ation of ϕ:
⊗

b

(
∑

c

sbcxc

)[
P

a gab]

7→
⊗

a

∏

b

(
∑

c

sbcxc

)[gab]

. (6.2)To �nd what ϕ ◦ ψ does to an element
⊗

c

x
[
P

b hbc]
c ,we seek �rst the oe�ient of

⊗

b

∏

c

x[hbc]
cin the left-hand side of (6.2), whih is

∏

b,c

shbc

bc .The answer is then the oe�ient of this in the right-hand side of (6.2). Thisoe�ient may be olleted in di�erent ways. Choosing skabc

bc from the fator
(
∑

c

sbcxc

)[gab]leads to a term
⊗

a

∏

b

∏

c

x[kabc ]
c =

⊗

a

∏

c

(∑

b kabc
{kabc}b

)

x
[
P

b kabc]
c ,in ϕ ◦ ψ, whih is exatly what (6.1) predits.This proves the funtoriality of Ξ. It should be more or less lear that everynatural transformation ΓB → ΓA is of the form designated, and uniquely so,whih proves Ξ is full and faithful. 93



The proof is ompliated, and is best understood by means of studyingexamples. An alternative, oneptually simpler, proof appears in [15℄.Example 4. The multation
[
1 1
1 2

]orresponds to the natural transformation Γ1 ⊗ Γ1 → Γ2 given by
x[1] ⊗ y[1] 7→ x[1]y[1],while the multation [

1 2
1 1

]orresponds to the transformation Γ2 → Γ1 ⊗ Γ1 mapping
x[2] 7→ x[1] ⊗ x[1].For another example, onsider the two multisets {1, 1, 2} and {1, 2, 2}. Theyorrespond to the divided power funtors Γ2⊗Γ1 and Γ1⊗Γ2, respetively. Thetwo multations [

1 1 2
2 2 1

] [
1 1 2
2 1 2

]orrespond to the two natural transformations Γ1 ⊗ Γ2 → Γ2 ⊗ Γ1 given by
x[1] ⊗ y[2] 7→ y[2] ⊗ x[1] x[1] ⊗ y[2] 7→ x[1]y[1] ⊗ y[1],respetively. △5. Homogeneous Polynomial FuntorsWe now turn to ombinatorially interpreting homogeneous polynomial funtors,and ite [15℄ as our referene. But �rst we state and prove yet another YonedaLemma.Theorem 3: The Multihomogeneous Yoneda Lemma. Let A be a mul-tiset with |A| = n and #A = [n], and F be a homogeneous funtor of degree n.The map

Υ: Nat(ΓA, F )→ F †
A(Rn)

η 7→ ηRn(1⊗[A])is an isomorphism of modules.Proof. We have, by the Homogeneous Yoneda Lemma,
⊕

#A⊆[n]
|A|=n

F †
A(Rn) = F (Rn)94



∼= Nat(Γn Hom(Rn,−), F )

= Nat







⊕

#A⊆[n]
|A|=n

ΓA, F







=
⊕

#A⊆[n]
|A|=n

Nat(ΓA, F ),and it is easy to see that the map Υ is the A-omponent of the original Yonedamap.Theorem 4. The funtor
ΦMSetn

: HPoln → Fun(MSetn,Mod),where ΦMSetn
(F ) : MSetn →Mod takes

A 7→ NatHPoln
(ΓA, F ) ∼= F (R#A)A

[ϕ : A→ B] 7→
[
ϕ∗ : NatHPoln

(ΓA, F )→ NatHPoln
(ΓB, F )

]
,is a ategory equivalene (note that, by virtue of the anti-isomorphism DPn

∼=
MSet◦n, the multation ϕ may also be viewed as a natural transformation ΓB →
ΓA).Proof. Let Φ = ΦMSetn

map the natural transformation θ : F → G to Φ(θ) :
Ψ(F )→ Ψ(G), given by

Φ(θ)A = θ∗ : NatHPoln
(ΓA, F )→ NatHPoln

(ΓA, G).Funtoriality of Φ is obvious.Note that the funtor
NatHPoln

(Γ−, F ) : MSetn →Modorresponds, under the ategory anti-isomorphism DPn
∼= MSet◦n, to the fun-tor

NatHPoln
(−, F ) : DPn →Mod,and it follows that

Nat(Φ(F ),Φ(G)) = Nat(NatHPoln
(Γ−, F ),NatHPoln

(Γ−, G))
∼= Nat(NatHPoln

(−, G),NatHPoln
(−, F )) ∼= NatHPoln

(F,G),when applying the (ordinary) Yoneda Lemma. This proves that Φ is fully faith-ful. 95



To show Ψ is essentially surjetive, let J : MSetn → Mod be given, andde�ne F : XMod→Mod by
F (RX) 7→

⊕

#A⊆X
|A|=n

J(A)(where, of ourse, X is a set, but A ranges over multisets). Also, given
S =

∑

syxσyx : RX → RY ,let the J(A)→ J(B) omponent of F (S) be given by
∑

ϕ : A→B

(∏

sϕ(a)a

)

J(ϕ),(the sum is taken over all multations ϕ : A → B). Here, as before, we let
σyx : RX → RY denote the homomorphism that takes 1x to 1y and every other
1z to 0.Showing this is a funtor is left for the reader, and we instead onentrateon showing Φ(F ) = J . For a multation ϕ : A → B, de�ne a (formal) dividedpower by

σ[ϕ] =
∏

σ
[degϕ(x,y)]
yx .A little thought shows that ϕ∗ takes

Nat(ΓA, F ) ∼= F (R#A)A ∋ y 7→ Fσ[ϕ](y) ∈ F (R#B)B ∼= Nat(ΓB , F ),and also that J(ϕ) = Fσ[ϕ] . Hene
Φ(F )(A) = ImFπ[A] = ImFσ[1A] = Im J(1A) = Im1J(A) = J(A)and

Φ(F )(ϕ) = ϕ∗ = Fσ[ϕ] = J(ϕ).6. Homogeneous Quadrati FuntorsWe here determine the struture of HPol2 by lassifying the quadrati fun-tors. To �nd the multiset desriptions of quadrati funtors, we �rst draw the(skeletal) struture of the ategory MSet2:
{1, 1}

A
''
{1, 2}

B

gg
Svv96



◦ A B S
A � ι+ S �
B 2ι � B
S A � ιTable 6.1: Multipliation table for MSet2.Every multation redues to a linear ombination of identity multations and thefollowing:

A =

(
1 1
1 2

)

B =

(
1 2
1 1

)

S =

(
1 2
2 1

)The multipliation table is given in Table 6.1. Compare this with Table 5.1 �the only di�erene lies in the value of the produt BA.Theorem 5. A quadrati homogeneous funtor is equivalent to the followingdata: modules X and Y , together with homomorphisms α, β, σ as indiated:
X

α
!!
Y

β

aa σffThese homomorphisms are subjet to the following four relations:
αβ = 1 + σ βσ = β σα = α σ2 = 1Evidently σ = αβ − ι is dispensable. It is enough to have α and β, subjetto the single relation

βα = 2.
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CHAPTER 7Numerial versus Strit Polynomial Funtors[. . . ℄ le plus beau projet de notre aadémie,Une entreprise noble et dont je suis ravie,Un dessein plein de gloire, et qui sera vantéChez tous les beaux esprits de la postérité [. . . ℄� Molière, Les Femmes savantes1. The Ariadne FuntorTo state and prove the main result of this setion, we need some heavy notation.For the duration of this setion, let n be a �xed natural number.Let P be a maze. A multipliity assignment (of degree n) is a funtion
µ : P → Z+,suh that ∑

p∈P

µ(p) = n.Note that P is a multiset; when we say �funtion�, we must therefore imagine thepassages of P to be labelled and distinguished, for example by some multation
[n] → P . Exatly how this is done will not matter, sine we will always sumover all possible multipliity assignments.If P had been a set, a multipliity assignment would amount to no more thanspeifying a multiset struture. But P is not a set, and we ertainly wish toavoid speaking of multisets supported by multisets, hene the new terminology.The degree of the multipliity assignment µ is de�ned to be

deg µ =
∏

p∈P

µ(p)!(as for multisets).To a given P with multipliity assignment µ : P → Z+, we assoiate a mul-tation
∏

[p : x→y]∈P

[
x
y

]µ(p)

= deg µ ·
∏

[p : x→y]∈P

[
x
y

][µ(p)]

.98



Beause∑p∈P µ(p) = n, this will always be a multation on a set with n elements(but not always on the same set).We now de�ne our main objet of study. Given a maze P , we let An(P ) bethe following sum of multations:
An(P ) =

∑

µ : P→Z+




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)


 . (7.1)This will provide a funtor from Laby to MSetn, whih we now set out toprove. We �rst prove that An respets the relations in Laby. It is lear that
An(P ) = 0 if a single passage of P is labelled 0. Now to show that
An

(

P ∪
{

u
a+b // v

})

=

An

(

P ∪
{

u
a // v

}
)

+An

(

P ∪
{

u
b // v

})

+An

(

P ∪
{

u
a //
b
// v

})

.This is an immediate onsequene of the equation
(a+ b)[m]

[
u
v

]m ∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)

= a[m]

[
u
v

]m ∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)

+ b[m]

[
u
v

]m ∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)

+
∑

i+j=m
i,j≥1

a[i]b[j]
[
u
v

]m ∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)

,where, for a �x multipliity assignment
µ : P ∪

{

u
a+b // v

}

→ Z+,we have let
m = µ( u

a+b // v ).Finally, let P : Y → Z and Q : X → Y be two mazes. To show that An isfuntorial, we alulate
An(PQ) = An




∑

S⊑P Q

S
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=
∑

S⊑P Q

∑

ξ : S→Z+




∏

[s : x→z]∈S

s[ξ(s)]
[
x
z

]ξ(s)




=
∑

S⊑P Q

∑

ξ

1

deg ξ

∏

[s : x→z]∈S

(

s

[
x
z

])ξ(s)

.Similarly,
An(P ) ◦An(Q)

=
∑

µ,ν




∏

[p : y→z]∈P

p[µ(p)]

[
y
z

]µ(p)

◦
∏

[q : x→y]∈Q

q[ν(q)]
[
x
y

]ν(q)




=
∑

µ,ν

1

deg µ deg ν

∏

[p : y→z]∈P

(

p

[
y
z

])µ(p)

◦
∏

[q : x→y]∈Q

(

q

[
x
y

])ν(q)

.Using the Multation Lemma, these two expressions are easily seen to be equal.We thus obtain:Theorem 1. The formulæ
An(X) =

⊕

#A⊆X
|A|=n

A

An(P ) =
∑

µ : P→Z+




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)


 ,for X a set and P a maze, provide a linear funtor
An : Laby→MSetn.De�nition 1. This funtor is alled the nth Ariadne funtor ⋄Theorem 2. Over a numerial base ring, the Ariadne funtor fators throughthe quotient ategory Labyn:
An : Labyn →MSetn.Proof. We must show that An respets the relations de�ning the quotient at-egory Labyn. It is lear that An(P ) = 0 when |P | > n, for then no multipliityassignments on P exist.To prove that An respets the relation

P =
∑

#A=P
|A|≤n

∏

p∈P

(
p

degA p

)

EA,100



we note �rst of all, that it is enough to prove it respets the speial ase
P ∪

{

u
a // v

}

=
∞∑

k=1

(
a

k

)[

P ∪
⋃

k

{ u 1 // v }
]

.To do that, we apply the Ariadne funtor. By onsidering only those multipliityassignments µ satisfying µ(a) = m, for some �xed m, and ating in a ertain�xed manner on P , we see (after some omputation) that our task redues toestablishing the equality
a[m] =

∞∑

k=1

(
a

k

)
∑

δ : [k]→Z+

∏

j∈[k]

1[δ(j)],where the sum is taken over those δ ful�lling ∑ δ(j) = m. But
m!

∞∑

k=1

(
a

k

)
∑

δ : [k]→Z+

∏

j∈[k]

1[δ(j)] =

∞∑

k=1

(
a

k

)
∑

δ : [k]→Z+

(
m

{δ(j)}j

)

= am.This is beause the inner sum ounts the number of ways m distint objetsmay be plaed in k distint boxes, with no box left empty. The total sum thenounts the number of ways to distribute the m objets into a total of a boxes.The proof is �nished. 2. Out of the LabyrinthThe Ariadne funtor leads the way out of the labyrinth ategory. More pre-isely, it leads to the following theorem on how to pass from a multiset funtor
J : MSetn →Mod to a labyrinth funtor H : Laby→Mod. The funtor (An)∗is in e�et the forgetful funtor

HPoln → Numn,and re�ets ombinatorially what happens when we take a homogeneous funtor,and view it simply as a numerial one.Theorem 3.
ΦLaby ◦ Φ−1

MSetn
= (An)∗.Proof. We must show that, for a funtor J : MSetn →Mod,

ΦLabyΦ
−1
MSetn

(J) = J ◦An.Denoting H = ΦLabyΦ
−1
MSetn

(J), we have, for a �nite set X ,
H(X) = Φ−1

MSetn
(J)†(R|X) = ImΦ−1

MSetn
(J)

(

♦
x∈X

πx

)101



= Im
∑

Y⊆X

(−1)|X|−|Y |Φ−1
MSetn

(J)




∑

y∈Y

πy



 .The J(A)→ J(B) omponent of
∑

Y⊆X

(−1)|X|−|Y |Φ−1
MSetn

(J)




∑

y∈Y

πy



is ∑

Y⊆X

(−1)|X|−|Y |
∑

ϕ : A→B

(∏

δYϕ(a)a

)

J(ϕ),where we have de�ned
δYba =

{

1 if a = b ∈ Y
0 else.The only surviving omponents will therefore be those where A = B, ϕ = ιA,and #A ⊆ Y . Hene

H(X) = Im
∑

Y⊆X

(−1)|X|−|Y |
∑

#A⊆Y
|A|=n

J(ιA)

= Im
∑

Y⊆X

(−1)|X|−|Y |
∑

#A⊆Y
|A|=n

1J(A)

= Im
∑

#A=X
|A|=n

1J(A) =
⊕

#A=X
|A|=n

J(A) = JAn(X).The fourth step was due to the Multiset Priniple of Inlusion and Exlusion.Turning to H(P ), where P : X → Y is a maze, we �rst suppose that P hasno parallel passages. We may label the passages as pi : xi → yi, for 1 ≤ i ≤ k.
H(P ) = Φ−1

MSetn
(J) (♦ piσyixi

)

=
∑

I⊆[k]

(−1)k−|I|Φ−1
MSetn

(J)

(
∑

i∈I

piσyixi

)

,of whih the J(A)→ J(B) omponent is
∑

I⊆[k]

(−1)k−|I|
∑

ϕ : A→B

(∏

pIϕ(a)a

)

J(ϕ)

=
∑

ϕ : A→B




∑

I⊆[k]

(−1)k−|I|
∏

pIϕ(a)a



J(ϕ), (7.2)102



where we have de�ned
pIba =

{

pi if a = xi and b = yi for i ∈ I
0 else.We see that, for the oe�ient of J(ϕ) to be non-zero, all elements of themultation ϕ must �orrespond� to passages in P . The onverse also holds,namely that all passages of P must be represented in ϕ. This is beause, ifa passage pj be �missing� from ϕ, sets I with and without j in (7.2) will giverise to terms of alternating signs, whih will anel eah other out. Hene theoe�ient of J(ϕ) will survive only if ϕ is of the form

ϕ =
∏

i

[
xi
yi

][mi]

,for positive integers m1 + · · · + mk = n. Furthermore, we observe that only
I = [k] will yield a non-zero ontribution in (7.2), so onsequently,

H(P ) =
∑

m1+···+mk=n

(∏

pmi

i

)

J

(
∏

i

[
xi
yi

][mi]
)

=
∑

m1+···+mk=n

(∏

p
[mi]
i

)

J

(
∏

i

[
xi
yi

]mi

)

= JAn(P ).Consider now a maze with a pair of parallel passages
Q = P ∪

{

u
a //
b

// v

}

= P ∪
{

u
a+b // v

}

− P ∪
{

u
a // v

}

− P ∪
{

u
b // v

}

,where we indutively assume the equations
H

(

P ∪
{

u
a+b // v

})

= JAn

(

P ∪
{

u
a+b // v

})

H
(

P ∪
{

u
a // v

})

= JAn

(

P ∪
{

u
a // v

})

H

(

P ∪
{

u
b // v

})

= JAn

(

P ∪
{

u
b // v

})hold. Then
H(Q) = JAn(P ∪ {a+ b})− JAn(P ∪ {a})− JAn(P ∪ {b})

=
∑

µ : P∪{a+b}→Z+

J




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]

· (a+ b)[µ(a+b)]

[
u
v

]µ(a+b)
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−
∑

µ : P∪{a}→Z+

J




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]

· a[µ(a)]

[
u
v

]µ(a)




−
∑

µ : P∪{b}→Z+

J




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]

· b[µ(b)]

[
u
v

]µ(b)




=
∑

µ : P∪{a,b}→Z+

J




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]

· a[µ(a)]b[µ(b)]

[
u
v

]µ(a)+µ(b)




= JAn(Q),as desired. 3. Simple MazesIn the preeding setion we saw how the Ariadne funtor provides the bridgebetween homogeneous and numerial funtors. We shall here see how it may beused as a numerial invariant, whih an shed light on the internal struture ofthe labyrinth ategories.De�nition 2. A maze of whih all passages arry the label 1, is alled asimple maze. ⋄Theorem 4. Given �nite sets X and Y , the simple mazes are linearly inde-pendent in the module Laby(X,Y ).Proof. Suppose we have a relation
∑

j

an,jPn,j +
∑

j

an+1,jPn+1,j + · · · = 0in Laby(X,Y ), where ai,j ∈ R and eah Pi,j denotes a simple maze of ardinality
i. All Pi,j are of ourse assumed to be distint. The nth Ariadne funtor will killall mazes with ardinality greater than n, and the end result after appliationwill be ∑

j

an,jAn(Pn,j) = 0.But sine the Pn,j are distint simple mazes, the An(Pn,j) will all denote distintmultations. Hene all an,j = 0. The laim now follows by indution.Theorem 5. Let the base ring be numerial. Given �nite sets X and Y , thesimple mazes onstitute a basis for the module Labyn(Z)(X,Y ), whih is thusfree.Proof. The above proof for linear independene goes through exatly as before,beause the Ariadne funtor fators through the quotient ategory Labyn. Usingthe de�ning equation for Labyn, we see that any maze will redue to simpleones. 104



And as an immediate orollary:Theorem 6.
Labyn(R) ∼= R⊗Z Labyn(Z).4. The Wedge CategoryFor referene, we devote this setion to investigating the onnetion betweenour mazes and the ategory of surjetions explored by Pirashvili et al. in [1℄.Let C be a ategory possessing weak pullbaks ; that is, a �nite number ofuniversal ways to omplete an inomplete pullbak square. For two objets

X,Y ∈ C, a wedge1 from X to Y is a diagram (read from left to right):
X Uoo // YWe identify the top and bottom wedges in the following ommutative diagram,with the middle olumn an isomorphism:

X Uoo
OO

��

// Y

X Voo // YDe�ne the wedge ategory Ĉ, based on C, in the following way: Its objetswill be those of C. Its arrows will be formal sums of wedges of C (identi�edunder the just desribed equivalene relation), in the free monoid they generate.Composition of wedges amounts to summing weak pullbaks:
[

X Uoo // Y Voo // Z
]

=
∑[

X Woo // Z
]where the sum is taken over all weak pullbaks:

W

~~ !!
U

~~}}
}}

  B
BB

B V

}}||
||

  @
@@

@

X Y Z(If C does indeed possess pullbaks, there is no need to revert to these formalsums, and omposition an be de�ned simply as the pullbak.) It will now beobserved, onfer [1℄, that Ĉ is a preadditive ategory.The ategory Ω of �nite sets and surjetions possesses weak pullbaks. Na-mely, the square:
W //

��

B

β

��
A α

// P1[1℄ uses �èhe, a word whih is usually used to denote a single arrow.105



is a weak pullbak i�
W ⊑ A×P B = {(a, b) ∈ A×B | α(a) = β(b)},so that the projetions on A and B are both onto. We all A×P B (the pullbakin Set) the prinipal pullbak.The existene of weak pullbaks ensures that the wedge ategory Ω̂ may bereated. We form a quotient ategory Ω̂n by foring all wedges:

X Uoo // Yof whih |U | > n, to equal 0. It turns out that this ategory is already knownto us as Labyn(Z).Theorem 7.
Ω̂n ∼= Labyn(Z).Proof. The objets of both ategories are �nite sets, and eah set will of ourseorrespond to itself. Wedges will orrespond to simple mazes; more preisely,the wedge

ϕ =

[

X U
ϕ∗

oo ϕ∗ // Y

]in Ω̂n will orrespond to the simple maze X → Y , of whih the passages x→ ynumber exatly
∣
∣(ϕ∗, ϕ∗)

−1(x, y)
∣
∣(the ardinality of the �bre above (x, y) ∈ X×Y ). Sine the simple mazes from

X to Y form a basis, this orrespondene is full and faithful.It remains to show funtoriality. Suppose
ϕ =

[

X U
ϕ∗

oo ϕ∗ // Y

]

, ψ =

[

Y V
ψ∗

oo ψ∗ // Z

]are two wedges, orresponding to the mazes P : X → Y and Q : Y → Z, wherethe number of passages x→ y in P equals
|(ϕ∗, ϕ∗)

−1(x, y)|,and the number of passages y → z in Q equals
|(ψ∗, ψ∗)

−1(y, z)|.The theorem then follows from the observation that U ×Y V may be naturallyidenti�ed with Q P , and subsets W ⊑ U×Y V with submazes R ⊆ Q P .The main result of [1℄ is, in our language, the following2:2They restrit their attention to pointed funtors, that is, funtors that take 0 to itself.We have irumvented this restrition by onsidering ∅ to be a �nite set.106



Theorem 8.
Numn(Z) ∼ Fun(Ω̂n, ZMod).Proof. Follows immediately from the preeding theorem and the equivalene

Numn ∼ Fun(Labyn,Mod).
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