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CHAPTER 0PreliminariesEn ty
ktes vara hvass, o
h grep mig an för stöld,Att jag ur bö
ker tog, med andras tankar jäste;Men huru vet hon det, som aldrig nånsin läste?� Hedvig Charlotta Norden�y
ht,Satir emot afundsjuka fruntimmer1. Ring TheoryThe following proposition is known to mathemati
ians as Delsarte's Lemma,but there seems to be no tangible way to atta
h his name unto it. As it is avery general theorem, we 
hoose to pla
e it here among the preliminaries, ratherthan in Chapter 1, where it is applied. It holds not only for rings, but also forgroups, linear spa
es, modules,. . . , with virtually identi
al proofs (but it is falsefor monoids). Unfortunately we need to prove it twi
e, as we will have use forboth a ring-theoreti
al and an abstra
t nonsense version for abelian 
ategories.(Both are probably spe
ial 
ases of some as yet undis
overed Universal Delsarte'sLemma, whi
h we leave as an exer
ise for the interested reader to �nd.)Theorem 1: The Ring-Theoreti
al Delsarte's Lemma. In the diagrambelow, A, B and C are (
ommutative, unital) rings, su
h that C ⊆ A × B andthe proje
tions
pc : C → A, qc : C → Bare both onto. Then A and B have a 
ommon fa
tor ring D whi
h 
ompletesthe diagram into a pullba
k square:

A
a

##F
FFF

FF
FFF

C

##F
FF

FF
FFF

F
�

� c //

;;xxxxxxxxx
A×B

p

OO

q

��

D

B

−b

;;xxxxxxxxxEquivalently,
C = Ker(a+ b).5



Proof. Note that
A ∩ C = Ker pc, B ∩ C = Ker qc,from whi
h the Fundamental Homomorphism Theorem gives
A = Im pc ∼= C/Kerpc = C/(A ∩ C)

B = Im qc ∼= C/Ker qc = C/(B ∩ C),and hen
e
A/(A ∩C) ∼= C/

(
(A ∩ C) + (B ∩ C)

) ∼= B/(B ∩C).We may therefore de�ne
D = C/

(
(A ∩ C) + (B ∩C)

)
,and let a : A→ D and −b : B → D be the natural quotient maps.To �nd the kernel of a+ b, suppose x ∈ A and y ∈ B satisfy

0 = a(x+A ∩ C) + b(y +B ∩ C) = x− y +
(
(A ∩C) + (B ∩ C)

)
.This means

x+ x′ = y + y′,for some x′ ∈ A ∩C and y′ ∈ B ∩ C. But then
z = x+ x′ = y + y′ ∈ A ∩B = 0,so in fa
t x = −x′ and y = −y′ are both in C. Consequently, C = Ker(a+b).2. Commutative AlgebraTheorem 2: Chevalley's Dimension Argument. When R is a �nitelygenerated (non-trivial) ring, the (in)equality

dimR/pR = dimQ⊗Z R ≤ dimR− 1holds for all but �nitely many prime numbers p. When R is an integral domainof 
hara
teristi
 0, there is in fa
t equality for all but �nitely many primes p.Proof. In the 
ase of positive 
hara
teristi
 n, the formula will hold trivially, forthen
Q⊗Z R = 0 = R/pR,ex
ept when p | n.Consider now the 
ase when R is an integral domain of 
hara
teristi
 0.We have an embedding ϕ : Z → R, and a 
orresponding dominant morphism6



Specϕ : SpecR → SpecZ of integral s
hemes, whi
h is of �nite type. Letting
FracP denote the fra
tion �eld of R/P , we may de�ne

Cn = {P ∈ SpecZ | dim(Specϕ)−1(P ) = n}
= {P ∈ SpecZ | dimR⊗Z FracP = n}
= {(p) | dimR/pR = n} ∪ {(0) | dimR⊗Z Q = n},and this set, by Chevalley's Constru
tibility Theorem1, will 
ontain a dense,open set in SpecZ if n = dimR − dimZ. Su
h a set must 
ontain (0) and (p)for all but �nitely many primes p, so for those primes,

dimQ⊗Z R = dimR/pR = dimR− 1.Now let R be an arbitrary ring of 
hara
teristi
 0. For any prime ideal Q,
R/Q will be an integral domain (but not ne
essarily of 
hara
teristi
 0!), andso we 
an apply the pre
eding to obtain

dimQ⊗Z R/Q = dimR/(Q+ pR) = dimR/Q− 1,for all but �nitely many primes p. The prime ideals of Q ⊗Z R are all of theform Q⊗Z Q, where Q is a prime ideal in R. Moreover,
(Q⊗Z R)

/
(Q⊗Z Q) = Q⊗Z R/Q.It follows that

dimQ⊗Z R = max
Q∈SpecR

dim(Q⊗Z R)
/
(Q⊗Q)

= max
Q∈SpecR

dimQ⊗Z R/Q

= max
Q∈SpecR

dimR/(Q+ pR)

= max
Q∈SpecR/pR

(R/pR)
/
Q = dimR/pRfor all but �nitely many p, be
ause the maxima are taken over the �nitely manyminimal prime ideals only. In a similar fashion,

dimQ⊗Z R ≤ dimR− 1,and the theorem is proved.An immediate 
orollary is thatQ-algebras are never �nitely generated, whi
his of 
ourse fun to know.1This proposition appears to belong to the folklore of algebrai
 geometry. An expli
itreferen
e is Théorème 2.3 of [11℄.
7



3. Category TheoryThe following is a (not exhaustive) list of the 
ategories we will use. Thosewhi
h are not standard will of 
ourse be de�ned somewhere in the text.
CRing Commutative, unital rings.
CAlg Commutative, unital algebras.
NRing Numeri
al rings.
NAlg Numeri
al algebras.
Mod Modules.
FMod Free modules.
XMod Finitely generated, free modules.
Num Numeri
al fun
tors.
SPol Stri
tly polynomial fun
tors.
HPol Homogeneous polynomial fun
tors.
Set Sets.
MSet Multisets.
Laby The labyrinth 
ategory.When C is a 
ategory, we let

C◦denote the opposite 
ategory. Given two obje
ts X,Y ∈ C, the arrow set of Xand Y will in general be denoted by
C(X,Y ).There are two ex
eptions to this rule. When inside a module 
ategory, thehomomorphisms between the R-modules M and N will be denoted by

HomR(M,N)(and the letter R will be omitted if the ring is 
lear from the 
ontext (whi
h itgenerally is)). Also, when inside a fun
tor 
ategory, the natural transformationsbetween the fun
tors F and G will be denoted by
Nat(F,G)(or just Nat(F ) if F = G).Given two 
ategories A and B, we let
Fun(A,B)denote the 
ategory of fun
tors from A to B.We now des
ribe the abstra
t version of Delsarte's Lemma.8



Theorem 3: The Abstra
t Delsarte's Lemma. We work inside an abelian
ategory.In the diagram below, let A, B and C be su
h that C ⊆ A ⊕ B and thearrows
pc : C → A, qc : C → Bare epi
. Then A and B have a 
ommon quotient obje
t

A
a // // D B

boooo ,whi
h 
ompletes the diagram into a pullba
k square:
A

a

##F
FF

FFF
FFF

C

## ##F
FFF

FF
FF

F
�

� c //

;; ;;xxxxxxxxx
A⊕B

p

OO

d // //

q

��

D

B

−b

;;xxxxxxxxxEquivalently,
C = Ker(a+ b).In fa
t, we may take D = (A⊕B)/C.Conversely, let a 
ommon quotient obje
t

A
a // // D B

booooof A and B be given. Then the proje
tions of
C = Ker(a+ b : A⊕B → D)on A and B are epimorphisms.Proof. Qui
k and easy way out: diagram-
hasing and an o�-hand referen
e toMit
hell's Embedding Theorem.That would be 
heating, though. We prefer to do it by abstra
t nonsense.Consider the following tangle, where we have de�ned d = Coker c:

A
a

##F
FF

FFF
FFF

i

��
C

## ##F
FF

FF
FF

FF
�

� c //

;; ;;xxxxxxxxx
A⊕B

p

OO

d // //

q

��

D
x // X

B

j

OO

−b

;;xxxxxxxxx 9



To show a = di is epi
, let x be any arrow su
h that xdi = xa = 0. Then
xd = xd ◦ 1A⊕B = xd(ip+ jq) = xdip+ xdjq = xdjq,from whi
h 0 = xdc = xdjqc, but sin
e qc is epi
, it must be that xdj = 0.Hen
e xd = xdjq = 0, from whi
h x = 0, using that d is epi
. Similarly, −b isepi
.Sin
e we de�ned d = Coker c, the sequen
e

0 // C
c // A⊕B d // D // 0is exa
t, and it now follows from Proposition 2.53 of [8℄ that the above squareis in fa
t not only a pullba
k square, but a Doolittle square2.For the 
onverse, suppose the vee given, and de�ne c = Ker(ap+bq). Inspe
tthe following diagram:
A

a

##F
FF

FFF
FFF

C

##F
FF

FF
FF

FF
�

� c //

;;xxxxxxxxx
A⊕B

p

OO

q

��

D
x // X

B

−b

;;xxxxxxxxx

c is the equalizer of ap and −bq and hen
e the square is a pullba
k square. Bythe Pullba
k Theorem (Theorem 2.54 of [8℄), qc is an epimorphism sin
e a is,and similarly for pc. 4. Set TheoryWe will everywhere use the standard notation
[n] = {1, . . . , n}.The text is pervaded by the use of multisets. They are formally introdu
edin Chapter 6, and the reader may want to skip ahead when need arises.

2A Doolittle square is a square whi
h is both a pullba
k and a pushout square.10



CHAPTER 1Numeri
al RingsAt the age of twenty-one he wrote a treatise upon the Binomial Theorem,whi
h has had a European vogue.� Sherlo
k Holmes's des
ription of Professor Moriarty;Arthur Conan Doyle, The Final ProblemNumeri
al rings were (presumably) �rst dis
overed1 in 2002 by Torsten Ekedahl,see [7℄, who used them as a natural setting for integral homotopy theory. How-ever, on
e de�ned, these remarkable rings were immediately put to use, andno detailed study was ever made of their elementary properties. This is unfor-tunate, as the numeri
al rings turn out to present an array of rather pleasantproperties, some of whi
h may 
ome somewhat as a surprise.1. Numeri
al RingsThe original de�nition, in [7℄, of a numeri
al ring was quite a non-expli
it one. Itwas stated in terms of three mysterious polynomials, the exa
t nature of whi
hwas never made pre
ise. Our de�nition intends to remedy this.De�nition 1. A numeri
al ring is a 
ommutative ring with unity equippedwith unary operations r 7→ (
r
n

), n ∈ N, 
alled binomial 
oe�
ients, satisfyingthe following axioms:I. (a+ b

n

)

=
∑

p+q=n

(
a

p

)(
b

q

).II. (ab
n

)

=

n∑

m=0

(
a

m

)
∑

q1+···+qm=n
qi≥1

(
b

q1

)

· · ·
(
b

qm

).III. ( a
m

)(
a

n

)

=
n∑

k=0

(
a

m+ k

)(
m+ k

n

)(
n

k

).1He uses himself the word �introdu
ed�, but humility has always been among his 
hiefvirtues. 11



IV. (1

n

)

= 0 when n ≥ 2.V. (a
0

)

= 1 and (a
1

)

= a.
⋄The original de�nition also in
luded a (non-expli
it) formula for redu
ing the
omposition ((a

m)
n

) of binomial 
oe�
ients to simple ones. Surprisingly enough,this formula will be a 
onsequen
e of the �ve axioms we have listed.It follows easily from axioms I, IV and V, that when these fun
tions areevaluated on multiples of unity, we retrieve the ordinary binomial 
oe�
ients,namely
(
m · 1
n

)

=
m(m− 1) · · · (m− n+ 1)

n!
· 1, m ∈ NSin
e (n·1n ) = 1, but (0n) = 0 unless n = 0, we see that a numeri
al ring hasne
essarily 
hara
teristi
 0.The numeri
al stru
ture on a given ring is always unique. This will be provedshortly.Example 1. Every Q-algebra is numeri
al with the usual de�nition of bino-mial 
oe�
ients: (

r

n

)

=
r(r − 1) · · · (r − n+ 1)

n!
.The numeri
al axioms may be proved either dire
tly, or by manipulating formalpower series. △Example 2. For any integerm, the ring Z[m−1] is numeri
al. Sin
e it inheritsthe binomial 
oe�
ients from Q, it is just a matter of verifying that this ringis 
losed under binomial 
oe�
ients. Be
ause

( a
f

n

)

=

a
f (af − 1) · · · (af − (n− 1))

n!
=
a(a− f) · · · (a− (n− 1)f)

n!fn
,it will su�
e to prove that whenever pi | n!, but p ∤ b, then

pi | (a+ b)(a+ 2b) · · · (a+ nb).To this end, let
n = cmp

m + · · ·+ c1p+ c0, 0 ≤ ci ≤ p− 1,be the base p representation of n. For �xed k and 0 ≤ d < ck, the numbers
a+ (cmp

m + · · ·+ ck+1p
k+1 + dpk + i)b, 1 ≤ i ≤ pk, (1.1)will form a set of representatives for the 
ongruen
e 
lasses modulo pk, as do of
ourse the numbers

cmp
m + · · ·+ ck+1p

k+1 + dpk + i, 1 ≤ i ≤ pk. (1.2)12



Note that if x ≡ y mod pk and j ≤ k, then pj | x i� pj | y. Hen
e there are atleast as many fa
tors p among the numbers (1.1) as among the numbers (1.2).The 
laim now follows. △Example 3. As a spe
ial 
ase m = 1 of the pre
eding example, Z is a numer-i
al ring. For this ring there is a
tually another way of proving the numeri
alaxioms. We shall indiate how they may be arrived at as solutions to problemsof enumerative 
ombinatori
s:Axiom I. We have balls of two types: round balls, square balls. Ifwe have a round balls and b square balls, in how many ways may we
hoose n balls? Let p be the number of round balls 
hosen, and qthe number of square balls.Axiom II. We have a 
ho
olate box 
ontaining a re
tangular a× barray of pralines, and we wish to eat n of these. In how many ways
an this be done? Suppose the pralines we 
hoose to feast uponare lo
ated in m of the a rows, and let qi be the number of 
hosenpralines in row number i of these m.Axiom III. We are given a mathemati
ians, of whi
h m do analysisand n algebra. Naturally there exist people who do both. How manypossible distributions of skills are possible? Let k be the number ofmathemati
ians who do only algebra.Axiom IV � V. Clear.
△Example 4. The set

S = {f ∈ Q[x] | f(Z) ⊆ Z}of numeri
al maps on Z is numeri
al. Addition and multipli
ation of fun
tionsare evaluated pointwise, as are binomial 
oe�
ients:
(
f

n

)

(x) =

(
f(x)

n

)

=
f(x)(f(x) − 1) · · · (f(x) − n+ 1)

n!
.We will see later that S is also the free numeri
al ring (on the singleton set {x}).Seizing the opportunity, we re
all that any numeri
al map may be writtenuniquely as a numeri
al polynomial

f(x) =
∑

cn

(
x

n

)

, cn ∈ Z.This example may be generalized to any set of variables, and will later be seento 
onstitute the free numeri
al ring. △Example 5. The operations r 7→ (
r
n

), being given by rational polynomials,are 
ontinuous as maps Qp → Qp in the p-adi
 topology. It should be well13



known that Z is dense in the ring Zp, and that Zp is 
losed in Qp. Sin
e thebinomial 
oe�
ients leave Z invariant, the same must then be true of Zp, whi
his thus a numeri
al ring.This provides an alternative proof of the fa
t that Z[m−1] is 
losed underbiomial 
oe�
ients. For this is evidently true of the lo
alizations Z(p) = Q∩Zp,and therefore also for
Z[m−1] =

⋂

p∤m

Z(p).

△Example 6. Produ
ts of numeri
al rings are numeri
al. More generally, pro-je
tive limits of numeri
al rings are numeri
al. △Example 7. It is shown in [7℄ that the tensor produ
t of two numeri
al ringsover Z is numeri
al. In fa
t, a more general statement is proved, namely thatif R → S and R → T are homomorphisms of numeri
al rings, then S ⊗R T isnumeri
al and is the 
ategori
al pushout. △2. Elementary IdentitiesTheorem 1. The following formulæ are valid in any numeri
al ring:1. (r
n

)

=
r(r − 1) · · · (r − n+ 1)

n!
when r ∈ Z.2. n!

(
r

n

)

= r(r − 1) · · · (r − n+ 1).3. n(r
n

)

= (r − n+ 1)

(
r

n− 1

).Proof. The map
ϕ : (R,+)→ (1 + tR[[t]], ·), r 7→

∞∑

n=0

(
r

n

)

tnis by axioms I and V a group homomorphism. Therefore, when r ∈ Z,
ϕ(r) = ϕ(1)r = (1 + t)r,whi
h expands as usual (with ordinary binomial 
oe�
ients) by the BinomialTheorem. This proves equation 1. An indu
tive proof will also work.To prove equations 2 and 3, we pro
eed di�erently. By axiom III,

r

(
r

n− 1

)

=

(
r

n− 1

)(
r

1

)

=
1∑

k=0

(
r

n− 1 + k

)(
n− 1 + k

1

)(
1

k

)14



=

(
r

n− 1

)(
n− 1

1

)(
1

0

)

+

(
r

n

)(
n

1

)(
1

1

)

= (n− 1)

(
r

n− 1

)

+ n

(
r

n

)

,whi
h redu
es to equation 3.Equation 2 then follows indu
tively from equation 3.It may be noted, that axiom II has so far not been needed. Consequently,whenever a Q-algebra 
omes equipped with unary operations r 7→ (
r
n

), satisfyingthe axioms I, III, IV and V, it follows that in fa
t
(
r

n

)

=
r(r − 1) · · · (r − n+ 1)

n!
.3. TorsionIn this se
tion we shall prove that numeri
al rings la
k torsion, referring of
ourse to Z-torsion.First some lemmata 
on
erning binomial and multinomial 
oe�
ients:Lemma 1. Let m be an integer. If p is prime and pl | m, but p ∤ k, then

pl |
(
m
k

).Proof. pl divides the right-hand side of
k

(
m

k

)

= m

(
m− 1

k − 1

)

,and therefore also the left-hand side. But pl is relatively prime to k, so in fa
t
pl |

(
m
k

).Lemma 2. Let m1,m2, . . . be integers. If n =
∑∞

i=1mii is prime and m =
∑
mi, then

m |
(

m

{mi}

)

,unless m1 = m = n, and all other mi = 0.Proof. Let a prime power pl | m. Be
ause of the relation n =
∑
mii, not all mi
an be divisible by p, unless we are in the ex
eptional 
ase m1 = m = p = ngiven above. Say p ∤ mj ; then

(
m

{mi}i

)

=

(
m

mj

)(
m−mj

{mi}i6=j

)is divisible by pl a

ording to Lemma 1. The 
laim follows.Lemma 3. Let R be a numeri
al ring, r ∈ R, and m,n ∈ N. If nr = 0, also
mn
(
r
m

)
= 0. 15



Proof. Follows indu
tively, sin
e if nr = 0, then
mn

(
r

m

)

= n(r −m+ 1)

(
r

m− 1

)

= −n(m− 1)

(
r

m− 1

)

.Theorem 2. Numeri
al rings are torsionfree.Proof. Suppose nr = 0 in R and, without any loss of generality, that n is prime.
0 =

(
0

n

)

=

(
nr

n

)

=

n∑

m=0

(
r

m

)
∑

q1+···+qm=n
qi≥1

(
n

q1

)

· · ·
(
n

qm

)

=

n∑

m=0

(
r

m

)
∑

P

mi=m
P

mii=n

(
m

{mi}

)
∏

i

(
n

i

)mi

,where, for given numbers qi, we let mi denote the number of these that areequal to i (of 
ourse i ≥ 1 and mi ≥ 0). Given the numbers mi, values may bedistributed to the numbers qi in ( m
{mi}

) ways, whi
h a

ounts for the multinomial
oe�
ient above.We 
laim the inner sum is divisible by mn when m ≥ 2. For when 2 ≤ m ≤
n− 1, m | ( m

{mi}

) by Lemma 2; also, there must exist some 0 < j < n su
h that
mj > 0, and for this j, Lemma 1 says n | (nj)mj . In the 
asem = n, obviously all
mi = 0 for i ≥ 2, and m1 = n, so the inner sum equals (n1)n, whi
h is divisibleby n2 = mn.We 
an now employ Lemma 3 to kill all terms ex
ept m = 1. But this termis simply (r1) = r, whi
h is then equal to 0.This theorem is surprising indeed. We know of no other example of a varietyof algebras, of whi
h the axioms imply absense of torsion in a non-trivial way;that is, without implying a Q-algebra stru
ture. Not only that, the theoremis also a most 
ru
ial result in the theory of numeri
al rings. Over the 
ourseof the following se
tions, we will dedu
e several 
orollaries, seemingly withoute�ort. 4. UniquenessTheorem 3. There is at most one numeri
al ring stru
ture on a given ring.Proof. We know that n!

(
r
n

)
= r(r − 1) · · · (r − n+ 1), and that n! is not a zerodivisor.

16



5. Embedding into Q-AlgebrasTheorem 4. Every numeri
al ring may be embedded in a Q-algebra, wherethe binomial 
oe�
ients are given by the usual formula
(
r

n

)

=
r(r − 1) · · · (r − n+ 1)

n!
.Proof. If R is torsionfree, the map R→ Q⊗Z R is an embedding.We point out that this gives an alternative 
hara
terization of numeri
alrings, namely as torsionfree rings R whi
h are 
losed in Q ⊗Z R under theoperations

r 7→ r(r − 1) · · · (r − n+ 1)

n!
.6. Iterated Binomial Coe�
ientsIn Z, there �exists� a formula for iterated binomial 
oe�
ients:

(( r
m

)

n

)

=

mn∑

k=1

gk

(
r

k

)

, (1.3)in the sense that there are unique integers gk making the formula valid for every
r ∈ Z. There seems to be no 
losed formula for them, however; 
onfer [9℄. Note,however, that (1.3) is a polynomial identity with rational 
oe�
ients, whi
hmeans it must hold in any Q-algebra, and therefore in any numeri
al ring:Theorem 5. The formula

(( r
m

)

n

)

=

mn∑

k=1

gk

(
r

k

)for iterated binomial 
oe�
ients that is valid in Z, is valid in every numeri
alring. 7. Numeri
al Ring HomomorphismsDe�nition 2. A numeri
al ring homomorphism ϕ : R → S between nu-meri
al rings is a ring homomorphism preserving binomial 
oe�
ients:
ϕ

((
r

n

))

=

(
ϕ(r)

n

)

.

S is then a numeri
al algebra over R. ⋄17



We denote by NRing the 
ategory of numeri
al rings, and by RNAlg, orsimply NAlg, the 
ategory of numeri
al algebras over some �xed numeri
al basering R.Theorem 6. Every ring homomorphism of numeri
al rings is numeri
al, sothat NRing is a full sub
ategory of CRing.Proof. Let a ring homomorphism ϕ : R → S of numeri
al rings be given. Be-
ause of the la
k of torsion, the equation
n!ϕ

((
r

n

))

= ϕ

(

n!

(
r

n

))

= ϕ(r(r − 1) · · · (r − n+ 1))

= ϕ(r)(ϕ(r) − 1) · · · (ϕ(r) − n+ 1) = n!

(
ϕ(r)

n

)implies ϕ ((rn)) =
(
ϕ(r)
n

), so that ϕ is numeri
al.8. Free Numeri
al RingsDe�nition 3. Given a set X , the free numeri
al ring on X is the numeri
alring Z
(
X
−

) satisfying
NRing

(

Z

(
X

−

)

, R

)

∼= Set(X,R)fun
torially in the numeri
al ring R. ⋄This is the usual 
onstru
tion of a free obje
t. We now provide an expli
itdes
ription.Re
all from Example 4, that a numeri
al polynomial in the variables x1, . . . ,
xk is a formal (�nite) linear 
ombination

f(x) =
∑

cn1,...,nk

(
x1

n1

)

· · ·
(
xk
nk

)

, cn1,...,nk
∈ Z,that a numeri
al map is a rational polynomial mapping Z to itself, and thatthese two 
on
epts are essentially one and the same.Let Ẽ(X) be the set of all �nite words that 
an be formed from the alphabet

X ∪
{

+,−, ·, 0, 1,
(−
n

) ∣
∣
∣
∣
n ∈ N

}

,where + and · are binary, − and (−n) are unary, and 0 and 1 are nullary (this isthe so-
alled term algebra of universal algebra; 
onfer De�nition II.10.4 of [3℄).Impose (divide away) the axioms of a 
ommutative ring with unity, as well asthe numeri
al axioms, to 
reate a numeri
al ring E(X).18



Theorem 7. We have the following isomorphisms:
Z

(
X

−

)

∼= E(X) ∼= {f ∈ Q[X ] | f(ZX) ⊆ Z},so that every element of Z
(
X
−

) may be uniquely expressed as a numeri
al poly-nomial (or viewed as a numeri
al map).Proof. The numeri
al axioms, together with the formula for iterated binomial
oe�
ients, 
an be used to redu
e any element of E(X) to a numeri
al polyno-mial. The fa
t that the ring of numeri
al maps exists and is numeri
al, provesthat the numeri
al polynomials are also linearly independent, so that the ex-pression of an element as a numeri
al polynomial is also unique.From this it is evident that E(X) is free on X , for any set map ϕ : X → Rmay be uniquely extended to E(X) by setting
ϕ

(
∑

cn1,...,nk

(
x1

n1

)

· · ·
(
xk
nk

))

=
∑

cn1,...,nk

(
ϕ(x1)

n1

)

· · ·
(
ϕ(xk)

nk

)

.9. Numeri
al UniversalityTheorem 8: The Numeri
al Universality Prin
iple. A numeri
al poly-nomial identity p(x1, . . . , xk) = 0 universally valid in Z is valid in every numer-i
al ring.Proof. View p as an element of Z
(
x1,...,xk

−

). It is the zero numeri
al map, andtherefore also the zero numeri
al polynomial.We thus have a 
anoni
al embedding
Z

(
x1, . . . , xk
−

)

→ ZZ
k

p(x1, . . . , xk) 7→ (p(n1, . . . , nk))(n1,...,nk)∈Zk .Example 8. Numeri
al rings are spe
ial λ-rings in the sense of [10℄. (A morereadable a

ount is [12℄.) First re
all that a λ-ring (
alled pre-λ-ring by some)is a 
ommutative ring with unity, equipped with unary operations λ
n, n ∈ N,satisfying the following axioms:1. λ

0(a) = 1.2. λ
1(a) = a.3. λ
n(a+ b) =

∑

p+q=n

λ
p(a)λq(b). 19



For a numeri
al ring we 
an 
learly put λ
n(a) =

(
a
n

).The de�nition of a spe
ial λ-ring (
alled just spe
ial λ-ring by others) in-volves three more axioms, whi
h are quite 
umbersome, and will not be statedhere. They are, however, of a polynomial nature, so their veri�
ation in a nu-meri
al ring will simply 
onsist in verifying a number of numeri
al polynomialidentities. As these are valid in Z (for Z itself is well known to be a λ-ring),they will hold in every numeri
al ring by Numeri
al Universality. △10. The Nilradi
alYet another pleasant property of numeri
al rings is the following.Theorem 9: Fermat's Little Theorem. In numeri
al rings,
ap − a ≡ 0 mod pfor any prime p.Proof. Sin
e f(x) = xp−x

p is a numeri
al map, it may be written as a numeri
alpolynomial f(x) ∈ Z
(
x
−

). But then evidently ap − a = pf(a) ∈ pR.Example 9. The polynomial f may in fa
t be given expli
itly. For when
a ∈ N, we may 
al
ulate the number of maps [p]→ [a] as

ap =

p
∑

k=1

S(p, k)

(
a

k

)

,where S(p, k) denotes the number of onto fun
tions [p] → [k]. By enumerative
ombinatori
s, the numbers S(p, k), ex
ept for S(p, 1) = 1, are all divisible by
p, and so

ap − a
p

=

p
∑

k=2

S(p, k)

p

(
a

k

)

.It follows from the Numeri
al Universality Prin
iple that this formula is validin every numeri
al ring. △Theorem 10. The nilradi
al of a numeri
al ring is divisible, and hen
e ave
tor spa
e over Q.Proof. Let p be a prime and suppose r lies in the nilradi
al of R. Fermat's LittleTheorem states p | r(rp−1 − 1), from whi
h it indu
tively follows that
p | r(r2m(p−1) − 1)for all m ∈ N. A large enough m will kill r, and we 
on
lude that p | r.

20



11. Numeri
al Ideals and Fa
tor RingsWe shall now make a (very) short survey of numeri
al ideals and fa
tor rings.Theorem 11. Let I be an ideal of the numeri
al ring R. De�ning
(
r + I

n

)

=

(
r

n

)

+ Iwill yield a well-de�ned numeri
al stru
ture on R/I i�
(
e

n

)

∈ Ifor every e ∈ I and n 6= 0.Proof. The 
ondition is 
learly ne
essary. To show su�
ien
y, note that, when
r ∈ R and e ∈ I,

(
r + e

n

)

=
∑

p+q=n

(
r

p

)(
e

q

)

≡
(
r

n

)(
e

0

)

=

(
r

n

)

mod I,when (ej) ∈ I for j > 0. The numeri
al axioms in R/I then follow immediatelyfrom those in R.De�nition 4. An ideal I of a numeri
al ring satisfying the 
ondition of theprevious theorem will be 
alled a numeri
al ideal. ⋄Example 10. Z does not possess any non-trivial numeri
al ideals, be
ause allits non-trivial fa
tor rings have torsion. Neither do the rings Z[m−1]. △Theorem 12. Suppose R is a (
ommutative, unital) ring, having an ideal Iwhi
h is a ve
tor spa
e over Q, and for whi
h R/I is numeri
al. Then R itselfis numeri
al.Proof. Sin
e I and R/I are both torsionfree, so is R, and there is a 
ommutativediagram with exa
t rows:
0 // I

��

// R

��

// R/I

��

// 0

0 // Q⊗Z I = I // Q⊗Z R // Q⊗Z R/I // 0It su�
es to show that R is 
losed under the formation of binomial 
oe�
ientsin Q⊗Z R. Let r ∈ R.
r(r − 1) · · · (r − n+ 1)

n!
+ I =

(
r + I

n

)when 
al
ulated in the ring Q⊗Z R/I. Sin
e (r+In ) in fa
t lies in R/I, it mustbe that r(r−1)···(r−n+1)
n! ∈ R, and we are �nished.Note that the quotient map R→ R/I will automati
ally be a numeri
al ringhomomorphism. 21



12. Finitely Generated Numeri
al RingsLemma 4. If a ring R is torsionfree and �nitely generated as an abelian group,its fra
tion ring is Q⊗Z R.Proof. By the Stru
ture Theorem for Finitely Generated Abelian Groups, R ∼=
Zn for some n, 
onsidered as a group. Let a ∈ Zn. Multipli
ation by a is alinear transformation on Zn, and so may be 
onsidered an integer matrix A.The 
ondition that a not be a zero divisor 
orresponds to A being non-singular.It then has an inverse, with rational entries, and the inverse of a is given by

a−1 = A−11 ∈ Qn = Q⊗Z Rwhere 1 denotes the 
olumn ve
tor whi
h is the multipli
ative identity of R.Lemma 5. Let A be the algebrai
 integers in the �eld K ⊇ Q. If K is �nitelygenerated over Q, A is �nitely generated over Z.The following theorem (with proof) is due to Torsten Ekedahl. It 
lassi�es
ompletely those numeri
al rings whi
h are �nitely generated as rings (forget-ting the numeri
al stru
ture). Re
all from Example 2 that Z[m−1] inherits anumeri
al stru
ture from Q, and that produ
ts of numeri
al rings are numer-i
al, with 
omponentwise evaluation of binomial 
oe�
ients. Re
all also theinfamous Delsarte's Lemma. We proved it for rings, but the same proof goesthrough for numeri
al rings.Theorem 13: The Stru
ture Theorem for Finitely Generated Numer-i
al Rings. Let R be a numeri
al ring whi
h is �nitely generated as a ring.Then there exist unique positive integers m1, . . . ,mk su
h that
R ∼= Z[m−1

1 ]× · · · × Z[m−1
k ].Proof. We �rst impose the stronger hypothesis that R be �nitely generated asan abelian group, so that R ∼= Zn as groups.If rn = 0, then r is divisible by p for all primes p > n be
ause of Fermat'sLittle Theorem. But in Zn this 
an only be if r = 0, so R is redu
ed. By thelemma above, the fra
tion ring of R is Q⊗ZR. As this is redu
ed and artinian,being �nite-dimensional over Q, it is a produ
t ∏Kj of �elds. The proje
tionsof R on the fa
tors Kj will then ea
h be numeri
al.Hen
e, we �rst 
onsider the spe
ial 
ase when R is in
luded in a �eld, inwhi
h we let A be the algebrai
 integers. Let us examine the subgroup A∩R of

A. Sin
e A ⊆ Q⊗Z R, an arbitrary element of A will have an integer multiplelying in R. This means A/(A ∩ R) is a torsion group. Also, the fra
tion ring
Q ⊗Z R is �nitely generated over Q, so from the lemma above, we dedu
ethat A is �nitely generated over Z. Be
ause the fa
tor group A/(A ∩ R) is22



both �nitely generated and torsion, it is killed by a single integer N , so that
N(A/(A ∩R)) = 0, and as a 
onsequen
e

(A ∩R)[N−1] = A[N−1].Now let z ∈ A and let p be a prime. The element z ∈ A[N−1] = (A∩R)[N−1]
an be written z = a
Nk , where a ∈ A ∩ R and k ∈ N. Using Fermat's LittleTheorem(s),

(Nk)p = Nk + pn

ap = a+ pbfor some n ∈ Z and b ∈ R. Observe that pb belongs to A∩R, hen
e to A[N−1],so that b ∈ A, as long as p does not divide N .We then have
zp − z =

ap

Nkp
− a

Nk
=

a+ pb

Nk + pn
− a

Nk

=
(a+ pb)Nk − a(Nk + pn)

(Nk + pn)Nk
= p

Nkb− na
(Nk + pn)Nk

= p
Nkb− na
N (p+1)k

,so that pu = zp− z ∈ A for some u ∈ A[N−1], assuming p ∤ N . But then in fa
t
u ∈ A.Consequently, for all z ∈ A and all su�
iently large primes p, zp − z ∈ pA,so that zp = z in A/pA. Being redu
ed and artinian, A/pA may be written asa produ
t of �elds, and be
ause of the equation zp = z, these �elds must allequal Z/p, whi
h means all su�
iently large primes split 
ompletely in A. It isthen a 
onsequen
e of T
hebotarev's Density Theorem2 that Q⊗Z R = Q, and
onsequently that R = Z (re
all that R was assumed �nitely generated as anabelian group). This 
on
ludes the proof in this spe
ial 
ase.In the general 
ase, re
all that R =

∏
Rj was in
luded in produ
t of nu-meri
al rings, ea
h of whi
h is isomorphi
 to Z[m−1] a

ording to the aboveargument. But these rings have no non-trivial (numeri
al) ideals, so by Del-sarte's Lemma, R must be the whole produ
t.Finally, we abandon the assumption that R be �nitely generated as a group,and assume it �nitely generated as a ring only. Be
ause of the relation p | rp−r,

R/pR will be a �nitely generated torsion group, and hen
e zero-dimensional,for ea
h prime p. It then follows from Chevalley's Dimension Argument that
dimQ ⊗Z R = 0, so that Q ⊗Z R is a �nite-dimensional ve
tor spa
e over Q.Only �nitely many denominators are employed in a basis, so there exists aninteger M for whi
h R[M−1] is �nitely generated over Z[M−1].We 
an now more or less repeat the previous argument. R[M−1] will still beredu
ed, and as before, Q⊗ZR[M−1] will be �nite-dimensional, hen
e a produ
tof �elds, and we may redu
e to the 
ase when Q⊗Z R[M−1] is a �eld. Letting2(A spe
ial 
ase of) T
hebotarev's Density Theorem states the following: The density ofthe primes that split 
ompletely in a number �eld K equals 1

|Gal(K/Q)|
. In our 
ase, this sethas density 1. 23



A denote the algebrai
 integers in Q ⊗Z R[M−1], the fa
tor group A/R[M−1]will be �nitely generated and torsion, and hen
e killed by some integer, so thatagain we are lead to R[N−1] = A[N−1]. As before, we may draw the 
on
lusionthat Q ⊗Z R = Q, and 
onsequently that R = Z[N−1]. This 
on
ludes theproof in the general 
ase. 13. ModulesA most elegant appli
ation of the Stru
ture Theorem for Finitely GeneratedNumeri
al Rings is to 
lassify torsionfree modules.Lemma 6. For a ring homomorphism ϕ : R → S, where R is numeri
al and
S is torsionfree, Kerϕ will be a numeri
al ideal.Proof.

n!ϕ

((
r

n

))

= ϕ

(

n!

(
r

n

))

= ϕ(r(r − 1) · · · (r − n+ 1)) = 0,if r ∈ Kerϕ and n > 0. Thus (rn) ∈ Kerϕ, whi
h is then numeri
al.Let M be a torsionfree module over the numeri
al ring R, with modulestru
ture given by the group homomorphism µ : R → EndM . We have thefollowing 
ommutative diagram:
0

{{wwwwwwwww

0 // Kerµ // R //

µ

��

R/Kerµ

yyrrrrrrrrrr

// 0

EndM

EndM is torsionfree, so by the lemma Kerµ is a numeri
al ideal. Therefore
R/Kerµ will be a numeri
al ring, over whi
h M is also a module.Assume now also that EndM is �nitely generated as a module over Z[N−1]for some integerN . Be
ause Z[N−1] is a noetherian ring, EndM is a noetherianmodule. Hen
e its submodule R/Kerµ is �nitely generated as a module over
Z[N−1], and therefore also as a ring. Not only that, but R/Kerµ is in fa
tnumeri
al, so by the Stru
ture Theorem,

R/Kerµ ∼= Z[m−1
1 ]× · · · × Z[m−1

k ],for unique numbers m1, . . . ,mk. The module M itself will split up as a dire
tsum
M = M1 ⊕ · · · ⊕Mk,with ea
h Mj a module over Z[m−1

j ]. Mj is torsionfree, and therefore in fa
tfree over Z[m−1
j ], be
ause of these rings being prin
ipal. We have thus proved:24



Theorem 14. Over a numeri
al ring, let M a torsionfree module, whi
h is�nitely generated over Z[N−1] for some integer N . Then there exist positiveintegers mj , rj su
h that
M ∼= Z[m−1

1 ]r1 ⊕ · · · ⊕ Z[m−1
k ]rkas a module over

Z[m−1
1 ]× · · · × Z[m−1

k ].14. The Binomial TheoremGiven a numeri
al ring and a (
ommutative, unital) algebra A over R, we havean indu
ed exponentiation on 1+
√

0, given by the following binomial expansion:
(1 + x)r =

∞∑

n=0

(
r

n

)

xn.The sum is of 
ourse a �nite one.The numeri
al axioms imply the following properties for this exponentiation:I. (1 + x)r(1 + x)s = (1 + x)r+s.II. ((1 + x)r
)s

= (1 + x)rs.III. (1 + x)r(1 + y)r =
(
(1 + x)(1 + y)

)r.IV. (1 + x)1 = 1 + x.V. (1 + x)r ≡ 1 + rx mod (
√

0)2.Exponentiation will thus make the abelian group (1 +
√

0, ·) into an R-module.Indeed, property III shows that exponentiation by r gives an endomorphism
ǫ(r) of the group, and properties I, II and IV show that

ǫA : R→ End(1 +
A
√

0, ·)is a unital ring homomorphism.This module stru
ture is natural in the following sense. Given two algebras
A and B and an algebra homomorphism ϕ : A → B, the following diagram
ommutes for any r ∈ R:

1 + A
√

0
ǫA(r) //

ϕ

��

1 + A
√

0

ϕ

��
1 + B
√

0
ǫB(r)

// 1 + B
√

0We now reverse the pro
edure: 25



Theorem 15: The Binomial Theorem.Given a numeri
al ring R, the equation
(1 + x)r =

∞∑

n=0

(
r

n

)

xn (1.4)de�nes a module stru
ture on (1 + A
√

0, ·), whi
h is natural in R-algebras
A, and satis�es

(1 + x)r ≡ 1 + rx mod (
√

0)2. (1.5)Conversely, given a ring R and a natural module stru
ture on (1 + A
√

0, ·)(for all R-algebras A) satisfying (1.5), there is a (ne
essarily unique) nu-meri
al ring stru
ture on R, ful�lling the equation (1.4).Proof. There remains to establish the se
ond part. So, let a natural mod-ule stru
ture be given, and 
onsider ǫA : R → End(1 + A
√

0, ·), where A =
R[t]/(tN+1), and N is some large number. We have

ǫ(r)(1 + t) = (1 + t)r = a0 + a1t+ · · ·+ aN t
N ,and 
learly the 
oe�
ients an are independent of N . Therefore, we may withoutambiguity de�ne (rn) = an. This will make the binomial expansion identity holdin A, and then it will hold everywhere by naturality.It is now immediate that the axioms for a numeri
al ring hold, as they aresimply dire
t translations of the module axioms. For example, identi�
ation ofthe 
oe�
ients of tn in

∞∑

i=0

(
r

i

)

ti
∞∑

j=0

(
s

j

)

tj = (1 + t)r(1 + t)s = (1 + t)r+s =
∞∑

n=0

(
r + s

n

)

tnproves axiom I. (Proving III will of 
ourse involve the polynomial ring in twovariables.)And this little �treatise on the Binomial Theorem� 
loses the 
hapter onnumeri
al rings.
26



CHAPTER 2Polynomial Maps[...℄ je donnerais bien 
ent sous au mathémati
ien qui me démontreraitpar une équation algébrique l'existen
e de l'enfer.� Honoré de Balza
, La Peau de 
hagrinIn this and the su

eeding 
hapters, we will 
onsider a �xed base ring of s
alars,
ommutative and unital and whi
h, when referred to by name, will be 
alled R.We adopt the following 
onventions:I. All modules will be R-modules, and all algebras will be 
ommutative andunital R-algebras.II. We will use Mod to denote the 
ategory of R-modules, and CAlg for the
ategory of 
ommutative, unital R-algebras.III. All tensor produ
ts will be 
omputed over R, unless otherwise stated.IV. �Homomorphism� with no further quali�
ation will denote an R-modulehomomorphism (or R-linear map).V. When dis
ussing non-stri
t polynomiality, R will also be assumed numer-i
al, and NAlg will denote the 
ategory of numeri
al R-algebras.At his leisure, the reader may put R = Z, and anywhere substitute �abeliangroup� for �module�.We shall 
onsider maps f : M → N between modules, and they shall almostnever be homomorphisms. Indeed, they shall be generalizations of ordinarypolynomial maps as de�ned on �elds. The problem is how to form �polynomials�on general modules, where there is no multipli
ation in sight. We re
all thefollowing quibble1:And God said unto the animals: �Go out into the world and multiply!�But the snake answered: �How 
ould I? I am an adder!�1In some versions of this myth, it is said that God 
onstru
ted a table made of wood forthe snakes to 
rawl upon, sin
e even adders 
an multiply on a log table. God does not seemto be familiar with tensor produ
ts. 27



Returning to the modules, two di�erent approa
hes present themselves. Wemay 
hoose to talk about (let us phrase it 
arefully) �polynomial-like2� mapsas maps satisfying 
ertain equations that are somehow thought to 
hara
ter-ize polynomials. This road will indeed be explored; for these equations to besensible, a numeri
al base ring is required.A 
ompletely di�erent method, with the advantage of produ
ing entities thata
tually look like polynomials, is to use s
alar extension. Quoting from [14℄,�[. . . ℄ la généralisation en vue devrait 
onduire à asso
ier, à �quelque 
hose� quis'é
rirait : x1T1 + · · ·xpTp, une �autre 
hose� qui s'é
rirait
q
∑

i=1

yiQi(T1, . . . , Tp),les Qi étant 
ette fois des polynomes. Manifestement s'introduisent i
i les mo-dules produits tensoriels [. . . ℄.� This seems to be the most elegant solution, andis used to de�ne stri
t polynomial maps (
alled polynomial laws) in [14℄.Classi
ally, (non-stri
t) polynomial maps were de�ned using the �rst method,but this was before numeri
al rings were dis
overed. With this new 
lass of ringsat our disposal, we shall be able to use the method of s
alar extension also fornon-stri
t maps, whi
h will provide a beautiful uni�
ation of the two notions ofpolynomiality. 1. PolynomialityWe shall begin by making an extremely general dis
ussion of polynomiality, andthen identify the two de�nitions whi
h will a
tually be used in the sequel.Let D be a �nitary algebrai
 
ategory, so that it is an equational 
lass inthe sense of universal algebra (and hen
e a variety of algebras by the HSPTheorem; see for example [3℄). We require D to be a sub
ategory of Mod, sothat the obje
ts of D are �rst of all R-modules.For a set of variables V , we let 〈V 〉D denote the free algebra on V in D.De�nition 1. A D-polynomial over a module M (not ne
essarily in D) inthe variables x1, . . . , xk, is an element of
M ⊗ 〈x1, . . . , xk〉D.A linear form over M in these same variables is a polynomial of the form

∑

uj ⊗ xj ,for some uj ∈M . ⋄Theorem 1: Ekedahl's Esoteri
 Polynomiality Prin
iple. Let two mod-ules M and N be given, and a family of maps
fA : M ⊗A→ N ⊗A, A ∈ D.The following statements are equivalent:2På svenska: polynomaktiga. 28



A. For every D-polynomial p(x) = p(x1, . . . , xk) over M there is a unique
D-polynomial q(x) = q(x1, . . . , xk) over N , su
h that for all A ∈ D andall aj ∈ A,

fA(p(a)) = q(a).B. For every linear form l(x) over M there is a unique D-polynomial q(x)over N , su
h that for all A ∈ D and all aj ∈ A,
fA (l(a)) = q(a).C. The map

f : M ⊗− → N ⊗−is a natural transformation between fun
tors D → Set.Proof. It is trivial that A implies B. Given statement B, and a homomorphism
ϕ : A → B mapping aj to bj, the following 
ommutative diagram proves thenaturality of f :

M ⊗A fA //

1⊗ϕ

��

N ⊗A
1⊗ϕ

��

∑
uj ⊗ aj

��

// q(a)

��
M ⊗B

fB

// N ⊗B
∑
uj ⊗ bj // q(b)Finally, suppose f natural. Given

p(x) ∈M ⊗ 〈x1, . . . , xk〉D,de�ne
q(x) = f〈x1,...,xk〉D

(p(x)) ,and for any A ∈ D and aj ∈ A, de�ne the homomorphism
ϕ : 〈x1, . . . , xk〉D → A, xj 7→ aj .Then by naturality of f , the following diagram 
ommutes:

M ⊗ 〈x1, . . . , xk〉
f〈x1,...,xk〉 //

1⊗ϕ

��

N ⊗ 〈x1, . . . , xk〉
1⊗ϕ

��

p(x)

��

// q(x)

��
M ⊗A

fA

// N ⊗A p(a) // q(a)

q is evidently unique, whi
h proves A.De�nition 2. When the 
onditions of the theorem are ful�lled, we 
all f a
D-polynomial map from M to N . ⋄29



When f is D-polynomial, part B of the theorem tells us that
∑

uj ⊗ aj 7→ q(a)for some D-polynomial q. Naïvely, if we want the 
oe�
ients aj of the elements
uj to transform as generalized polynomials, formed using some operations, the
orre
t setting is the 
ategory of algebras using these same operations.Example 1. A Mod-polynomial map f : M → N is just a linear transforma-tion M → N . This is be
ause, by B above, fR will map∑ uj ⊗ rj to ∑ vj ⊗ rjfor all rj ∈ R, and su
h a map is easily seen to be linear. Conversely, anymodule homomorphism indu
es a natural transformationM ⊗− → N ⊗−. △Example 2. Let S be an R-algebra. An SMod-polynomial map M → N is atransformation

M ⊗A→ N ⊗A,natural in the S-module A, whi
h is the same as a natural transformation
(M ⊗ S)⊗S − → (N ⊗ S)⊗S −.This is simply an SMod-polynomial map M ⊗ S → N ⊗ S, or, as we noted inthe previous example, an S-linear map from M ⊗ S to N ⊗ S. △The last two examples will be the important ones:Example 3. A CAlg-polynomial map M → N is a stri
t polynomial map, orpolynomial law in the sense of [14℄. For every linear form ∑

uj ⊗ xj over Mthere are unique elements vµ ∈ N , µ running over all multi-indi
es, su
h thatfor all algebras A and all aj ∈ A,
fA

(∑

uj ⊗ aj
)

=
∑

vµ ⊗ aµ.Intuitively, the 
oe�
ients of the elements uj �transform as ordinary polynomi-als�. △Example 4. Suppose now that the base ring R is numeri
al, and 
onsider the
ategory NAlg of numeri
al algebras over R. An NAlg-polynomial mapM → Nis what will be 
alled a polynomial map. For every linear form ∑
uj ⊗ xj over

M there are unique elements vµ ∈ N , µ running over all multi-indi
es, su
h thatfor all algebras A and all aj ∈ A,
fA

(∑

uj ⊗ aj
)

=
∑

vµ ⊗
(
a

µ

)

.Intuitively, the 
oe�
ients of the elements uj �transform as numeri
al polyno-mials�. △30



2. Polynomial MapsThe key to understanding polynomials is the following property of ordinarypolynomials f (over some �eld): If f(x) = a is 
onstant, 
learly
f(x)− f(0) = 0for all x. If f(x) = a+ bx is linear, then

f(x+ y)− f(x)− f(y) + f(0) = 0for all x, y. A generalization to arbitrary degrees is immediate and leads to thefollowing de�nition, presumably �rst expli
itly stated by Eilenberg and Ma
Lane in [6℄:De�nition 3. The nth deviation of a map f : M → N is the map
f(x1 ⋄ · · · ⋄ xn+1) =

∑

I⊆[n+1]

(−1)n+1−|I|f

(
∑

i∈I

xi

)of n+ 1 variables. ⋄The idea here is that the nth deviation measures how mu
h f deviates frombeing polynomial of degree n. We have for example
f(x ⋄ y) = f(x+ y)− f(x)− f(y) + f(0)

f(⋄x) = f(x)− f(0),and, of 
ourse,
f(⋄) = f(0).We let

f

(

♦
n
x

)

= f(x ⋄ · · · ⋄ x
︸ ︷︷ ︸

n

).De�nition 4. The map f : M → N is polynomial of degree n if its nthdeviation vanishes:
f(x1 ⋄ · · · ⋄ xn+1) = 0for any xi ∈M . ⋄Let us, for 
larity, point out, that the diamond sign itself does not work asan operator; the entity x ⋄ y does not have a life of its own, and 
annot existoutside the s
ope of an argument of a map.

31



3. Numeri
al MapsAfter de�ning the deviation, a polynomial map of degree n between abeliangroups is 
lassi
ally3 de�ned as a map of whi
h the nth deviation vanishes.While this works well enough for modules over Z, we would like to in
ludemodules over more general rings.Re
all that an extra 
ondition
f(rx) = rf(x)need be imposed on a group homomorphism to make it a module homomorphism(but that this is automati
 when the base ring is Z). Using binomial 
oe�
ients,we generalize to arbitrary numeri
al modules. The base ring R of s
alars is nowof 
ourse assumed numeri
al.De�nition 5. The map f : M → N is numeri
al of degree at most n if itsatis�es the following two equations, for all xi, x ∈M and all r ∈ R:

f(x1 ⋄ · · · ⋄ xn+1) = 0

f(rx) =
n∑

k=0

(
r

k

)

f

(

♦
k
x

)

.

⋄It is of 
ourse straightforward to de�ne what it means for f to have degreeexa
tly n, but this is never needed. Therefore, when we speak of a map as beingof degree n, it is to be understood: degree n or less.Example 5. A map is of degree 0 i� it is 
onstant. It is of degree 1 i� it is ahomomorphism translated by a 
onstant. △Example 6. The numeri
al maps f : Z → Z of degree n, are pre
isely theones given by numeri
al polynomials of degree n:
f(x) =

n∑

k=0

ck

(
x

k

)

.

△Lemma 1. For r in a numeri
al ring and natural numbers m ≥ n, the follow-ing formula holds:
n∑

k=m

(−1)k
(
r

k

)(
k

m

)

= (−1)n
(
r

m

)(
r −m− 1

n−m

)

.Proof. Indu
tion (and, optionally, a qui
k referen
e to the Numeri
al Univer-sality Prin
iple).3Of 
ourse, [6℄ itself never bothers to make this de�nition, but instead moves on to moreimportant topi
s. 32



Theorem 2. The map f : M → N is numeri
al of degree n i� its nth devia-tions vanish, and it satis�es the equation
f(rx) =

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

f(mx),for any r ∈ R and x ∈M .Proof. This follows from the lemma:
n∑

k=0

(
r

k

)

f

(

♦
k
x

)

=

n∑

k=0

(
r

k

) k∑

m=0

(−1)k−m
(
k

m

)

f(mx)

=
n∑

m=0

(−1)−m

(
n∑

k=m

(−1)k
(
r

k

)(
k

m

))

f(mx)

=

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

f(mx).4. The Augmentation AlgebraWe now wish to �nd an alternative way of des
ribing these numeri
al maps.Re
all that the free module on a set M is the set
R[M ] =

{∑

aj[xj ]
∣
∣
∣ aj ∈ R, xj ∈M

}of formal (�nite) linear 
ombinations of elements of M . It obviously has amodule stru
ture, and if M is itself a module, it also 
arries a multipli
ation,namely the sum multipli
ation
[x][y] = [x+ y],extended by linearity. It makes R[M ] into a 
ommutative, asso
iative algebrawith unity [0], 
alled the augmentation algebra.When M additionally has an algebra stru
ture, there is another 
anoni
aloperation on the augmentation algebra, namely the produ
t multipli
ation,de�ned by
[x] ⋆ [y] = [xy].This multipli
ation has identity element [1], but is of 
ourse 
ommutative onlyif M is. The latter operation will make an apparition later on, in the 
ontext ofMorita equivalen
e.In the present dis
ussion, we assume M to be a module only, and hen
e usethe sum multipli
ation. The map

M → R[M ], x 7→ [x],33



is a map between modules, and so we may form its nth deviation
(x1, . . . , xn+1) 7→ [x1 ⋄ . . . ⋄ xn+1].The following lemma then follows easily from the de�nition of deviation.Lemma 2.

[x1 ⋄ . . . ⋄ xn+1] = ([x1]− [0]) · · · ([xn+1]− [0]) .De�ning a �ltration in R[M ] (a de
reasing sequen
e of ideals) by
In = ([x1 ⋄ . . . ⋄ xn+1] | xi ∈M) +

(

[rx] −
n∑

k=0

(
r

k

)[

♦
k
x

]
∣
∣
∣
∣
∣
r ∈ R, x ∈M

)

,and then letting
R[M ]n = R[M ]/In,we have a 
anoni
al map
δn : M → R[M ]n

x 7→ [x],whi
h is numeri
al of degree n. And not only that:Theorem 3. The map δn is the universal numeri
al map of degree n, in thatevery numeri
al map f : M → N of degree n has a unique fa
torization throughit.
M

δn //

f
##F

FF
FF

FFF
F

R[M ]n

��
NProof. Given a map f : M → N , we extend it linearly to f : R[M ] → N , bywhi
h pro
edure it automati
ally be
omes a homomorphism. The theorem thenamounts to the trivial observation that f is numeri
al of degree n i� it kills In,so that it fa
tors through R[M ]n.The augmentation quotients of a free module M are given by the next the-orem.Theorem 4. In the polynomial algebra R[t1, . . . , tk], let Jn be the ideal gen-erated by monomials of degree greater than n. Then

R[Rk]n ∼= R[t1, . . . , tk]/Jnas algebras. In parti
ular, R[Rk]n is a free module.34



Proof. Ea
h ti is nilpotent in R[t1, . . . , tk]/Jn, and so we may de�ne exponenti-ation (1 + ti)
r for any r ∈ R. A

ordingly de�ne, for a tuple (r1, . . . , rk) ∈ Rk,

ϕ : R[Rk]→ R[t1, . . . , tk]

[(r1, . . . , rk)] 7→ (1 + t1)
r1 · · · (1 + tk)

rk .Using multi-index notation ̺ = (r1, . . . , rk), we may write this more su

in
tlyas
[̺] 7→ (1 + t)̺.The map ϕ is linear by de�nition, and also multipli
ative, sin
e

ϕ([̺][σ]) = ϕ([̺+ σ]) = (1 + t)̺+σ = (1 + t)̺(1 + t)σ = ϕ(̺)ϕ(σ).It maps In into Jn, be
ause, when ̺1, . . . , ̺n+1 ∈ Rk,
ϕ([̺1 ⋄ · · · ⋄ ̺n+1]) =

∑

J⊆[n+1]

(−1)n+1−|J|ϕ








∑

j∈J

̺j









=
∑

J⊆[n+1]

(−1)n+1−|J|(1 + t)
P

j∈J ̺j

=

n+1∏

j=1

(
(1 + t)̺j − 1

)
∈ Jn.Also, for s ∈ R and ̺ ∈ Rk,

ϕ

(

[s̺]−
n∑

m=0

(
s

m

)[

♦
m
̺

])

= ϕ



[s̺]−
n∑

m=0

(
s

m

) m∑

j=0

(−1)m−j

(
m

j

)

[j̺]





= (1 + t)s̺ −
n∑

m=0

(
s

m

) m∑

j=0

(−1)m−j

(
m

j

)

(1 + t)j̺

= (1 + t)s̺ −
n∑

m=0

(
s

m

)
(
(1 + t)̺ − 1

)m

= (p(t) + 1)s −
n∑

m=0

(
s

m

)

p(t)m,where, in the last step, we let p(t) = (1 + t)̺ − 1. By the Binomial Theorem,we have
(p(t) + 1)s =

∞∑

m=0

(
s

m

)

p(t)m,but sin
e the terms of index n+1 and higher yield an (n+1)st degree polynomial,the above di�eren
e will belong to Jn. We therefore have an indu
ed map
ϕ : R[Rk]n → R[t1, . . . , tk]/Jn.35



We now de�ne a map
ψ : R[t1, . . . , tk]→ R[Rk]n

tp1 · · · tpm
7→ [ep1 ⋄ · · · ⋄ epm

]in the reverse dire
tion. Again, ψ is additive by de�nition, and multipli
ativebe
ause of Lemma 2. The vanishing of ψ on Jn indu
es a map
ψ : R[t1, . . . , tk]/Jn → R[Rk]n.It is easy to verify that ϕ and ψ are inverse to ea
h other.For future referen
e, we also explore the grading of R[M ] indu
ed by the�ltration In.Theorem 5. Let M be free on k generators e1, . . . , ek. The map

ξ : Sn(M)→ In−1/In

en1
1 · · · enk

k 7→
[

♦
n1

e1 ⋄ · · · ⋄ ♦
nk

ek

]

+ Ingives an isomorphism
S(M)→ I−1/I0 ⊕ I0/I1 ⊕ · · ·of graded algebras.Proof. Under the isomorphism R[Rk]n ∼= R[t1, . . . , tk]/Jn, the ideal In−1 will
orrespond to Jn−1, and 
onsequently In−1/In ∼= Jn−1/Jn. Under this 
or-responden
e, ξ simply takes eν 7→ tν , and is of 
ourse an isomorphism. (Analternative is to use Theorem 2 dire
tly.)5. Properties of Numeri
al MapsWe now elaborate on the behaviour of numeri
al maps. To begin with, we notethat not only do the nth deviations of an nth degree map vanish, but its lowerorder deviations are also quite pleasant.Theorem 6. The map f : M → N is numeri
al of degree n i� for any a1, . . . ,

ak ∈ R and x1, . . . , xk ∈M , the following equation holds:
f(a1x1 ⋄ · · · ⋄ akxk) =

∑

#S=[k]
|S|≤n

∏

j∈#S

(
aj

deg j

)

f

(

♦
j∈S

xj

)

,where the sum is taken over multisets S.36



Proof. If f is of degree n, 
al
ulate in the augmentation algebra R[M ]n:
[a1x1 ⋄ . . . ⋄ akxk] = ([a1x1]− [0]) · · · ([akxk]− [0])

=

∞∑

q1=1

(
a1

q1

)[

♦
q1
x1

]

· · ·
∞∑

qk=1

(
ak
qk

)[

♦
qk

xk

]

=

∞∑

q1=1

· · ·
∞∑

qk=1

(
a1

q1

)

· · ·
(
ak
qk

)[

♦
q1
x1 ⋄ · · · ⋄ ♦

qk

xk

]

.The theorem now follows after appli
ation of f . The 
onverse is trivial.This proof is pure magi
! It is absolutely vital that the 
al
ulation be 
arriedout in the augmentation algebra, as there would have been no way to performthe above tri
k had the map f been applied dire
tly.We now turn our attention towards the binomial 
oe�
ients themselves andprove that, 
onsidered as maps R → R, they are numeri
al. This is of 
oursehardly surprising, as they are more or less given by polynomials (in the envelop-ing Q-algebra).Theorem 7. The binomial 
oe�
ient x 7→ (
x
n

) is numeri
al of degree n.Proof. It is numeri
al of degree n in Z, and therefore also in R by the Numeri
alUniversality Prin
iple.We now have the following des
ription of numeri
al maps.Theorem 8. The map f : M → N is numeri
al of degree n i� for any u1, . . . ,
uk ∈ M there exist unique elements vµ ∈ N , µ varying over all multi-indi
eswith |µ| ≤ n, su
h that

f(r1u1 + · · ·+ rkuk) =
∑

µ

(
r

µ

)

vµ,for any r1, . . . , rk ∈ R.Proof. We assume f is numeri
al of degree n, and suppose �rst that M = Rkis free of rank k and uj = ej . By the pre
eding theorems, numeri
al maps
f : Rk → N of degree n 
orrespond to linear maps

f : R[t1, . . . , tk]/Jn → N.We have the following fa
torization:
Rk

δn //

f
((RRRRRRRRRRRRRRRRR R[Rk]n ∼= R[t1, . . . , tk]/Jn

f

��
N37



Say the monomial tµ is mapped to vµ ∈ N ; then [(r1, . . . , rk)] ∈ R[Rk]n 
orre-sponds in R[t1, . . . , tk]/Jn to
(1 + t1)

r1 · · · (1 + tk)
rk =

(
∑

m1

(
r1
m1

)

tm1
1

)

· · ·
(
∑

mk

(
rk
mk

)

tmk

k

)

,and so is mapped by f (or f) to
∑

m1,...,mk

(
r1
m1

)

· · ·
(
rk
mk

)

v(m1,...,mk).Thus, the a
tion of f is
f(r1, . . . , rk) =

∑

µ

(
r

µ

)

vµ,as desired. In this 
ase the elements vµ are 
learly unique.In the general 
ase, when M is allowed to be any module, we study the
omposition
Rk →M → N :

(r1, . . . , rk) 7→ r1u1 + · · ·+ rkuk 7→ f(r1u1 + · · ·+ rkuk).By the pre
eding argument, this map is of the desired form, and the vµ willagain be unique.The 
onverse is trivial.Finally, we make the promised 
onne
tion with NAlg-polynomiality. Let
f : M → N be an NAlg-polynomial map. From the Polynomiality Prin
iple, weknow that for every linear form l(x) overM there is a unique NAlg-polynomial
q(x) over N , su
h that for all A ∈ NAlg and all aj ∈ A,

fA (l(a)) = q(a).We say that f is of bounded degree n if the degree of the polynomial q isuniformly bounded above ny n (independent of l).The main theorem linking the two notions of polynomiality states:Theorem 9. f : M → N is numeri
al of degree n i� it may be extended to a(unique) NAlg-polynomial map of bounded degree n.Proof. Given a numeri
al map f , �x the elements vµ from the pre
eding theo-rem. We then have a map
fA : M ⊗A→ N ⊗A,

∑

uj ⊗ xj 7→
∑

µ

vµ ⊗
(
x

µ

)

,By the Polynomiality Prin
iple, fA is a natural transformation. The 
onverseis trivial. 38



Example 7. Here is an example to show that requiring bounded degree isne
essary. Let U = 〈u1, u2, . . .〉 be free on an in�nite basis. The map
fA : U ⊗A→ U ⊗ A,

∑

uk ⊗ ak 7→
∑

uk ⊗
(
ak
k

)is NAlg-polynomial, but not numeri
al of any �nite degree n. △6. Stri
t Polynomial MapsWe no longer assume a numeri
al base ring R, as we turn our attention to-ward stri
t polynomial maps. Norbert Roby invented these (he 
alled thempolynomial laws), and all the fa
ts stated in this se
tion may be found in [14℄.De�nition 6. A stri
t polynomial map between modules f : M → N is a
CAlg-polynomial map; that is, a natural transformation

M ⊗− → N ⊗−between fun
tors CAlg→ Set. ⋄Some elementary fa
ts we shall need about a stri
t polynomial map f : M →
N are the following:1. From the Polynomiality Prin
iple, the following proposition is immediatelydedu
ed: For any u1, . . . , uk ∈M there exist unique elements vν ∈ N (only�nitely many of whi
h are non-zero), with µ varying over all multi-indi
es,su
h that

f(u1 ⊗ x1 + · · ·+ uk ⊗ xk) =
∑

ν

vν ⊗ xνfor all xj in all algebras. We shall write fu[ν] = vν .2. f is said to have degree (at most) n, if fu[ν] = 0 when |ν| > n.3. f is said to be homogeneous of degree n if f(az) = anf(z) for all a inall algebras A and all z ∈ M ⊗A. This amounts to saying that fu[ν] 6= 0only when |ν| = n.4. When f is homogeneous of degree n, note that
fu[n] = f(u).5. Any f has a unique de
omposition into homogeneous 
omponents, namely:

f(u1 ⊗ x1 + · · ·+ uk ⊗ xk) =

∞∑

n=0

∑

|ν|=n

fu[ν] ⊗ xν(only a �nite number of terms being non-zero).39



6. Finally, there is a fundamental relationship between homogeneous mapsand divided power algebras: For any module M there is a universal ho-mogeneous map
γn : M → Γn(M),

∑

ui ⊗ xi 7→
∑

|ν|=n

u[ν] ⊗ xνof degree n, through whi
h every map f : M → N of degree n fa
torsuniquely:
M ⊗A γn //

f
%%KKKKKKKKKKKK

Γn(M)⊗A

��

∑
ui ⊗ xi

''OOOOOOOOOOOO
//
∑

|ν|=n u
[ν] ⊗ xν

��
N ⊗A

∑

|ν|=n fu[ν] ⊗ xνIn other words, there is a 
anoni
al isomorphism between the module ofhomogeneous polynomial maps of degree n from M to N and the moduleof homomorphisms from Γn(M) to N .7. Pray note that the map
Γn(M)→ N

u[ν] 7→ fu[ν]is a module homomorphism (for �xed f).7. The Divided Power AlgebraThe elementary theory of divided power modules (and ditto algebras) 
an befound in [14℄.When A is an algebra, the nth divided power module Γn(A) 
omes equippedwith a natural multipli
ation. First of all, note that there is a 
anoni
al map
δ : A×A→ Γn(A)⊗ Γn(A), (x, y) 7→ x[n] ⊗ y[n],whi
h is universal for bihomogeneous maps of bidegree (n, n) out of A × A.Be
ause the map
ζ : A×A→ Γn(A⊗A), (x, y) 7→ (x⊗ y)[n],is bihomogeneous of degree (n, n), it will have a unique fa
torization through

Γn(A)⊗ Γn(A), as in the following diagram:
A×A δ //

ζ ''NNNNNNNNNNN
Γn(A) ⊗ Γn(A)

��
Γn(A⊗A) // Γn(A)40



Composition with the 
anoni
al (linear) map
Γn(A⊗A)→ Γn(A), (x ⊗ y)[n] 7→ (xy)[n],results in the following multipli
ation on Γn(A):

Γn(A)⊗ Γn(A)→ Γn(A), x[n] ⊗ y[n] 7→ (xy)[n].It will be 
alled the produ
t multipli
ation on Γn(A).Contrast this with the divided power multipli
ation, de�ned on Γ(M)for any module M , whi
h is simply juxtaposition:
x[m] · y[n] = x[m]y[n].The 
omponents Γn(M) are not even 
losed under this operation.It deserves to be pointed out, and emphasized strongly, that the nth dividedpower module Γn(M) is not generated by the pure divided powers z[n], for

z ∈M , as the following example shows.Example 8. Consider in Γ3(Z2) a pure power
(a1e1 + a2e2)

[3] = a3
1e

[3]
1 + a2

1a2e
[2]
1 e2 + a1a

2
2e1e

[2]
2 + a3

2e
[3]
2 .Observe that the 
oe�
ients of e[2]1 e2 and e1e[2]2 have the same parity. Thereforeit is impossible to write e[2]1 e2 as a linear 
ombination of pure powers. △

Γn(M) is, however, �universally� generated by pure powers over all algebras,in the following sense:Theorem 10: The Divided Power Lemma.A natural transformation
ζ : Γn(M)⊗− → N ⊗−,between fun
tors CAlg → Mod, is uniquely determined by its e�e
t onpure divided powers z[n] (when z ∈M ⊗A for some algebra A).More generally, a natural transformation

ζ : Γm(M)⊗ Γn(M)⊗− → N ⊗−is uniquely determined by its e�e
t on tensor produ
ts z[m] ⊗ w[n] of purepowers.
41



Proof. It su�
es to show that if ζ vanishes on pure powers, it is identi
ally zero.Indeed, linear maps Γn(M)→ N 
orrespond to homogeneous maps M → N :
Γn(M)⊗A ζ // N ⊗A (∑

ui ⊗ xi
)[n] // 0

M ⊗A

γn

OO

ζ

99ssssssssssss ∑
ui ⊗ xi

OO
::ttttttttttttSin
e ζ = 0, also ζ = 0.For the se
ond part, pro
eed similarly, noting that linear maps Γm(M) ⊗

Γn(M)→ N 
orrespond to bihomogeneous maps M ⊕M → N .
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CHAPTER 3Polynomial Fun
torsO
h när jag stod där gripen, kall av skrä
ko
h fylld av ängslan inför hennes tillståndbegynte plötsligt mimans fonoglobatt tala till mig på den dialektur högre avan
erad tensorlärasom hon o
h jag till vardags brukar mest.� Harry Martinson, AniaraIn this 
hapter, we turn to interpreting our di�erent notions of polynomiality interms of fun
tors. We are 
onvin
ed that the two �
orre
t� notions are numeri
aland stri
t polynomial fun
tors. Non-stri
t polynomiality, the original 
on
ept,works well enough over Z, but is mu
h too weak a notion over a general basering. But the pri
e to pay for upgrading to the stronger notion is the restri
tionto numeri
al base rings.We re
all our 
onvention of a �xed base ring R, over whi
h all modules,algebras, tensor produ
ts, et
., are taken, and whi
h is assumed numeri
al whendis
ussing numeri
ality. 1. Module Fun
torsBy amodule fun
tor, we shall understand a fun
tor F : Mod→Mod mappingmodules to modules. We shall mostly be 
ontent to 
onsider fun
tors de�nedonly on the most simple of modules, namely the free and �nitely generated ones.They 
onstitute a sub
ategory of Mod, whi
h will be denoted by XMod (theletter X intended to suggest �eXtra ni
e modules�!). We shall let FMod be the
ategory of free modules, be they �nitely or in�nitely generated.As it turns out, a fun
tor de�ned on the sub
ategory XMod has a unique�well-behaved� extension to the whole module 
ategory. In this introdu
toryse
tion we shall des
ribe this extension pro
ess, and thus 
onvin
e ourselvesthat there is no serious imposition in 
onsidering only fun
tors XMod→Mod,as will be done hereafter.First, let us re
all what it means for a fun
tor, not ne
essarily additive, tobe right-exa
t: 43



De�nition 1. A fun
tor F between abelian 
ategories is right-exa
t if forany exa
t sequen
e:
A

α // B
β // C // 0the asso
iated sequen
e:

F (A⊕B)

F (α+1B)
−F (1B) // F (B)

F (β) // F (C) // 0is also exa
t. ⋄This de�nition agrees with the usual one in the 
ase of an additive fun
tor.In fa
t, the usual de�nition a
tually implies additivity of the fun
tor, whi
h iswhy it is useless to us.We now state the main result on module fun
tors, along with an outline ofthe proof:Theorem 1.1. Any fun
tor XMod→Mod has a unique extension to a fun
tor FMod→
Mod, whi
h 
ommutes with indu
tive limits.2. Any fun
tor FMod→Mod has a unique right-exa
t extension to a fun
tor
Mod→Mod.The �rst part follows from Lazard's Theorem, stating that every �at mod-ule is an indu
tive limit of �nitely generated free modules. Given a fun
tor

G : XMod→Mod, we may hen
e de�ne G : FMod→Mod by
G(lim−→Mα) = lim−→G(Mα),for an indu
tive limit lim−→Mα of �nitely generated free modules. This de�nitionis probably independent of the indu
tive system.The se
ond part of the theorem is an immediate 
onsequen
e of Theorem2.14 in [2℄. (The 
ru
ial properties are the 
losure of FMod under dire
t sums,and that its obje
ts are proje
tive and generate Mod.) The extension pro
e-dure (whi
h essentially uses parts of the Dold�Puppe 
onstru
tion originallypresented in [5℄) may be summarized thus: Given a module M , 
hoose a reso-lution of free modules P and Q:
Q

ψ // P // M // 0De�ne the extension F : Mod→Mod of F : FMod→Mod by the equation
F (M) = F (P )

/[

F (π)
(
KerF (π + ψξ)

)]

,44



where π and ξ are the 
anoni
al proje
tions:
P P ⊕Qπoo ξ // QThis de�nition extends F , be
ause for free M , we may take the free resolu-tion:
0

0 // M // M // 0with π = 1M and ξ = 0, so that
F (M) = F (M)

/[

F (π)
(
KerF (π + ψξ)

)]

= F (M)

/[

F (1M )(KerF (1M ))
]

= F (M)

/[

1F (M)(Ker 1F (M))
]

= F (M)/0 ∼= F (M).2. The Cross-E�e
tsAn arbitrary module fun
tor may be analysed in terms of its 
ross-e�e
ts. Thesemay be de�ned as either of four modules, neither more 
anoni
al than the others.Given a dire
t sum M = M1 ⊕ · · · ⊕Mn, let
πj : M →Mbe proje
tion on the jth summand,

̺j : M →M/Mjretra
tion from the jth summand, and
τj : M/Mj →Minsertion of 0 into the jth summand. We then have:Theorem 2. For a module fun
tor F , the following four modules are naturallyisomorphi
:A. Im

[
F (π1 ⋄ · · · ⋄ πn) : F (M)→ F (M)

].B. Ker
[
(F (̺1), . . . , F (̺n)) : F (M)→⊕

F (M/Mj)
].C. Coker

[
F (τ1) + · · ·+ F (τn) :

⊕
F (M/Mj)→ F (M)

].D. Coim
[
F (π1 ⋄ · · · ⋄ πn) : F (M)→ F (M)

].Proof. We only show the modules in A and B to be equal, and leave the rest tothe reader. 45



Suppose z ∈ Ker(F (̺1), . . . , F (̺n)). Note that if j 6= i, then πi̺j = πi, and
onsequently, if j /∈ I, then
F

(
∑

i∈I

πi

)

(z) = F

(
∑

i∈I

πi

)

F (̺j)(z) = 0.It follows that
F (π1 ⋄ · · · ⋄ πn)(z) =

∑

I⊆[n]

(−1)n−|I|F

(
∑

i∈I

πi

)

(z)

= F (π1 + · · ·+ πn) (z) = F (1)(z) = z.Conversely, assume z ∈ ImF (π1 ⋄ · · · ⋄ πn), so that z = F (π1 ⋄ · · · ⋄ πn)(y).Then, sin
e
̺jπi =

{

πi if j 6= i,
0 if j = i,we get

F (̺j)(z) = F (̺j)F (π1 ⋄ · · · ⋄ πn)(y) =
∑

I⊆[n]

(−1)n−|I|F

(

̺j
∑

i∈I

πi

)

(y)

=
∑

I⊆[n]

(−1)n−|I|F




∑

i∈I\{j}

πi



 (y) = 0,be
ause sets I with and without j will 
an
el ea
h other out.De�nition 2. We de�ne the nth 
ross-e�e
t of F as the multifun
tor
F † (M1| . . . |Mn) = ImF (π1 ⋄ · · · ⋄ πn)of n arguments (it 
ould be de�ned as any of the four modules above). We shalluse the short-hand notation

F †(Mi|i∈I)for the |I|'th 
ross-e�e
t of the modules Mi. ⋄In ea
h of the four 
ases above, it is impli
it how the resulting 
ross-e�e
tfun
tor will a
t on arrows. For example, if the 
ross-e�e
t is viewed as ImF (π1⋄
· · · ⋄ πn), then for given αj : Mj →M ′

j , the following diagram will 
ommute:
F (
⊕
Mi)

F (♦ ιiπi)

��

F (
L

αi) // F (
⊕
M ′
i)

F(♦ ι′iπ
′
i)

��
F (
⊕
Mi)

F (
L

αi)
// F (
⊕
M ′
i)46



Therefore, there will be an indu
ed map
F † (α1| . . . |αn) : ImF (♦ ιiπi)→ ImF (♦ ι′iπ

′
i) .Similar arguments may be 
onstru
ted for the other three possibilities.Theorem 3: The Cross-E�e
t De
omposition.

F (M1 ⊕ · · · ⊕Mn) =
⊕

I⊆[n]

F †(Mi|i∈I).Proof. See [6℄. 3. Polynomial Fun
torsWe now turn to interpreting our three notions of polynomiality, in order fromthe weakest to the strongest. We begin with plain polynomiality, of whi
h thede�ning property is 
lassi
ally taken as the vanishing of the 
ross-e�e
ts.De�nition 3. The fun
tor F : XMod → Mod is said to be polynomial ofdegree (at most) n if every arrow map
F : Hom(M,N)→ Hom(F (M), F (N))is. ⋄Examples will be found later on, as all numeri
al and stri
t polynomialfun
tors are also polynomial.Theorem 4. F is polynomial of degree n i� its (n+1)st 
ross-e�e
t vanishes.Proof. Suppose the (n + 1)st 
ross-e�e
t vanishes and 
onsider n + 1 maps

αj : M → N . Create n+ 1 modules Mj = M and n+ 1 modules Nj = N , let
πj :

⊕

Ni → Nj, ιj : Nj →
⊕

Nidenote the jth proje
tion and in
lusion, respe
tively, and de�ne
σ :
⊕

Ni → N, (y1, . . . , yn+1) 7→
∑

yi.The following equality is easily 
he
ked:
F (N)← F

(⊕

Ni

)

← F
(⊕

Ni

)

← F (M) :

F (α1 ⋄ · · · ⋄ αn+1) = F (σ) ◦ F (ι1π1 ⋄ · · · ⋄ ιn+1πn+1) ◦ F ((α1, . . . , αn+1))But the middle 
omponent is zero by assumption, and we are done.The 
onverse is trivial. 47



4. Numeri
al Fun
torsWe now assume a numeri
al base ring.De�nition 4. The fun
tor F : XMod → Mod is said to be numeri
al ofdegree (at most) n if every arrow map
F : Hom(M,N)→ Hom(F (M), F (N))is. ⋄Note the in
onspi
uous assumption on uniformly bounded degree of thearrow maps. We shall presently see what happens when this assumption isdropped.Also note that, over the base ring Z, the notions of polynomial and numeri
alfun
tor 
oin
ide.Example 1. The numeri
al fun
tors F of degree 0 are the 
onstant ones:

F (M) = K.The fun
tors of degree 1 are those of the form
F (M) = K ⊕ E(M),where K is a �xed module and E is R-linear. △Example 2. The tensor power T n(M), the symmetri
 power Sn(M), the exte-rior power Λn(M), and the divided power Γn(M) are all nth degree fun
tors. △A natural transformation η : F → G of numeri
al fun
tors is a family

η = (ηM : F (M)→ G(M) |M ∈ XMod)su
h that for any modules M and N , any numeri
al algebra A, and any ω ∈
A⊗Hom(M,N), the following diagram 
ommutes:

A⊗ F (M)

F (ω)

��

1⊗ηM // A⊗G(M)

G(ω)

��
A⊗ F (N)

1⊗ηN

// A⊗G(N)

(3.1)
We let Numn be the 
ategory whose obje
ts are numeri
al fun
tors of degree(at most) n, with arrows natural transformations. It is easy to see that it isabelian (the 
ase R = Z is well known). It is also 
losed under dire
t sums, andwe will see in Chapter 4 that it possesses a 
ompa
t progenerator. By Moritaequivalen
e, it is equivalent to a module 
ategory.48



5. Properties of Numeri
al Fun
torsLet us hasten to point out, that our de�nition of natural transformation isunne
essarily 
ompli
ated. A 
onsequen
e of Theorem 8 of Chapter 2 is that apolynomial fun
tor is uniquely determined by its underlying fun
tor. In viewof this, the following theorem is hardly surprising. The reason for adoptingthe more 
ompli
ated 
ondition as de�nition, is to 
onform to the situation forstri
t polynomial fun
tors. These, it may be re
alled, are not determined bytheir underlying fun
tors.Theorem 5. The diagram (3.1) 
ommutes for any natural transformation
η : F → G.Proof. Consider homomorphisms α1, . . . , αk : M → N . Assume

F (a1 ⊗ α1 + · · ·+ ak ⊗ αk) =
∑

µ

(
a1

m1

)

· · ·
(
ak
mk

)

⊗ βµ

G(a1 ⊗ α1 + · · ·+ ak ⊗ αk) =
∑

ν

(
a1

n1

)

· · ·
(
ak
nk

)

⊗ γν ,for any a1, . . . , ak in any numeri
al algebraA, where we denote µ = (m1, . . . ,mk)and ν = (n1, . . . , nk). The naturality of η ensures that
∑

µ

(
a1

m1

)

· · ·
(
ak
mk

)

ηNβµ =
∑

ν

(
a1

n1

)

· · ·
(
ak
nk

)

γνηM .Spe
ialize �rst to the 
ase a2 = a3 = · · · = 0, to obtain
∑

m1

(
a1

m1

)

ηNβm10... =
∑

n1

(
a1

n1

)

γn10...ηM .By su

essively letting a1 = 0, 1, 2, . . . , it will be seen that
ηNβ(m1,0,... ) = γ(m1,0,... )ηMfor all m1. It is now easy to show indu
tively, that

ηNβµ = γµηMfor all µ. The 
ommutativity of the diagram (3.1), for
ω = a1 ⊗ α1 + · · ·+ ak ⊗ αk,is then demonstrated by the following instantiation:

b⊗ x

��

// b⊗ ηM (x)

��
∑

µ

(
a1

m1

)
· · ·
(
ak

mk

)
b⊗ βµ(x) //

[ ∑

µ

(
a1

m1

)
· · ·
(
ak

mk

)
b⊗ ηNβµ(x)

=
∑

µ

(
a1

m1

)
· · ·
(
ak

mk

)
b⊗ γµηM (x)

]
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Theorem 6. The following 
onditions are equivalent on a polynomial fun
tor
F of degree n.A.

F (rα) =
n∑

k=0

(
r

k

)

F

(

♦
k
α

)

,for any homomorphism α and r ∈ R (numeri
al fun
tor).B.
F (rα) =

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

F (mα),for any homomorphism α and r ∈ R.A′.
F (r · 1Rn) =

n∑

k=0

(
r

k

)

F

(

♦
k

1Rn

)

,for r ∈ R.B′.
F (r · 1Rn) =

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

F (m · 1Rn),for r ∈ R.Proof. That A and B are equivalent follows from Theorem 2 of Chapter 2, asdoes the equivalen
e of A′ with B′. Clearly B implies B′, so there remains toestablish that B′ implies B. Hen
e assume B′.If q ≤ n, the equation
F (r · 1Rq) =

n∑

m=0

(−1)n−m
(
r

m

)(
r −m− 1

n−m

)

F (m · 1Rq)holds, be
ause 1Rq fa
tors through 1Rn . Putting
Z(m) = (−1)n−m

(
r

m

)(
r −m− 1

n−m

)

,we 
al
ulate for q > n

F (r · 1Rq) = F (rπ1 + · · ·+ rπq)

= −
∑

I⊂[q]

(−1)q−|I|F

(
∑

i∈I

rπi

)

= −
∑

I⊂[q]

(−1)q−|I|
n∑

m=0

Z(m)F

(
∑

i∈I

mπi

)50



= −
n∑

m=0

Z(m)
∑

I⊂[q]

(−1)q−|I|F

(
∑

i∈I

mπi

)

=

n∑

m=0

Z(m)F (mπ1 + · · ·+mπq) =

n∑

m=0

Z(m)F (m · 1Rq).The third and sixth steps are be
ause the qth deviation vanishes, and the fourthstep is by indu
tion (on q). Finally, the equation will also hold for an arbitraryhomomorphism α : Rp → Rq, be
ause
F (rα) = F (r · 1Rq)F (α)

=
n∑

m=0

Z(m)F (m · 1Rq)F (α)

=

n∑

m=0

Z(m)F (mα).Theorem 7. The module fun
tor F is numeri
al of degree n i� for any r1,
. . . , rk ∈ R and homomorphisms α1, . . . , αk, the following equation holds:

F (r1α1 ⋄ · · · ⋄ rkαk) =
∑

#S=[k]
|S|≤n

∏

j∈#S

(
rj

deg j

)

F

(

♦
j∈S

αj

)

,where the sum is taken over multisets S.Proof. Theorem 6 of Chapter 2.6. The Hierar
hy of Numeri
al Fun
torsWe shall say that a map f , or a family of su
h, is multipli
ative if
f(z)f(w) = f(zw)whenever z and w are entities (�quelques 
hoses�) su
h that the equation makessense, and also

f(1) = 1,where the symbol 1 is to be interpreted in a natural way. An ordinary fun
toris by de�nition multipli
ative.Also, we say that a family of maps is polynomial of bounded degree, ifevery map is numeri
al of some �xed degree n.Theorem 8. Consider the following 
onstru
ts, where A ranges over all nu-meri
al algebras: 51



A. A family of ordinary fun
tors EA : AXMod → AMod, 
ommuting withextension of s
alars.B. A fun
tor J : XMod →Mod of whi
h the arrow fun
tions are multipli
a-tive maps
JA : HomA(A⊗M,A⊗N)→ HomA(A⊗ J(M), A⊗ J(N)),natural in A.C. A fun
tor F : XMod→Mod of whi
h the arrow fun
tions are multipli
a-tive maps

FA : A⊗HomR(M,N)→ A⊗HomR(F (M), F (N)),natural in A (numeri
al maps).Constru
ts A and B are equivalent, but weaker than C. If, in addition, thearrow fun
tions are assumed to have uniformly bounded degree, all three areequivalent.Proof. Given E, de�ne J by
J(M) = ER(M)and the following diagram:

HomA(A⊗M,A⊗N)
EA //

J ++

HomA(EA(A⊗M), EA(A⊗N))
OO

��
HomA(A⊗ J(M), A⊗ J(N))The properties required of J are immediate.Conversely, given J , de�ne the E by the equation

EA(A⊗M) = A⊗ J(M)and the diagram:
HomA(EA(A⊗M), EA(A⊗N))

HomA(A⊗M,A⊗N)

EA

33

J
// HomA(A⊗ J(M), A⊗ J(N))Also, it is easy to de�ne J from F , using the following diagram:

A⊗HomR(M,N)
OO

��

F // A⊗HomR(F (M), F (N))

��
HomA(A⊗M,A⊗N)

J
// HomA(A⊗ J(M), A⊗ J(N))52



The left 
olumn in the diagram is an isomorphism as long asM and N are free.So far the proofs have been 
ompletely straightforward, but we now turn tothe more di�
ult pro
edure of de�ning F from J , modelled on the 
orrespond-ing proof for stri
t polynomial fun
tors in [15℄. Given M and N , �nd a freeresolution:
R(λ) // R(κ) // J(M) // 0Apply the 
ontravariant, left-exa
t fun
tor HomA(A ⊗ −, A⊗ J(N)), where Ais any numeri
al algebra:

0 // HomA(A⊗ J(M), A⊗ J(N))
ι // (A⊗ J(N))κ

σ // (A⊗ J(N))λ

A⊗Hom(M,N)

J

OO

δn // A⊗R[Hom(M,N)]n

ζ

OOThe homomorphism
ιJ : A⊗Hom(M,N)→ (A⊗ J(N))κmay be split up into 
omponents
(ιJ)k : A⊗Hom(M,N)→ A⊗ J(N),for ea
h k ∈ κ. These are numeri
al of degree n, and will fa
tor over δn viasome linear ζk. Together these yield a linear map
ζ : A⊗R[Hom(M,N)]n → (A⊗ J(N))κmaking the above square 
ommute.Now, σζδn = σιJ = 0, whi
h gives σζ = 0. Using the exa
tness of the upperrow in the diagram, ζ fa
tors via some
ξ : R[Hom(M,N)]n → Hom(J(M), J(N)),and be
ause of the inje
tivity of ι, also J will fa
tor over δn. The followingdiagram will therefore 
ommute:
Hom(J(M), J(N))

ι // J(N)(κ)

Hom(M,N)

J

OO

δn // R[Hom(M,N)]n

ζ

OO
ξ

iiBe
ause J fa
tors over R[Hom(M,N)]n, it is numeri
al of degree n, and so maybe used to 
onstru
t the F above.We thus obtain the following hierar
hy of fun
tors:Numeri
al fun
tors are required to satisfy all three 
onditions A, B andC, and to be of bounded degree.53



A fun
tor satisfying 
ondition C, with no assumption on the degree, 
ouldrightly be 
alled lo
ally numeri
al, but this 
on
ept will not be used inthe sequel.A fun
tor satisfying the weaker 
onditions A and B, again without anyassumption on the degree, will be 
alled analyti
.Example 3. The fun
tors S, T , Γ and Λ are all analyti
. Of these, only Λ islo
ally numeri
al. △7. Stri
t Polynomial Fun
torsWe now develop the theory for stri
t polynomial fun
tors, to make it run inparallel with that of non-stri
t fun
tors. The base ring R is no longer assumednumeri
al.De�nition 5. The fun
tor F : XMod→Mod is said to be stri
tly polyno-mial of degree n if every arrow map
F : Hom(M,N)→ Hom(F (M), F (N))is. ⋄Example 4. The fun
tors T n, Sn, Λn and Γn are in fa
t stri
t polynomialfun
tors of degree n. △By a natural transformation η : F → G of stri
t polynomial fun
tors, wemean a family
η = (ηM : F (M)→ G(M) |M ∈ XMod)su
h that for any modules M and N , any algebra A, and any ω ∈ A ⊗

Hom(M,N), the following diagram 
ommutes:
A⊗ F (M)

F (ω)

��

1⊗ηM // A⊗G(M)

G(ω)

��
A⊗ F (N)

1⊗ηN

// A⊗G(N)We let SPoln be the 
ategory whose obje
ts are stri
t polynomial fun
torsof degree (at most) n, with arrows natural transformations. It is well known tobe abelian.It is 
lear that every stri
t polynomial fun
tor is also numeri
al of the samedegree.
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8. The Hierar
hy of Stri
t Polynomial Fun
torsAs for numeri
al fun
tors, we have the following three 
hara
terizations of stri
tpolynomial fun
tors.Theorem 9. Consider the following 
onstru
ts, where A ranges over all alge-bras:A. A family of ordinary fun
tors EA : AXMod → AMod, 
ommuting withextension of s
alars.B. A fun
tor J : XMod →Mod of whi
h the arrow fun
tions are multipli
a-tive maps
JA : HomA(A⊗M,A⊗N)→ HomA(A⊗ J(M), A⊗ J(N)),natural in A.C. A fun
tor F : XMod→Mod of whi
h the arrow fun
tions are multipli
a-tive maps

FA : A⊗HomR(M,N)→ A⊗HomR(F (M), F (N)),natural in A (stri
t polynomial maps).Constru
ts A and B are equivalent, but weaker than C. If, in addition, thearrow fun
tions are assumed to have uniformly bounded degree, all three areequivalent.Proof. The proof is exa
tly analogous to the one given for polynomial fun
tors,ex
ept that, in the proof that B implies C, the module
n⊕

k=0

Γk Hom(M,N)is used in pla
e of R[Hom(M,N)]n. The details are found in [15℄.As in the numeri
al 
ase, we obtain the following hierar
hy:Stri
t polynomial fun
tors are required to satisfy all three 
onditions A,B and C, and to be of bounded degree.A fun
tor satisfying 
ondition C, with no assumption on the degree, 
ouldbe 
alled lo
ally stri
t polynomial, but this 
on
ept will not be usedin the sequel.A fun
tor satisfying the weaker 
onditions A and B, again without anyassumption on the degree, will be 
alled stri
tly analyti
.55



9. Homogeneous Polynomial Fun
torsRather than 
onsidering arbitrary stri
t polynomial fun
tors, we shall from nowon limit our attention to homogeneous ones.De�nition 6. The fun
tor F : XMod→Mod is said to be homogeneous ofdegree n if every arrow map
F : Hom(M,N)→ Hom(F (M), F (N))is. ⋄The sub
ategory of homogeneous fun
tors will be denoted by HPoln. It isabelian, and nothing essential will be lost by 
onsidering su
h fun
tors only, asthe following theorem shows. It is proved in [15℄.Theorem 10. A stri
t polynomial fun
tor de
omposes as a unique dire
t sumof homogeneous fun
tors. The only possible natural transformation between ho-mogeneous fun
tors of di�erent degrees is the zero transformation.Like Numn, HPoln will shortly be proved to possess a 
ompa
t progenera-tor and to be 
losed under dire
t sums, and hen
e be equivalent to a module
ategory. 10. Analyti
 Fun
torsWe here make a 
lose examination of the analyti
 fun
tors. We opt not to provethe �rst of these results, as it should be well known. The se
ond result 
anlikely be improved upon. It seems rather probable that the analyti
 fun
torsare pre
isely the indu
tive limits of numeri
al fun
tors.Theorem 11. The stri
t analyti
 fun
tors are pre
isely the in�nite dire
t sums(or, equivalently, indu
tive limits) of stri
t polynomial fun
tors.Theorem 12. Over a noetherian base ring, the analyti
 fun
tors are pre
iselythe indu
tive limits of lo
ally numeri
al fun
tors.Proof. Indu
tive limits of numeri
al, or even analyti
, fun
tors will 
learly beanalyti
. For if the fun
tors Fi, for i ∈ I, are analyti
, then for any α ∈

HomA(A⊗M,A⊗N), we have
Fi(α) : A⊗ Fi(M)→ A⊗ Fi(N).Therefore

lim−→Fi(α) : A⊗ lim−→Fi(M)→ A⊗ lim−→Fi(N),sin
e tensor produ
ts 
ommute with indu
tive limits, whi
h yields a map
lim−→Fi : HomA(A⊗M,A⊗N)→ HomA(A⊗ lim−→Fi(M), A⊗ lim−→Fi(N)).56



Suppose now 
onversely that F is analyti
; the maps
F : HomA(A⊗M,A⊗N)→ HomA(A⊗ F (M), A⊗ F (N))are then multipli
ative and natural in A. To show F is the indu
tive limit oflo
ally numeri
al fun
tors, it is su�
ient to 
onstru
t, given a module P and anelement u ∈ F (P ), a lo
ally numeri
al subfun
tor G of F su
h that u belongsto G(P ).To this end, de�ne the fun
tor G by

G(M) = 〈F (α)(u) | α : P →M〉 ,and observe that the modules G(M) are invariant under the a
tion of F . Thus,
G is indeed a subfun
tor of F , and 
learly u ∈ G(P ). To see that G is lo
allynumeri
al, let {ǫ1, . . . , ǫm} be a basis for Hom(P,M). Let A = R

(
t1,...,tm

−

). Then
F
(∑

tk ⊗ ǫk
)

: A⊗ F (P )→ A⊗ F (M), 1⊗ u 7→
∑

(
t

µ

)

⊗ vµ,for �nitely many elements vµ ∈ F (M). Spe
ializing tk 7→ ak ∈ R, we get
F
(∑

akǫk

)

: F (P )→ F (M), u 7→
∑

(
a

µ

)

vµ,whi
h shows
G(M) = 〈F (α)(u) | α : P →M〉

=
〈

F
(∑

akǫk

)

(u)
∣
∣
∣ ak ∈ R

〉

=

〈
∑

(
a

µ

)

vµ

∣
∣
∣
∣
ak ∈ R

〉is �nitely generated. Sin
e R is noetherian, G(M) is also �nitely presented. Wehave therefore the following 
ommutative diagram, where the right 
olumn isan isomorphism, for any �at numeri
al algebra A:
A⊗Hom(M,N)

G //

**

HomA(A⊗G(M), A⊗G(N))
OO

��
A⊗Hom(G(M), G(N))The existen
e of the diagonal map for �at A is enough for G to be lo
allynumeri
al. 11. The DeviationsWe shall here make a more detailed study of deviations in the 
ontext of fun
tors.We introdu
e the notation

M ⊑ X × Y,to denote that M is a subset of X ×Y , and that both the 
anoni
al proje
tionsare onto. 57



Lemma 1. Let m and n be natural numbers, L ⊆ [m]× [n], and let Y (m,n, k)denote the number of sets K of 
ardinality k satisfying
L ⊆ K ⊑ [m]× [n].Then ∑

k

(−1)kY (m,n, k) = 0,unless L is of the form P ×Q, for P ⊆ [m], Q ⊆ [n].Proof. If L is not of the given form, there exists an (a, b) whi
h is not in L, butsu
h that some (a, j) and some (i, b) are in L. Then, for any set K ⊆ [m]× [n]
ontaining (a, b), K itself will satisfy the given set in
lusions i� K \{(a, b)} does.Be
ause the 
ardinalities of these sets di�er by one, the 
orresponding terms inthe above sum will have opposing signs, and hen
e 
an
el.Lemma 2. Let m, n, p and q be natural numbers, and let Y (m,n, k) denotethe number of sets K of 
ardinality k satisfying
[p]× [q] ⊆ K ⊑ [m]× [n].Then ∑

k

(−1)kY (m,n, k) = (−1)m+n+p+q+pq.Proof. The formula is evidently true for m = p and n = q, for then Y (p, q, pq) =
1 and all other Y (p, q, k) = 0. We now do re
ursion. Consider the pair (m,n) ∈
[m] × [n]. The sets K 
ontaining (m,n) will fall into two 
lasses: those where
(m,n) is mandatory in order to satisfy K ⊑ [m]× [n], and those where it is not.For the latter 
lass we may pro
eed as in the pre
eding proof: Taking su
h a
K and removing (m,n) will yield another set 
ounted in the sum above, but of
ardinality de
reased by one. Sin
e these two types of sets exa
tly pair o�, withopposing signs, their 
ontribution to the given sum is zero.Consider then those K of whi
h (m,n) is a mandatory element. They fallinto three 
ategories:
• Some (m, j) ∈ K, for 1 ≤ j ≤ n− 1, but no (i, n) ∈ K, for 1 ≤ i ≤ m− 1.The number of su
h sets is Y (m,n− 1, k − 1).
• No (m, j) ∈ K, for 1 ≤ j ≤ n− 1, but some (i, n) ∈ K, for 1 ≤ i ≤ m− 1.The number of su
h sets is Y (m− 1, n, k − 1).
• No (m, j) ∈ K, for 1 ≤ j ≤ n − 1, and no (i, n) ∈ K, for 1 ≤ i ≤ m − 1.The number of su
h sets is Y (m− 1, n− 1, k − 1).Assuming the proposed formula is valid for lesser values ofm and n, we 
al
ulateby indu
tion:

∑

k

(−1)kY (m,n, k) 58



=
∑

k

(−1)k
(
Y (m,n− 1, k − 1) + Y (m− 1, n, k − 1) + Y (m− 1, n− 1, k − 1)

)

= −
(
(−1)m+n−1+p+q+pq + (−1)m−1+n+p+q+pq + (−1)m−1+n−1+p+q+pq

)

= (−1)m+n+p+q+pq,as desired.With these 
ombinatorial prerequisites, we may state and prove our mainresult on deviations.Theorem 13: The Deviation Formula. For a module fun
tor F , and ho-momorphisms α1, . . . , αm, β1, . . . , βn,
F (α1 ⋄ · · · ⋄ αm)F (β1 ⋄ · · · ⋄ βn) =

∑

K⊑[m]×[n]

F

(

♦
(i,j)∈K

αiβj

)

.Proof. We have
∑

K⊑[m]×[n]

F

(

♦
(i,j)∈K

αiβj

)

=
∑

K⊑[m]×[n]

∑

L⊆K

(−1)|K|−|L|F




∑

(i,j)∈L

αiβj





=
∑

L⊆[m]×[n]

∑

L⊆K⊑[m]×[n]

(−1)|K|−|L|F




∑

(i,j)∈L

αiβj





=
∑

L⊆[m]×[n]

(−1)|L|F




∑

(i,j)∈L

αiβj




∑

L⊆K⊑[m]×[n]

(−1)|K|

=
∑

P×Q⊆[m]×[n]

(−1)|P ||Q|F




∑

(i,j)∈P×Q

αiβj



 (−1)m+n+|P |+|Q|+|P ||Q|

=
∑

P⊆[m]

(−1)m−|P |F

(
∑

i∈P

αi

)
∑

Q⊆[n]

(−1)n−|Q|F




∑

j∈Q

βj





= F (α1 ⋄ · · · ⋄ αm)F (β1 ⋄ · · · ⋄ βn),where in the �fth step the lemmata were used to evaluate the inner sum.12. The Multi
ross-E�e
tsGiven a dire
t sum M = M1 ⊕ · · · ⊕ Mn, let πi : M → M denote the ithproje
tion. Re
all that the 
ross-e�e
ts of a module fun
tor F are given by theformula
F †(Mi|i∈I) = ImF (π1 ⋄ · · · ⋄ πn),for I ⊆ [n]. 59



The 
ross-e�e
ts of a stri
t polynomial fun
tor may in fa
t be disse
tedfurther into so 
alled multi
ross-e�e
ts. These are des
ribed using the languageof multisets, whi
h are formally introdu
ed in Chapter 6.Let F be a stri
t polynomial fun
tor and let αi : M → N be homomorphisms.We re
all that the maps Fα[µ] : F (M)→ F (N), for multi-indi
es µ, are de�nedby the universal validity of the equation
F
(∑

ai ⊗ αi
)

=
∑

aµ ⊗ Fα[µ] .De�nition 7. Let A be a multiset with |A| = n and #A = [n]. We de�ne themulti
ross-e�e
t of F of type A to be the multifun
tor
F †
A (M1| . . . |Mn) = ImFπ[A]of n arguments. ⋄Theorem 14: The Multi
ross-E�e
t De
omposition. For F a stri
tpolynomial (or stri
t analyti
) fun
tor,

F † (M1| . . . |Mn) =
⊕

#A=[n]
|A|=n

F †
A (M1| . . . |Mn) ,and 
onsequently,

F (M1 ⊕ · · · ⊕Mn) =
⊕

#A⊆[n]
|A|=n

F †
A(Ma|a∈#A).Proof. The equation de�ning the Fπ[µ] is

F
(∑

ai ⊗ πi
)

=
∑

aµ ⊗ Fπ[µ] ,from whi
h it immediately follows that
1 = F (1) = F

(∑

πi

)

=
∑

Fπ[µ] .Furthermore, the equation
∑

aµbν ⊗ Fπ[µ]Fπ[ν] = F
(∑

ai ⊗ πi
)

F
(∑

bj ⊗ πj
)

= F
(∑

akbk ⊗ πk
)

=
∑

(ab)λ ⊗ Fπ[λ]shows that Fπ[µ]Fπ[ν] = 0 whenever µ 6= ν, and also that F 2
π[µ] = Fπ[µ] . Conse-quently, the images of the maps Fπ[µ] form a dire
t sum de
omposition.60



Note in parti
ular the following spe
ial 
ase:
F (Rn) =

⊕

#A⊆[n]
|A|=n

F †
A(R|a∈#A),whi
h we 
hoose to write more su

in
tly as

F (Rn) =
⊕

#A⊆[n]
|A|=n

F †
A(Rn),
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CHAPTER 4Module RepresentationsEt la gla
e où se �ge un réel mouvementReste froide malgré son détestable ouvrage.La for
e du miroir trompa plus d'un amantQui 
rut aimer sa belle et n'aima qu'un mirage.� Guillaume Apollinaire, La For
e du MiroirT. I. Pirashvili, [13℄, showed in 1988 how polynomial fun
tors may be viewedas modules. Fifteen years later, Ekedahl and Salomonsson, [15℄, 
ame to realizethat also stri
t polynomial fun
tors admit a module interpretation. In this
hapter we des
ribe these two module 
ategories.As before, we assume a �xed base ring R, whi
h is assumed to be numeri
alwhen dealing with numeri
al fun
tors.1. The Fundamental Numeri
al Fun
torTwo numeri
al fun
tors of supreme importan
e are the following.Theorem 1. The fun
tor R[−]n, given by
M 7→ R[M ]n

[
χ : M → N

]
7→
[
[χ] : R[M ]n → R[N ]n

[x] 7→ [χ(x)]

]is numeri
al of degree n, as is the fun
tor R[Hom(K,−)]n for a �xed module
K.Proof. The �rst fun
tor is immediately seen to be of degree n, for if χj : M → N ,and x ∈M , then

[χ1 ⋄ · · · ⋄ χn+1]([x]) = [χ1(x) ⋄ · · · ⋄ χn+1(x)] = 0;and if a ∈ R and χ : M → N , then
[aχ]([x]) = [aχ(x)] =

n∑

k=0

(
a

k

)[

♦
k
χ(x)

]

=

n∑

k=0

(
a

k

)[

♦
k
χ

]

([x]).The se
ond fun
tor is the 
omposition of an nth degree fun
tor with a linearone and is therefore also of degree n. 62



The latter fun
tor R[Hom(K,−)]n above takes
M 7→ R[Hom(K,M)]n

[
χ : M → N

]
7→
[
[χ∗] : R[Hom(K,M)]n → R[Hom(K,N)]n

[α] 7→ [χ ◦ α]

]and 
ertainly deserves to be 
alled the fundamental numeri
al fun
tor ofdegree n, for reasons that will presently be made 
lear.Example 1. As an example of a fun
tor whi
h is polynomial, but not numer-i
al, of degree 1, let the base ring be R, and de�ne for real ve
tor spa
es
F : RMod→ RMod, V 7→ R[V ]/ 〈[x+ y]− [x]− [y]〉 .Clearly F is additive, its �rst deviation vanishes, and therefore also its se
ond
ross-e�e
t. But F is not numeri
al (of any degree), for

F (
√

2: R→ R) : [1] 7→ [
√

2]
√

2F (1 : R→ R) : [1] 7→
√

2[1],and these are not equal in
F (R) = R[R]/ 〈[x+ y]− [x]− [y]〉 .In fa
t, F is not numeri
al of any degree, as it is impossible to express F (

√
2)as a linear 
ombination of F (0), F (1), . . . . △2. Yoneda Corresponden
e for Numeri
al Fun
torsThe fun
tors R[Hom(K,−)]n just introdu
ed are to numeri
al fun
tors what theHom-fun
tors are to ordinary fun
tors, in that we have the following YonedaLemma for natural transformations between R[Hom(K,−)]n and an arbitrary

nth degree fun
tor F :Theorem 2: The Numeri
al Yoneda Lemma. Let K be a �xed moduleand F a numeri
al fun
tor of degree n. The map
Υ: Nat

(
R[Hom(K,−)]n, F

)
→ F (K)

η 7→ ηK([1K ])is an isomorphism of modules.Proof. The proof is the usual one. Consider the 
ommutative diagram:
K

α

��

R[Hom(K,K)]n

[α∗]

��

ηK // F (K)

F (α)

��

[1K ]

��

// ηK([1K ])

��
M R[Hom(K,M)]n

ηM // F (M) [α] // ηM ([α]) = F (α)(ηK ([1K ]))63



Upon inspe
tion, we �nd that Υ has the inverse
y 7→

[
ηM : R[Hom(K,M)]n → F (M)

[α] 7→ F (α)(y)

]

.Here we use the numeri
ality of F to ensure that the map
Hom(K,M)→ Hom(F (K), F (M))will fa
tor through R[Hom(K,M)]n.In parti
ular, we have a module isomorphism

Nat(R[Hom(K,−)]n) ∼= R[Hom(K,K)]n = R[EndK]n,given by the map
η 7→ ηK([1K ])with inverse

[σ] 7→
[
ηM : R[Hom(K,M)]n → R[Hom(K,M)]n

[α] 7→ [α ◦ σ].

]

.We re
all that R[EndK] and its quotients R[EndK]n feature two distin
tmultipli
ations, namely the sum multipli
ation [σ][τ ] = [σ+ τ ] and the produ
tmultipli
ation [σ][τ ] = [τσ]. The Yoneda map does not respe
t the former inany way, but it will reverse the latter.Theorem 3. Under the Yoneda 
orresponden
e, the rings
(
EndR[Hom(K,−)]n

)◦ ∼= R[EndK]n,where the latter is equipped with the produ
t multipli
ation.3. Morita Equivalen
e for Numeri
al Fun
torsWe shall now spe
ialize the fundamental fun
tor to the 
ase K = Rn. But �rst,a preliminary lemma:Lemma 1. A polynomial nth degree fun
tor that vanishes on Rn is identi
allyzero.Proof. For q ≤ n, 1Rq fa
tors via Rn, so that 1F (Rq) = F (1Rq ) = 0 fa
tors via
F (Rn) = 0.Now pro
eed by indu
tion and suppose F (Rq−1) = 0 for some q ≥ n + 1.De
ompose 1Rq = ι1π1+· · ·+ιqπq, where πj : Rq → R denotes the jth proje
tionand ιj : R→ Rq the jth in
lusion. Sin
e F is of degree q − 1,

0 = F (ι1π1 ⋄ · · · ⋄ ιqπq) =
∑

X⊆{ι1π1,...,ιqπq}

(−1)q−|X|F

(
∑

X

ιjπj

)

.If |X | ≤ q − 1, F (
∑

X ιjπj) = 0, sin
e ∑X ιjπj fa
tors via Rq−1 and weassumed F (Rq−1) = 0. The only remaining term in the sum above is then
0 = F (ι1π1 + · · ·+ ιqπq) = F (1Rq) = 1F (Rq).64



Theorem 4. R[Hom(Rn,−)]n is a 
ompa
t progenerator1 for Numn, throughwhi
h there is a Morita equivalen
e:
Numn ∼ R[Rn×n]nMod,where R[Rn×n]n 
arries the produ
t multipli
ation.More pre
isely, the fun
tor F 
orresponds to the abelian group F (Rn), withmodule stru
ture given by the equation

[s]x = F (s)(x).Proof. To show R[Hom(Rn,−)]n is proje
tive, we must show that
P = Nat(R[Hom(Rn,−)]n,−)is right-exa
t, or preserves epimorphisms. Hen
e let η : F → G be epi
, so thatea
h ηM is onto. From the following diagram, 
onstru
ted by aid of the YonedaLemma, it follows that η∗ is epi
:

Nat(R[Hom(Rn,−)]n, F )
OO

Υ

��

η∗ // Nat(R[Hom(Rn,−)]n, G)
OO

Υ

��
F (Rn)

ηRn // G(Rn)To show R[Hom(Rn,−)]n is a generator, we use the lemma.
0 = Nat(R[Hom(Rn,−)]n, F ) ∼= F (Rn)implies F = 0, so P fails to kill non-zero obje
ts.Compa
tness of R[Hom(Rn,−)]n follows from the 
omputation

Nat
(

R[Hom(Rn,−)]n,
⊕

Fk

)

∼=
(⊕

Fk

)

(Rn) =
⊕

Fk(R
n)

∼=
⊕

Nat (R[Hom(Rn,−)]n, Fk) ,again using the Yoneda Lemma (twi
e).As Numn is 
losed under dire
t sums, we have a Morita equivalen
e:
Numn

Nat(R[Hom(Rn,−)]n,−)

**
SMod

R[Hom(Rn,−)]n⊗−

jjwhere S =
(
NatR[Hom(Rn,−)]n

)◦ ∼= R[EndRn]n = R[Rn×n]n.1A progenerator of an abelian 
ategory is a proje
tive generator. It is 
ompa
t when the
orresponding Hom-fun
tor 
ommutes with arbitrary dire
t sums.65



To prove the last assertion of the theorem, we �rst note that F 
orrespondsto
Nat(R[Hom(Rn,−)]n, F ) ∼= F (Rn),again by the 
elebrated Yoneda Lemma. We now investigate on the modulestru
ture on F (Rn). Under the Yoneda map, an element x ∈ F (Rn) will 
orre-spond to the natural transformation




η : R[Hom(Rn,−)]n → F
ηM : R[Hom(Rn,M)]n → F (M)

[α] 7→ F (α)(x)



 ,extended by linearity. Likewise, [s] ∈ R[Rn×n]n will 
orrespond to




σ : R[Hom(Rn,−)]n → R[Hom(Rn,−)]n
σM : R[Hom(Rn,M)]n → R[Hom(Rn,M)]n

[α] 7→ [α ◦ s]



 ,again extended by linearity. Multiplying (the s
alar) σ with η in the module
Nat(R[Hom(Rn,−)]n, F )gives as produ
t the transformation





η ◦ σ : R[Hom(Rn,−)]n → F
(η ◦ σ)M : R[Hom(Rn,M)]n → F (M)

[α] 7→ F (α ◦ s)(x)



 ,whi
h under the Yoneda map 
orresponds to
(η ◦ σ)Rn([1Rn ]) = F (1Rn ◦s)(x) = F (s)(x)in F (Rn). The s
alar multipli
ation on F (Rn) is therefore given by the formula

[s]x = F (s)(x),and the proof is �nished.Example 2. Consider the 
onstant fun
tor C : Rk 7→ R and the identity fun
-tor I : Rk 7→ Rk. They are both of the �rst degree (of 
ourse, C is in fa
t ofdegree zero), whi
h means they will both under the Morita equivalen
e 
orre-spond to the abelian group C(R) = I(R) = R. Their module stru
tures over
R[R]1 = 〈[0R], [1R]〉 will di�er, however. For C, the s
alar multipli
ation isgiven by

(a[0R] + b[1R])x = C(a[0R] + b[1R])(x) = aC(0R)(x) + bC(1R)(x)

= a 1R(x) + b 1R(x) = (a+ b)x,whereas for I the a
tion is
(a[0R] + b[1R])x = I(a[0R] + b[1R])(x) = aI(0R)(x) + bI(1R)(x)

= a0R(x) + b 1R(x) = bx.

△66



4. The Fundamental Homogeneous Fun
torWith modi�
ations, the above theory for numeri
al fun
tors will have a stri
tlypolynomial 
ounterpart. The appropriate progenerator will of 
ourse no longerbe R[Hom(Rn,−)]n, but will involve the divided power fun
tor Γn.The stri
t polynomiality of Γn is of 
ourse an immediate 
onsequen
e of thefa
t that it 
ommutes with extension of s
alars:
Γn(A⊗M) = A⊗ Γn(M).We would, however, like to examine its behaviour a little more 
losely. In orderto do so, we de�ne a representation

Γn Hom(M,N)→ Hom(Γn(M),Γn(N)).Given ai ∈ A (where is A is some algebra) and αi ∈ Hom(M,N) (where Mand N are modules), let the equation
Γn :

[ ∑

i ai ⊗ αi
∈ A⊗Hom(M,N)

]

7→
[ ∑

|ν|=n a
ν ⊗ α[ν]

∈ A⊗Hom(Γn(M),Γn(N))

]

,de�ne the homomorphisms
α[ν] : Γn(M)→ Γn(N).Thus, the symbol α[ν] may be interpreted either as an element of Γn Hom(M,N)or as a map Γn(M)→ Γn(N) (and sometimes both).We state the following theorem, whi
h should be well known:Theorem 5. The fun
tor Γn, given by

M 7→ Γn(M)
[ ∑

i ai ⊗ αi
∈ A⊗Hom(M,N)

]

7→
[

(
∑

i ai ⊗ αi)
[n]

=
∑

|ν|=n a
ν ⊗ α[ν]

∈ A⊗Hom(Γn(M),Γn(N))

]is stri
tly polynomial of homogeneous degree n, as is the fun
tor Γn Hom(K,−)for a �xed module K.We de�ne the fundamental homogeneous polynomial fun
tor to be
Γn Hom(K,−), given by the following formula:

M 7→ Γn Hom(K,M)
[ ∑

i ai ⊗ αi
∈ A⊗Hom(M,N)

]

7→
[

(
∑

i ai ⊗ (αi)∗)
[n] =

∑

|ν|=n a
ν ⊗ (α∗)

[ν]

∈ A⊗Hom(Γn Hom(K,M),ΓnHom(K,N))

]

.
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5. Yoneda Corresponden
e for Homogeneous Fun
torsParallelling the development for polynomial fun
tors, we state and prove theYoneda Lemma for homogeneous polynomial fun
tors. Note that the module Kis here required to be free.Theorem 6: The Homogeneous Yoneda Lemma. Let K be a �xed, freemodule and F a homogeneous fun
tor of degree n. The map
Υ: Nat(Γn Hom(K,−), F )→ F (K)

η 7→ ηK(1
[n]
K )is an isomorphism of modules.Proof. Sin
e all the modules involved are free, we may without di�
ulty de�ne

Ξ: y 7→
[
ζM : Γn Hom(K,M)→ F (M)

β[µ] 7→ Fβ[µ](y)

]

.Pray note that Fβ[n] = F (β). ζM is evidently a well-de�ned group homomor-phism, being the 
omposite of β[µ] 7→ Fβ[µ] with evaluation at y.
ζ is natural, be
ause of the following 
ommutative diagram:
M

α

��

Γn Hom(K,M)

(α∗)[n]

��

ζM // F (M)

F
α[n]

��

β[µ]

��

// Fβ[µ](y)

��
N Γn Hom(K,N)

ζN // F (N) (αβ)[µ] // F(αβ)[µ](y) = Fα[n]β[µ](y)Now we show the above formula indeed gives the inverse of Υ. On the onehand, it is 
lear that
ΥΞ(y) = Υ(ζ) = ζK(1

[n]
K ) = F

1
[n]
K

(y) = F (1K)(y) = y.On the other hand, starting from η and letting y = Υ(η) = ηK(1
[n]
K ) de�ne

ζ = Ξ(y), we see that
ζM (β[n]) = Fβ[n](y) = Fβ[n](ηK(1

[n]
K )) = F (β)(ηK(1

[n]
K )) = ηM (β[n]),where the last equality is due to the following 
ommutative diagram:

K

β

��

Γn Hom(K,K)

(β∗)[n]

��

ηK // F (K)

F (β)

��

1
[n]
K

��

// ηK(1
[n]
K )

��
M Γn Hom(K,M)

ηM // F (M) β[n] // ηM (β[n]) = F (β)(ηK (1
[n]
K ))

η and ζ then agree everywhere by the Divided Power Lemma.68



In parti
ular, we have a module isomorphism
Nat(Γn Hom(K,−)) ∼= Γn Hom(K,K) = Γn(EndK),given by the map

η 7→ ηK(1
[n]
K )with inverse

σ[n] 7→
[
ηM : Γn Hom(K,M)→ Γn Hom(K,M)

α[n] 7→ (α ◦ σ)[n]

]

.As in the numeri
al 
ase, this is a ring isomorphism when Γn(EndK) is equippedwith the reverse produ
t multipli
ation:Theorem 7. Let K be free. Under the Yoneda 
orresponden
e, the rings
(
Nat(Γn Hom(K,−))

)◦ ∼= Γn(EndK),where the latter is equipped with the produ
t multipli
ation.6. Morita Equivalen
e for Homogeneous Fun
torsAgain, we spe
ialize to the 
ase K = Rn to obtain a 
ompa
t progenerator:Theorem 8. Γn Hom(Rn,−) is a 
ompa
t progenerator for HPoln, throughwhi
h there is a Morita equivalen
e:
HPoln ∼ Γn(Rn×n)Mod,where Γn(Rn×n) 
arries the produ
t multipli
ation.More pre
isely, the fun
tor F 
orresponds to the abelian group F (Rn), withmodule stru
ture given by the equation

s[n](x) = F (s)(x)Proof. The proof is virtually identi
al to the one for numeri
al fun
tors andtherefore omitted.
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CHAPTER 5MazesLabyrinth of FunThe quartet Baues, Dre
kmann, Franjou and Pirashvili, [1℄, dis
overed in 2001how to 
ombinatorially en
ode Z-module fun
tors, and in parti
ular polyno-mial ones. Their design was to establish a two-way 
orresponden
e (
ategoryequivalen
e) between module fun
tors ZXMod → ZMod and Ma
key fun
tors
Ω→ ZMod, where Ω is the 
ategory of �nite sets and surje
tions.Unfortunately, the argument does not generalize to an arbitrary base ring,as it is not apparent what 
ategory should play the r�le of Ω. To remedythis situation, we explore here the theory of mazes. We will later (Chapter 7)re
apture the Ω-
onstru
tion of [1℄.The 
onstru
tion we des
ribe is quite general. It does not require the basering to be numeri
al, and not even 
ommutative. So until we start dis
ussingpolynomiality, R is just assumed to be a unital ring.1. MazesConsider two �nite sets X and Y . A passage from x ∈ X to y ∈ Y is a (formal)arrow p from x to y, tagged with an element of R, denoted by p. This we writeas

p : x→ y,or
x

p // y .De�nition 1. Amaze from X to Y is a multiset of passages from X to Y . Itis required that there be at least one passage leading from every element of X ,and at least one passage leading to every element of Y (we, so to speak, wishto prevent dead ends from forming). ⋄Be
ause a maze is a multiset, there 
an be (and, in general, will be) multiplepassages between any two given elements.De�nition 2. We say P : X → Y is a submaze of Q : X → Y , if P ⊆ Q asmultisets. ⋄70



De�nition 3. If P : X → Y is a maze, the restri
tion of P to X ′ → Y ′, forsubsets X ′ ⊆ X and Y ′ ⊆ Y , is the maze (if indeed it is one) from X ′ to Y ′
ontaining only those passages of P that begin in X ′ and end in Y ′. It will bedenoted by
P


X′→Y ′ .

⋄We shall sometimes abuse notation, and use the symbol P
X′→Y ′ even whenthis is not ne

essarily a maze. We will take this liberty when summing oversubmazes, with the ta
it understanding, that if P

X′→Y ′ is not itself a maze,of 
ourse it has no submazes either, so the sum will be empty.Note that P
X′→Y ′ is not a submaze of P (unless X ′ = X and Y ′ = Y ).Passages p : y → z and q : x → y are said to be 
omposable, be
ause oneends where the other begins.De�nition 4. If P : Y → Z and Q : X → Y are mazes, we de�ne the 
arte-sian produ
t P Q to be the multiset of all pairs of 
omposable passages:

P Q =
{([

z y
poo

]

,
[

y x
qoo

]) ∣
∣
∣

[

z y
poo

]

∈ P ∧
[

y x
qoo

]

∈ Q
}

.

⋄For a subset U ⊆ P Q, we shall write
U ⊑ P Qto indi
ate that the proje
tions on P and Q are both onto. Note that su
h aset U naturally gives rise to a new maze, namely

{[

z x
pqoo

] ∣
∣
∣

([

z y
poo

]

,
[

y x
qoo

])

∈ U
}

.The surje
tivity 
ondition on the proje
tions will prevent dead ends from form-ing.When we write P Q, we will sometimes refer to the 
artesian produ
t,and sometimes its asso
iated maze, and hope the 
ir
umstan
es will make 
learwhi
h is meant.De�nition 5. The produ
t or 
omposition of the mazes P and Q is de�nedas the formal sum
PQ =

∑

U⊑P Q

U.

⋄That multipli
ation is asso
iative follows easily from the observation that
(PQ)R and P (QR) both equal

∑

W⊑P Q R

W.71



There exist identity mazes
IX =

{[

x
1−→ x

] ∣
∣
∣ x ∈ X

}

.Note, by the by, that it is perfe
tly legal to 
onsider the empty maze
I∅ = ∅ : ∅ → ∅with no passages. It is the only maze into or out of ∅.Example 1. Consider the two mazes

Q =





x a&&LL
z

y b

99tt



 , P =





x
z
c 88rr

d
%%JJ y



 .Their 
artesian produ
t is
P Q =

{([

x z
coo

]

,
[

z x
aoo

])

,
([

y z
doo

]

,
[

z x
aoo

])

,

([

x z
coo

]

,
[

z yboo
])

,
([

y z
doo

]

,
[

z yboo
])}

,whi
h we identify with the maze







x
ac //

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

bd
// y







,and their produ
t is

PQ =








x
a

??

��??
x

z
c��

??��

d
>>

��
y

b��

@@��

y








=








x
ac //

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

bd
// y








+








x
ac // x

y

bcyyyyyy

<<yy

bd
// y








+








x
ac //

ad
EE

EE
EE

""EE

x

y
bd

// y








+







x
ac //

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

y







+







x

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

bd
// y







+








x
ac // x

y
bd

// y








+







x

ad
EE

EE
EE

""EE

x

y

bcyyyyyy

<<yy

y






.
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2. The Labyrinth CategoryDe�nition 6. The labyrinth 
ategory Laby is the R-
ategory1 obtained inthe following way: Its obje
ts are the �nite sets. Given two sets, their arrow setis the free module of mazes between them, with the following relations imposed(i. e. divided away), for multiset P of passages:I. [

P ∪ { ∗ 0 // ∗ }
]

= 0.II.
[

P ∪ { ∗ a+b // ∗ }
]

=

[

P ∪ { ∗ a // ∗ }
]

+

[

P ∪ { ∗ b // ∗ }
]

+

[

P ∪ { ∗
a //
b

// ∗ }
]

.(The unions are to be interpreted in a multiset-theoreti
 way.) ⋄We �rst state two elementary formulæ for this 
ategory, proved by indu
tion.Theorem 1. In the labyrinth 
ategory, the following equations hold:
[

P ∪
{

∗
Pn

i=1 ai// ∗
}]

=
∑

∅⊂I⊆[n]

[

P ∪
{

∗ ai // ∗
∣
∣
∣
∣
i ∈ I

}]

[

P ∪
{

∗ ai // ∗
∣
∣
∣
∣

1 ≤ i ≤ n
}]

=
∑

I⊆[n]

(−1)n−|I|

[

P ∪
{

∗
P

i∈I ai// ∗
}]

3. Operations on MazesThere are some more (as yet nameless) operations on mazes whi
h will o

a-sionally be useful to us.If P : Y → Z and Q : X → Y are mazes, we de�ne
P Q =

{[

z x
P

pqoo
] ∣
∣
∣ z ∈ Z, x ∈ X

}

,where the sum is taken over all pairs [z
p← y] ∈ P and [y

q← x] ∈ Q of 
omposablepassages. This new maze will have at most one passage running between anygiven x ∈ X and z ∈ Z.We immediately have the following formula relating the operations and. 1By an R-
ategory we understand a 
ategory enri
hed over Mod, so that its arrow sets arein fa
t R-modules. A Z-
ategory is just a preadditive 
ategory.73



Theorem 2. ∑

V⊆P Q

V =
∑

W⊆P Q

W.Proof. For W ⊆ P Q, de�ne
E(W ) = {V ⊆ P Q | ∃[x→ z] ∈ V ↔ ∃[x→ z] ∈W}.Then apply the �rst of the formulæ of Theorem 1 to ea
h passage of E(W ) toshow ∑

V ∈E(W )

V = W,whi
h proves the theorem.Passages p : x→ y and q : x→ y are said to be parallel, be
ause they sharestarting and ending points.De�nition 7. We say that mazes P,Q : X → Y are similar if they 
ontainno parallel passages and
∀x ∈ X, y ∈ Y : [x→ y] ∈ P ↔ [x→ y] ∈ Q.

⋄Essentially P and Q have the same passages, ex
ept that their labels maydi�er.When P and Q are similar mazes, we de�ne
P Q =

{[

x
p+q // y

] ∣
∣
∣

[

x
p // y

]

∈ P,
[

x
q // y

]

∈ Q
}

,and obtain without e�ort the following theorem.Theorem 3. Let P1, . . . , Pn be similar mazes, and let the passages of Pi be
pi1, . . . , pim. Then

P1 · · · Pn =
∑

K

{pij | (i, j) ∈ K},where the sum is taken over all K ⊆ [n] × [m] su
h that the proje
tion on these
ond variable is onto. 4. Module Fun
torsWe shall now establish a remarkable equivalen
e between two kinds of fun
tors.On the one hand, we 
onsider module fun
tors XMod → Mod, whi
h may beof an arbitrary nature (additive, polynomial, numeri
al, and what not). On theother hand, we shall have fun
tors Laby→Mod. These shall always be assumed
R-linear. 74



Given a dire
t sum RX and x ∈ X , let 1x denote the unity of the xth
omponent R. We let
σyx : RX → RXbe the homomorphism that takes 1x to 1y and every other 1z to 0. We shallmake extensive use of these maps, as they turn out to be the skeletal 
omponentsof the module 
ategory.De�nition 8. Given a linear map

s =
∑

a∈A,b∈B

sbaσba : RA → RB,(a B ×A matrix) we let its asso
iated maze S : A→ B be
S =

{[

a
sba // b

] ∣
∣
∣ a ∈ A, b ∈ B

}

.

⋄Note that if but a single 
omponent sba vanishes, the asso
iated maze S = 0.Note also that the asso
iated maze of a 
omposition s◦t is none other than S T ,and that of a sum s+t is S T , whi
h motivates our interest in these operations,as well as our 
hoi
e of notation.In the 
ontinuation, we will make no formal di�eren
e between a linear mapand its asso
iated maze, and denote them both by the same symbol, as long asit is 
lear whi
h one is meant.We wish now to de�ne a fun
tor (whi
h will eventually turn out to be anequivalen
e)
Φ: Fun(XMod,Mod)→ Fun(Laby,Mod).Given a module fun
tor F : XMod→Mod, the 
orresponding labyrinth fun
torshould take �nite sets to the 
orresponding 
ross-e�e
ts:

X 7→ F †(R|X).Also, mazes should be interpreted as deviations, in the following sense:
[P : X → Y ] 7→



F

(

♦
[p : x→y]∈P

pσyx

)
∣
∣
∣
∣
∣
F †(R|X)→F †(R|Y )



 .But it is in fa
t unne
essary to restri
t the a
tion to the appropriate 
ross-e�e
ts,as the following lemma shows.Lemma 1. The map
F

(

♦
[p : x→y]∈P

pσyx

)

: F (RX)→ F (RY )is in fa
t a map F †(R|X) → F †(R|Y ), in the sense that all other 
omponentsare 0. 75



Proof. We use Theorem 2 of Chapter 3. Pre
omposition with F (τx), where τxis any insertion with x ∈ X , and post
omposition with F (̺y), where ̺y is anyretra
tion with y ∈ Y , both yield 0, be
ause σyxτx = ̺yσyx = 0.The homomorphism
F

(

♦
[p : x→y]∈P

pσyx

)may thus be interpreted both as a map RX → RY , and as a map F †(R|X) →
F †(R|Y ), depending on the 
ir
umstan
es. We hen
e de�ne Φ(F ) : Laby→Modby the following formulæ:

X 7→ F †(R|X)

[P : X → Y ] 7→
[

F

(

♦
[p : x→y]∈P

pσyx

)

: F †(R|X)→ F †(R|Y )

]

.Lemma 2. Φ(F ) is a fun
tor from the labyrinth 
ategory.Proof. That Φ(F ) respe
ts the relations in Laby follows from
Φ(F )

(

P ∪ { x 0 // y }
)

= F (· · · ⋄ 0) = 0and
Φ(F )

(

P ∪ { x a+b // y }
)

= F (· · · ⋄ (a+ b)σyx)

= F (· · · ⋄ aσyx) + F (· · · ⋄ bσyx) + F (· · · ⋄ aσyx ⋄ bσyx)

= Φ(F )
(

P ∪ { x a // y }
)

+ Φ(F )

(

P ∪ { x b // y }
)

+ Φ(F )

(

P ∪ { x
a //
b

// y }
)

.Fun
toriality follows from the Deviation Formula.We now de�ne Φ(ζ), for a natural transformation ζ : F → G, by restri
tionto the appropriate 
ross-e�e
ts:
Φ(ζ)X = ζRX : F †(R|X)→ G†(R|X).Lemma 3. Φ is a fun
tor.Proof. Be
ause natural transformation are linear, they preserve deviations, andhen
e 
ross-e�e
ts. Hen
e, for X and Y of di�erent 
ardinality, the 
omponent

ζ : F †(R|X)→ G†(R|Y )is 0. From this, multipli
ativity of the fun
tor Φ follows.76



Lemma 4. Φ is fully faithful.Proof. Given η : Φ(F ) → Φ(G), the only possible 
andidate for a ζ : F → G,su
h that Φ(ζ) = η, is
ζRX =

⊕

Y⊆X

ηY .Now 
omes the hard part: showing Φ is essentially surje
tive. Let an
H : Laby→Mod be given. De�ne its inverse image Φ−1(H) : XMod→Mod byletting

Φ−1(H)(RA) =
⊕

Y⊆A

H(Y )and, given
s =

∑

a∈A,b∈B

sbaσba : RA → RB,letting the H(Y )→ H(Z) part of Φ−1(H)(s) be given by
∑

P⊆S



Y →Z

H(P ),where S is the asso
iated maze of s. Note that
Φ−1(H)(s)



H(Y )→H(Z)

= 0if Y = ∅ 6= Z, or 
onversely, but
Φ−1(H)(s)



H(∅)→H(∅)

= H(I∅).We will show that Φ(Φ−1(H)) = H . Note, however, that in general Φ−1Φ(F )
6= F , despite the notation. Φ−1 will only be a pseudo-inverse to Φ (inverse upto natural isomorphism).Lemma 5. Φ−1(H) is a fun
tor.Proof. Given

S =
∑

b∈B,c∈C

scbσcb : R
B → RC , T =

∑

a∈A,b∈B

tbaσba : RA → RB,we 
al
ulate, for X ⊆ A and Z ⊆ C, the H(X)→ H(Z) 
omponent of
Φ−1(H)(S) ◦ Φ−1(H)(T )as:

∑

Y⊆B






∑

P⊆S



Y →Z

H(P )











∑

Q⊆T



X→Y

H(Q)




 =

∑

Y⊆B

∑

P⊆S



Y →Z

Q⊆T



X→Y

H(PQ)77



=
∑

Y⊆B

∑

P⊆S



Y →Z

Q⊆T



X→Y

H




∑

V⊑P Q

V



 =
∑

V⊆(S T )



X→Z

H(V ).The last step follows from noting that every submaze of (S T )


X→Z

is obtainedas V ⊑ P Q, for some P and Q. Sin
e the H(X)→ H(Z) part of
Φ−1(H)(ST ) = Φ−1(H)




∑

a∈A,c∈C

(
∑

b∈B

scbtba

)

σca



is ∑

W⊆(S T )



X→Z

H(W ) =
∑

W⊆(S T )



X→Z

H(W ),the fun
toriality of Φ−1(H) follows.Lemma 6.
Φ(Φ−1(H)) = H.Proof. We �rst write down the well-known (and easily established) formula

∑

Q⊆S⊆P

(−1)|S| =

{

(−1)|P | if P = Q,
0 else,where P and Q are �nite sets.Given a maze P : X → Y , we want to 
al
ulate the deviation of the modulefun
tor Φ−1(H) 
orresponding to the maze P :

Φ−1(H)

(

♦
[p : x→y]∈P

pσyx

)

=
∑

S⊆P

(−1)|P |−|S|Φ−1(H)




∑

p∈S

pσyx



 . (5.1)The H(Z1)→ H(Z2) 
omponent of Φ−1(H)
(
∑

p∈S pσyx

) is
∑

Q⊆S



Z1→Z2

H(Q).The 
omponent H(Z1)→ H(Z2) of (5.1) is then
∑

S⊆P

(−1)|P |−|S|
∑

Q⊆S



Z1→Z2

H(Q) =
∑

Q⊆P



Z1→Z2

(−1)|P |H(Q)
∑

Q⊆S⊆P

(−1)|S|.
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The inner sum vanishes if P 6= Q. It equals (−1)|P | if P = Q, but at the sametime Q ⊆ P
Z1→Z2

, so in fa
t Z1 = X , Z2 = Y and Q = P = P


X→Y

. Thus
Φ−1(H)

(

♦
[p : x→y]∈P

pσyx

)
∣
∣
∣
∣
∣
H(Z1)→H(Z2)

=

{

H(P ) if Z1 = X and Z2 = Y ,
0 else.From this it follows instantly, both that

Φ(Φ−1(H))(X) = Φ−1(H)†(R|X) = ImΦ−1(H)

(

♦
x∈X

πx

)

= ImH(IX) = Im1H(X) = H(X),and that
Φ(Φ−1(H))(P ) = Φ−1(H)

(

♦
[p : x→y]∈P

pσyx

)
∣
∣
∣
∣
∣
Φ−1(H)†(R|X )→Φ−1(H)†(R|Y )

= Φ−1(H)

(

♦
[p : x→y]∈P

pσyx

)
∣
∣
∣
∣
∣
H(X)→H(Y )

= H(P ).It is now only a matter of putting these lemmata together, to obtain thefollowing truly marvellous theorem:Theorem 4. The fun
tor
ΦLaby : Fun(XMod,Mod)→ Fun(Laby,Mod),where ΦLaby(F ) : Laby→Mod takes

X 7→ F †(R|X)

[P : X → Y ] 7→
[

F

(

♦
[p : x→y]∈P

pσyx

)

: F †(R|X)→ F †(R|Y )

]

,is a 
ategory equivalen
e. 5. Polynomial Fun
torsThe pre
eding se
tion dealt with module fun
tors in general. Sin
e the passagesof a maze 
orrespond to deviations, the following simple 
hara
terization ofpolynomiality should 
ome as no surprise.Theorem 5. The module fun
tor F is polynomial of degree n i� ΦLaby(F )vanishes on sets with more than n elements.79



Proof. Clearly enough, if F is polynomial fun
tor of degree n, then ΦLaby(F )will vanish on mazes with more than n passages, sin
e applying ΦLaby(F ) tosu
h a maze will involve an nth deviation.Suppose now 
onversely that ΦLaby(F ) vanishes on mazes with more than
n passages, and let there be given n+ 1 homomorphisms

α1, . . . , αn+1 : RA → RBwith asso
iated mazes
P1, . . . , Pn+1 : A→ B.These mazes 
an be made similar by adding in extra passages labelled 0, if needbe, and we may label the passages of Pi by

pi1, . . . , pim.Let sets X ⊆ A and Y ⊆ B be �xed.Note that if
{pij | j ∈ J}is a legitimate submaze of Pi for one parti
ular i, it is so for all 
hoi
es of i.When this is the 
ase, we say that the set J ⊆ [m] is admissible. Then also

{
∑

i∈I

pij

∣
∣
∣
∣
∣
j ∈ J

}is a legitimate submaze of
(

i∈I

Pi

) ∣
∣
∣
∣
X→Y

=
i∈I

Pi


X→Y(the asso
iated maze of the sum ∑

i∈I αi) for any I ⊆ [n+ 1].We are now ready to 
al
ulate the deviation of F :
F (α1 ⋄ · · · ⋄ αn+1)



F †(R|X)→F †(R|Y )

=
∑

I⊆[n+1]

(−1)n+1−|I|F

(
∑

i∈I

αi

)




F †(R|X)→F †(R|Y )

=
∑

I⊆[n+1]

(−1)n+1−|I|
∑

Q⊆( i∈I Pi)



X→Y

ΦLaby(F )(Q)

=
∑

I⊆[n+1]

(−1)n+1−|I|
∑

J⊆[m]

ΦLaby(F )

({
∑

i∈I

pij

∣
∣
∣
∣
∣
j ∈ J

})

,where the inner sum is taken over admissible J only. Letting Kl denote theproje
tion of the set K ⊆ I × J on the lth 
omponent, we may use Theorem 3to transform the latter sum to
F (α1 ⋄ · · · ⋄ αn+1)



F †(R|X)→F †(R|Y ) 80



=
∑

I⊆[n+1]

(−1)n+1−|I|
∑

J⊆[m]

∑

K⊆I×J
K2=J

ΦLaby(F )({pij | (i, j) ∈ K})

=
∑

K⊆[n+1]×[m]




∑

K1⊆I⊆[n+1]

(−1)n+1−|I|





(
∑

J=K2

ΦLaby(F )({pij | (i, j) ∈ K})
)

=
∑

K⊆[n+1]×[m]
K1=[n+1]

ΦLaby(F )({pij | (i, j) ∈ K}).The 
ondition K1 = [n+ 1] implies |K| ≥ n+ 1, and so all the mazes
{pij | (i, j) ∈ K}will 
ontain more than n passages. The sum will therefore equal 0, by thehypothesis on ΦLaby(F ). 6. Numeri
al Fun
torsWe now investigate how to interpret numeri
ality in the labyrinthine setting.First some notation. For P a maze and a a s
alar, let a P be the mazeobtained from P by multiplying the labels of all passages by a:

a P =
{[

x
ap // y

] ∣
∣
∣

[

x
p // y

]

∈ P
}

.Given a multiset A supported by the maze P , we let EA denote the maze
EA =

⋃

a∈A

{

a
1 // a

}

,with the passages multiplied a

ording to the degree fun
tion of A, and uni-formly given the label 1. (This is an example of a simple maze; we will see laterthat the simple mazes form bases for the arrow sets of the labyrinth 
ategory.)Lemma 7. Let r lie in a numeri
al ring, n be a natural number, and wj bepositive integers satsfying w1 + · · ·+ wq ≤ n. Then
q
∏

j=1

(
r

wj

)

=

n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

) q
∏

j=1

(
k

wj

)

.Proof. We prove the formula when r is an integer, and then refer to the Numer-i
al Universality Prin
iple.
n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

) q
∏

j=1

(
k

wj

)

=

n∑

m=0

(
r

m

)
∑

K⊆[m]

(−1)m−|K|
q
∏

j=1

(|K|
wj

)81



=
∑

M⊆[r]
|M|≤n

∑

K⊆M

(−1)|M|−|K|
q
∏

j=1

(|K|
wj

)

=
∑

K⊆[r]

(−1)|K|
q
∏

j=1

(|K|
wj

)
∑

K⊆M⊆[r]
|M|≤n

(−1)|M|.When 0 ≤ r ≤ n, the requirement |M | ≤ n is super�uous, and K must equal
[r], lest the inner sum vanish. We then have

n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

) q
∏

j=1

(
k

wj

)

=
∑

K=[r]

(−1)|K|
q
∏

j=1

(|K|
wj

)
∑

K⊆M⊆[r]

(−1)|M|

= (−1)r
q
∏

j=1

(
r

wj

)

(−1)r =

q
∏

j=1

(
r

wj

)

.The formula is thus true when 0 ≤ r ≤ n. But then it must hold everywhere,sin
e both sides are polynomials of degree n.Theorem 6. The fun
tor F is polynomial of degree n i� the equation
ΦLaby(F )(P ) =

∑

#A=P
|A|≤n

∏

p∈P

(
p

degA p

)

ΦLaby(F )(EA)holds for all mazes P .Proof. By Theorem 7 of Chapter 3, a polynomial fun
tor will 
ertainly satisfythis. The 
onverse is tri
kier.First note that if ΦLaby(F ) satis�es the equation, then it will vanish onmazes with more than n elements, when
e F is polynomial of degree n. Wewish to use Theorem 6 of Chapter 3, and thus evaluate
F (r · 1Rn) =

∑

P⊆r I[n]

ΦLaby(F )(P ).The 
omponent
ΦLaby(F )(X)→ ΦLaby(F )(Y )of this is 0 if X 6= Y . If X = Y , we may without loss of generality assume

X = Y = [q]. Then the 
omponent
ΦLaby(F )([q])→ ΦLaby(F )([q])82



is
ΦLaby(F )(r I[q]) =

∑

#A=[q]
|A|≤n

q
∏

j=1

(
r

degA j

)

ΦLaby(F )(EA)

=
∑

w1+···+wq≤n

q
∏

j=1

(
r

wj

)

ΦLaby(F )(Ew),where we let wj = degA j ≥ 1. Similarly, the 
omponent
ΦLaby(F )([q])→ ΦLaby(F )([q])of

n∑

m=0

(
r

m

)

F

(

♦
m

1Rn

)

=

n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

)

F (k · 1Rn)is
n∑

m=0

(
r

m

) m∑

k=0

(−1)m−k

(
m

k

)
∑

w1+···+wq≤n

q
∏

j=1

(
k

wj

)

ΦLaby(F )(Ew).It is now only a matter of using the lemma, to establish the equality
F (r · 1Rn) =

n∑

m=0

(
r

m

)

F

(

♦
m

1Rn

)

.Consequently, F is numeri
al.De�nition 9. The nth quotient labyrinth 
ategory Labyn is de�ned as thequotient 
ategory obtained from Laby when the following relations are dividedaway:III.
P = 0,whenever P 
ontains more than n passages.IV.

P =
∑

#A=P
|A|≤n

∏

p∈P

(
p

degA p

)

EA,for all mazes P .
⋄The theorem may then be rephrased as: F is numeri
al of degree n i�

ΦLaby(F ) fa
tors through Labyn. Or, equivalently:83



Theorem 7. The fun
tor ΦLaby indu
es a 
ategory equivalen
e
Numn → Fun(Labyn,Mod).A few examples of labyrinth representations are in order. We take [n] as the
anoni
al representative of sets of 
ardinality n.Example 2. Let C(Rn) = K be a 
onstant fun
tor. ΦLaby(C) will take

∅ 7→ K, and all non-empty sets to 0. △Example 3. Let F (Rn) = K ⊕ Ln be a linear fun
tor. ΦLaby(F ) will take
[0] 7→ K, [1] 7→ L, [2], [3], . . . 7→ 0,and map the maze

[

1
c // 1

]

7→ [c : L→ L] .

△7. Quadrati
 Fun
torsWe here determine the stru
ture of Num2 by 
lassifying the quadrati
 numeri
alfun
tors. To �nd the labyrinthine des
riptions of quadrati
 fun
tors, we �rstdraw the (skeletal) stru
ture of the 
ategory Laby2:
[0]I
''

[1]

A
$$

I

33

C
��

[2]

B

dd

S

ss

I

SSSin
e we in Laby2 have the relations
[

∗ a // ∗
]

=

(
a

1

)[

∗ 1 // ∗
]

+

(
a

2

)[

∗
1 //
1

// ∗
]and 





∗ a // ∗

∗ b // ∗







=

(
a

1

)(
b

1

)







∗ a // ∗

∗ b // ∗





(the simple mazes generate the 
ategory), every maze in Laby2 
an be redu
edto (linear 
ombinations of) identity mazes and the following:

A =








1
1 //

1 ��>
>>

>>
>>

1

2








B =








1
1 // 1

2

1

@@�������






84



◦ A B C S
A � I + S 2A �
B C � � B
C � 2B 2C �
S A � � ITable 5.1: Multipli
ation table for Laby2.

C =

[

1
1 //
1

// 1

]

S =







1

1
��>

>>
>>

>>
1

2

1 @@�������
2





Even these are not independent. Their multipli
ation table is given in Table5.1. Clearly we 
an do with only A, B and S, and we obtain the followingexpli
it des
ription of Num2.Theorem 8. A quadrati
 numeri
al fun
tor is equivalent to the following data:modules K, X and Y , together with homomorphisms α, β, σ as indi
ated:

K X

α
!!
Y

β

aa σffThese homomorphisms are subje
t to the following four relations:
αβ = 1 + σ, βσ = β, σα = α, σ2 = 1.The reader will note, that we 
an in fa
t also dispense with σ = αβ− 1, andinstead let α and β be subje
t to a meagre two relations:

βαβ = 2β, αβα = 2α.We now des
ribe the four 
lassi
al quadrati
 fun
tors. Be
ause they are ofthe se
ond degree, and be
ause they are all pointed2, the module K = 0. Wewill denote R1 = 〈e1〉, and R2 = 〈e2〉.Example 4. The fun
tor ΦLaby(T
2) will take

X = (T 2)†(R1) = 〈e1 ⊗ e1〉 , Y = (T 2)†(R1|R2) = 〈e1 ⊗ e2, e2 ⊗ e1〉and map
α : e1 ⊗ e1 7→ e1 ⊗ e2 + e2 ⊗ e1
β : e1 ⊗ e2, e2 ⊗ e1 7→ e1 ⊗ e1
σ : e1 ⊗ e2 7→ e2 ⊗ e1, e2 ⊗ e1 7→ e1 ⊗ e2.

△2A pointed fun
tor maps 0 to 0. 85



Example 5. The fun
tor ΦLaby(S
2) will take

X =
〈
e21
〉
, Y = 〈e1e2〉and map

α : e21 7→ 2e1e2)

β : e1e2 7→ e21

σ : e1e2 7→ e1e2.

△Example 6. The fun
tor ΦLaby(Λ
2) will take

X = 〈e1 ∧ e1〉 = 0, Y = 〈e1 ∧ e2〉and map
α : 0

β : 0

σ : e1 ∧ e2 7→ −e1 ∧ e2.

△Example 7. The fun
tor ΦLaby(Γ
2) will take

X =
〈

e
[2]
1

〉

, Y = 〈e1e2〉and map
α : e

[2]
1 7→ e1e2

β : e1e2 7→ 2e
[2]
1

σ : e1e2 7→ e1e2.

△
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CHAPTER 6MultisetsÄr du en enhet eller delar?Jag bäfvar, mod o
h sansning felar,Min fråga gör mig stel o
h stum.� Hedvig Charlotta Norden�y
ht, Öfver Andra MosebokXXXIII:18,20; XXXIV:5,61. MultisetsA multiset is a set with possibly repeated elements. More formally:De�nition 1. A multiset is a pair
M = (#M, degM ),where #M is a set and
degM : #M → Z+is a fun
tion, 
alled the degree (or multipli
ity) fun
tion. ⋄The underlying set #M is 
alled the support of M . We 
all degM a thedegree or multipli
ity of an obje
t a ∈ #M ; it 
ounts the �number of times

a o

urs in M �. The degree of the whole multiset M we de�ne to be
degM =

∏

x∈#M

(deg x)!.We ta
itly assume all multisets under dis
ussion to be �nite, as these are theonly ones we will ever need. The 
ardinality of M is its number of elements,
ounted with multipli
ity:
|M | =

∑

x∈#M

deg x.Example 1. The multiset {a, a, b} has 
ardinality 3 and support {a, b}. Wehave deg a = 2, deg b = 1 and deg c = 0. △87



The union A ∪ B of two multisets A and B is pre
isely what it should be,namely, the elements of A together with those of B. More formally,
A ∪B = (#A ∪#B, degA∪B : x 7→ degA x+ degB x).The dire
t produ
t of two multisets A and B is also pre
isely what it shouldbe, namely the multiset of all possible pairs of elements of A and B:
A×B = (#A×#B, degA×B : x 7→ degA x · degB x).There is also a natural notion of submultisets1: Say A ⊆ B if degA x ≤ degB xfor all x, so that all elements of A are in B.We adopt the following 
onvention: Whenever we quantify over a multisetea
h element should be 
ounted as many times as its multipli
ity indi
ates. (Ifwe do wish to 
ount ea
h element only on
e, we will quantify over the support.)Thus, for example,

∏

{a, a, b} =
∏

x∈{a,a,b}

x = a2b.Finally, re
all that the Prin
iple of In
lusion and Ex
lusion states, in oneform, the following: If f and g are fun
tions su
h that
∑

X⊆Y

f(X) = g(Y ),then
f(Y ) =

∑

X⊆Y

(−1)|Y |−|X|g(X).Here X and Y range over sets, but a generalization to multisets is immediate.Theorem 1: The Multiset Prin
iple of In
lusion and Ex
lusion. If fand g are fun
tions su
h that
∑

#A⊆Y
|A|=n

f(A) = g(Y ),then ∑

#A=Y
|A|=n

f(A) =
∑

X⊆Y

(−1)|Y |−|X|g(X),where A ranges over multisets, and X and Y over sets.1Some people 
all these multisubsets.
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2. MultationsLet A and B be multisets of equal 
ardinality. A multation ϕ : A → B is apairing of their elements. We shall write multations as two-row matri
es, withthe elements of A on top of those of B, the way ordinary permutations areusually written:
ϕ =

[
a1 · · · an
b1 · · · bn

]The order of the 
olumns is of 
ourse irrelevant.Observe that ϕ under no 
ir
umstan
es 
an be regarded as an ordinary�fun
tion�, sin
e identi
al 
opies of some element of A may very well be pairedo� with distin
t elements of B.
ϕ will, however, be a submultiset of A × B, su
h that every element of Ao

urs exa
tly on
e as the �rst 
omponent of a pair in ϕ, and ea
h element of

B exa
tly on
e as a se
ond 
omponent. (This may serve as a formal de�nition.)The degree degϕ(a, b) 
ounts the number of times a ∈ A is paired o� with b ∈ B.As a notational 
onvenien
e, we adopt the following (purely formal) 
onven-tion: If
ϕ =

[
a1 · · · an
b1 · · · bn

]is a multation, de�ne
(
a1 · · · an
b1 · · · bn

)

= (degϕ)

[
a1 · · · an
b1 · · · bn

]

.Also, given a multation
[
a1 a1 . . . a2 a2 . . .
b1 b1 . . . b2 b2 . . .

]

,with mj appearan
es of the 
olumn [aj
bj

], we may sometimes adopt the perspe
-tive of viewing it as a formal produ
t
[
a1

b1

][m1] [a2

b2

][m2]

. . .of divided powers. Thus, the expression
(
a1 a1 . . . a2 a2 . . .
b1 b1 . . . b2 b2 . . .

)

=

[
a1

b1

]m1
[
a2

b2

]m2

. . . ,will denote the 
orresponding produ
t of ordinary powers. The rationale behindthis formalism is that, when 
omposing multations, the round-bra
ket notationprovides a natural way of handling the diverse degrees of the multations involved,whi
h would otherwise be quite 
umbersome.89



Example 2. There exist two multations from the multiset {a, a, b} to itself,namely: [
a a b
a a b

] [
a a b
a b a

]The degree of (a, b) is 0 with respe
t to the �rst of these, and 1 with respe
t tothe se
ond.In this 
ase, we have
(
a a b
a a b

)

= 2

[
a a b
a a b

]and (
a a b
a b a

)

=

[
a a b
a b a

]

.

△3. The Multiset CategoryConsider a diagram of multations and multisets of equal 
ardinality:
[n]

α //

β   @
@@

@@
@@

A

ϕ

��
BWe say that the pair (α, β) indu
es the multation ϕ, if the diagram �
ommutes�,in the sense that

β(j) = ϕα(j)for all j. The idea is that the multations α and β provide two 
ompatible�enumerations� of A and B.We now pro
eed to de�ne the 
omposition of two multations. We 
hooseto de�ne the 
omposition of two round-bra
ket multations, and then extend bylinearity. So 
onsider two su
h multations
(
α(1) · · · α(n)
β(1) · · · β(n)

)

,

(
γ(1) · · · γ(n)
δ(1) · · · δ(n)

)

,with the �rst one going A → B and being indu
ed by the pair (α, β), and these
ond going B → C and indu
ed by (γ, δ). We de�ne their 
omposition by�summing over all possibilities of 
omposing them�:
(
γ(1) · · · γ(n)
δ(1) · · · δ(n)

)

◦
(
α(1) · · · α(n)
β(1) · · · β(n)

)

=
∑

σ

(
α(1) · · · α(n)
δσ(1) · · · δσ(n)

)

,where the sum is to be taken over all permutations σ : [n] → [n] su
h that
β(j) = γσ(j) for all j. 90



Example 3. For example, we have:
(
p q q
x x y

)

◦
(
a a b
p q q

)

=

(
a a b
x x y

)

+

(
a a b
x y x

)

.The possible permutations σ : [3]→ [3] are () and (2, 3).It follows that
[
p q q
x x y

]

◦
[
a a b
p q q

]

=

(
p q q
x x y

)

◦
(
a a b
p q q

)

=

(
a a b
x x y

)

+

(
a a b
x y x

)

= 2

[
a a b
x x y

]

+

[
a a b
x y x

]

.

△It is not immediately obvious that 
omposition of two multations will resultin an integer sum of multations. That this is indeed the 
ase, is a 
onsequen
eof the following lemma.Lemma 1: The Multation Lemma. Let P and Q be multisets, and supposethat the multation χ : P → Q is indu
ed by the multations ζ : [n] → P and
η : [n] → Q. The number of permutations σ : [n] → [n] su
h that ζ and ησindu
e the same multation χ is exa
tly

degP degQ

degχ
.Proof. The multation χ is represented by the array

[
ζ(1) ζ(2) . . .
η(1) η(2) . . .

]

.The number of permutations σ1 : [n] → [n] that leave the �rst row invariant(ζ(j) = ζσ1(j) for all j) is pre
isely degP . Similarly, the number of permuta-tions σ2 that leave the se
ond row invariant (η(j) = ησ2(j) for all j) is pre
isely
degQ. Then every possible permutation σ : [n]→ [n] will arise as a 
omposition
σ2σ

−1
1 , and will be 
ounted exa
tly degχ times.The identity multation (�identitation�) ιA of a multiset A is the multationin whi
h every element is paired o� with itself. It is 
lear that 
ompositionis asso
iative and that the identity multations a
t as identities. Re
alling ourlong-running 
onvention of a �xed base ring R of s
alars, we may thus de�ne:De�nition 2. The nth multiset 
ategory is de�ned in the following way.The obje
ts are the multisets of 
ardinality exa
tly n. Given two multisets Aand B, the arrow set MSetn(A,B) will be the free module generated by themultations A→ B. ⋄91



4. The Divided Power Fun
torsMultisets have a 
anoni
al representation as fun
tors. For A a multiset, we let
ΓA =

⊗

a∈A

Γa.De�nition 3. The nth divided power 
ategory DPn is the full sub
ate-gory of HPoln 
onsisting only of the fun
tors ΓA, where A ∈MSetn. ⋄Theorem 2. The fun
tor
Ξ: MSetn → DPn,taking the multiset A to the fun
tor ΓA, and a multation ϕ : A → B with

degϕ(a, b) = gab to the natural transformation ϕ : ΓB → ΓA given by the formula
⊗

b∈#B

y
[
P

a∈#A degϕ(a,b)]

b 7→
⊗

a∈#A

∏

b∈#B

y
[degϕ(a,b)]

b ,is a 
ategory anti-isomorphism.Proof. Let the multation ϕ : A → B satisfy degϕ(a, b) = gab for a ∈ #A and
b ∈ #B, so that it will 
orrespond to the natural transformation ϕ : ΓB → ΓAgiven by

⊗

b∈#B

y
[
P

a∈#A gab]

b 7→
⊗

a∈#A

∏

b∈#B

y
[gab]
b .Suppose also that a ψ : B → C is given, with degψ(b, c) = hbc for b ∈ #Band c ∈ #C, so that it 
orresponds to the following natural transformation

ψ : ΓC → ΓB:
⊗

c∈#C

x
[
P

b∈#B hbc]
c 7→

⊗

b∈#B

∏

c∈#C

x[hbc]
c .We �rst 
al
ulate ψϕ. Let

α : [n]→ A, β : [n]→ B, γ : [n]→ B, δ : [n]→ Cbe multations, su
h that (α, β) indu
es ϕ, and (γ, δ) indu
es ψ.
ψϕ =

[
γ(1) · · · γ(n)
δ(1) · · · δ(n)

]

◦
[
α(1) · · · α(n)
β(1) · · · β(n)

]

=
1

degϕdegψ

(
γ(1) · · · γ(n)
δ(1) · · · δ(n)

)

◦
(
α(1) · · · α(n)
β(1) · · · β(n)

)

=
1

degϕdegψ

∑

σ

(
α(1) · · · α(n)
δσ(1) · · · δσ(n)

)
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where the sum is taken over all bije
tions σ : [n] → [n] su
h that βσ(j) = β(j)for all j. Now �x natural numbers kabc, and 
onsider only those σ having exa
tly
kabc indi
es j for whi
h

α(j) = a, β(j) = βσ(j) = b, γσ(j) = c.By the Multation Lemma, there are exa
tly
degϕdegψ
∏

a,b,c kabc!su
h bije
tions, so from these, we get a 
ontribution
1

∏

a,b,c kabc!

∏

a,c

[
a
c

]P

b kabc

=
∏

a,c

(∑

b kabc
{kabc}b

)[
a
c

]P

b kabc (6.1)to ψϕ.We now want to �nd the a
tion of ϕ ◦ ψ. Letting yb =
∑

c sbcxc, we get thefollowing a
tion of ϕ:
⊗

b

(
∑

c

sbcxc

)[
P

a gab]

7→
⊗

a

∏

b

(
∑

c

sbcxc

)[gab]

. (6.2)To �nd what ϕ ◦ ψ does to an element
⊗

c

x
[
P

b hbc]
c ,we seek �rst the 
oe�
ient of

⊗

b

∏

c

x[hbc]
cin the left-hand side of (6.2), whi
h is

∏

b,c

shbc

bc .The answer is then the 
oe�
ient of this in the right-hand side of (6.2). This
oe�
ient may be 
olle
ted in di�erent ways. Choosing skabc

bc from the fa
tor
(
∑

c

sbcxc

)[gab]leads to a term
⊗

a

∏

b

∏

c

x[kabc ]
c =

⊗

a

∏

c

(∑

b kabc
{kabc}b

)

x
[
P

b kabc]
c ,in ϕ ◦ ψ, whi
h is exa
tly what (6.1) predi
ts.This proves the fun
toriality of Ξ. It should be more or less 
lear that everynatural transformation ΓB → ΓA is of the form designated, and uniquely so,whi
h proves Ξ is full and faithful. 93



The proof is 
ompli
ated, and is best understood by means of studyingexamples. An alternative, 
on
eptually simpler, proof appears in [15℄.Example 4. The multation
[
1 1
1 2

]
orresponds to the natural transformation Γ1 ⊗ Γ1 → Γ2 given by
x[1] ⊗ y[1] 7→ x[1]y[1],while the multation [

1 2
1 1

]
orresponds to the transformation Γ2 → Γ1 ⊗ Γ1 mapping
x[2] 7→ x[1] ⊗ x[1].For another example, 
onsider the two multisets {1, 1, 2} and {1, 2, 2}. They
orrespond to the divided power fun
tors Γ2⊗Γ1 and Γ1⊗Γ2, respe
tively. Thetwo multations [

1 1 2
2 2 1

] [
1 1 2
2 1 2

]
orrespond to the two natural transformations Γ1 ⊗ Γ2 → Γ2 ⊗ Γ1 given by
x[1] ⊗ y[2] 7→ y[2] ⊗ x[1] x[1] ⊗ y[2] 7→ x[1]y[1] ⊗ y[1],respe
tively. △5. Homogeneous Polynomial Fun
torsWe now turn to 
ombinatorially interpreting homogeneous polynomial fun
tors,and 
ite [15℄ as our referen
e. But �rst we state and prove yet another YonedaLemma.Theorem 3: The Multihomogeneous Yoneda Lemma. Let A be a mul-tiset with |A| = n and #A = [n], and F be a homogeneous fun
tor of degree n.The map

Υ: Nat(ΓA, F )→ F †
A(Rn)

η 7→ ηRn(1⊗[A])is an isomorphism of modules.Proof. We have, by the Homogeneous Yoneda Lemma,
⊕

#A⊆[n]
|A|=n

F †
A(Rn) = F (Rn)94



∼= Nat(Γn Hom(Rn,−), F )

= Nat







⊕

#A⊆[n]
|A|=n

ΓA, F







=
⊕

#A⊆[n]
|A|=n

Nat(ΓA, F ),and it is easy to see that the map Υ is the A-
omponent of the original Yonedamap.Theorem 4. The fun
tor
ΦMSetn

: HPoln → Fun(MSetn,Mod),where ΦMSetn
(F ) : MSetn →Mod takes

A 7→ NatHPoln
(ΓA, F ) ∼= F (R#A)A

[ϕ : A→ B] 7→
[
ϕ∗ : NatHPoln

(ΓA, F )→ NatHPoln
(ΓB, F )

]
,is a 
ategory equivalen
e (note that, by virtue of the anti-isomorphism DPn

∼=
MSet◦n, the multation ϕ may also be viewed as a natural transformation ΓB →
ΓA).Proof. Let Φ = ΦMSetn

map the natural transformation θ : F → G to Φ(θ) :
Ψ(F )→ Ψ(G), given by

Φ(θ)A = θ∗ : NatHPoln
(ΓA, F )→ NatHPoln

(ΓA, G).Fun
toriality of Φ is obvious.Note that the fun
tor
NatHPoln

(Γ−, F ) : MSetn →Mod
orresponds, under the 
ategory anti-isomorphism DPn
∼= MSet◦n, to the fun
-tor

NatHPoln
(−, F ) : DPn →Mod,and it follows that

Nat(Φ(F ),Φ(G)) = Nat(NatHPoln
(Γ−, F ),NatHPoln

(Γ−, G))
∼= Nat(NatHPoln

(−, G),NatHPoln
(−, F )) ∼= NatHPoln

(F,G),when applying the (ordinary) Yoneda Lemma. This proves that Φ is fully faith-ful. 95



To show Ψ is essentially surje
tive, let J : MSetn → Mod be given, andde�ne F : XMod→Mod by
F (RX) 7→

⊕

#A⊆X
|A|=n

J(A)(where, of 
ourse, X is a set, but A ranges over multisets). Also, given
S =

∑

syxσyx : RX → RY ,let the J(A)→ J(B) 
omponent of F (S) be given by
∑

ϕ : A→B

(∏

sϕ(a)a

)

J(ϕ),(the sum is taken over all multations ϕ : A → B). Here, as before, we let
σyx : RX → RY denote the homomorphism that takes 1x to 1y and every other
1z to 0.Showing this is a fun
tor is left for the reader, and we instead 
on
entrateon showing Φ(F ) = J . For a multation ϕ : A → B, de�ne a (formal) dividedpower by

σ[ϕ] =
∏

σ
[degϕ(x,y)]
yx .A little thought shows that ϕ∗ takes

Nat(ΓA, F ) ∼= F (R#A)A ∋ y 7→ Fσ[ϕ](y) ∈ F (R#B)B ∼= Nat(ΓB , F ),and also that J(ϕ) = Fσ[ϕ] . Hen
e
Φ(F )(A) = ImFπ[A] = ImFσ[1A] = Im J(1A) = Im1J(A) = J(A)and

Φ(F )(ϕ) = ϕ∗ = Fσ[ϕ] = J(ϕ).6. Homogeneous Quadrati
 Fun
torsWe here determine the stru
ture of HPol2 by 
lassifying the quadrati
 fun
-tors. To �nd the multiset des
riptions of quadrati
 fun
tors, we �rst draw the(skeletal) stru
ture of the 
ategory MSet2:
{1, 1}

A
''
{1, 2}

B

gg
Svv96



◦ A B S
A � ι+ S �
B 2ι � B
S A � ιTable 6.1: Multipli
ation table for MSet2.Every multation redu
es to a linear 
ombination of identity multations and thefollowing:

A =

(
1 1
1 2

)

B =

(
1 2
1 1

)

S =

(
1 2
2 1

)The multipli
ation table is given in Table 6.1. Compare this with Table 5.1 �the only di�eren
e lies in the value of the produ
t BA.Theorem 5. A quadrati
 homogeneous fun
tor is equivalent to the followingdata: modules X and Y , together with homomorphisms α, β, σ as indi
ated:
X

α
!!
Y

β

aa σffThese homomorphisms are subje
t to the following four relations:
αβ = 1 + σ βσ = β σα = α σ2 = 1Evidently σ = αβ − ι is dispensable. It is enough to have α and β, subje
tto the single relation

βα = 2.
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CHAPTER 7Numeri
al versus Stri
t Polynomial Fun
tors[. . . ℄ le plus beau projet de notre a
adémie,Une entreprise noble et dont je suis ravie,Un dessein plein de gloire, et qui sera vantéChez tous les beaux esprits de la postérité [. . . ℄� Molière, Les Femmes savantes1. The Ariadne Fun
torTo state and prove the main result of this se
tion, we need some heavy notation.For the duration of this se
tion, let n be a �xed natural number.Let P be a maze. A multipli
ity assignment (of degree n) is a fun
tion
µ : P → Z+,su
h that ∑

p∈P

µ(p) = n.Note that P is a multiset; when we say �fun
tion�, we must therefore imagine thepassages of P to be labelled and distinguished, for example by some multation
[n] → P . Exa
tly how this is done will not matter, sin
e we will always sumover all possible multipli
ity assignments.If P had been a set, a multipli
ity assignment would amount to no more thanspe
ifying a multiset stru
ture. But P is not a set, and we 
ertainly wish toavoid speaking of multisets supported by multisets, hen
e the new terminology.The degree of the multipli
ity assignment µ is de�ned to be

deg µ =
∏

p∈P

µ(p)!(as for multisets).To a given P with multipli
ity assignment µ : P → Z+, we asso
iate a mul-tation
∏

[p : x→y]∈P

[
x
y

]µ(p)

= deg µ ·
∏

[p : x→y]∈P

[
x
y

][µ(p)]

.98



Be
ause∑p∈P µ(p) = n, this will always be a multation on a set with n elements(but not always on the same set).We now de�ne our main obje
t of study. Given a maze P , we let An(P ) bethe following sum of multations:
An(P ) =

∑

µ : P→Z+




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)


 . (7.1)This will provide a fun
tor from Laby to MSetn, whi
h we now set out toprove. We �rst prove that An respe
ts the relations in Laby. It is 
lear that
An(P ) = 0 if a single passage of P is labelled 0. Now to show that
An

(

P ∪
{

u
a+b // v

})

=

An

(

P ∪
{

u
a // v

}
)

+An

(

P ∪
{

u
b // v

})

+An

(

P ∪
{

u
a //
b
// v

})

.This is an immediate 
onsequen
e of the equation
(a+ b)[m]

[
u
v

]m ∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)

= a[m]

[
u
v

]m ∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)

+ b[m]

[
u
v

]m ∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)

+
∑

i+j=m
i,j≥1

a[i]b[j]
[
u
v

]m ∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)

,where, for a �x multipli
ity assignment
µ : P ∪

{

u
a+b // v

}

→ Z+,we have let
m = µ( u

a+b // v ).Finally, let P : Y → Z and Q : X → Y be two mazes. To show that An isfun
torial, we 
al
ulate
An(PQ) = An




∑

S⊑P Q

S


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=
∑

S⊑P Q

∑

ξ : S→Z+




∏

[s : x→z]∈S

s[ξ(s)]
[
x
z

]ξ(s)




=
∑

S⊑P Q

∑

ξ

1

deg ξ

∏

[s : x→z]∈S

(

s

[
x
z

])ξ(s)

.Similarly,
An(P ) ◦An(Q)

=
∑

µ,ν




∏

[p : y→z]∈P

p[µ(p)]

[
y
z

]µ(p)

◦
∏

[q : x→y]∈Q

q[ν(q)]
[
x
y

]ν(q)




=
∑

µ,ν

1

deg µ deg ν

∏

[p : y→z]∈P

(

p

[
y
z

])µ(p)

◦
∏

[q : x→y]∈Q

(

q

[
x
y

])ν(q)

.Using the Multation Lemma, these two expressions are easily seen to be equal.We thus obtain:Theorem 1. The formulæ
An(X) =

⊕

#A⊆X
|A|=n

A

An(P ) =
∑

µ : P→Z+




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]µ(p)


 ,for X a set and P a maze, provide a linear fun
tor
An : Laby→MSetn.De�nition 1. This fun
tor is 
alled the nth Ariadne fun
tor ⋄Theorem 2. Over a numeri
al base ring, the Ariadne fun
tor fa
tors throughthe quotient 
ategory Labyn:
An : Labyn →MSetn.Proof. We must show that An respe
ts the relations de�ning the quotient 
at-egory Labyn. It is 
lear that An(P ) = 0 when |P | > n, for then no multipli
ityassignments on P exist.To prove that An respe
ts the relation

P =
∑

#A=P
|A|≤n

∏

p∈P

(
p

degA p

)
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we note �rst of all, that it is enough to prove it respe
ts the spe
ial 
ase
P ∪

{

u
a // v

}

=
∞∑

k=1

(
a

k

)[

P ∪
⋃

k

{ u 1 // v }
]

.To do that, we apply the Ariadne fun
tor. By 
onsidering only those multipli
ityassignments µ satisfying µ(a) = m, for some �xed m, and a
ting in a 
ertain�xed manner on P , we see (after some 
omputation) that our task redu
es toestablishing the equality
a[m] =

∞∑

k=1

(
a

k

)
∑

δ : [k]→Z+

∏

j∈[k]

1[δ(j)],where the sum is taken over those δ ful�lling ∑ δ(j) = m. But
m!

∞∑

k=1

(
a

k

)
∑

δ : [k]→Z+

∏

j∈[k]

1[δ(j)] =

∞∑

k=1

(
a

k

)
∑

δ : [k]→Z+

(
m

{δ(j)}j

)

= am.This is be
ause the inner sum 
ounts the number of ways m distin
t obje
tsmay be pla
ed in k distin
t boxes, with no box left empty. The total sum then
ounts the number of ways to distribute the m obje
ts into a total of a boxes.The proof is �nished. 2. Out of the LabyrinthThe Ariadne fun
tor leads the way out of the labyrinth 
ategory. More pre-
isely, it leads to the following theorem on how to pass from a multiset fun
tor
J : MSetn →Mod to a labyrinth fun
tor H : Laby→Mod. The fun
tor (An)∗is in e�e
t the forgetful fun
tor

HPoln → Numn,and re�e
ts 
ombinatorially what happens when we take a homogeneous fun
tor,and view it simply as a numeri
al one.Theorem 3.
ΦLaby ◦ Φ−1

MSetn
= (An)∗.Proof. We must show that, for a fun
tor J : MSetn →Mod,

ΦLabyΦ
−1
MSetn

(J) = J ◦An.Denoting H = ΦLabyΦ
−1
MSetn

(J), we have, for a �nite set X ,
H(X) = Φ−1

MSetn
(J)†(R|X) = ImΦ−1

MSetn
(J)

(

♦
x∈X

πx

)101



= Im
∑

Y⊆X

(−1)|X|−|Y |Φ−1
MSetn

(J)




∑

y∈Y

πy



 .The J(A)→ J(B) 
omponent of
∑

Y⊆X

(−1)|X|−|Y |Φ−1
MSetn

(J)




∑

y∈Y

πy



is ∑

Y⊆X

(−1)|X|−|Y |
∑

ϕ : A→B

(∏

δYϕ(a)a

)

J(ϕ),where we have de�ned
δYba =

{

1 if a = b ∈ Y
0 else.The only surviving 
omponents will therefore be those where A = B, ϕ = ιA,and #A ⊆ Y . Hen
e

H(X) = Im
∑

Y⊆X

(−1)|X|−|Y |
∑

#A⊆Y
|A|=n

J(ιA)

= Im
∑

Y⊆X

(−1)|X|−|Y |
∑

#A⊆Y
|A|=n

1J(A)

= Im
∑

#A=X
|A|=n

1J(A) =
⊕

#A=X
|A|=n

J(A) = JAn(X).The fourth step was due to the Multiset Prin
iple of In
lusion and Ex
lusion.Turning to H(P ), where P : X → Y is a maze, we �rst suppose that P hasno parallel passages. We may label the passages as pi : xi → yi, for 1 ≤ i ≤ k.
H(P ) = Φ−1

MSetn
(J) (♦ piσyixi

)

=
∑

I⊆[k]

(−1)k−|I|Φ−1
MSetn

(J)

(
∑

i∈I

piσyixi

)

,of whi
h the J(A)→ J(B) 
omponent is
∑

I⊆[k]

(−1)k−|I|
∑

ϕ : A→B

(∏

pIϕ(a)a

)

J(ϕ)

=
∑

ϕ : A→B




∑

I⊆[k]

(−1)k−|I|
∏

pIϕ(a)a



J(ϕ), (7.2)102



where we have de�ned
pIba =

{

pi if a = xi and b = yi for i ∈ I
0 else.We see that, for the 
oe�
ient of J(ϕ) to be non-zero, all elements of themultation ϕ must �
orrespond� to passages in P . The 
onverse also holds,namely that all passages of P must be represented in ϕ. This is be
ause, ifa passage pj be �missing� from ϕ, sets I with and without j in (7.2) will giverise to terms of alternating signs, whi
h will 
an
el ea
h other out. Hen
e the
oe�
ient of J(ϕ) will survive only if ϕ is of the form

ϕ =
∏

i

[
xi
yi

][mi]

,for positive integers m1 + · · · + mk = n. Furthermore, we observe that only
I = [k] will yield a non-zero 
ontribution in (7.2), so 
onsequently,

H(P ) =
∑

m1+···+mk=n

(∏

pmi

i

)

J

(
∏

i

[
xi
yi

][mi]
)

=
∑

m1+···+mk=n

(∏

p
[mi]
i

)

J

(
∏

i

[
xi
yi

]mi

)

= JAn(P ).Consider now a maze with a pair of parallel passages
Q = P ∪

{

u
a //
b

// v

}

= P ∪
{

u
a+b // v

}

− P ∪
{

u
a // v

}

− P ∪
{

u
b // v

}

,where we indu
tively assume the equations
H

(

P ∪
{

u
a+b // v

})

= JAn

(

P ∪
{

u
a+b // v

})

H
(

P ∪
{

u
a // v

})

= JAn

(

P ∪
{

u
a // v

})

H

(

P ∪
{

u
b // v

})

= JAn

(

P ∪
{

u
b // v

})hold. Then
H(Q) = JAn(P ∪ {a+ b})− JAn(P ∪ {a})− JAn(P ∪ {b})

=
∑

µ : P∪{a+b}→Z+

J




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]

· (a+ b)[µ(a+b)]

[
u
v

]µ(a+b)


103



−
∑

µ : P∪{a}→Z+

J




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]

· a[µ(a)]

[
u
v

]µ(a)




−
∑

µ : P∪{b}→Z+

J




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]

· b[µ(b)]

[
u
v

]µ(b)




=
∑

µ : P∪{a,b}→Z+

J




∏

[p : x→y]∈P

p[µ(p)]

[
x
y

]

· a[µ(a)]b[µ(b)]

[
u
v

]µ(a)+µ(b)




= JAn(Q),as desired. 3. Simple MazesIn the pre
eding se
tion we saw how the Ariadne fun
tor provides the bridgebetween homogeneous and numeri
al fun
tors. We shall here see how it may beused as a numeri
al invariant, whi
h 
an shed light on the internal stru
ture ofthe labyrinth 
ategories.De�nition 2. A maze of whi
h all passages 
arry the label 1, is 
alled asimple maze. ⋄Theorem 4. Given �nite sets X and Y , the simple mazes are linearly inde-pendent in the module Laby(X,Y ).Proof. Suppose we have a relation
∑

j

an,jPn,j +
∑

j

an+1,jPn+1,j + · · · = 0in Laby(X,Y ), where ai,j ∈ R and ea
h Pi,j denotes a simple maze of 
ardinality
i. All Pi,j are of 
ourse assumed to be distin
t. The nth Ariadne fun
tor will killall mazes with 
ardinality greater than n, and the end result after appli
ationwill be ∑

j

an,jAn(Pn,j) = 0.But sin
e the Pn,j are distin
t simple mazes, the An(Pn,j) will all denote distin
tmultations. Hen
e all an,j = 0. The 
laim now follows by indu
tion.Theorem 5. Let the base ring be numeri
al. Given �nite sets X and Y , thesimple mazes 
onstitute a basis for the module Labyn(Z)(X,Y ), whi
h is thusfree.Proof. The above proof for linear independen
e goes through exa
tly as before,be
ause the Ariadne fun
tor fa
tors through the quotient 
ategory Labyn. Usingthe de�ning equation for Labyn, we see that any maze will redu
e to simpleones. 104



And as an immediate 
orollary:Theorem 6.
Labyn(R) ∼= R⊗Z Labyn(Z).4. The Wedge CategoryFor referen
e, we devote this se
tion to investigating the 
onne
tion betweenour mazes and the 
ategory of surje
tions explored by Pirashvili et al. in [1℄.Let C be a 
ategory possessing weak pullba
ks ; that is, a �nite number ofuniversal ways to 
omplete an in
omplete pullba
k square. For two obje
ts

X,Y ∈ C, a wedge1 from X to Y is a diagram (read from left to right):
X Uoo // YWe identify the top and bottom wedges in the following 
ommutative diagram,with the middle 
olumn an isomorphism:

X Uoo
OO

��

// Y

X Voo // YDe�ne the wedge 
ategory Ĉ, based on C, in the following way: Its obje
tswill be those of C. Its arrows will be formal sums of wedges of C (identi�edunder the just des
ribed equivalen
e relation), in the free monoid they generate.Composition of wedges amounts to summing weak pullba
ks:
[

X Uoo // Y Voo // Z
]

=
∑[

X Woo // Z
]where the sum is taken over all weak pullba
ks:

W

~~ !!
U

~~}}
}}

  B
BB

B V

}}||
||

  @
@@

@

X Y Z(If C does indeed possess pullba
ks, there is no need to revert to these formalsums, and 
omposition 
an be de�ned simply as the pullba
k.) It will now beobserved, 
onfer [1℄, that Ĉ is a preadditive 
ategory.The 
ategory Ω of �nite sets and surje
tions possesses weak pullba
ks. Na-mely, the square:
W //

��

B

β

��
A α

// P1[1℄ uses �è
he, a word whi
h is usually used to denote a single arrow.105



is a weak pullba
k i�
W ⊑ A×P B = {(a, b) ∈ A×B | α(a) = β(b)},so that the proje
tions on A and B are both onto. We 
all A×P B (the pullba
kin Set) the prin
ipal pullba
k.The existen
e of weak pullba
ks ensures that the wedge 
ategory Ω̂ may be
reated. We form a quotient 
ategory Ω̂n by for
ing all wedges:

X Uoo // Yof whi
h |U | > n, to equal 0. It turns out that this 
ategory is already knownto us as Labyn(Z).Theorem 7.
Ω̂n ∼= Labyn(Z).Proof. The obje
ts of both 
ategories are �nite sets, and ea
h set will of 
ourse
orrespond to itself. Wedges will 
orrespond to simple mazes; more pre
isely,the wedge

ϕ =

[

X U
ϕ∗

oo ϕ∗ // Y

]in Ω̂n will 
orrespond to the simple maze X → Y , of whi
h the passages x→ ynumber exa
tly
∣
∣(ϕ∗, ϕ∗)

−1(x, y)
∣
∣(the 
ardinality of the �bre above (x, y) ∈ X×Y ). Sin
e the simple mazes from

X to Y form a basis, this 
orresponden
e is full and faithful.It remains to show fun
toriality. Suppose
ϕ =

[

X U
ϕ∗

oo ϕ∗ // Y

]

, ψ =

[

Y V
ψ∗

oo ψ∗ // Z

]are two wedges, 
orresponding to the mazes P : X → Y and Q : Y → Z, wherethe number of passages x→ y in P equals
|(ϕ∗, ϕ∗)

−1(x, y)|,and the number of passages y → z in Q equals
|(ψ∗, ψ∗)

−1(y, z)|.The theorem then follows from the observation that U ×Y V may be naturallyidenti�ed with Q P , and subsets W ⊑ U×Y V with submazes R ⊆ Q P .The main result of [1℄ is, in our language, the following2:2They restri
t their attention to pointed fun
tors, that is, fun
tors that take 0 to itself.We have 
ir
umvented this restri
tion by 
onsidering ∅ to be a �nite set.106



Theorem 8.
Numn(Z) ∼ Fun(Ω̂n, ZMod).Proof. Follows immediately from the pre
eding theorem and the equivalen
e

Numn ∼ Fun(Labyn,Mod).
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