

Poincaré series of some hypergraph algebras

Eric Emtander
Ralf Fröberg
Fatemeh Mohammadi
Somayeh Moradi

Research Reports in Mathematics
Number 1, 2009
Department of Mathematics
Stockholm University

Electronic versions of this document are available at http://www.math.su.se/reports/2009/1

Date of publication: January 12, 2009
2000 Mathematics Subject Classification: Primary 13D02, Secondary 13F55.
Keywords: Hypergraph, Poincaré series, Betti numbers.
Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se

Poincaré series of some hypergraph algebras

E. Emtander, Stockholm university erice@math.su.se
R. Fröberg, Stockholm university ralff@math.su.se
F. Mohammadi, Amirkabir University, Tehran
f_mohammadi@aut.ac.ir
S. Moradi Amirkabir University, Tehran
s_moradi@aut.ac.ir
January 9, 2009

Abstract

A hypergraph $H=(V, E)$, where $V=\left\{x_{1}, \ldots, x_{n}\right\}$ and $E \subseteq 2^{V}$ defines a hypergraph algebra $R_{H}=k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i_{1}} \cdots x_{i_{k}} ;\left\{i_{1}, \ldots, i_{k}\right\} \in\right.$ $E)$. All our hypergraphs are d-uniform, i.e., $\left|e_{i}\right|=d$ for all $e_{i} \in E$. We determine the Poincaré series $P_{R_{H}}(t)=\sum_{i=1}^{\infty} \operatorname{dim}_{k} \operatorname{Tor}_{i}^{R_{H}}(k, k) t^{i}$ for some hypergraphs generalizing lines, cycles, and stars. We finish by calculating the graded Betti numbers and the Poincaré series of the graph algebra of the wheel graph.

1 Introduction

A line is a graph $L_{n}=(V, E)$, where

$$
V=\left\{x_{1}, \ldots, x_{n+1}\right\} \text { and } E=\left\{\left(x_{1}, x_{2}\right), \ldots,\left(x_{n}, x_{n+1}\right)\right\},
$$

a cycle a graph $C_{n}=(V, E)$, where

$$
V=\left\{x_{1}, \ldots, x_{n}\right\} \text { and } E=\left\{\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, x_{1}\right)\right\},
$$

and a star a graph $S_{n}=(V, E)$, where

$$
V=\left\{x_{1}, \ldots, x_{n+1}\right\} \text { and } E=\left\{\left(x_{1}, x_{2}\right), \ldots,\left(x_{1}, x_{n+1}\right)\right\} .
$$

In [J 04, Chapter 7] the Betti numbers of their graph algebras,

$$
k\left[x_{1}, \ldots, x_{n+1}\right] /\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n} x_{n+1}\right),
$$

$$
k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right)
$$

and

$$
k\left[x_{1}, \ldots, x_{n+1}\right] /\left(x_{1} x_{2}, x_{1} x_{3}, \ldots, x_{1} x_{n+1}\right)
$$

are determined. This is generalized to certain "hyperlines", "hypercycles", and "hyperstars" in [E-M-M 08]. Here a hyperline is hypergraph with $n d-(n-$ 1) α vertices and n edges e_{1}, \ldots, e_{n}, where all edges e_{1}, \ldots, e_{n} have size d, and $e_{i} \cap e_{j} \neq \emptyset$ and has size α if and only if $|i-j|=1$, a hypercycle is hypergraph with $n(d-\alpha)$ vertices and n edges e_{1}, \ldots, e_{n}, where all edges have size d, and $e_{i} \cap e_{j} \neq \emptyset$ and has size α if and only if $|i-j|=1(\bmod n)$, and the hyperstar is hypergraph with $n(d-\alpha)$ vertices and n edges e_{1}, \ldots, e_{n}, where all edges have size d, and for all $i, j\left|e_{i} \cap e_{j}\right|=\left|\cap_{i=1}^{n} e_{i}\right|=\alpha>0$. We denote the line hypergraph and its algebra with $L_{n}^{d, \alpha}$, the cycle hypergraph and its algebra with $C_{n}^{d, \alpha}$, and the star hypergraph and its algebra $S_{n}^{d, \alpha}$. Their Betti numbers were determined in [E-M-M 08, Chapter 3] (in the first two cases with the restriction $2 \alpha \leq d)$. In this paper we will determine the Poincaré series for the same algebras. The Poincaré series of a graded k-algebra $R=k\left[x_{1}, \ldots, x_{n}\right] / I$ is $P_{R}(t)=\sum_{i=1}^{\infty} \operatorname{dim}_{k} \operatorname{Tor}_{i}^{R}(k, k) t^{i}$. [G-L 69] is an excellent source for results on Poincaré series.

2 Hypercycles and hyperlines when $d=2 \alpha$

We start with the case $d=2 \alpha$. If $e_{i}=\left\{v_{i 1}, \ldots, v_{i \alpha}, v_{i 1}^{\prime}, \ldots, v_{i \alpha}^{\prime}\right\}$, where $\left\{v_{i j}^{\prime}\right\} \in$ e_{i+1}, we start by factoring out all $v_{i k}-v_{i l}$ and $v_{i k}^{\prime}-v_{i l}^{\prime}$. This is a linear regular sequence of length $(n+1)(\alpha-1)$ for the hyperline and of length $n(\alpha-1)$ for the hypercycle. The results are

$$
L_{n, a}^{\prime}=k\left[x_{1}, \ldots, x_{n+1}\right] /\left(x_{1}^{\alpha} x_{2}^{\alpha}, x_{2}^{\alpha} x_{3}^{\alpha}, \ldots, x_{n}^{\alpha} x_{n+1}^{\alpha}\right)
$$

and

$$
C_{n, a}^{\prime}=k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{\alpha} x_{2}^{\alpha}, x_{2}^{\alpha} x_{3}^{\alpha}, \ldots, x_{n-1}^{\alpha} x_{n}^{\alpha}, x_{n}^{\alpha} x_{1}^{\alpha}\right)
$$

Then

$$
P_{L_{n}^{2 a, a}}(t)=(1+t)^{(n+1)(\alpha-1)} P_{L_{n, a}^{\prime}}(t)
$$

and

$$
P_{C_{n}^{2 a, a}}(t)=(1+t)^{n(\alpha-1)} P_{C_{n, a}^{\prime}}(t)
$$

[G-L 69, Theorem 3.4.2 (ii)]. Now $L_{n}^{2 \alpha, \alpha}$ and $C_{n}^{2 \alpha, \alpha}$ have the same Poincaré series as the graph algebras

$$
L_{n}=L_{n}^{2,1}=k\left[x_{1}, \ldots, x_{n+1}\right] /\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n} x_{n+1}\right)
$$

and

$$
C_{n}=C_{n}^{2,1}=k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}, x_{n} x_{1}\right)
$$

respectively.

For a graded k-algebra $\oplus_{i=0}^{\infty} R_{i}$, the Hilbert series of R is defines as $H_{R}(t)=$ $\sum_{i=0}^{\infty} \operatorname{dim}_{k}\left(R_{i}\right) t^{i}$. The exact sequences

$$
0 \longrightarrow\left(x_{n+1}\right) \longrightarrow L_{n} \xrightarrow{x_{n+1}} L_{n} \longrightarrow L_{n} /\left(x_{n+1}\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow\left(x_{n+1}\right) \longrightarrow L_{n} \longrightarrow L_{n} /\left(x_{n+1}\right) \longrightarrow 0
$$

and $L_{n} /\left(x_{n+1}\right) \simeq L_{n-1}$ and $\left(x_{n+1}\right) \simeq L_{n-2} \otimes k[x]$ gives

$$
H_{L_{n}}(t)=H_{L_{n-1}}(t)+\frac{t}{1-t} H_{L_{n-2}}(t) .
$$

The exact sequences

$$
0 \longrightarrow\left(x_{1}, x_{n-1}\right) \longrightarrow C_{n} \xrightarrow{x_{n} .} C_{n} \longrightarrow L_{n-2} \longrightarrow 0
$$

and

$$
0 \longrightarrow\left(x_{1}, x_{n-1}\right) \longrightarrow C_{n} \longrightarrow C_{n} /\left(x_{1}, x_{n-1}\right) \longrightarrow 0
$$

and $C_{n} /\left(x_{1}, x_{n-1}\right) \simeq L_{n-4} \otimes k[x]$ gives

$$
H_{C_{n}}(t)=H_{L_{n-2}}(t)-\frac{t}{(1-t)} H_{L_{n-4}}(t) .
$$

Now C_{n} and L_{n} are (as all graph algebras) Koszul algebras [F 75, Corollary 2], so $P_{C_{n}}(t)=1 / H_{C_{n}}(-t)$ and $P_{L_{n}}(t)=1 / H_{L_{n}}(-t)$. Since $L_{0}=k\left[x_{1}\right]$ and $L_{1}=k\left[x_{1}, x_{2}\right] /\left(x_{1} x_{2}\right)$, we have $H_{L_{0}}(t)=1 /(1-t)$ and $H_{L_{1}}(t)=(1+t) /(1-t)$. We give the first Hilbert series:

$$
\begin{aligned}
& H_{L_{2}}(t)=\left(1+t-t^{2}\right) /(1-t)^{2}, H_{L_{3}}(t)=(1+2 t) /(1-t)^{2}, \\
& H_{L_{4}}(t)=\left(1+2 t-t^{2}-t^{3}\right) /(1-t)^{3}, H_{L_{5}}(t)=\left(1+3 t+t^{2}-t^{3}\right) /(1-t)^{3}, \\
& H_{C_{3}}(t)=(1+2 t) /(1-t), H_{C_{4}}(t)=\left(1+2 t-t^{2}\right) /(1-t)^{2}, \\
& H_{C_{5}}(t)=\left(1+3 t+t^{2}\right) /(1-t)^{3}, H_{C_{6}}(t)=\left(1+3 t-2 t^{3}\right) /(1-t)^{3} .
\end{aligned}
$$

Remark We note that it is probably hard to get one formula for $H_{L_{n}}(t)$ for all n. An indication is that we get the Fibonacci numbers from $H_{L_{n}}(t)$. For $t=1 / 2$ we get $H_{L_{n}}(1 / 2)=F_{n+2}$, the $(n+2)$ th Fibonacci number if $F_{0}=F_{1}=1$.

Thus we get
$P_{L_{2}}(t)=(1+t)^{2} /\left(1-t-t^{2}\right), P_{L_{3}}(t)=(1+t)^{2} /(1-2 t)$,
$P_{L_{4}}(t)=(1+t)^{3} /\left(1-2 t-t^{2}+t^{3}\right), P_{L_{5}}(t)=(1+t)^{3} /\left(1-3 t+t^{2}+t^{3}\right)$,
$P_{C_{3}}(t)=(1+t) /(1-2 t), P_{C_{4}}(t)=(1+t)^{2} /\left(1-2 t-t^{2}\right)$,
$P_{C_{5}}(t)=(1+t)^{2} /\left(1-3 t+t^{2}\right), P_{C_{6}}(t)=(1+t)^{3} /\left(1-3 t+2 t^{3}\right)$.
We collect the results in
Theorem 2.1 The Poincaré series of L_{n} and C_{n} satisfy the recursion formulas

$$
P_{L_{n}}(t)=\frac{(1+t) P_{L_{n-1}}(t) P_{L_{n-2}}(t)}{(1+t) P_{L_{n-2}}(t)-t P_{L_{n-1}}(t)}
$$

where $P_{L_{0}}(t)=1+t$ and $P_{L_{1}}(t)=(1+t) /(1-t)$ and

$$
P_{C_{n}}(t)=\frac{(1+t) P_{L_{n-2}}(t) P_{L_{n-4}}(t)}{P_{L_{n-2}}(t)+(1+t) P_{L_{n-4}}(t)}
$$

Furthermore

$$
P_{L_{n}^{2 \alpha, \alpha}}(t)=(1+t)^{(n+1)(\alpha-1)} P_{L_{n}}(t)
$$

and

$$
P_{C_{n}^{2 \alpha, \alpha}}(t)=(1+t)^{n(\alpha-1)} P_{C_{n}}(t) .
$$

3 Hypercycles and hyperlines when $2 \alpha<d$

Next we turn to the case $2 \alpha<d$. Now each edge has a free vertex, i.e. a vertex which does not belong to any other edge. Then the Taylor resolution is minimal. In this case there is a formula for the Poincaré series in terms of the graded homology of the Koszul complex [F 78, Corollary to Proposition 2]. Let R be a monomial ring for which the Taylor resolution is minimal. Then the homology of the Koszul complex $H\left(K_{R}\right)$ is of the form $H\left(K_{R}\right)=k\left[u_{1}, \ldots, u_{N}\right] / I$, where I is generated by a set of monomials of degree 2. Define a bigrading induced by $\operatorname{deg}\left(u_{i}\right)=\left(1,\left|u_{i}\right|\right)$, where $\left|u_{i}\right|$ is the homological degree. Then $P_{R}(t)=$ $(1+t)^{e} / H_{R}(-t, t)$, where e is the embedding dimension and $H_{R}(x, y)$ is the bigraded Hilbert series of $H\left(K_{R}\right)$, see [F 78].

We begin with the hypercycle. The homology of the Koszul complex is generated by $\left\{z_{I}\right\}$, where $I=\{i, i+1, \ldots, j\}$ corresponds to a path $\left\{e_{i}, e_{i+1}, \ldots, e_{j}\right\}$ in $C_{n}^{d, \alpha}$ (indices counted $(\bmod n)$). Thus there are n generators in all homological degrees $<n$ and one generator in homological degree n. We have $z_{I} z_{J}=0$ if $I \cap J \neq \emptyset$. Thus the surviving monomials are of the form $m=$ $z_{I_{1}} \cdots z_{I_{r}}$, where $I_{i} \cap I_{j}=\emptyset$ if $i \neq j$. The bidegree of m is $\left(r, \sum_{j=1}^{r}\left|I_{j}\right|\right)$. Let $\sum_{j=1}^{r}\left|I_{j}\right|=i$. Then m lies in $H(K)_{i, d i-(i-r) \alpha}$. The graded Betti numbers are determined in [E-M-M 08, Chapter 3]. The nonzero Betti numbers are $\beta_{i, d i-(i-r) \alpha}=\frac{n}{r}\binom{i-1}{r-1}\binom{n-i-1}{r-1}$ if $1 \leq r \leq i<n$ and $\beta_{n, n(d-\alpha)}=1$. (As usual $\binom{a}{b}=0$ if $b>a$.) This gives the Poincaré series.

Next we consider the hyperline. The homology of the Koszul complex is generated by $\left\{z_{I}\right\}$, where $I=\{i, i+1, \ldots, j\}$ corresponds to a path $\left\{e_{i}, e_{i+1}, \ldots, e_{j}\right\}$ in $L(n, d, \alpha)$. Thus there are $n+1-i$ generators of homological degree i. We have $z_{I} z_{J}=0$ if $I \cap J \neq \emptyset$. The graded Betti numbers are determined in [E-M-M 08, Chapter 3]. The nonzero Betti numbers are $\beta_{i, d i-(i-r) \alpha}=\binom{i-1}{r-1}\binom{n-i+1}{r}$ if $1 \leq r \leq i \leq n$. The same reasoning as above gives the Poincaré series. We state the results in a theorem.

Theorem 3.1 If $2 \alpha<d$, then

$$
P_{C_{n}}(t)=\frac{(1+t)^{n(d-\alpha)}}{1+\sum_{1 \leq r \leq i<n}(-1)^{r} \frac{n}{r}\binom{i-1}{r-1}\binom{n-i-1}{r-1} t^{i+r}-t^{n+1}},
$$

and

$$
P_{L_{n}}(t)=\frac{(1+t)^{n(d-\alpha)+\alpha}}{1+\sum_{1 \leq r \leq i \leq n}(-1)^{r}\binom{i-1}{r-1}\binom{n-i+1}{r} t^{i+r}}
$$

4 The hyperstar

We conclude with a hypergraph generalizing the star graph. Suppose $\left|e_{i}\right|=d$ for all $i, 1 \leq i \leq n$, and that if $i \neq j$, then $\left|e_{i} \cap e_{j}\right|=\left|\cap_{i=1}^{n} e_{i}\right|=\alpha<d$. Then the ideal is of the form $m\left(m_{1}, \ldots, m_{n}\right)$, where m is a monomial of degree α. Then the hypergraph ring $S_{n}^{d, \alpha}$ is Golod [G-L 69, Theorem4.3.2]. This means that

Theorem 4.1

$$
P_{S_{n}^{d, \alpha}}(t)=(1+t)^{|V|} /\left(1-\sum \beta_{i} t^{i+1}\right)=(1+t)^{n(d-\alpha)+\alpha} /\left(1-\sum\binom{n}{i} t^{i+1}\right)
$$

5 The wheel graph

Finally we consider the wheel graph W_{n}, which is C_{n} with an extra vertex (the center) which is connected to all vertices in C_{n}. We let W_{n} also denote the graph algebra $k\left[x_{0}, \ldots, x_{n}\right] /\left(x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n} x_{1}, x_{0} x_{1}, \ldots, x_{0} x_{n}\right)$.

Theorem 5.1 Let W_{n} be a wheel graph on $n+1$ vertices. Then the Betti numbers of W_{n} are as follows:
(i) If $j>i+1$, then $\beta_{i, j}\left(k\left[\Delta_{W_{n}}\right]\right)=\beta_{i, j}\left(C_{n}\right)+\beta_{i-1, j-1}\left(C_{n}\right)$.
(ii) If $j=i+1$, then $\beta_{i, i+1}\left(W_{n}\right)=\beta_{i, i+1}\left(C_{n}\right)+\beta_{i-1, i}\left(C_{n}\right)+\binom{n}{i}$.

Proof. Assume that $V\left(W_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ and $C_{n}=W_{n} \backslash\left\{x_{0}\right\}$. It is easy to see that $\Delta_{W_{n}}=\Delta_{C_{n}} \cup\left\{x_{0}\right\}$, where $\Delta_{W_{n}}$ and $\Delta_{C_{n}}$ are the independence complexes of W_{n} and C_{n}. It implies that for any $i \geq 1, H_{i}\left(\Delta_{W_{n}}\right)=H_{i}\left(\Delta_{C_{n}}\right)$. Thus, if $j>i+1$, from Hochster's formula ([B-H 98, Theorem 5.5.1]) and the observation above one has the result. Now assume that $j=i+1$. Then $\beta_{i, i+1}\left(W_{n}\right)=\sum_{S \subseteq V\left(W_{n}\right),|S|=i+1} \operatorname{dim}\left(\widetilde{H}_{0}\left(\Delta_{S}\right)\right)=\sum_{S \subseteq V\left(C_{n}\right),|S|=i+1} \operatorname{dim}\left(\widetilde{H}_{0}\left(\Delta_{S}\right)\right)$ $+\sum_{S \subseteq V\left(W_{n}\right), S=S^{\prime} \cup\left\{x_{0}\right\}} \operatorname{dim}\left(\widetilde{H}_{0}\left(\Delta_{S}\right)\right)$. For any $S \subseteq V\left(W_{n}\right)$ and $S_{0} \subseteq V\left(C_{n}\right)$, let r_{S} and $r_{S_{0}}^{\prime}$ denotes the number of connected components of Δ_{S} in $V\left(W_{n}\right)$ and $\Delta_{S_{0}}$ in $V\left(C_{n}\right)$ respectively. Then we have $\sum_{S \subseteq V\left(W_{n}\right), S=S_{0} \cup\left\{x_{0}\right\}} \operatorname{dim}\left(\widetilde{H}_{0}\left(\Delta_{S}\right)\right)=$ $\sum_{S \subseteq V\left(W_{n}\right), S=S_{0} \cup\left\{x_{0}\right\}}\left(r_{S}-1\right)$. For any $S \subseteq V\left(W_{n}\right)$ such that $S=S_{0} \cup\left\{x_{0}\right\}$, we have $r_{S}=r_{S_{0}}^{\prime}+1$. Therefore
$\sum_{S \subseteq V\left(W_{n}\right), S=S_{0} \cup\left\{x_{0}\right\}} \operatorname{dim}\left(\widetilde{H}_{0}\left(\Delta_{S}\right)\right)=\sum_{S_{0} \subseteq V\left(C_{n}\right),\left|S_{0}\right|=i} \operatorname{dim}\left(\widetilde{H}_{0}\left(\Delta_{S_{0}}\right)\right)+\binom{n}{i}=$ $\beta_{i-1, i}\left(C_{n}\right)+\binom{n}{i}$.

The term $\binom{n}{i}$ is the number of subsets S_{0} of $V\left(C_{n}\right)$ of cardinality i.
Substituting the $\beta_{i, j}\left(C_{n}\right)$ from of [J 04, Theorem 7.6.28] we have the following corollary.

Corollary 5.2 Let W_{n} be the wheel graph on $n+1$ vertices. Then the Betti numbers of W_{n} are as follows:
(i) If $n=3$, then $\beta_{2,3}\left(W_{3}\right)=8, \beta_{3,4}\left(W_{3}\right)=3$. If $n=4$, then $\beta_{3,4}\left(W_{4}\right)=9$, $\beta_{4,5}\left(W_{4}\right)=2$. Otherwise $\beta_{i, i+1}\left(W_{n}\right)=n\binom{2}{i-1}+\binom{n}{i}$.
(ii) If $n=3 m$, then $\beta_{2 m, n}\left(W_{n}\right)=3 m+2, \beta_{2 m+1, n+1}\left(W_{n}\right)=2$. If $n=$ $3 m+1$, then $\beta_{2 m+1, n}\left(W_{n}\right)=3 m+2, \beta_{2 m+2, n+1}\left(W_{n}\right)=1$. If $n=3 m+2$, then $\beta_{2 m, n}\left(W_{n}\right)=\beta_{2 m+1, n+1}\left(W_{n}\right)=1$. Otherwise, if $j>i+1$, then $\beta_{i, j}\left(W_{n}\right)=$ $\frac{n}{n-2(j-i)}\binom{n-2(j-i)}{j-i}\binom{j-i-1}{2 i-j}$.

We can also determine the Poincaré series for the wheel graph algebra. This is also a Koszul algebra, and $H_{W_{n}}(t)=H_{C_{n}}(t)+t /(1-t)$. Since $P_{W_{n}}(t)=$ $1 / H_{W_{n}}(-t)$ and $P_{C_{n}}(t)=1 / H_{C_{n}}(-t)$, this gives

Theorem 5.3

$$
P_{W_{n}}(t)=\frac{P_{C_{n}}(t)(1+t)}{1+t-t P_{C_{n}}(t)}
$$

References

[B-H 98] W. Bruns, J. Herzog, Cohen-Macaulay rings, revised ed., Cambridge University Press, 1998.
[E-M-M 08] E. Emtander, F. Mohammadi, S. Moradi, Some algebraic properties of hypergraphs, arXiv: 0812.2366
[F 75] R. Fröberg, Determination of a class of Poincaré series, Math. Scand. 37, 29-39 (1975).
[F 78] R. Fröberg, Some complex constructions with applications to Poincaré series, Springer Lect. Notes in Math. 740, 272-284 (1978).
[G-L 69] T. H. Gulliksen, G. Levin, Homology of local rings, Queen's paper in pure and appl. Math. 20 (1969).
[J 04] S. Jacques, Betti Numbers of Graph Ideals, Dissertation, Univ. of Sheffield (2004), arXiv:math/0410107.

