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MINIMIZERS AND SYMMETRIC MINIMIZERS FOR

PROBLEMS WITH CRITICAL SOBOLEV EXPONENT

SHOYEB WALIULLAH

Abstract. In this paper we will be concerned with the existence and
non-existence of constrained minimizers in Sobolev spaces Dk,p(RN ),
where the constraint involves the critical Sobolev exponent. Minimiz-
ing sequences are not, in general, relatively compact for the embed-

ding Dk,p(RN) →֒ Lp∗(RN , Q) when Q is a non-negative, continuous,
bounded function. However if Q has certain symmetry properties then
all minimizing sequences are relatively compact in the Sobolev space of
appropriately symmetric functions. For Q which does not have the re-
quired symmetry, we give a condition under which an equivalent norm in
Dk,p(RN ) exists so that all minimizing sequences are relatively compact.
In fact we give an example of a Q and an equivalent norm in Dk,p(RN )
so that all minimizing sequences are relatively compact.

1. Introduction

In this paper we will be concerned with the existence and non-existence
of constrained minimizers in Sobolev spaces Dk,p(RN ), where p > 1 and the
constraint involves the critical Sobolev exponent. It is well known that such
minimizers correspond to non-trivial solutions of nonlinear elliptic partial
differential equations. After the minimization problem has been formulated
one can easily state conditions under which non-trivial solutions to the min-
imization problem will not exist. One can then go on to state conditions
under which the problem will have a solution. In general these conditions
are not easy to check, but in some cases this can be done.

We would also like to mention that some of the problems we look at here
have already been considered by other authors, but the results presented
here are improvements of the existing results, and our method is technically
somewhat simpler.

The paper is organized as follows. We initially consider the problem of
finding a minimizer associated with the embeddingDk,p(RN ) →֒ Lp∗(RN , Q),
with the usual norm in Dk,p(RN ). To this end, we use some preliminary re-
sults to establish the well known concentration-compactness lemma. We
then give a proof of the known result, that minimizers in general do not
exist if Q is not constant and Q ≥ 0, and in this case minimizing sequences
concentrate at the maximum of Q. However, such concentration does not
take place if Q has certain symmetry properties, which will be defined later
on, and provided we can show that a certain inequality is strict. Examples
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show the existence of Q so that the afore mentioned inequality is strict. In
section 7 we apply our results to non-linear partial differential equations to
show the existence of solutions. There, we derive some more conditions on
Q so that solutions to the partial differential equations exist, and give a
result which improves a result given in [6].

In the section following that one we obtain results concerning the weighted
Sobolev embeddingDk,p(RN ,H) →֒ Lp∗(RN , Q), where we choose the weight
H to be a continuous bounded positive function such that infx∈RN H > 0.
This ensures that Dk,p(RN ,H) is just the space Dk,p(RN ) equipped with
an equivalent norm. We proceed by first proving the existence of minimiz-
ers, provided a certain condition is satisfied. An example is then provided
to verify the existence of functions H and Q so that the above mentioned
condition is satisfied. Before ending the section with a treatment of the
symmetric case, we give conditions under which minimizers do not exist.

The final section is devoted to problems with singular weights. These
problems arise from the well-known Caffarelli-Kohn-Nirenberg inequality.
Our work here generalizes the work in [30] and improves a result in [11].

2. Notation and conventions

In order to keep ourselves from repeating let us state here some no-
tation and conventions we will use throughout this papper. Q will de-
note a continuous, bounded, non-negative function in R

N . Q0 := Q(0),
Q∞ := lim|x|→∞Q(x) and if we write Q∞ = lim|x|→∞Q(x) we assume that
the limit exists. This distinction is made because many of our results do not
require the existence of this limit.

We will denote by G any subgroup of O(N), the group of orthogonal
transformations, with the property that Fix(G) = {0}, where Fix(G) :=
{x ∈ R

N : gx = x for all g ∈ G} is the fixed point set of the action of G on
R

N .
As usual, Dk,p(RN ) is the completion of C∞

0 (RN ) under the norm

‖∇ku‖p := (
∑

|α|=k

∫

RN
|Dαu|pdx)1/p (2.1)

and |∇ku|p :=
∑

|α|=k|Dαu|p.
The equivalent norm for 1 < p < ∞ which will be useful is the following

one:

‖(−∆)k/2u‖p if k is even

‖∇(−∆)(k−1)/2u‖p if k is odd.
(2.2)

This is a consequence of the inequality ‖∇2u‖p ≤ C‖∆u‖p, which can be
found in [15,22,24]. Since many of our results are independent of the norm
used in Dk,p(RN ), we will denote both of them by ‖u‖k,p. Where necessary
we will specify which norm is being used.

For the sake of convenience we will write Lp(RN , Q) = Lp(Qdx) where

the norm is denoted by ‖u‖p,Q = (
∫

|u|pQdx)1/p. Also we wil usually write
∫

Ω u instead of
∫

Ω u(x) dx, and if no region of integration is mentioned then

the integration is to be taken over R
N . Further, following the notations used

in distribution theory, we will use the notation µ(φ) to mean
∫

RN φdµ.
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3. Preliminary remarks

We will begin by considering the following minimization problem:

S̄ = inf{‖u‖p
k,p : u ∈ Dk,p(RN ),

∫

Q|u|p∗ = 1}, (3.1)

where p∗ := Np
N−kp is the critical Sobolev exponent and pk < N . As we have

mentioned, one can use any one of the norms (2.1) or (2.2) in (3.1).

Remark 3.1. By applying the Lagrange multiplier method, we see that any
properly normalized minimizer of (3.1), when k = 1, solves

−
∑

|α|=1

Dα(|Dαu|p−2Dαu) = Q|u|p∗−2u,

if we use the norm in (2.1) and

−div(|∇u|p−2∇u) = Q(x)|u|p∗−2u,

if we use the norm in (2.2). Of course, the value of the constant S̄ depends
on the norm as well.

Remark 3.2. For general Q we will show that minimizers of (3.1) do not
always exist. This is a well-known fact which can be deduced from the
work of Lions [20, 21]. Our motivation for presenting it here is to show the
contrast between the results when Q does and does not have any symmetry.

When Q is invariant under the action of G we have the following mini-
mization problem

S̄G = inf{‖u‖p
k,p : u ∈ Dk,p

G (RN ),

∫

Q|u|p∗ = 1}. (3.2)

Here Dk,p
G (RN ) is the subspace of Dk,p(RN ) consisting of functions which

are G-symmetric (or G-invariant). We say that u : R
N → R is G-symmetric

if u(gx) = u(x) for all g ∈ G and a.e. x ∈ R
N . In the sequel the minimizers

of (3.2) will be called symmetric minimizers.
The partial differential equation associated with (3.2) was studied in [6]

when p = 2, k = 1 and the second norm was used. There the authors
used the mountain-pass theorem and the principle of symmetric criticality
[31, Theorem 1.28] to show the existence of G-symmetric solutions. Here
we will not appeal to the mountain-pass theorem but will use more direct
methods. In fact, the results we obtain improve the results given there.

The case when Q = 1 was studied by Lions in [20], where it was shown
that there exists a u 6= 0 which achieves

S = inf
u∈Dk,p(RN )

u 6=0

‖u‖p
k,p

( ∫

|u|p∗
)p/p∗

.

Equivalently we have

S = inf{‖u‖p
k,p : u ∈ Dk,p(RN ),

∫

|u|p∗ = 1}. (3.3)
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The crucial tool here is the concentration-compactness lemma, originally
due to Lions, with extensions made by Bianchi, Chabrowski, Szulkin, Ben-
Naoum, Troestler, Willem [6,20,21,31].

4. The concentration-compactness lemma

Before we go on to state and prove the concentration-compactness lemma,
we prove a few preliminary results. We note that for every ǫ > 0 there exists
a constant C(ǫ, p) > 0 such that

||x+ y|p − |x|p| ≤ ǫ|x|p + C(ǫ, p)|y|p ∀x, y ∈ R. (4.1)

Proposition 4.1. Suppose kp < N , |α| = k, ξ ∈ C∞
0 (RN ) and un ⇀ 0 in

Dk,p(RN ), then

lim
n→∞

∫

RN
|Dα(ξun)|pdx = lim

n→∞

∫

RN
|ξDαun|pdx.

Proof. The Leibniz formula gives

Dα(ξun) = ξDαun +
∑

0<β≤α

Cα,βD
βξDα−βun.

For ǫ > 0 put x = ξDαun and y =
∑

0<β≤α Cα,βD
βξDα−βun in (4.1) to

get

||Dα(ξun)|p − |ξDαun|p|
≤ ǫ|ξDαun|p +C(ǫ, p)|

∑

0<β≤α

Cα,βD
βξDα−βun|p.

Now an application of Höder’s inequality (for sums) gives

||Dα(ξun)|p − |ξDαun|p|
≤ ǫ|ξDαun|p + C1(ǫ, p)

∑

0<β≤α

|Cα,βD
βξDα−βun|p.

Since Dβξ ∈ C∞
0 (RN ), we have DβξDα−βun → 0 in Lp(RN ) for 0 < β ≤ α,

by the Rellich-Kondrachov theorem. So

lim
n→∞

|
∫

RN
|Dα(ξun)|pdx−

∫

RN
|ξDαun|pdx|

≤ lim
n→∞

∫

RN
||Dα(ξun)|p − |ξDαun|p|dx

≤ ǫ lim
n→∞

∫

RN
|ξDαun|pdx.

Since ǫ is arbitrary, we reach the desired conclusion. �

We next give a proposition which is an essential part in the proof of the
concentration-compactness lemma. We provide a slightly different argument
than that in Lions [20].

Proposition 4.2. Let µ,ν be two bounded nonnegative measures on R
N

satisfying for some constant C ≥ 0
(

∫

RN
|φ|qdν

)1/q

≤ C

(
∫

RN
|φ|pdµ

)1/p

, ∀φ ∈ C∞
0 (RN ) (4.2)
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where 1 ≤ p < q < ∞, and let µs be the atomic part of µ. Then there
exists an at most countable set (xj)j∈J of distinct points in R

N and a set of
numbers (νj)j∈J in ]0,∞[ such that

ν =
∑

j∈J

νjδxj , µs ≥ C−p
∑

j∈J

ν
p/q
j δxj .

Proof. From inequality (4.2) we obtain

(ν(A))p/q ≤ Cpµ(A) for all Borel sets A.

We decompose ν into the atomic and non-atomic parts, i.e. we write

ν = ν̃ +
∑

j∈J

νjδxj .

The set J is at most countable since ν is a bounded measure. Since ν({x}) =
limǫ→0 ν(B(x, ǫ)), we have

(νj)
p/q = ν({xj})p/q ≤ Cpµ({xj}).

We further conclude that ν̃ is absolutely continuous with respect to µ, and
by the Radon-Nikodym theorem ν̃ = fµ where f ∈ L1

+(µ). For µ- a.e. x
which is not an atom of µ we have

C−pf(x)p/q = lim
ρ→0

C−p
( ∫

Bρ(x) dν̃
)p/q

( ∫

Bρ(x) dµ
)p/q

≤ lim
ρ→0

(

∫

Bρ(x)
dµ

)(q−p)/q
= 0,

Since ν̃ is atom free and µ has at most countably many atoms, the result
follows.

�

We point out here that if the reverse inequality in (4.2) also holds then µ
and ν concentrate at a single point (see [20]). Recall the definition (3.1) of
S̄ and let M(RN ) denote the space of finite measures in R

N .

Lemma 4.3. (Concentration-compactness lemma). Let Q be a non-negative
continuous bounded function on R

N and {un}∞n=1 ⊂ Dk,p(RN ) be a sequence
such that

un ⇀ u in Dk,p(RN )

|∇k(un − u)|p ∗−⇀ µ in M(RN )

Q|(un − u)|p∗ ∗−⇀ ν in M(RN )

un → u a.e. on R
N

and define

µ∞ := lim
R→∞

lim
n→∞

∫

|x|>R
|∇kun|p ,

ν∞ := lim
R→∞

lim
n→∞

∫

|x|>R
Q|un|p

∗

.
(4.3)

If µs is the atomic part of µ, then it follows that

ν =
∑

j∈J

νjδxj , (4.4)
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‖ν‖p/p∗ ≤ S̄−1‖µs‖, (4.5)

νp/p∗
∞ ≤ S̄−1µ∞, (4.6)

lim
n→∞‖un‖p

k,p ≥ ‖u‖p
k,p + ‖µs‖ + µ∞, (4.7)

lim
n→∞

‖un‖p∗

p∗,Q = ‖u‖p∗

p∗,Q + ‖ν‖ + ν∞. (4.8)

Moreover, if u = 0 and ‖ν‖p/p∗ = S̄−1‖µ‖, then ν and µ are concentrated at
a single point.

Proof. Our argument is patterned on the proof of Lemma 1.40 in [31].
i) Assume first u = 0. Let ξ ∈ C∞

0 (RN ), then we have

(

∫

Q|ξun|p
∗

dx)p/p∗ ≤ S̄−1
∫

|∇k(ξun)|pdx.

Taking limits on both sides and using Proposition 4.1 gives

(

∫

|ξ|p∗dν)p/p∗ ≤ S̄−1
∫

|ξ|pdµ. (4.9)

Inequality (4.5) and equation (4.4) now follow from Proposition 4.2 and the

strict concavity of the map λ→ λp/p∗.
ii) For R > 1, let ψR ∈ C∞(RN ) be such that ψR(x) = 1 for |x| > R + 1,
ψR(x) = 0 for |x| < R and 0 ≤ ψR(x) ≤ 1 on R

N . We then obtain

(

∫

Q|ψRun|p
∗

dx)p/p∗ ≤ S̄−1
∫

|∇k(ψRun)|pdx.

Since Dα−βun → 0 in Lp
loc(R

N ) and DβψR ∈ C∞
0 (RN ) for 0 < β ≤ α, we

obtain the following inequality by applying Proposition 4.1:

lim
n→∞(

∫

Q|ψRun|p
∗

dx)p/p∗ ≤ S̄−1 lim
n→∞

∫

|∇kun|pψp
Rdx. (4.10)

We also have that
∫

|x|>R+1
|∇kun|pdx ≤

∫

|∇kun|pψp
Rdx ≤

∫

|x|>R
|∇kun|pdx

and
∫

|x|>R+1
Q|un|p

∗

dx ≤
∫

Q|un|p
∗

ψp∗

R dx ≤
∫

|x|>R
Q|un|p

∗

dx.

Hence

µ∞ = lim
R→∞

lim
n→∞

∫

|∇kun|pψp
Rdx, ν∞ = lim

R→∞
lim

n→∞

∫

Q|un|p
∗

ψp∗

R dx.

Inequality (4.6) now follows from (4.10).

iii) Further assume that ‖ν‖p/p∗ = S̄−1‖µ‖. From Hölder’s inequality we
have, for ξ ∈ C∞

0 (RN )

(

∫

|ξ|pdµ)1/p ≤ ‖µ‖k/N (

∫

|ξ|p∗dµ)1/p∗ .

Combining this with (4.9) gives

(

∫

|ξ|p∗dν)1/p∗ ≤ S̄−1/p‖µ‖k/N (

∫

|ξ|p∗dµ)1/p∗ .

The above inequality gives ν ≤ S̄−p∗/p‖µ‖kp∗/Nµ, which combined with the

equality ‖ν‖p/p∗ = S̄−1‖µ‖ implies

ν = S̄−p∗/p‖µ‖kp∗/Nµ and µ = S̄‖ν‖−pk/Nν.
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So for ξ ∈ C∞
0 (RN ) we have from (4.9)

(

∫

|ξ|p∗dν)p/p∗ ≤
∫

|ξ|p‖ν‖−pk/Ndν

and ‖ν‖k/N (

∫

|ξ|p∗dν)1/p∗ ≤ (

∫

|ξ|pdν)1/p.
(4.11)

Hence for each open set Ω ⊂ R
N

ν(Ω)1/p∗ν(RN )k/N ≤ ν(Ω)1/p.

It follows that either ν(Ω) = 0 or ν(RN ) ≤ ν(Ω). Therefore ν is concentrated
at a single point, and so is µ.
iv) Consider now the general case. Set vn = un−u, then vn ⇀ 0 in Dk,p(RN )
and inequality (4.5) follows from part (i) of the proof.
v) For any ǫ > 0, set x = Dαun and y = −Dαu in inequality (4.1) to obtain,

||Dαvn|p − |Dαun|p| ≤ ǫ|Dαun|p +C(ǫ, p)|Dαu|p.
It follows that

|
∫

|x|>R

(

|∇kvn|p − |∇kun|p
)

dx| = |
∫

|x|>R

∑

|α|=k

(

|Dαvn|p − |Dαun|p
)

dx|

≤
∫

|x|>R

∑

|α|=k

(

||Dαvn|p − |Dαun|p|
)

dx

≤ ǫ

∫

|x|>R

∑

|α|=k

|Dαun|pdx+ C(ǫ, p)

∫

|x|>R

∑

|α|=k

|Dαu|pdx

= ǫ

∫

|x|>R
|∇kun|pdx+ C(ǫ, p)

∫

|x|>R
|∇ku|pdx.

Since ǫ is arbitrary, by letting n→ ∞ and R→ ∞, we conclude that

lim
R→∞

lim
n→∞

∫

|x|>R
|∇kvn|p = µ∞.

From the Brézis-Lieb lemma (see [31, Lemma 1.32]) we have

lim
n→∞

(

∫

|x|>R
Q|un|p

∗

dx−
∫

|x|>R
Q|vn|p

∗

dx) =

∫

|x|>R
Q|u|p∗dx.

So

lim
R→∞

lim
n→∞

∫

|x|>R
Q|vn|p

∗

= ν∞.

Inequality (4.6) now follows from part (ii) of the proof.

vi) There exists a finite measure µ̃ such that |∇kun|p ∗−⇀ µ̃ in M(RN ).
Let φη ∈ C∞

0 (B(xj, η)), 0 ≤ φ ≤ 1 and φ(xj) = 1 where xj is an atom of
µ. Set x = Dαvn and y = Dαu in inequality (4.1) to get

|µ̃(φη) − µ(φη)| ≤ lim
n→∞

∫

RN

∑

|α|=k

φη||Dαun|p − |Dαvn|p|

≤ lim
n→∞

∫

RN

∑

|α|=k

(

ǫφη|Dαvn|p + C(ǫ, p)φη|Dαu|p
)

= ǫµ(φη) + C(ǫ, p)

∫

RN
|∇ku|pφη.

(4.12)
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Letting η → 0 we have

|µ̃s({xj}) − µs({xj})| ≤ ǫµs({xj}).
From the fact that ǫ is arbitrary, we see that the atomic part of µ̃ is equal
to µs. Since ξDαun ⇀ ξDαu in Lp(RN ) for all positive ξ ∈ C∞

0 (RN ), we
have

lim
n→∞

∫

|ξ∇kun|p ≥
∫

|ξ∇ku|p.

Now, |∇ku|p seen as a measure is relatively singular to the Dirac measures
δxj , and it follows that

‖µ̃‖ ≥ ‖u‖p
k,p + ‖µs‖. (4.13)

For R > 1 we have

lim
n→∞

∫

|∇kun|p = lim
n→∞

(
∫

ψR|∇kun|p +

∫

(1 − ψR)|∇kun|p
)

.

As R→ ∞, by Lebesgue’s dominated convergence theorem we have

lim
n→∞

‖un‖p
k,p = µ∞ + ‖µ̃‖ ≥ µ∞ + ‖u‖p

k,p + ‖µs‖. (4.14)

An application of the Brézis-Lieb lemma gives, for R > 1

lim
n→∞

∫

Q|un|p
∗

= lim
n→∞

(
∫

ψRQ|un|p
∗

+

∫

(1 − ψR)Q|un|p
∗

)

= lim
n→∞

∫

ψRQ|un|p
∗

+

∫

(1 − ψR)dν +

∫

(1 − ψR)Q|u|p∗ .

As R→ ∞,

lim
n→∞

‖un‖p∗

p∗,Q = ‖u‖p∗

p∗,Q + ‖ν‖ + ν∞

follows from Lebesgue’s dominated convergence theorem. Hence we have
proved (4.7) and (4.8). �

It is important to make the following remarks.

Remark 4.4. There are many variants of the above Lemma as we will see later
on. We mention here two of them. It is clear that we could have used the
norm in (2.2). The only difference in this case would be that the conclusion

of Proposition (4.1) needs to be replaced by limn→∞‖(−∆)k/2(ψnu)‖p =

limn→∞‖ψ(−∆)k/2u‖p (even k) and limn→∞‖∇(−∆)(k−1)/2(ψnu)‖p =

limn→∞‖ψ∇(−∆)(k−1)/2u‖p (odd k). The argument is similar. Secondly,

we may change the space Dk,p(RN ) to Dk,p
G (RN ), in which case we would

also have to replace S̄ with S̄G as defined in (3.2).

Remark 4.5. Looking back at the proof of the above lemma, we see that part
(vi) is rather cumbersome and forces (4.7) to be an inequality rather than
an equality. However, in the case when p = 2, we can avoid the argument in
part (vi) of the proof above by using the following argument which exploits
the Hilbert structure of Dk,2(RN ).

lim
n→∞

∫

|∇kvn|2ψ2
Rdx = lim

n→∞

∫

|∇kun|2ψ2
Rdx−

∫

|∇ku|2ψ2
Rdx,
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since the Brézis-Lieb lemma holds when a.e. convergence is replaced by
weak convergence (see [31, Remarks 1.33]). Hence,

lim
R→∞

lim
n→∞

∫

|∇kvn|2ψ2
Rdx = lim

R→∞
lim

n→∞

∫

|∇kun|2ψ2
Rdx = µ∞.

For R > 1 we have, once again by the Brézis-Lieb lemma

lim
n→∞

∫

|∇kun|2 = lim
n→∞

(
∫

ψR|∇kun|2 +

∫

(1 − ψR)|∇kun|2
)

= lim
n→∞

∫

ψR|∇kun|2 +

∫

(1 − ψR)dµ +

∫

(1 − ψR)|∇ku|2.

As R→ ∞, by Lebesgue’s dominated convergence theorem we have

lim
n→∞

‖un‖2
k,p = µ∞ + ‖µ‖ +

∫

|∇ku|2. (4.15)

So we arrive at the stronger conclusion

lim
n→∞

‖un‖2
k,2 = ‖u‖2

k,2 + ‖µ‖ + µ∞.

Further, one can replace µs with µ in inequality (4.5). We point out that in
this case Proposition 4.2 is redundant, since the fact that ν =

∑

j∈J νjδxj

will not be used in our applications as we will see.

Remark 4.6. If u = 0, then by definition, µ̃ = µ. Hence it follows from (4.14)
that limn→∞‖un‖p

k,p = µ∞ + ‖µ‖.
If {un}∞n=1 ⊂ Dk,p(RN ) is a bounded sequence such thatQ|(un−u)|p

∗ ∗−⇀ ν,

then we may assume that |un −u|p ∗−⇀ γ. Hence, by defining γ∞ in the same
way as ν∞, we see that ν({x}) = Q(x)γ({x}) and ν∞ ≤ Q∞γ∞. So γ and
ν concentrate at exactly the same points, if Q > 0. Further, ν∞ = Q∞γ∞ if
Q∞ = lim|x|→∞Q(x).

5. Non-existence result

The proposition given below is the essential part in showing that for
general Q a minimizer of (3.1) does not exist.

Proposition 5.1. If Q is a bounded nonnegative continuous function in

R
N , then S = S̄‖Q‖p/p∗

∞ .

Proof. We have,

S̄ = inf
u∈Dk,p(RN )

u 6=0

∫

|∇ku|p
( ∫

Q|u|p∗
)p/p∗

≥ inf
u∈Dk,p(RN )

u 6=0

∫

|∇ku|p

‖Q‖p/p∗
∞

( ∫ |u|p∗
)p/p∗

=
S

‖Q‖p/p∗
∞

.

So, S ≤ S̄‖Q‖p/p∗
∞ follows. Let u be a function which achieves S in (3.3) and

for x0 ∈ R
N set

uǫ(x) = ǫ
−N
p∗ u

(

x− x0

ǫ

)

.

Through a variable substitution we have

S̄ ≤
∫

|∇kuǫ|pdx
( ∫

Q(x)|uǫ|p∗dx
)p/p∗

=

∫

|∇ku|pdy
( ∫

Q(ǫy + x0)|u|p∗dy
)p/p∗

.
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As ǫ→ 0, by Lebesgue’s dominated convergence theorem we obtain

S̄ ≤ S

Q(x0)p/p∗
.

The assertion follows, since we have (Q(x0))
p/p∗S̄ ≤ S ≤ S̄‖Q‖p/p∗

∞ , ∀x0 ∈
R

N .
�

To see that minimizers of (3.1) usually do not exist, assume that u is such
a minimizer. Then in view of Proposition 5.1 we have

(
∫

Q|u|p∗
)p/p∗

≤ ‖Q‖p/p∗
∞

(
∫

|u|p∗
)p/p∗

≤ ‖Q‖p/p∗
∞ S−1

∫

|∇ku|p =

(
∫

Q|u|p∗
)p/p∗

.

So it follows that
(

∫

RN
(‖Q‖∞ −Q)|u|p∗

)

= 0.

We now deduce that if the set E = {x ∈ R
N : ‖Q‖∞ = Q(x)} has measure

zero, then a minimizer of (3.1) does not exist. We can further conclude,
since the minimizers for S are positive everywhere when p > 1, k = 1 or
p = 2 and k > 2 (see Section 7), that the minimizers of (3.1) exist if and only
if Q is constant. We state these observations in the following proposition.

Proposition 5.2. If the set E = {x ∈ R
N : ‖Q‖∞ = Q(x)} has measure

zero, then problem (3.1) has no minimizer. Further, when p > 1, k = 1 or
when p = 2, k ≥ 2, minimizers of (3.1) exist if and only if Q is constant.

6. Sufficient condition for existence of minimizers

We now give a sufficient condition for the existence of symmetric mini-
mizers for problem (3.2). We will then give an example which shows that
there are functions Q so that the condition holds.

Theorem 6.1. If S̄G max{Qp/p∗

0 , Q
p/p∗
∞ } < S then problem (3.2) has a min-

imizer.

Proof. Let {un} be a minimizing sequence for S̄G such that ‖un‖p∗,Q = 1.
For some subsequence, still denoted {un}, we may assume that the condi-
tions of the modified version of Lemma 4.3, as mentioned in Remark 4.4,
are fulfilled and so the conclusion holds with S̄ replaced by S̄G. We need to
show that ‖ν‖ = ν∞ = 0. We have

S̄G = lim
n→∞

‖un‖p
k,p ≥ ‖u‖p

k,p + ‖µs‖ + µ∞

and 1 = lim
n→∞

‖un‖p∗

p∗,Q = ‖u‖p∗

p∗,Q + ‖ν‖ + ν∞.

Combining these with inequalities (4.5) and (4.6) gives

S̄G(‖u‖p∗

p∗,Q + ‖ν‖ + ν∞)p/p∗ ≥ ‖u‖p
k,p + ‖µs‖ + µ∞

≥ S̄G((‖u‖p∗

p∗,Q)p/p∗ + ‖ν‖p/p∗ + νp/p∗
∞ ).

(6.1)
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So, only one of the three quantities, ‖u‖p∗

p∗,Q, ‖ν‖ and ν∞, is equal to 1 and
the other two are zero. If Q∞ 6= 0 and ν∞ = 1, then using the hypothesis,
Remark 4.6, (6.1) and (4.6) with Q = 1 (i.e. S̄ = S) we have

S(γ∞)p/p∗ > S̄G(Q∞γ∞)p/p∗ ≥ S̄G(ν∞)p/p∗

≥ µ∞ ≥ S(γ∞)p/p∗ ,

a contradiction. So ν∞ = 0. If Q0 6= 0 and ‖ν‖ = 1 then u = 0 and

‖ν‖p/p∗ = S̄−1
G ‖µ‖, and so ν is concentrated at a single point. Since the

set of concentration points of ν are G-invariant and Fix(G) = {0}, we con-
clude that ν and µ are concentrated at the origin. Once again we get a
contradiction, since

S(γ({0}))p/p∗ > S̄G(Q0γ({0}))p/p∗ = S̄G(ν({0}))p/p∗

≥ ‖µs‖ ≥ S(γ({0}))p/p∗ .

It follows that ‖u‖p∗,Q = 1, and u is a minimizer of (3.2). If Q
p/p∗

0 = Q
p/p∗
∞ =

0 then it is easy to see that ‖ν‖ = ν∞ = 0 and we are done. �

Remark 6.2. The results presented above are independent of the norm cho-
sen on Dk,p(RN ). But we still have to show that there are functions Q for
which the above theorem holds. To this end, we will assume that the norm
used on Dk,p(RN ) is the norm given in (2.2). This will guarantee that there
are radially symmetric, nonnegative and decreasing minimizers of problem
(3.3), (see [20, Corollary I.2]). Now, if

SG = inf{‖u‖p
k,p : u ∈ Dk,p

G (RN ),

∫

|u|p∗ = 1}, (6.2)

then SG = S. This is because there exists a radially symmetric and hence
G-symmetric function which minimizes S and S ≤ SG.

We observe that if u is a function which achieves S = SG in (6.2) then

uǫ(x) = ǫ
−N
p∗ u

(

x

ǫ

)

,

also achieves SG. Through a variable substitution we have

S̄G ≤
‖uǫ‖p

k,p
( ∫

Q(x)|uǫ|p∗dx
)p/p∗

=
‖u‖p

k,p
( ∫

Q(ǫy)|u|p∗dy
)p/p∗

By Lebesgue’s dominated convergence theorem we may take the limit under
the integral sign. Hence by letting ǫ go to 0 or ∞, we obtain,

S̄G max{Qp/p∗

0 , Q
p/p∗
∞ } ≤ S, provided Q∞ = lim|x|→∞Q(x). Since S

‖Q‖p/p∗
∞

≤
S̄G (see the argument of Proposition 5.2), we may conclude that

S

‖Q‖p/p∗
∞

≤ S̄G ≤ Smin{Q−p/p∗

0 , Q−p/p∗

∞ }.

We further observe that if ‖Q‖−p/p∗
∞ = min{Q−p/p∗

0 , Q
−p/p∗
∞ } then the as-

sumption of Theorem 6.1 cannot be satisfied. In this case we can state a
result similar to Proposition 5.2.



12 SHOYEB WALIULLAH

We now give two simple examples. In the next section we will show how
to find conditions on the behavior of Q at zero and infinity so that the
assumption of Theorem 6.1 is satisfied.

Example 6.3. The most trivial example is when Q0 = Q∞ = 0. This con-
dition immediately guarantees that concentration cannot occur at zero or
infinity, and the assumption of Theorem 6.1 is satisfied.

The following example shows that the condition

S̄G max{Qp/p∗

0 , Q
p/p∗
∞ } < S = SG, is not always necessary to conclude that

minimizers of S̄G exist.

Example 6.4. Suppose that Q(x) ≥ Q0 = Q∞ = lim|x|→∞Q(x) > 0 for all

x ∈ R
N , then it is clear that S̄G max{Qp/p∗

0 , Q
p/p∗
∞ } ≤ SG = S. If strict

inequality holds then a minimizer of S̄G exists by Theorem 6.1. On the
other hand if
S̄G max{Qp/p∗

0 , Q
p/p∗
∞ } = SG then a minimizer of S̄G also exists. To see this,

let u be a minimizer for SG. We then have

S̄G ≤
‖u‖p

k,p

‖u‖p
p∗,Q

≤
‖u‖p

k,p

Q
p/p∗

0 ‖u‖p
p∗

=
SG

Q
p/p∗

0

= S̄G. (6.3)

So u is a minimizer for S̄G as well.

The two examples above show that we require very little knowledge of Q
to guarantee the existence of symmetric solutions to a large class of partial
differential equations of arbitrary order. We state the above observation in
the next corollary.

Corollary 6.5. Problem (3.2) has a solution if Q(x) ≥ Q0 = Q∞ =
lim|x|→∞Q(x) ≥ 0 for all x ∈ R

N .

The above corollary together with Proposition 5.2 shows that S̄ < S̄G if
E = {x ∈ R

N : ‖Q‖∞ = Q(x)} has measure zero and Q(x) ≥ Q0 = Q∞ =
lim|x|→∞Q(x) > 0 for all x ∈ R

N .

7. Application to partial differential equations

7.1. The case p = 2, k = 1. In [6] the authors studied the solutions to the
following problem

−∆u = Q(x)|u|2∗−2u in R
N , u ∈ D1,2

G (RN ), (7.1)

whereN > 2, 2∗ = 2N
N−2 andQ isG-symmetric. We know that any minimizer

of problem (3.2) with p = 2 and k = 1 will then give a solution of the
above problem. In Proposition 2 in [6] the authors show that a solution

to problem (3.2) exists if S̄G max{Q2/2∗

0 , Q
2/2∗
∞ , |G|−2/N‖G‖2/2∗

∞ } < S where
|G| = infx∈RN ,x 6=0|Gx| and |Gx| is the cardinality of the set Gx = {gx : g ∈
G}. Comparing this to Theorem 6.1 shows that our result is an improvement
upon the result given there.

We can now state some conditions on Q which will guarantee that the
assumption of Theorem 6.1 is satisfied. The proofs are similar to those of
Corollary 1 and 2 in [6].
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Corollary 7.1. Suppose that Q is G-symmetric, Q0 ≥ Q∞ > 0 and either
(i) Q(x) ≥ Q0 + ǫ|x|N for some ǫ > 0 and |x| small or
(ii) |Q(x) −Q0| ≤ C|x|α for some constant C > 0,α > N , |x| small and

∫

RN
(Q(x) −Q0)|x|−2Ndx > 0.

Then there exists a nontrivial solution to problem (7.1).

Proof. We know that the instanton v(x) = (1 + |x|2)−N/2∗ is the unique
minimizer for (3.3) with k = 1 and p = 2, up to translation and dilation. In
view of Theorem 6.1 it suffices to show that for some η > 0

S̄
−2∗/2
G ≥

∫

RN
Q(x)|Av(x/η)|2∗ >

∫

RN
Q0|Av(x/η)|2

∗

= Q0S
−2∗/2,

where A > 0 is a constant chosen so that ‖Av(x/η)‖1,2 = 1. Of course this
is equivalent to showing that for some η > 0

∫

RN
Q(x)

(

1

η2 + |x|2
)N

−
∫

RN
Q0

(

1

η2 + |x|2
)N

> 0.

(i) By the hypothesis, for some δ > 0,
∫

|x|≤δ
(Q(x) −Q0)

(

1

η2 + |x|2
)N

≥ ǫ

∫

|x|≤δ

( |x|
η2 + |x|2

)N

→ ∞

as η → 0. On the other hand, for all η > 0 we have
∣

∣

∣

∣

∫

|x|>δ
(Q(x) −Q0)

(

1

η2 + |x|2
)N ∣

∣

∣

∣

≤ C1

∫

|x|>δ

1

|x|2N
= C2

for some constants C1, C2 greater than zero and independent of η. We now
obtain the required conclusion.

(ii) By the hypothesis, |Q(x) − Q0||x|−2N ∈ L1(RN ), and by Lebesgue’s
dominated convergence theorem we have

∫

RN
(Q(x) −Q0)

(

1

η2 + |x|2
)N

→
∫

RN
(Q(x) −Q0)|x|−2N

as η → 0. Hence, we deduce the required conclusion. �

Corollary 7.2. Suppose that Q is G-symmetric, Q∞ = lim|x|→∞Q(x),
Q∞ ≥ Q0 > 0 and either
(i) Q(x) ≥ Q∞ + ǫ|x|−N for some ǫ > 0 and |x| large or
(ii) |Q(x) −Q∞| ≤ C|x|−α for some constant C > 0,α > N , |x| large and

∫

RN
(Q(x) −Q∞)dx > 0.

Then there exists a nontrivial solution to problem (7.1).

Proof. As mentioned in the proof of the previous corollary, in view of The-
orem 6.1 it suffices to show that for some η > 0

S̄
−2∗/2
G ≥

∫

RN
Q(x)|Av(x/η)|2∗ >

∫

RN
Q∞|Av(x/η)|2∗ = Q∞S

−2∗/2.

(i) Hence, we need to show that
∫

RN
(Q(x) −Q∞)

(

1

1 + |x/η|2
)N

> 0



14 SHOYEB WALIULLAH

for some η > 0. By the hypothesis, we can find R > 0 such that Q(x) ≥
Q∞ + ǫ|x|−N for all |x| ≥ R. It follows that

∫

|x|>R
(Q(x) −Q∞)

(

1

1 + |x/η|2
)N

→ ∞

as η → ∞. We also have
∣

∣

∣

∣

∫

|x|≤R
(Q(x) −Q∞)

(

1

1 + |x/η|2
)N ∣

∣

∣

∣

≤ C1

where C1 > 0 is independent of η. By putting these two observations to-
gether, we obtain the desired result.

(ii) By the hypothesis, |Q(x) −Q∞| ∈ L1(RN ) and so

lim
η→∞

∫

RN
(Q(x) −Q∞)

(

1

1 + |x/η|2
)N

=

∫

RN
(Q(x) −Q∞)dx > 0,

we immediately conclude the desired result. �

Remark 7.3. We observe that Q∞ = lim|x|→∞Q(x) is now a part of the
assumption.

7.2. The case p = 2 and k > 1. We continue with a higher order variant
of the above example. We wish to find non-trivial solutions to the following
non-linear partial differential equation

(−∆)ku = Q(x)|u|2∗−2u in R
N , u ∈ D1,2

G (RN ), (7.2)

where N > 2k, 2∗ = 2N
N−2k and Q is G-symmetric. Keeping in mind the

norm (2.2), a minimizer for (3.2) with p = 2, will then give a solution of the
above problem. In the previous example, by knowing explicitly the instanton
which minimizes (3.3), we could state explicit conditions on Q under which
problem (3.2) has a minimizer. We do the same thing here, since we know

that up to translation and dilation the instanton v(x) = (1 + |x|2)−N/2∗ is
a minimizer for (3.2) (see [26]). By the same arguments as in Corollary 7.1
and 7.2 we see that the following results hold.

Corollary 7.4. Suppose that Q is G-symmetric, Q0 ≥ Q∞ > 0 and either
(i) Q(x) ≥ Q0 + ǫ|x|N for some ǫ > 0 and |x| small or
(ii) |Q(x) −Q0| ≤ C|x|α for some constant C > 0,α > N , |x| small and

∫

RN
(Q(x) −Q0)|x|−2Ndx > 0.

Then there exists a nontrivial solution to problem (7.2).

Corollary 7.5. Suppose that Q is G-symmetric, Q∞ = lim|x|→∞Q(x),
Q∞ ≥ Q0 > 0 and either
(i) Q(x) ≥ Q∞ + ǫ|x|−N for some ǫ > 0 and |x| large or
(ii) |Q(x) −Q∞| ≤ C|x|−α for some constant C > 0,α > N , |x| large and

∫

RN
(Q(x) −Q∞)dx > 0.

Then there exists a nontrivial solution to problem (7.2).

For some results in the non-critical case we refer to [5] and references
therein.
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7.3. The case p > 1 and k = 1. Here we obtain an equation involving the
p-Laplace operator. We have

−∆pu = Q(x)|u|p∗−2u in R
N , u ∈ D1,2

G (RN ), (7.3)

where ∆pu = div(|∇u|p−2∇u), N > p, p∗ = Np
N−p and Q is G-symmetric.

It is known from the work of Aubin [2] and Talenti [29] that v(x) = (1 +

|x|p/(p−1))−N/p∗ is the unique minimizer up to translation and dilation, for
problem (3.3) with k = 1. In this case also Corollaries 7.1 and 7.2 hold with
minor changes. Since the proofs are similar we skip them.

Corollary 7.6. Suppose that Q is G-symmetric, Q0 ≥ Q∞ > 0 and either
(i) Q(x) ≥ Q0 + ǫ|x|N/(p−1) for some ǫ > 0 and |x| small or
(ii) |Q(x) −Q0| ≤ C|x|α for some constant C > 0,α > N/(p − 1), |x| small
and

∫

RN
(Q(x) −Q0)|x|−pN/(p−1)dx > 0.

Then there exists a nontrivial solution to problem (7.3).

Corollary 7.7. Suppose that Q is G-symmetric, Q∞ = lim|x|→∞Q(x),
Q∞ ≥ Q0 > 0 and either
(i) Q(x) ≥ Q∞ + ǫ|x|−N for some ǫ > 0 and |x| large or
(ii) |Q(x) −Q∞| ≤ C|x|−α for some constant C > 0,α > N , |x| large and

∫

RN
(Q(x) −Q∞)dx > 0.

Then there exists a nontrivial solution to problem (7.3).

The p-Laplace operator in equation (7.3) has been the object of many
studies, where both critical and non-critical exponents have been considered.
We refer the reader e.g. to [1, 12,23,25,27] and the references therein.

7.4. The p-biharmonic operator. Let

F (u) =
1

p

∫

RN
|∆u|p,

then

F ′(u)φ =
1

p

∫

RN
|∆u|p−2∆u∆φ ∀φ ∈ C∞

0 (RN ),

i.e. any minimizer of problem (3.2) with k = 2 will satisfy

∆(|∆u|p−2∆u) = Q|u|p∗−2u in R
N , u ∈ D2,p

G (RN ). (7.4)

In this case the explicit form of the minimizers of SG is not known, there-
fore we are not able to give explicit conditions on Q so that a solution
to (7.4) exists. However, by using Corollary 6.5 we may conclude that if
Q(x) ≥ Q0 = Q∞ = lim|x|→∞Q(x) ≥ 0 then equation (7.4) has a G-
invariant solution.

The operator ∆(|∆u|p−2∆u) is called the p-biharmonic operator. In com-
parison to the p-Laplace operator, very little is known about it. However
see [13,14,28].
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8. Double Weights

In this section, we will apply the methods developed in the previous sec-
tions to a more general problem. Let H be a bounded continuous function in
R

N . Assume that H̄ = infx∈RN H(x) > 0 and H∞ := lim|x|→∞H(x) exists.
We will look at the following problem:

I = inf{‖u‖p
k,p,H : u ∈ Dk,p(RN ), ‖u‖p∗,Q = 1}. (8.1)

Here ‖u‖k,p,H can either be ‖∇ku‖p,H or ‖(−∆)k/2u‖p,H when k is even and

‖∇(−∆)(k−1)/2u‖p,H when k is odd. There is no problem in doing so since
our hypothesis on H shows that for even k

∫

RN
H|∆k/2u|p ∼

∫

RN
|∆k/2u|p ∼

∫

RN
|∇ku|p ∼

∫

RN
H|∇ku|p,

where ∼ indicates the equivalence of norms. The same is true for odd k.
Similarly as in Section 4, we first assume that ‖u‖k,p,H = ‖∇ku‖p,H .

We note that the condition H̄ > 0 guaranties the positivity of I and also
that ‖·‖k,p,H is an equivalent norm to ‖·‖k,p in Dk,p(RN ). To keep things
simple we will also assume that Q∞ := lim|x|→∞Q(x). It is easy to see that
the methods applied in the previous sections can be adapted to handle the
case of double weights.

This type of problems with double weights have been studied by some
authors. We refer the reader to [3, 4, 9, 16] and references therein.

We start by studying the effect of dilation and translation in order to
obtain a relationship between the values I and S. Let u be a function which
achieves S in (3.3) and for x0 ∈ R

N set

uǫ(x) = ǫ
−N
p∗ u

(

x− x0

ǫ

)

.

Through a variable substitution we have

I ≤
∫

H(x)|∇kuǫ|pdx
( ∫

Q(x)|uǫ|p∗dx
)p/p∗

=

∫

H(ǫy + x0)|∇ku|pdy
( ∫

Q(ǫy + x0)|u|p∗dy
)p/p∗

.

As ǫ→ 0, by Lebesgue’s dominated convergence theorem we obtain,

I ≤ SH(x0)

Q(x0)p/p∗
.

Since the above inequality holds for all x0 ∈ R
N , we conclude

I ≤ S infx∈RN
H(x)

(Q(x))p/p∗ . On the other hand, we have

(

∫

Q|u|p∗)p/p∗ ≤ ‖Q‖p/p∗
∞ (

∫

|u|p∗)p/p∗ ≤ S−1 ‖Q‖p/p∗
∞
H̄

∫

H|∇ku|p

for all u ∈ Dk,p(RN ). Hence we deduce that

S
H̄

‖Q‖p/p∗
∞

≤ I ≤ S inf
x∈RN

H(x)

(Q(x))p/p∗
. (8.2)

Next, we require the concentration-compactness lemma, which gives us in-
formation regarding weakly converging sequences and in particular minimiz-
ing sequences. Since Proposition 4.1 holds even when we useHdx as weights,
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we can state another version of the concentration-compactness lemma. Since
the proof is similar to that of Lemma 4.3 we omit it.

Lemma 8.1. (Concentration-compactness lemma). Assume that our hy-
pothesis on H and Q hold, and {un}∞n=1 ⊂ Dk,p(RN ) is a sequence such
that

un ⇀ u in Dk,p(RN )

H|∇k(un − u)|p ∗−⇀ µ in M(RN )

Q|(un − u)|p∗ ∗−⇀ ν in M(RN )

un → u a.e. on R
N

and define

µ∞ := lim
R→∞

lim
n→∞

∫

|x|>R
H|∇kun|p ,

ν∞ := lim
R→∞

lim
n→∞

∫

|x|>R
Q|un|p

∗

.
(8.3)

If µs is the atomic part of µ, then it follows that

ν =
∑

j∈J

νjδxj , (8.4)

‖ν‖p/p∗ ≤ I−1‖µs‖, (8.5)

νp/p∗
∞ ≤ I−1µ∞, (8.6)

lim
n→∞

‖un‖p
k,p,H ≥ ‖u‖p

k,p + ‖µs‖ + µ∞, (8.7)

lim
n→∞

‖un‖p∗

p∗,Q = ‖u‖p∗

p∗,Q + ‖ν‖ + ν∞. (8.8)

Moreover, if u = 0 and ‖ν‖p/p∗ = I−1‖µ‖, then ν and µ are concentrated at
a single point.

Remark 8.2. Those changes mentioned in remark 4.4 can also be made here.

Remark 8.3. If {un}∞n=1 ⊂ Dk,p(RN ) is a bounded sequence such that

H|∇k(un − u)|p ∗−⇀ µ, Q|(un − u)|p∗ ∗−⇀ ν, then we may assume that

|∇k(un − u)|p ∗−⇀ α, and |(un − u)|p∗ ∗−⇀ β. Hence, by defining α∞ and β∞
in the way µ∞ is defined, we see that µ({x}) = H(x)α({x}), ν({x}) =
Q(x)β({x}), µ∞ = H∞α∞ and ν∞ = Q∞β∞.

We can now state a result which basically, is a necessary and sufficient
condition for all minimizing sequences to be relatively compact. That it
is sufficient follows from the following theorem. To see that this is also
necessary we refer the reader to the work of Lions [18,19]. We would like to
mention that the hypothesis of the next theorem is hard to check, but we
give an example which will show that the theorem is not empty, i.e. there
exist H and Q such that the assumption is satisfied.

Theorem 8.4. If I < S infx∈RN
H(x)

(Q(x))p/p∗ then all minimizing sequences are

relatively compact. In particular, a minimizer for I exists.
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Proof. Let {un}∞n=1 ⊂ Dk,p(RN ) be a minimizing sequence for I. Arguing
exactly as in Theorem 6.1 we see that only one of the three quantities,

‖u‖p∗

p∗,Q, ‖ν‖ and ν∞, is equal to 1 and the other two are zero.

i) If ν∞ = 1, then

I = I(ν∞)p/p∗ = I(Q∞β∞)p/p∗ ≥ µ∞ = H∞α∞ ≥ SH∞(β∞)p/p∗ = S
H∞

Q
p/p∗
∞

.

Hence, I ≥ S H∞

Q
p/p∗
∞

≥ S infx∈RN
H(x)

(Q(x))p/p∗ contradicts our assumption.

ii) If ‖ν‖ = 1, then u = 0, I1‖ν‖p/p∗ ≥ ‖µ‖ and so by the previous lemma
ν concentrates at a point x ∈ R

N . We now have

I = I(ν({x}))p/p∗ = I(Q(x)β({x}))p/p∗ ≥ µ({x}
= H(x)α({x}) ≥ SH(x)(β({x}))p/p∗ .

Once again I ≥ S H(x)
(Q(x))p/p∗ will contradict our assumption. It follows that

‖u‖p∗

p∗,Q = 1 and so the proof is complete. �

We now give the example mentioned above.

Example 8.5. Let k = 1 and H = Qp/p∗. We shall construct a Q such that

I < S inf
x∈RN

H(x)

(Q(x))p/p∗
= S.

Set u(x) = (1 + |x|p/(p−1))−N/p∗ , so that |∇u|p = C|x|p/(p−1)|u|p∗ and

S =

∫

|∇u|p
( ∫

|u|p∗
)p/p∗

.

For some small η > 0, let 1 ≤ Q(x) ≤ 1 + η and set Q(x) = 1 if |x| > 2δ,
Q(x) = 1 + η if |x| < δ. We shall show that δ > 0 can be chosen such that

I ≤
∫

Qp/p∗ |∇u|p
( ∫

Q|u|p∗
)p/p∗

< S. (8.9)

We have
∫

Qp/p∗|∇u|p

=

∫

|x|<δ
(1 + η)p/p∗ |∇u|p +

∫

δ<|x|<2δ
Qp/p∗|∇u|p +

∫

2δ<|x|
|∇u|p

=

∫

|x|<δ
(1 + η)p/p∗ |∇u|p +

∫

δ<|x|<2δ
Qp/p∗|∇u|p +

∫

|∇u|p −
∫

|x|<2δ
|∇u|p

=

∫

|x|<δ
((1 + η)p/p∗ − 1)C|x|p/(p−1)|u|p∗

+

∫

δ<|x|<2δ
(Qp/p∗ − 1)C|x|p/(p−1)|u|p∗ + S

(

∫

|u|p∗
)p/p∗
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≤ p

p∗
ηCδp/(p−1)

∫

|x|<δ
|u|p∗ + C

p

p∗
η(2δ)p/(p−1)

∫

δ<|x|<2δ
|u|p∗

+ S
(

∫

|u|p∗
)p/p∗

≤ p

p∗
ηCδp/(p−1)

∫

|x|<δ
|u|p∗ + C1

p

p∗
η(2δ)p/(p−1)

∫

|x|<δ
|u|p∗ + S

(

∫

|u|p∗
)p/p∗

.

We have used the inequalities (1 + η)p/p∗ ≤ 1 + p
p∗η and

∫

δ<|x|<2δ|u|p
∗ ≤

C2
∫

|x|<δ|u|p
∗

. The second one follows easily from the fact that u is decreasing

in |x|. Also,

(

∫

Q|u|p∗
)p/p∗

=
(

η

∫

|x|<δ
|u|p∗ +

∫

δ<|x|<2δ
(Q− 1)|u|p∗ +

∫

|u|p∗
)p/p∗

≥
(

η

∫

|x|<δ
|u|p∗ +

∫

|u|p∗
)p/p∗

.

Taylor expansion of f(x) = xp/p∗ about
∫

|u|p∗ gives

(

∫

Q|u|p∗
)p/p∗ ≥

(

∫

|u|p∗
)p/p∗

+
p

p∗
(

∫

|u|p∗
)p/p∗−1

η

∫

|x|<δ
|u|p∗

+ o
(

(η

∫

|x|<δ
|u|p∗)2

)

.

So we see that (8.9) holds if we can show that

p

p∗
ηCδp/(p−1)

∫

|x|<δ
|u|p∗ +C1

p

p∗
η(2δ)p/(p−1)

∫

|x|<δ
|u|p∗

< S
p

p∗
(

∫

|u|p∗
)p/p∗−1

η

∫

|x|<δ
|u|p∗ + o

(

(η

∫

|x|<δ
|u|p∗)2

)

Since
∫

|x|<δ|u|p
∗

= o(δ), the above inequality can be re-written in the form

A1δ
p/(p−1) < A2 + o(δ). Hence it suffices to choose δ > 0 small enough.

Remark 8.6. The above theorem together with the example reveals a rather
surprising fact regarding the embedding Dk,p(RN ) →֒ Lp∗(RN , Q). In Sec-
tion 5 we saw that in general not all minimizing sequences are relatively
compact if the norms (2.1) or (2.2) are used in Dk,p(RN ). But, there may
exist an equivalent norm in Dk,p(RN ) so that all minimizing sequences are
relatively compact.

Returning to inequality (8.2) we see that if

inf
x∈RN

H(x)

(Q(x))p/p∗
=

H̄

‖Q‖p/p∗
∞

then the hypothesis of Theorem 8.4 cannot be satisfied. In this case minimiz-
ing sequences are not relatively compact and minimizers do not exist. More
precisely, we have the following proposition which of course is a straight
forward generalization of the observations made in Section 5.

Proposition 8.7. Suppose that I = SH̄

‖Q‖p/p∗
∞

. If EQ = {x ∈ R
N : ‖Q‖∞ =

Q(x)} or EH = {x ∈ R
N : H̄ = H(x)} has measure zero, then there are no

minimizers to problem (8.1).
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Proof. We argue as we did in Proposition 5.2. Suppose that I = S H̄

‖Q‖p/p∗
∞

and u ∈ Dk,p(RN ) is a minimizer for I. Then

(
∫

Q|u|p∗
)p/p∗

≤ ‖Q‖p/p∗

∞

(
∫

|u|p∗
)p/p∗

≤ S−1‖Q‖p/p∗
∞

H̄

∫

H̄|∇ku|p

= I−1
∫

H̄|∇ku|p ≤ I−1
∫

H|∇ku|p =

(
∫

Q|u|p∗
)p/p∗

So it follows that
∫

(‖Q‖∞−Q)|u|p∗dx = 0 and
∫

(H − H̄)|∇ku|p = 0. Hence
there are no minimizers.

�

Remark 8.8. Combining the above proposition and Theorem 8.4 gives an-
other interesting result. Suppose that EQ = {x ∈ R

N : ‖Q‖∞ = Q(x)} or

EH = {x ∈ R
N : H̄ = H(x)} has measure zero, then I < infx∈RN

H(x)
(Q(x))p/p∗

implies I > SH̄

‖Q‖p/p∗
∞

.

Now we turn to the problem of finding symmetric minimizers. Assuming
that H and Q are G-invariant, we consider the following problem

IG = inf{‖u‖p
k,p,H : u ∈ Dk,p

G (RN ), ‖u‖p∗,Q = 1}, (8.10)

where ‖u‖k,p,H = ‖(−∆)k/2u‖p,H when k is even and ‖∇(−∆)(k−1)/2u‖p,H

when k is odd. We can now state the conditions under which a minimizer
to the above problem exists. We use the same notation for H as we do for
Q.

Theorem 8.9. If IG < min{ H0

Q
p/p∗

0

, H∞

Q
p/p∗
∞

}S then the infimum in (8.10) is

attained.

The above theorem is a straight forward generalization of Theorem 6.1
and the proof is an obvious adaptation of that of Theorem 6.1. From the
above theorem we can immediately conclude that if Q0 = Q∞ = 0 then a
minimizer to problem (8.10) exists. By using explicitly the properties of the
minimizers of problem (3.3) we can state explicit conditions on H and Q so
that the minimizer of problem (8.10) exists.

The following corollaries are generalizations of Corollaries 7.6 and 7.7.

Corollary 8.10. Assume that H and Q are G-symmetric functions, H0

Q
p/p∗

0

<

H∞

Q
p/p∗
∞

and H0 = supH. If either

(i) Q(x) ≥ Q0 + ǫ|x|N/(p−1) for some ǫ > 0 and |x| small or
(ii) |Q(x) −Q0| ≤ C|x|α for some constant C > 0,α > N/(p − 1), |x| small
and

∫

RN
(Q(x) −Q0)|x|−pN/(p−1)dx > 0

then there exists a minimizer for problem (8.10) with p > 1 and k = 1.

Proof. We know that the instanton v(x) = (1+|x|p/(p−1))−N/p∗ is the unique
minimizer for problem (3.3) with k = 1 and p > 1, up to translation and
dilation. In view of Theorem 8.9,
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IG ≤
∫

H|∇A(v(x/η))|p
(
∫

Q|Av(x/η)|p∗ )p/p∗
<

H0
∫ |∇(Av(x/η))|p

(Q0
∫

|Av(x/η)|p∗)p/p∗
= S

H0

Q
p/p∗

0

,

where A > 0 is a constant chosen so that ‖Av(x/η)‖1,p = 1. Since
∫

H|∇(Av(x/η))|p ≤ H0
∫

|∇(Av(x/η))|p, it suffices to show that for some
η > 0

∫

RN
(Q(x) −Q0)

(

1

ηp/(p−1) + |x|p/(p−1)

)N

> 0.

The proof is as in Corollary 7.1 (cf. Corollary 7.6). �

Corollary 8.11. Assume that H and Q are G-symmetric functions, H∞

Q
p/p∗
∞

<

H0

Q
p/p∗

0

and H∞ = supH. If either

(i) Q(x) ≥ Q∞ + ǫ|x|−N for some ǫ > 0 and |x| large or
(ii) |Q(x) −Q∞| ≤ C|x|−α for some constant C > 0,α > N , |x| large and

∫

RN
(Q(x) −Q∞)dx > 0,

then there exists a minimizer for problem (8.10) with p > 1 and k = 1.

Proof. The instanton v(x) = (1 + |x|p/(p−1))−N/p∗ is the unique minimizer
for problem (3.3) with k = 1 and p > 1, up to translation and dilation. In
view of theorem 8.9, we have to show that for some η > 0

IG ≤
∫

H|∇A(v(x/η))|p
(
∫

Q|Av(x/η)|p∗)p/p∗
<

H∞
∫

|∇(Av(x/η))|p
(Q∞

∫

|Av(x/η)|p∗)p/p∗
= S

H∞

Q
p/p∗
∞

,

where the A > 0 is a constant chosen such that ‖Av(x/η)‖1,2 = 1. Since
∫

H|∇A(v(x/η))|p ≤ H∞
∫

|∇(Av(x/η))|p, it suffices to show that for some
η > 0

∫

RN
(Q(x) −Q∞)

(

1

1 + |x/η|p/(p−1)

)N

> 0.

The proof is as in Corollary 7.2 (cf. Corollary 7.7). �

We see that similar proofs to the ones given for the two preceding corol-
laries above is valid even when p = 2 and k ≥ 1, and so we have

Corollary 8.12. Assume that H and Q are G-symmetric functions, H0

Q
2/2∗

0

<

H∞

Q
2/2∗
∞

and H0 = supH, 2∗ = 2N
N−2k . If either

(i) Q(x) ≥ Q0 + ǫ|x|N for some ǫ > 0 and |x| small or
(ii) |Q(x) −Q0| ≤ C|x|α for some constant C > 0,α > N , |x| small and

∫

RN
(Q(x) −Q0)|x|−2Ndx > 0.

Then there exists a minimizer for problem (8.10) with p = 2 and k ≥ 1.

Corollary 8.13. Assume that H and Q are G-symmetric functions, H∞

Q
2/2∗
∞

<

H0

Q
2/2∗

0

and H∞ = supH, 2∗ = 2N
N−2k . If either
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(i) Q(x) ≥ Q∞ + ǫ|x|−N for some ǫ > 0 and |x| large or
(ii) |Q(x) −Q∞| ≤ C|x|−α for some constant C > 0,α > N , |x| large and

∫

RN
(Q(x) −Q∞)dx > 0.

Then there exists a minimizer for problem (8.10) with p = 2 and k ≥ 1.

9. Singular weights

Let D1,2
a (RN ) be the completion of C∞

0 (RN ) under the norm

(
∫

RN ||x|−a∇u|2 dx)1/2. We define,

S(a, b) := inf
u∈D1,2

a (RN )
u 6=0

∫

RN ||x|−a∇u|2 dx
(
∫

RN ||x|−bu|p dx)2/p
, (9.1)

and

S(a, b, λ) := inf
u∈D1,2

a (RN )
u 6=0

∫

RN ||x|−a∇u|2 + λ||x|−(a+1)u|2 dx
(
∫

RN ||x|−bu|p dx)2/p
, (9.2)

where N ≥ 3, 0 ≤ a < (N − 2)/2, a ≤ b < a+ 1,

p = p(a, b) :=
2N

N − 2 + 2(b− a)

and λ is a real parameter. Due to an inequality by Caffarelli, Kohn and
Nirenberg [7] S(a, b) and S(a, b, λ) are positive for a ≤ b ≤ a + 1 and
suitable λ (see [30]).

The first problem was studied in [17] when a = 0, and for positive a
it was studied in [10]. There one can also find an explicit form of the
minimizer. Both problems were then studied in [30] by using a different
method. There the authors proved the existence of minimizers provided
−S(a, a + 1) < λ < 0. Some results can also be found in [8]. Due to these
results, the method we have developed in the previous sections allows us
now to study

I(a, b) = inf
u∈D1,2

a (RN )
u 6=0

∫

RN ||x|−a∇u|2 dx
(
∫

RN Q||x|−bu|p dx)2/p
(9.3)

and

I(a, b, λ) = inf
u∈D1,2

a (RN )
u 6=0

∫

RN ||x|−a∇u|2 + λ||x|−(a+1)u|2 dx
(
∫

RN Q||x|−bu|p dx)2/p
. (9.4)

In a recent paper by Deng and Jin [11] the authors studied the second
problem when a = 0 and Q is G-symmetric. Our method will allow us to
improve the results given in [11]. We mention here that the above problems
are delicate when a = b since then we are dealing with the critical Sobolev
constant.

In our present work, we are mainly interested in the case when Q is G-
symmetric, but as an illustration of the advantage of our method, we give the
following simple result. Since problems (9.1) and (9.2) are dilation invariant,
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we have by the same argument as in the beginning of the previous section
that

S(a, b)

‖Q‖2/p
∞

≤ I(a, b) ≤ min{(Q0)
−2/p, (Q∞)−2/p}S(a, b)

and
S(a, b, λ)

‖Q‖2/p
∞

≤ I(a, b, λ) ≤ min{(Q0)
−2/p, (Q∞)−2/p}S(a, b, λ)

provided Q∞ = lim|x|→∞Q(x) exists. This shows that the assumption of
the following proposition is satisfied by some Q. With this in mind, we state
conditions under which minimizers to problems (9.3) and (9.4) will not exist.

Proposition 9.1. If I(a, b) = S(a,b)

‖Q‖2/p
∞

, I(a, b, λ) = S(a,b,λ)

‖Q‖2/p
∞

and if E = {x ∈
R

N : Q(x) = ‖Q‖∞} has measure zero then there are no minimizers for
I(a, b) and I(a, b, λ).

Proof. The argument is the same as in Proposition 8.7 but somewhat sim-
pler. �

Assume now that Q is a G-symmetric function. Denote by D1,2
a,G(RN )

the subspace of D1,2
a (RN ) consisting of G-symmetric functions. SG(a, b),

SG(a, b, λ), IG(a, b) and IG(a, b, λ) will denote the infima as in (9.1) - (9.4),

but with D1,2
a (RN ) replaced by D1,2

a,G(RN ). Of course we have a similar result
to Proposition 9.1 with identical proof, in this symmetric case.

Proposition 9.2. If IG(a, b) = SG(a,b)

‖Q‖2/p
∞

, IG(a, b, λ) = SG(a,b,λ)

‖Q‖2/p
∞

and if E =

{x ∈ R
N : Q(x) = ‖Q‖∞} has measure zero then there are no minimizers

for IG(a, b) and IG(a, b, λ).

We start by stating one more version of the concentration-compactness
lemma.

Lemma 9.3. (Concentration-compactness lemma). Assume that Q is a G-
symmetric continuous, bounded function and let N ≥ 3, 0 ≤ a < (N − 2)/2,

a ≤ b < a + 1, p = p(a, b) and −I(a, a + 1) < λ. Let {un}∞n=1 ⊂ D1,2
a,G(RN )

be a sequence such that

un ⇀ u in D1,2
a,G(RN )

||x|−a∇(un − u)|2 ∗−⇀ µ in M(RN )

Q||x|−b(un − u)|p ∗−⇀ ν in M(RN )

||x|−a∇(un − u)|2 + λ||x|−(a+1)u− un|2 ∗−⇀ γ in M(RN )

un → u a.e. on R
N

and define

µ∞ := lim
R→∞

lim
n→∞

∫

|x|>R
||x|−a∇u|2 ,

ν∞ := lim
R→∞

lim
n→∞

∫

|x|>R
Q||x|−bu|p ,

γ∞ := lim
R→∞

lim
n→∞

∫

|x|>R
||x|−a∇u|2 + λ||x|−(a+1)u|2.

(9.5)
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Then it follows that
‖ν‖2/p ≤ IG(a, b)−1‖µ‖, (9.6)

‖ν‖2/p ≤ IG(a, b, λ)−1‖γ‖, (9.7)

ν2/p
∞ ≤ IG(a, b)−1µ∞, (9.8)

ν2/p
∞ ≤ IG(a, b, λ)−1γ∞, (9.9)

lim
n→∞

‖|x|−a∇un‖2
2 = ‖|x|−a∇u‖2

2 + ‖µ‖ + µ∞, (9.10)

lim
n→∞

‖|x|−a∇un‖2
2 + λ‖|x|−(a+1)un‖2

2

= ‖|x|−a∇un‖2
2 + λ‖|x|−(a+1)un‖2

2 + ‖µ‖ + µ∞,
(9.11)

lim
n→∞‖un‖p

p,Q = ‖u‖p
p,Q + ‖ν‖ + ν∞. (9.12)

Further, suppose u = 0, then ‖ν‖p/p∗ = IG(a, b)−1‖µ‖ implies that ν, µ are
concentrated at a single point and ‖ν‖p/p∗ = IG(a, b, λ)−1‖γ‖ implies that ν,
γ are concentrated at a single point. This point must be the origin.

The last statement follows from the fact that, if concentration occurs at
x, then it must occur at g(x) for all g ∈ G. The proof is similar to that

of Lemma 4.3, keeping in mind that D1,2
a,G(RN ) is a Hilbert space, and so

Remark 4.5 is applicable. The only technical point is the verification of a
result similar to Proposition 4.1. This can be easily deduced by using the
following lemma, which is actually similar to Lemma 2 in [30] and its proof
is easily adapted.

Lemma 9.4. Let N ≥ 3 and 0 ≤ a < (N − 2)/2. If un ⇀ u in D1,2
a,G(RN )

then |x|−aun → |x|−au in L2
loc(R

N ).

Remark 9.5. If {un}∞n=1 ⊂ D1,2
a,G(RN ) is a bounded sequence such that

Q||x|−b(un − u)|p ∗−⇀ ν then we may assume that ||x|−b(un − u)|p ∗−⇀ α, for
some α. Hence, by defining α∞ in the way ν∞ is defined, we see that ν({x}) =
Q(x)α({x}) and ν∞ ≤ Q∞α∞ where Q∞ = lim|x|→∞Q(x). Further, ν∞ =

Q∞α∞ if Q∞ = lim|x|→∞Q(x) = lim|x|→∞Q(x).

With concentration-compactness lemma at our disposal, we may proceed
to compare IG(a, b) and SG(a, b) as required by our method. We know from
[10] that function

u(x) = (1 + |x|2a−bp+2)
N−2a−2
2a−bp+2 (9.13)

is, up to dilation and multiplication by a constant, a minimizer for S(a, b).
Since S(a, b) ≤ SG(a, b) and the above minimizer is radially symmetric, we
have S(a, b) = SG(a, b).

The following theorem is the main result of this section.

Theorem 9.6. If IG(a, b) < min{Q−2/p
0 , Q

−2/p
∞ }SG(a, b) then all minimizing

sequences are relatively compact. In particular, there is a minimizer for
IG(a, b).
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Proof. The argument is similar to the ones given in the previous sections.
Therefore we omit some details. Let {un}∞n=1 ⊂ D1,2

a,G(RN ) be a minimizing

sequence for IG(a, b). Going if necessary to a subsequence, still denoted by
un, we may assume that the conditions of Lemma 9.3 are fullfilled. Hence

IG(a, b) = lim
n→∞

‖|x|−a∇un‖2
2 = ‖|x|−a∇u‖2

2 + ‖µ‖ + µ∞

and

1 = lim
n→∞

‖un‖p
p,Q = ‖u‖p

p,Q + ‖ν‖ + ν∞.

So we have using inequalities (9.6) and (9.8)

IG(a, b)(‖u‖p
p,Q+‖ν‖ + ν∞)2/p = ‖|x|−a∇u‖2

2 + ‖µ‖ + µ∞

≥ IG(a, b)((‖u‖p
p,Q)2/p + ‖ν‖2/p + ν2/p

∞ ).

Since p > 2, we deduce that only one of the quantities ‖u‖p
p,Q, ‖ν‖ and

ν∞ is 1 and the other are zero. Suppose Q∞ 6= 0. If ν∞ = 1, we obtain a
contradiction, since from Remark 9.5 and Lemma 9.3 we have

SG(a, b)(α∞)2/p > IG(a, b)(Q∞α∞)2/p ≥ IG(a, b)(ν∞)2/p

≥ µ∞ ≥ SG(a, b)(α∞)2/p.

If Q0 6= 0 and ‖ν‖ = 1 then u = 0 and ‖ν‖p/p∗ = IG(a, b)−1‖µ‖ and so ν
is concentrated at the origin. Once again we obtain a contradiction since

SG(a, b)(α({0}))2/p > IG(a, b)(Q0α({0}))2/p = IG(a, b)(ν({0}))2/p

≥ ‖µ‖ ≥ SG(a, b)(α({0}))2/p .

So it follows that ‖u‖p
p,Q = 1 and we reach the desired conclusion. When

Q0 = 0 then ‖ν‖ = 0 and when Q∞ = 0 then ν∞ = 0, so we will have
‖u‖p

p,Q = 1. �

Set uη(x) = u(x/η) = (1 + |x/η|2a−bp+2)
N−2a−2
2a−bp+2 , then

SG(a, b) =

∫

RN ||x|−a∇uη|2 dx
∫

RN ||x|−buη|p dx
∀η > 0.

If we assume that Q∞ = lim|x|→∞Q(x) then by letting η tend to 0 and

∞, we obtain IG(a, b) ≤ min{Q−2/p
0 , Q

−2/p
∞ }SG(a, b). At this point we can

easily deduce that if min{Q−2/p
0 , Q

−2/p
∞ } = ‖Q‖−2/p

∞ then by Proposition
9.2, minimizers in general will not exist. However, we have the following
corollary to Theorem 9.6, which is similar to Corollary 6.5.

Corollary 9.7. If Q is G-symmetric, Q(x) ≥ Q0 = Q∞ = lim|x|→∞Q(x) ≥
0 then there is a minimizer for IG(a, b).

Proof. If IG(a, b) < min{Q−2/p
0 , Q

−2/p
∞ }SG(a, b) then we are done by theorem

9.6. If IG(a, b) = min{Q−2/p
0 , Q

−2/p
∞ }SG(a, b) let u be the function in (9.13).

u is then a minimizer of SG(a, b), and
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IG(a, b) ≤
∫

RN ||x|−a∇u|2 dx
(
∫

RN Q||x|−bu|p dx)2/p

≤
∫

RN ||x|−a∇u|2 dx
Q

2/p
0 (

∫

RN ||x|−bu|p dx)2/p
=
SG(a, b)

Q
2/p
0

= IG(a, b).

It follows that u is a minimizer of IG(a, b). This concludes the proof. �

Of course knowing the explicit form of the minimizer for SG(a, b) allows
us to give conditions on Q, similar to those given in the previous sections,
so that minimizers exist.

Corollary 9.8. Suppose that Q is G-symmetric, Q0 ≥ Q∞ > 0 and either
(i) Q(x) ≥ Q0 + ǫ|x|N−bp for some ǫ > 0 and |x| small or
(ii) |Q(x)−Q0| ≤ C|x|α for some constant C > 0,α > N− bp, |x| small and

∫

RN
(Q(x) −Q0)|x|−2N+bpdx > 0.

Then there exists a minimizer for IG(a, b).

Corollary 9.9. Suppose that Q is G-symmetric, Q∞ ≥ Q0 > 0 and either
(i) Q(x) ≥ Q∞ + ǫ|x|−N+bp for some ǫ > 0 and |x| large or
(ii) |Q(x) − Q∞| ≤ C|x|−α for some constant C > 0,α > N − bp, |x| large
and

∫

RN
(Q(x) −Q∞)|x|−bpdx > 0.

Then there exists a minimizer for IG(a, b).

The proofs are similar to the proofs of Corollaries 7.1 and 7.2.
Since we do not know whether there is a minimizer for SG(a, b, λ) when

a > 0, we are not able to compare IG(a, b, λ) and SG(a, b, λ). However, in
the case when a = 0 and 0 > λ > λ̄ = −(n−2

2 )2 we know from [11] that, up
to multiplication by a constant and dilation, S(0, b, λ) is achieved by

u(x) =
1

|x|
√

−λ̄−β(1 + |x|
(2−bp)β√

−λ̄ )
n−2
2−bp

,

where β = (λ − λ̄)1/2. Since the above function is radially symmetric, we
deduce that SG(0, b, λ) has a minimizer. We may now continue by stating
the following straightforward variants of Theorem 9.6 and its corollary.

Theorem 9.10. If IG(0, b, λ) < min{Q−2/p
0 , Q

−2/p
∞ }SG(0, b, λ) then all min-

imizing sequences are relatively compact. In particular, there exists a mini-
mizer for IG(0, b, λ).

Corollary 9.11. If Q is G-symmetric, Q(x) ≥ Q0 = Q∞ = lim|x|→∞Q(x)
≥ 0 then IG(0, b, λ) has a minimizer.

In Deng’s and Jin’s article (see [11, Theorem 2.1]) the authors presented
a result which in effect says that there exists a minimizer for IG(0, b, λ)
provided that

IG(0, b, λ) < min{Q−2/p
0 , Q−2/p

∞ , T}SG(0, b, λ).



MINIMIZERS FOR PROBLEMS WITH CRITICAL SOBOLEV EXPONENT 27

Here, the third term T depends on |G| = infx∈RN ,x 6=0|Gx|, where |Gx| is
the cardinality of the set Gx = {gx : g ∈ G}. We see that Theorem 9.10
improves this result, since our condition does not require any knowledge of
|G|.

Since we know the explicit form of the extremal function for S(0, b, λ), we
may proceed to formulate explicit conditions on Q so that a minimizer for
IG(0, b, λ) exists.

Corollary 9.12. Suppose that Q is G-symmetric Q0 ≥ Q∞ > 0 and either

(i) Q(x) ≥ Q0 + ǫ|x|
2β(N−bp)

N−2 for some ǫ > 0 and |x| small or

(ii) |Q(x) − Q0| ≤ C|x|α for some constant C > 0,α > 2β(N−bp)
N−2 , |x| small

and
∫

RN
(Q(x) −Q0)|x|−N− 2β(N−bp)

N−2 dx > 0.

Then there exists a minimizer for IG(0, b, λ).

Corollary 9.13. Suppose that Q is G-symmetric Q∞ ≥ Q0 > 0 and either

(i) Q(x) ≥ Q∞ + ǫ|x|−
2β(N−bp)

N−2 for some ǫ > 0 and |x| large or

(ii) |Q(x)−Q∞| ≤ C|x|−α for some constant C > 0,α > 2β(N−bp)
N−2 , |x| large

and
∫

RN
(Q(x) −Q∞)|x|n−

2β(N−bp)
N−2 dx > 0.

Then there exists a minimizer for IG(0, b, λ).

The proofs are similar to those of Corollaries 7.1 and 7.2.
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