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Betti numbers of hypergraphs

Eric Emtander∗

Abstract

In this paper we study some algebraic properties of hypergraphs, in particular their
Betti numbers. We define some different types of complete hypergraphs, which to the best
of our knowledge, are not previously considered in the literature. Also, in a natural way,
we define a product on hypergraphs, which in a sense is dual to the join operation on
simplicial complexes. For such product, we give a general formula for the Betti numbers,
which specializes neatly in case of linear resolutions.

1 Introduction

Let X be a finite set and E = {E1, ..., Es} a finite collection of non empty subsets of X . The
pair H = (X , E) is called a hypergraph. The elements of X are called the vertices and the
elements of E are called the edges of the hypergraph. If we want to specify what hypergraph
we consider, we may write X (H) and E(H) for the vertices and edges respectively.

The hypergraphs that we will consider, can all be seen as natural generalizations of the
ordinary complete graph Kn, on n vertices. Our main tools are familiar concepts in com-
binatorial algebra, such as Hochster’s formula, the Mayer-Vietoris sequence and Künneth’s
tensor formula.

A hypergraph is called simple if: (1) |Ei| ≥ 2 for all i = 1, ..., s and (2) Ej ⊆ Ei implies
i = j. If the cardinality of X is n we often just use the set [n] = {1, 2, ..., n} instead of X .

We frequently identify a vertex vi of H with a variable xi of a polynomial ring k[x1, ..., xn]
over some field k, or with its corresponding characteristic vector v(vi) = (0, ..., 0, 1, 0, ..., 0)
in N

n, consisting of only zeros except in the i’th position were there is a 1. Hence we choose
to consider 0 to be a natural number. This also allows us to identify a subset V of [n] with
its characteristic vector v(V ) =

∑
i∈V v(vi). We use bold letters to denote vectors and if

w = (w1, ..., wn) is a squarefree vector in N
n (i.e a vector in which 0 ≤ wi ≤ 1 for i = 1, ..., n),

then we define its norm |w| by |w| =
∑n

i=1 wi. In this way, the cardinality |V | of V equals
the norm of the characteristic vector v(V ).

Throughout the paper we denote by R the polynomial ring k[x1, ..., xn] over some field k,
where n is the number of vertices of a hypergraph considered at the moment. We recall that
the ring R is in a natural way both N- and N

n-graded. Employing the ideas above, we may
think of an edge Ei of a hypergraph as a monomial xEi =

∏
j∈Ei

xj in R. We use this notion
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to associate an ideal I(H) ⊆ R to a hypergraph H. The edge ideal, I(H), of a hypergraph
H is the ideal (xEi ; Ei ∈ E(H)) ⊆ R, generated “by the edges” of H.

The edge ideal was first introduced by R. Villarreal in [15], in the case of simple graphs.
Since then, edge ideals have been studied widely, see for instance [5, 6, 8, 9, 14, 16]. In [8]
the authors give some nice recursive formulas for computing Betti numbers. Furthermore,
their techniques illustrate both some obstacles that occur when you try to generalize graph
theoretical results to hypergraph theoretical, as well as ways of getting around such obstacles.

Another way of using hypergraphs to reveal connections between commutative algebra
and combinatorics was introduced by S. Faridi in [5]. There, Faridi consider the set of facets
of a simplicial complex as a hypergraph. In this way a simplicial complex may be thought
of as a “higher dimensional” graph. See [5, 6, 16] for details and examples.

Recall that an (abstract) simplicial complex on vertex set [n] is a collection ∆ of
subsets of [n] with the property that F ∈ ∆, G ⊆ F ⇒ G ∈ ∆. The elements of ∆ are called
the faces of the complex and the maximal (under inclusion) faces are called facets. The
dimension dimF of a face F in ∆ is defined to be |F |−1, and the dimension of ∆ is defined
as dim ∆ = max{dimF ; F ∈ ∆}. The r-skeleton of ∆ is the collection of faces of dimension
at most r. Note that the empty set ∅ is the unique −1 dimensional face of every complex
that is not the void complex {} which has no faces. The dimension of the void complex may
be defined as −∞.
The dimension dimR M of a R-module M , is by definition the Krüll dimension of R/AnnM .

Given a simplicial complex ∆, we denote by C.(∆) its reduced chain complex, and by
H̃n(∆; k) = Zn(∆)/Bn(∆) its n’th reduced homology group with coefficients in the field k.
In general we could use an arbitrary abelian group instead of k, but we will only consider
the case when the coefficients lie in a field. For convenience, we define the homology of the
void complex to be zero.

If X and Y are two sets, we denote their disjoint union by X ⊔Y . Thus, suppose we have
the two sets [n] and [m]. They both contain the number 1, but in [n]⊔ [m] these two 1’s are
considered as distinct objects.

Let ∆ and Γ be simplicial complexes on the disjoint vertex sets {x1, ..., xn} and {y1, ..., ym}
respectively. We define the join ∆ ∗ Γ of ∆ and Γ to be the simplicial complex on ver-
tex set {x1, ..., xn, y1, ..., ym} having faces {xi1 , ..., xir

, yj1 , ..., yjs
}, where {xi1 , ..., xir

} and
{yj1 , ..., yjs

} are faces of ∆ and Γ respectively.
If n ∈ N we denote by ∆n the full simplex on n vertices. That is, the simplicial complex

on n vertices in which every subset of [n] is a face. According to this we may think of the
empty complex as a simplex on zero vertices.

Given a simplicial complex ∆ on [n] and a subset V ⊆ [n], we denote by ∆V the simplicial
complex on vertex set V , with faces {F ∈ ∆; F ⊆ V }. We call this the restriction of ∆ to
V . If j = (j1, ..., jn) is a squarefree vector in N

n, by ∆j we mean the restriction to the set
V ⊆ [n] whose characteristic vector is j.

Now, let ∆ be a simplicial complex on [n]. The Stanley-Reisner ring R/I∆ of ∆ is the
quotient of the ring R = k[x1, ..., xn] by the Stanley-Reisner ideal

I∆ = (xF ; F 6∈ ∆)
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generated by the non faces of ∆.
Let

(
[n]
k

)
denote the set of all k-subsets (that is, subsets of cardinality k) of [n]. If n < k

we interpret this as being empty. Furthermore, we let
(
n
k

)
denote the cardinality of

(
[n]
k

)
, so(

n
k

)
= 0 if n < k.

In section 2 we recall some basics that we will use throughout the paper, while section 3
is where the main result are found. In Theorems 3.1 and 3.5, respectively, we compute the
Betti numbers of the d-complete and the d-complete multipartite hypergraphs, respectively.
These results are very natural generalizations of their graph theoretical counterparts. By
considering the independence complexes, the ideas behind the proofs becomes transparent.
In section 3.4 we give a natural definition of a product on hypergraphs. This in turn lets us
compute the Betti numbers of the d(a1, ..., at)-complete hypergraph. All these hypergraphs
are in one way or the other a natural generalization of the ordinary complete graph Kn. In
the final section, section 3.6, we define a class of hypergraphs that actually contain all the
previously considered ones. We show that the hypergraph algebra, R/I(H), corresponding
to such hypergraph, has linear resolution.

2 Preliminaries

Here we recall some results and definitions which will be used throughout the paper.

2.1 Hypergraphs and independence complexes

Our general reference concerning hypergraphs is Berge [2]. In this paper we will only consider
simple hypergraphs, as defined in the introduction. Thus, hypergraph will always mean
simple hypergraph.

Let H be a hypergraph. A subhypergraph K of H is a hypergraph such that X (K) ⊆
X (H), and E(K) ⊆ E(H). If Y ⊆ X , the induced hypergraph on Y, HY , is the subhyper-
graph with X (HY ) = Y and with E(HY) consisting of the edges of H that lies entirely in Y.
A hypergraph H is said to be d-uniform if |Ei| = d for every edge Ei ∈ E(H). Note that a
2-uniform hypergraph is just an ordinary simple graph.

Let H = ([n], E(H)) be a hypergraph and consider the edge ideal I(H) ⊆ R. Note that
R/I(H) is precisely the Stanley-Reisner ring of the simplicial complex

∆(H) = {F ⊆ [n]; E 6⊆ F, ∀E ∈ E(H)}.

This is called the independence complex of H. Note that the edges in H are precisely the
minimal non faces in ∆(H).

Let ∆ be an arbitrary simplicial complex on [n]. We then define the Alexander dual

simplicial complex ∆∗ to ∆ by

∆∗ = {F ⊆ [n]; [n] r F 6∈ ∆}.

Note that (∆∗)∗ = ∆.
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2.2 Resolutions and Betti numbers

To every finitely generated graded module M over the polynomial ring R = k[x1, ..., xn], we
may associate a minimal (N-)graded free resolution

0 →
⊕

j
R(−j)βl,j(M) →

⊕
j
R(−j)βl−1,j(M) → · · · →

⊕
j
R(−j)β0,j(M) → M → 0

where l ≤ n and R(−j) is the R-module obtained by shifting the degrees of R by j. Thus,
R(−j) is the graded R-module in which the grade i component (R(−j))i is Ri−j .
The natural number βi,j(M) is called the ij’th N-graded Betti number of M . If M is
multigraded we may equally well consider the N

n-graded minimal free resolution and Betti
numbers of M . The difference lies just in the fact that we now use multigraded shifts R(−j)
instead of N-graded ones. The total i’th Betti number is βi(M) =

∑
j βi,j . For further

details on resolutions, graded rings and Betti numbers, we refer the reader to [3], sections
1.3 and 1.5.
The projective dimension pd(M) of M is pd(M) = max{i; ∃βi,j(M) 6= 0}.

The Betti numbers of M occur as the dimensions of certain vector spaces over k = R/m,
where m is the unique maximal graded ideal in R. Accordingly, the Betti numbers (and then
of course the projective dimension) in general depend on the characteristic of k.
A minimal free resolution of M is said to be linear if for i > 0, βi,j(M) = 0 whenever
j 6= i+d−1 for some fixed natural number d ≥ 1. In this paper we only consider resolutions
of quotient rings R/I. Hence, the interesting parts of the resolutions are the degrees greater
than zero. In the variuos formulas for Betti numbers that we give, we thus assume that
i > 0.

In connection to this we mention the Eagon-Reiner theorem.

Theorem 2.1. Let ∆ be a simplicial complex and ∆∗ its Alexander dual complex. Then

R/I∆ is Cohen-Macaulay if and only if R/I∆∗ has linear minimal free resolution.

Proof. See [4], Theorem 3.

Since there is a 1-1 correspondence between Stanley-Reisner rings (or equivalently square-
free monomial ideals) and simplicial complexes, we get a 1-1 correspondence between simple
hypergraphs and Stanley-Reisner rings as well. This enables us to talk about resolutions,
Betti numbers, and projective dimensions of hypergraphs.
By a resolution, a Betti number, or the projective dimension of a hypergraph H, we mean
ditto of R/I(H). Thus βi,j(H) = βi,j(R/I(H)) and pd(H) = pd(R/I(H)).

One further result which we will use later on is the Auslander-Buchsbaum formula. If
R is a finitely generated graded k-algebra for some field k and M 6= 0 a finitely generated
graded R-module with pd(M) < ∞, then the formula asserts that

pd(M) + depth(M) = depthR.

For a proof, see [3], Theorem 1.3.3.
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2.3 Hochster’s formula

In topology one defines Betti numbers in a somewhat different manner. Hochster’s formula

provides a link between these and the Betti numbers defined above. Hochster’s formula will
turn out to be a very useful tool of ours.

Theorem 2.2. (Hochster’s formula). Let R/I∆ be the Stanley-Reisner ring of a simplicial

complex ∆. The non-zero Betti numbers of R/I∆ are only in squarefree degrees j and may

be expressed as

βi,j(R/I∆) = dimk H̃|j|−i−1(∆j; k).

Hence the total i’th Betti number may be expressed as

βi(R/I∆) =
∑

V ⊆[n]

dim H̃|V |−i−1(∆V ; k).

Proof. See [3], Theorem 5.5.1.

If one has N
n-graded Betti numbers, it is easy to obtain the N-graded ones via

βi,j(R/I∆) =
∑

j′∈N
n

|j′|=j

βi,j′(R/I∆).

Thus,

βi,j(R/I∆) =
∑

V ⊆[n]
|V |=j

dim H̃|V |−i−1(∆V ; k).

2.4 The Mayer-Vietoris sequence

Recall that if we have an exact sequence of complexes,1

0 → L → M → N → 0

there is a long exact (reduced) homology sequence associated to it

· · · → Hr(N) → Hr−1(L) → Hr−1(M) → Hr−1(N) → · · · .

Later in this paper we will have great use of this homology sequence in the special case where
it is associated to a simplicial complex as follows.

Suppose we have a simplicial complex N and two subcomplexes L and M , such that
N = L ∪ M . This gives us an exact sequence of (reduced) chain complexes

0 → C.(L ∩ M) → C.(L) ⊕ C.(M) → C.(N) → 0.

The non trivial maps here are defined by x 7→ (x,−x) and (x, y) 7→ x + y.

1That is, complexes of modules over some ring R.
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The long exact (reduced) homology sequence associated to this particular sequence, is
called the Mayer-Vietoris sequence. The reason that we will have great use of the Mayer-
Vietoris sequence is that in the cases that we will consider, almost always some of the
considered chain complexes will turn out to be very easy to handle. More about the Mayer-
Vietoris sequence can be found in [12], section 4.4.

2.5 Künneth’s tensor formula

If complexes L and M are given, then the tensor product L ⊗ M may be constructed and
given the structure of a complex as well. The degree n component is defined as (L⊗M)n =∑

r+s=n Lr ⊗ Ms. Now, suppose that we are considering chain complexes corresponding to
simplicial complexes L and M . It is a natural question to ask if the (reduced) homology of
the tensor product C.(L) ⊗ C.(M) in some way is related to the (reduced) homologies of L
and M . The answer is given by Künneth’s tensor formula ([12] Theorem 10.1), which under
suitable2 circumstances says that

H̃n(C.(L) ⊗ C.(M)) =
⊕

r+s=n
r,s≥0

H̃r(L) ⊗ H̃s(M).

We will use of this formula in connection to the join operation. It is easy to verify that the
chaincomplex C.(L ∗ M) of the join of two simplicial complexes L and M , is isomorphic to
the tensor product (C.(L) ⊗ C.(M))(−1). This is the same as the complex (C.(L) ⊗ C.(M))
if we just shift the degree by 1.

2.6 Some results on induced hypergraphs

The formulas we have encountered so far actually yield a couple of easy results.
Let H be a d-uniform hypergraph. We say that two edges E and E′ are disjoint if

E ∩ E′ = ∅. Then, by considering the Taylor resolution (see [1]) of R/I(H), one can prove
the following results, which are essentially due to Jacques.

Proposition 2.3. Let H be a d-uniform hypergraph. Then βi,id(H) equals the number of

induced hypergraphs that consist of i disjoint edges.

Proof. For d = 2 this is Theorem 3.3.5 in [11]. The proof given there holds also for d > 2.

Proposition 2.4. Let H = ([n], E(H)) be a hypergraph and K an induced hypergraph. Then

βi,j(K) ≤ βi,j(H).

Proof. Since K = HY for some Y ⊆ [n], we have

βi,j(H) =
∑

V ⊆[n]
|V |=j

dimk H̃|V |−i−1(∆(H)V ; k) ≥
∑

V ⊆Y
|V |=j

dimk H̃|V |−i−1(∆(K)V ; k) = βi,j(K).

2For example when the coefficients of the homology groups are in a field k.

6



Corollary 2.5. Let H = ([n], E(H)) be a hypergraph and K an induced hypergraph. Then

βi(K) ≤ βi(H)

pd(K) ≤ pd(H).

3 Various complete hypergraphs

In [11] Jacques obtains nice descriptions of the Betti numbers of some special families of
graphs. We will generalize some of these to hypergraph analogues.

3.1 The d-complete hypergraph

The complete graph Kn on n vertices is a familiar object to all who have encountered at
least some graph theory. Since an ordinary simple graph is 2-uniform, it seems reasonable
to consider d-uniform hypergraphs when seeking a hypergraph counterpart.
We make the following definition. The d-complete hypergraph Kd

n on n vertices is the

d-uniform hypergraph with E(Kd
n) =

(
[n]
d

)
. We will now compute the Betti numbers of Kd

n.

Theorem 3.1. The N-graded Betti numbers of the d-complete hypergraph Kd
n on n vertices

are independent of the characteristic of the field k and may be written as

βi,j(K
d
n) =





(
n
j

)(
j−1
d−1

)
if j = i + (d − 1)

0 if j 6= i + (d − 1).

Proof. Hochster’s formula says

βi,j(K
d
n) =

∑

V ⊆[n]
|V |=j

dimk H̃|V |−i−1(∆(Kd
n)V ; k).

It follows from the definitions that ∆(Kd
n) is the (d − 2)-skeleton of ∆n. In the same way,

∆(Kd
n)V is the (d − 2)-skeleton of (∆n)V

∼= ∆|V |. Thus, the complexes ∆(Kd
n)V can only

have non zero homology in degrees less than or equal to d−2. But, by considering a minimal
resolution of Kd

n, it is also clear that βi,j(K
d
n) = 0 if j < i + (d − 1). This is simply because

the generators of I(Kd
n) have degree d. Hence, we have a linear resolution, and βi,j(K

d
n) 6= 0

only if j = i + (d − 1).
Now, consider ∆(Kd

n)V for some V ⊆ [n]. It is clear that every cycle in Zd−2(∆(Kd
n)) is

a linear combination of “elementary cycles”, by which we mean the derivatives of (d − 1)-
simplices in (∆n)V . Denote this generating set by GV .

We note that we may actually extract a smaller generating set out of GV . Namely, we
claim that it is enough to consider the elements that contain a fixed vertex x ∈ V (by
containing x we mean that some term in the cycle contains x). Denote this set by GV (x)
and consider an element ∂({x1, ..., xd}) in GV , that do not contain x. This cycle is a linear
combination of elements in GV (x), which may be seen by first forming the cone x∗{x1, ..., xd},
and then taking the derivative of the (d − 1)-skeleton of this cone. This proves our claim.
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Furthermore, we may easily show that the images σ̄ in the homology group H̃d−2(∆(Kd
n); k)

of the elements σ ∈ GV (x) are linearly idependent. Assume that
∑t

i=1 aiσ̄i = 0, ai ∈ k =
R/m (where m is the unique graded maximal ideal of R) and σi ∈ GV (x). Every σi contains
a unique term which does not contain x. This is because σi = ∂(Σi), where Σi is a (d − 1)
simplex. Hence ai = 0 for every i = 1, ..., t.

Now we are done, since if |V | = j, the cardinality of GV (x) clearly is
(

j−1
d−1

)
, and the

number of j-sets V are
(
n
j

)
.

Due to Corollary 3.2, the above result also follows from Theorem 1 in [10]. Corollary 3.2
seems to be well known, but we did not manage to find a previously published proof.

Since ∆(Kd
n) has a specially nice structure, it is easy to determine its Alexander dual.

As the minimal non-faces of ∆(Kd
n) are all {xi1 , ..., xid

}, xij
∈ [n], the facets of ∆(Kd

n)∗ are
all {xi1 , ..., xin−d

}, xij
∈ [n]. Whence ∆(Kd

n)∗ ∼= ∆(Kn−d+1
n ).

Corollary 3.2. The ring R/I(Kd
n) is Cohen-Macaulay and we have

βi(K
d
n) =

(
n

j

)(
j − 1

d − 1

)

pd(Kd
n) = n − (d − 1)

where j = i + (d − 1).

Proof. The last two claims follows directly from the theorem. We know, by the Eagon-
Reiner theorem, that a Stanley-Reisner ring R/I∆ of a simplicial complex ∆ has a linear
resolution precisely when the Stanley-Reisner ring R/I∆∗ of the Alexander dual complex is
Cohen-Macaulay. Since ∆(Kd

n)∗ ∼= ∆(Kn−d+1
n ) we are done.

One should note that ∆(Kd
n) is in fact shellable. A shelling is easy to construct using the

lexicographic order on n-tuples.

Corollary 3.3. The ring R/I∆(Kd
n)∗ is Cohen-Macualay and we have

dim ∆(Kd
n)∗ = n − d − 1

dimR(R/I∆(Kd
n)∗) = n − d

pd(R/I∆(Kd
n)∗) = d.

Proof. The Cohen-Macaulayness is now clear and the first equation follows from the defi-
nitions. The second equation follows from the first one since dimR R/I∆ = dim ∆ + 1 for
any simplicial complex ∆ (see [3], Theorem 5.1.4). The second equation and the Cohen-
Macaulayness together imply the third equation.
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In [11] Jacques studies the graph algebra of Kn, which we denote K2
n, and obtains the

formula

βi,j(Kn) =





(
n
j

)
i if j = i + 1

0 if j 6= i + 1.

Note that this is a special case of our formula for βi,j(K
d
n); just put d = 2 and use the fact

that j = i + (d − 1).

3.2 The d-complete multipartite hypergraph

Perhaps almost as familiar as the complete graph Kn, is the complete multipartite graph

Kn1,...,nt
on a vertex set which is a disjoint union of t sets [ni] , with cardinality ni, respec-

tively. Contrary to the situation of the complete graph, it is not clear how to generalize to
hypergraphs. Again, it seems reasonable to look for a d-uniform hypergraph, but this can
be done in several ways. In this paper we will consider a few.

We define the d-complete multipartite hypergraph Kd
n1,...,nt

on vertex set [n1]⊔ [n2]⊔
· · · ⊔ [nt], to be the d-uniform hypergraph whose edge set consists of all d-edges except those
of the form {xi1 , ..., xid

} where xij
∈ [ni] for all j = 1, ..., d.

Lemma 3.4. The Stanley-Reisner ring R/I(Kd
n1,...,nt

) of the d-complete multipartite hyper-

graph has linear resolution, and βi,j(K
d
n1,...,nt

) 6= 0 only if j = i + (d − 1).

Proof. Contrary to case of the d-complete hypergraph, this time there may very well exist
(d − 1)-faces {x1, ..., xd} in ∆(Kd

n1,...,nt
), since I(Kd

n1,...,nt
) is not generated by all possible

d-edges.
As in the proof of Theorem 3.1, βi,j(K

d
n1,...,nt

) = 0 if j < i+(d−1). Suppose βi,j(K
d
n1,...,nt

) 6=
0 and j > i + (d − 1). Via Hochster’s formula we conclude that there must then exist a non
zero homology group H̃l(∆(Kd

n1,...,nt
)V ; k), for some V ⊆ [n1]⊔ [n2]⊔· · · ⊔ [nt] and l ≥ d−1.

But a cycle in such a degree l has to be a sum of cycles, each of which lies entirely inside
one of the simplices ∆ni

on vertices [ni], respectively, which has no homology at all. Thus,
the cycle is a boundary, contrary to our assumptions.

From now on it will be understod that in a multipartite situation, i.e when a hypergraph
H has some disjoint union [n1] ⊔ · · · ⊔ [nt] as vertex set, then ∆ns

denotes the simplex on
the ns vertices from the [ns]-component of X (H). We now compute the Betti numbers of
Kd

n1,...,nt
.

Theorem 3.5. The N-graded Betti numbers of the d-complete multipartite hypergraph Kd
n1,...,nt

on vertex set [n1] ⊔ · · · ⊔ [nt] are independent of the characteristic of the field k and may be

written as

βi,j(K
d
n1,...,nt

) =





(
N
j

)(
j−1
d−1

)
−

∑
(j1,...,jt)∈N

t

j1+···+jt=j

[
∏t

s=1

(
ns

js

)
] ·

∑t
s=1

(
js−1
d−1

)
if j = i + (d − 1)

0 if j 6= i + (d − 1)

where N =
∑t

s=1 ns.
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Proof. In order to get the notations as clear as possible, we prove here only the case where
t = 2. It will be obvious that the same proof holds also when t > 2. For t = 2 the formula
in the theorem has the following form

βi,j(K
d
n,m) =





(
n+m

j

)(
j−1
d−1

)
−

∑j
j1=0

(
n
j1

)(
m

j−j1

)
[
(
j1−1
d−1

)
+

(
j−j1−1

d−1

)
] if j = i + (d − 1)

0 if j 6= i + (d − 1).

Our idea is to compare the terms H̃|V |−i−1(∆(Kd
n,m)V ; k) occuring in Hochster’s for-

mula with the corresponding terms H̃|V |−i−1(∆(Kd
n+m)V ; k) which we encountered when we

computed βi,j(K
d
n+m).

We realize, simply because we have descriptions of the structures of the considered com-
plexes, that

dimk H̃|V |−i−1(∆(Kd
n,m)V ; k) ≤ dimk H̃|V |−i−1(∆(Kd

n+m)V ; k)

for every set V ⊆ [n]⊔ [m]. The possible difference lies in the fact that there might very well
be faces F ∈ ∆(Kd

n,m) such that |F | ≥ d. This would result in a non zero boundary group

Bd−2(∆(Kd
n,m)) in the chain complex of ∆(Kd

n,m).
It is an elementary fact that

dimk H̃d−2(∆(Kd
n,m)V ; k) = dimk Zd−2(∆(Kd

n,m)V ) − dimk Bd−2(∆(Kd
n,m)V ).

Since the cycle groups Zd−2(∆(Kd
n+m)V ) and Zd−2(∆(Kd

n,m)V ) clearly coincide and since

Bd−2(∆(Kd
n+m)V ) = 0, we only have to compute the dimension over k of Bd−2(∆(Kd

n,m)V ).

If we write V = V1 ⊔ V2, where V1 ⊆ [n] and V2 ⊆ [m], it is clear that

Bd−2(∆(Kd
n,m)V ) = Bd−2(∆(Kd

n,m)V1) ⊕ Bd−2(∆(Kd
n,m)V2).

This is because the potential (d − 1)-faces of ∆(Kd
n,m) lies either in ∆(Kd

n,m)[n] or in

∆(Kd
n,m)[m], which are disjoint.

Now, we have already proved how to compute dimk Bd−2(∆(Kd
n,m)Vν

), ν = 1, 2. This

was done when we computed the Betti numbers of Kd
n. Thus,

dimk Bd−2(∆(Kd
n,m)V1) =

(
|V1| − 1

d − 1

)

dimk Bd−2(∆(Kd
n,m)V2) =

(
|V2| − 1

d − 1

)
.

If we put |V1| = j1 the theorem follows as we simply sum over all possible V ⊆ [n] ⊔ [m].

Corollary 3.6. Given Kd
n1,...,nt

with N =
∑t

s=1 ns ≥ d, we have

βi(K
d
n1,...,nt

) =

(
N

j

)(
j − 1

d − 1

)
−

∑

(j1,...,jt)∈N
t

j1+···+jt=j

[

t∏

s=1

(
ns

js

)
] ·

t∑

s=1

(
js − 1

d − 1

)
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pd(Kd
n1,...,nt

) = N − (d − 1)

where j = i + (d − 1).

Proof. The fact that pd(Kd
n1,...,nt

) ≤ N − (d− 1) follows from directly from the formula. By
putting j = N we get (

N − 1

d − 1

)
−

t∑

s=1

(
ns − 1

d − 1

)
.

This expression is strictly greater than 0, which we may prove as follows. Consider the set
[n1] ⊔ [n2] ⊔ · · · ⊔ [nt] of N elements. Pick an arbitrary element and remove it from the set.
The first term above count the number of ways of choosing d−1 elements from the later set.
The sum in the above display counts the following: Start with the same set at before, and
remove an arbitrary element xs from each one of the sets [ns]. Then choose (d− 1) elements
from some [ns] r xs.

∑t
s=1

(
ns−1
d−1

)
is the total number of such (d − 1)-sets.

Clearly, the difference of these two numbers is strictly greater than 0, just consider a set of
(d− 1)-elements that do not lie entirely inside one set [ns]. As we have assumed that N ≥ d
the claim follows.

Example: Denote the vertex set of K3
2,3 by {a, b} ⊔ {A, B, C}. Then we have

E(K3
2,3) = {abA, abB, abC, aAB, bAB, aAC, bAC, aBC, bBC}.

The Betti numbers are β0(K
3
2,3) = 1, β1(K

3
2,3) = 9, β2(K

3
2,3) = 13, β3(K

3
2,3) = 5.

By construction, the edges in a hypergraph H are the minimal non faces in ∆(H). This
makes it easy to determine the facets in ∆(H)∗. As one easily realizes, they are the comple-
ments of the edges. Considering this, we get the following expression for the Alexander dual
complex.

∆(Kd
n1,..,nt

)∗ =
t⋃

s=1

(

ls⋃

l=1

[Γns−(l+1)(ns) ∗ Γn1+···+cns+···+nt−d+l−1(n1, ..., n̂s, ..., nt)]

where Γr(ns) is the r-skeleton of ∆ns
, Γr(n1, ..., n̂s, ..., nt) is the r-skeleton of ∆n1 ∗ · · · ∗

∆̂ns
∗ · · · ∗ ∆nt

, ·̂ means omit and ls = min{d − 1, ns}.

Corollary 3.7. The ring R/I∆(Kd
n1,...,nt

)∗ is Cohen-Macaulay and we have

dim ∆(Kd
n1,...,nt

)∗ = N − d − 1

dimR(R/I∆(Kd
n1,...,nt

)∗) = N − d

pd(R/I∆(Kd
n1,...,nt

)∗) = d.

Proof. The Cohen-Macaulayness follows from Lemma 3.4 and the Eagon-Reiner theorem.
By considering the above description of the Alexander dual, the first equation is clear and
implies the second. The third equation follows since R/I∆(Kd

n1,...,nt
)∗ is Cohen-Macaulay.
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Also in this case we have generalized a formula given by Jacques in [11]. By studying the
graph algebra of Kn,m he obtains the formula

βi,j(Kn,m) =





∑j−1
j1=1

(
n
j1

)(
m

j−j1

)
if j = i + 1

0 if j 6= i + 1.

A priori this looks quite different from our result. But, if one put d = 2 and remember that(
n
d

)
is defined as 0 if n < d, our formula simplifies immediately to this one.
Contrary to when we considered ∆(Kd

n), the structure of the Alexander dual ∆(Kd
n1,...,nt

)∗

is not transparent. One immediate question that appear is: When, if at all, does the Stanley-
Reisner ring of ∆(Kd

n1,...,nt
) both have linear resolution and the Cohen-Macaulay property?

Since we already know that all considered resolutions are linear, we only have to think about
the Cohen-Macaulay property.

Lemma 3.8. Let N =
∑t

s=1 ns and ns ≤ d − 1 for s = 1, ..., t. Then Kd
N = Kd

n1,...,nt
.

Proof. E(Kd
n1,...,nt

) = E(Kd
N ) and X (Kd

n1,...,nt
) = X (Kd

N ).

Proposition 3.9. The Stanley-Reisner ring R/I(Kd
n1,...,nt

) of a d-complete multipartite hy-

pergraph on vertex set [n1] ⊔ [n2] ⊔ · · · ⊔ [nt] is Cohen-Macaulay precisely when ns ≤ d − 1
for all s = 1, ..., t.

Proof. The Auslander-Buchsbaum formula tells us that

pd(Kd
n1,...,nt

) + depthR(Kd
n1,...,nt

) = N

where N =
∑t

s=1 ns. Since we already have computed the projective dimension, the above
formula says

depthR(Kd
n1,...,nt

) = d − 1

and it is clear that dim ∆(Kd
n1,...,nt

) = max{ni−1, d−2; i = 1, ..., t}. Thus, since depthRM ≤

dimR M holds for every finitely generated R-module M , R/I(Kd
n1,...,nt

) is Cohen-Macaulay
precisely when ns ≤ d− 1 for all s = 1, ..., t. Furthermore, according to the lemma, we have
Kd

n1,...,nt
= Kd

N .

3.3 Hilbert series

Let M be a N-graded module (Nn-graded would work equally well). The Hilbert series

HM (t) measures the dimensions over k = R/m of the graded pieces Mi of M . More al-
gebraically: Let M be such that every graded piece Mi has finite dimension over k. Then
HM (t) is the formal power series

HM (t) =
∑

i∈N

dimk(Mi)t
i.

The following is a well known result. See for example [3], Theorem 4.1.13.

12



Lemma 3.10. Let R be the polynomial ring k[x1, ..., xn] over a field k and consider a finitely

generated N-graded R-module M . Then

HM (t) =
SM (t)

(1 − t)n

where SM (t) =
∑

i,j(−1)iβi,j(M)tj.

If M is the Stanley-Reisner ring of a simplicial complex ∆, one may rather easily compute
its Hilbert series. This is Corollary 1.15 in [13]. One gets

HR/I∆(t) =
1

(1 − t)n

e∑

r=0

fr−1t
r(1 − t)n−r

where fr equals the number of r-faces of ∆ and e = dim ∆ + 1.
Note that this gives a nice connection between the “geometric” numbers fr(∆) and the

“algebraic” numbers βi,j(R/I∆). In general though, it might be quite messy to handle the
alternating sum of Betti numbers. But, if we consider a module M with linear resolution,
the correspondence becomes much nicer.

Lemma 3.11. Let ∆ be a simplicial complex such that R/I∆ has a linear resolution. Then

we have

βi,j(R/I∆) =

e∑

r=0

(−1)j−i−rfr−1

(
n − r

j − r

)
.

Proof. From Lemma 3.10 we get one expression for (1−t)nHR/I∆(t), and from the discussion
right after that lemma we get another. Just identify the coefficient of tj from the two
expressions.

This lemma gives us an alternative way of computing the Betti numbers of Kd
n and

Kd
n1,...,nt

. All we need is the f -vector (f−1, f0, f1, ..., fe−1). In the cases considered, the
f -vectors have nice and simple descriptions.

Let us begin by considering ∆(Kd
n). Since this is the (d − 2)-skeleton of ∆n, we see that

dim ∆(Kd
n) = d − 2. Thus e equals d − 1 in this case. The number of (r − 1)-faces clearly is(

n
r

)
, so the f -vector is given by

(1, n,

(
n

2

)
, ...,

(
n

d − 1

)
).

According to the above, recalling that j = i + (d − 1) we get the formula

βi,j(K
d
n) =

d−1∑

r=0

(−1)(d−1)−r

(
n

r

)(
n − r

j − r

)
.

This is without a doubt correct, but looks completely different from our earlier expression.
We obviously have

d−1∑

r=0

(−1)(d−1)−r

(
n

r

)(
n − r

j − r

)
=

(
n

j

)(
j − 1

d − 1

)
.
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This identity may also be proved in a combinatorial way, using the Principle of Inclusion-
Exclusion. We give the main ideas here. The trick is to identify something that is counted
by both sides of the identity. This something is described below.

1) Consider a set of n elements. First choose j elements of these, and then choose one
of the j and colour it. Then colour d − 1 further elements chosen from the remaining j − 1
elements. This can be done in j

(
n
j

)(
j−1
d−1

)
ways.

We now claim that the following process counts the same thing.

2) Choose d − 1 elements of the n-set and colour them. Choose j − d + 1 elements out
of the remaining n − d + 1 elements not previously choosen. Then choose one of the j ele-
ments choosen so far and colour it. This can be done in j

(
n

d−1

)(
n−d+1
j−d+1

)
ways. We realize that

we have counted more coloured sets than in 1) in this process, for example those in which
only d−1 element became coloured. In an attempt to adjust this we subtract j

(
n

d−2

)(
n−d+2
j−d+2

)

from j
(

n
d−1

)(
n−d+1
j−d+1

)
. This number is created using the same choice argument as before. Then

we subtract the number of coloured sets in which only d− 1 elements were coloured. But we
subtract too much, since we also subtract the number of sets in which only d− 2 elements is
coloured. Thus, we have to add back.

Continuing this process, according to the Principle of Inclusion-Exclusion, after a finite
number of steps we will stop and the resulting number counts precisely the same thing as
1). Finally, we just divide every term by j to obtain our identity.
The number described in 1) and 2), counts the number of ways of: Choosing a j-set of [n]
to form a football team, say, and then determining in how many ways one can have d of the
players on the field, one of which is to be choosen as goalkeeper.

Note that the above arguments makes sense only if j ≥ d. However, according to our
earlier investigations, this is quite natural.

We also obtain a different formula for the Betti numbers βi,j(K
d
n1,...,nt

). Just as before,

we only need to compute the f -vector. This is sufficient since we know that Kd
n1,...,nt

has
linear resolution.

The structure of ∆(Kd
n1,...,nt

) is easy to understand, and it follows that

fr−1(∆(Kd
n1,...,nt

)) =





(
N
r

)
if r ≤ d − 1

∑t
s=1

(
ns

r

)
if r ≥ d

where N =
∑t

s=1 ns. Using the lemma and remembering that j = i + (d− 1), we obtain the
following formula

βi,j(K
d
n1,...,nt

) =

d−1∑

r=0

(−1)(d−1)−r

(
N

r

)(
N − r

j − r

)
−

e∑

r=d

(−1)d−r

(
N − r

j − r

)
[

t∑

s=1

(
ns

r

)
]

where e = max{ns − 1, d − 2; s = 1, ..., t} is the dimension of ∆(Kd
n1,...,nt

). We immediately

note one thing. The first sum in the display actually is nothing but βi,j(K
d
N) =

(
N
j

)(
j−1
d−1

)
,
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where N =
∑t

s=1 ns. Thus, we realize that that the second sum gives us an alternative
expression for the difference βi,j(K

d
N ) − βi,j(K

d
n1,...,nt

). In other words, we have an identity

e∑

r=d

(−1)d−r

(
N − r

j − r

)
[

t∑

s=1

(
ns

r

)
] =

∑

(j1,...,jt)∈N
t

j1+···+jt=j

[
t∏

s=1

(
ns

js

)
] ·

t∑

s=1

(
js − 1

d − 1

)
.

3.4 The Alexander dual of a join

It is known, and proved in for example [7], that the join ∆∗Γ of two simplicial complexes ∆
and Γ is Cohen-Macaulay precisely when both ∆ and Γ are Cohen-Macaulay. In that case,
remember that the Eagon-Reiner theorem tells us that the Alexander dual compex (∆ ∗Γ)∗

has linear resolution.
In this paper we consider several classes of hypergraphs with linear resolutions. There-

fore, it would be nice to be able to describe the Alexander dual of a join since we then rather
easily can construct more hypergraphs with linear resolutions. In this section we derive a
description of the Alexander dual of a join, and also give a formula for the Betti numbers.

Let ∆ and Γ be simplicial complexes on [n] and [m], respectively. Denote the minimal
non faces of ∆ (Γ) by fi, i = 1, ..., r (gj , j = 1, ..., s, respectively). Remember that according
to the identifications that are made in the introduction, we may consider the fi’s (gj ’s) as
squarefree monomials in k[x1, ..., xn] (k[y1, ..., ym]). Using this identification, we consider the
Stanley-Reisner ideal I∆ ⊆ k[x1, ..., xn] (IΓ ⊆ k[y1, ..., ym]) of ∆ (Γ, respectively). It is well
known ([13], Theorem 1.7) that

I∆ = (fi ; i = 1, ..., r) =
⋂

f∈∆

m
f̄

where for a subset V ⊆ [n], m
V is the ideal (xi ; i ∈ V ) ⊆ k[x1, ..., xn], and by f̄ we mean

[n] r f . It is easy to realize that it is enough to take the intersection where f is a facet of
∆. If we consider the Alexander dual ∆∗ in the same way, we get

I∆∗ = (f ′
i ; i = 1, ..., r′) =

⋂

f ′∈∆∗

m
f̄ ′

where f ′
i , i = 1, ..., r′ is the set of minimal non faces of ∆∗ (analogously we denote by g′j,

j = 1, ..., s′, the minimal non faces of Γ∗). Note that this shows the algebraic version of
Alexander duality. The association ∆ 7→ ∆∗ is by the above equivalent to

I∆ = (fi ; i = 1, ..., r) 7→
r⋂

i=1

m
fi = I∆∗ .

If we consider I∆ and IΓ as ideals in k[x1, ..., xn, y1, ..., ym], it follows that

I∆∗Γ = I∆ + IΓ = (fi, gj ; i = 1, ..., r, j = 1, ..., s).
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Hence, the Stanley-Reisner ideal of (∆ ∗ Γ)∗ is

( r⋂

i=1

m
fi

) ⋂( s⋂

j=1

m
gj

)
= I∆∗ ∩ IΓ∗ = I∆∗IΓ∗ .

So, we conclude that

I(∆∗Γ)∗ = (f ′
ig

′
j ; i = 1, ..., r′, j = 1, ..., s′).

By considering the minimal nonfaces f ′
ig

′
j of (∆ ∗ Γ)∗, we realize that

(∆ ∗ Γ)∗ =
(
∆∗ ∗ ∆m

) ⋃(
∆n ∗ Γ∗

)
.

Note that we could have reached these conclusions also by considering the minimal non faces
of ∆ ∗ Γ. The form of the Stanley-Reisner ideal of (∆ ∗ Γ)∗ is particularly nice since the
generators correspond to edges in certain hypergraphs.

Suppose that hypergraphs H = ([n], E(H)) and K = ([m], E(K)) are given. We define
the product H · K of H and K to be the hypergraph on vertex set [n]⊔ [m] and with edges
{x1, ..., xr , y1, ..., ys}, where {x1, ..., xr} is an edge in H and {y1, ..., ys} is an edge in K. In
other words, E(H · K) may be thought of as the cartesian product E(H) × E(K).

Using the above results, we may easily prove the following theorem.

Theorem 3.12. Let H = ([n], E(H)) and K = ([m], E(K)) be d- and d′-uniform hypergraphs

respectively. Then H · K is a (d + d′)-uniform hypergraph, and has linear resolution if and

only if both H and K have linear resolutions.

Proof. The fact that H · K is (d + d′)-uniform is clear from the definition. If we put ∆ =
∆(H)∗ and Γ = ∆(K)∗ in the results deduced just before the theorem, we get that

∆(H · K) = (∆(H)∗ ∗ ∆(K)∗)∗.

This is clear considering the minimal non faces of both sides of the equation. By the Eagon-
Reiner theorem (∆(H)∗ ∗ ∆(K)∗)∗ has linear resolution precisely when both ∆(H)∗ and
∆(K)∗ are Cohen-Macaulay. This is, again by the Eagon-Reiner theorem, the same thing as
saying that both ∆(H) and ∆(K) have linear resolutions.

Note that the topological information in the above theorem says that

∆(H · K) =
(
∆(H) ∗ ∆m

) ⋃(
∆n ∗ ∆(K)

)
.

Now, let V = V1 ⊔ V2 ⊆ [n] ⊔ [m] and consider the exact sequence

0 → C.((∆(H) ∗ ∆(K))V ) → C.((∆(H) ∗ ∆m)V ) ⊕ C.((∆n ∗ ∆(K))V ) → C.(∆(H · K)V ) → 0.
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If V1 or V2 is empty, then ∆(H · K)V will not have any non zero homology. This is simply
because there are no non faces (consider the relations in the Stanley-Reisner ring). Our aim
is to compute the Betti numbers via Hochster’s formula and hence, it is enough to consider
the sets V = V1 ⊔ V2 ⊆ [n] ⊔ [m] for which V1 ∩ [n] and V2 ∩ [m] both are non empty.
But, in this case both (∆(H) ∗ ∆m)V and (∆n ∗ ∆(K))V are cones and accordingly have no
homology at all. Thus, if we consider the Mayer-Vietoris sequence obtained from the above
exact sequence, we get that the following equation holds for every V ⊆ [n]⊔ [m], V ∩ [n] 6= ∅,
V ∩ [m] 6= ∅:

H̃r(∆(H · K)V ; k) ∼= H̃r−1((∆(H) ∗ ∆(K))V ; k).

Using the results in section 2.5, it follows that

H̃r(∆(H · K)V ; k) ∼=
⊕

r1+r2=r−2
r1,r2≥0

H̃r1(∆(H)V ; k) ⊗ H̃r2(∆(K)V ; k).

Thus, by Hochster’s formula, we get

βi,j(H · K) =
∑

|V |=j
V =V1⊔V2

∑

r1+r2=j−i−3

dimk H̃r1(∆(H)V1 ; k) · dimk H̃r2(∆(K)V2 ; k).

Of course, we want to extend this to products of more than two hypergraphs. This we do
inductively.

Theorem 3.13. The ij’th N-graded Betti number of the product H1 · · ·Ht of hypergraphs

Hi, i = 1, ..., t on vertex sets [ni] respectively, is given by the following expression.

βi,j(H1 · · ·Ht) =
∑

|V |=j
V =V1⊔···⊔Vt

∑

r1+···+rt=j−i−(2t−1)
ri≥0

t∏

l=1

dimk H̃rl
(∆(Hl)Vl

; k).

Proof. We have already seen that the formula holds for t = 2. It follows easily by induction
that

dimk H̃s(∆(H1 · · ·Ht)V ; k) =
∑

r1+···+rt=s−2(t−1)

t∏

l=1

dimk H̃rl
(∆(Hl)Vl

; k).

Now consider the following, which by the case t = 2 clearly holds.

βi,j(H1 · · ·Ht+1) =
∑

|V |=j
V =V1⊔···⊔Vt

∑

s+rt+1=j−i−3

dimk H̃s(∆(H1 · · ·Ht)V ; k)·dimk H̃rt+1(∆(Ht+1)V ; k).

By putting the expression for dimk H̃s(∆(H1 · · ·Ht)V ; k) in the above formula, we easily see
that the two equations

r1 + · · · + rt = s − 2(t − 1)

s + rt+1 = j − i − 3
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may be collected into the single equation

r1 + · · · + rt+1 = j − i − (2(t + 1) − 1).

By induction we are done.

The above formula for the Betti numbers becomes much nicer if we know that each
Hi has linear resolution. The effect of this is that the inner summation symbol becomes
superfluous, this since we already know that in this case dimk H̃rl

(∆(Hl)Vl
; k) can only be

non zero in one specific degree for each l. These pieces of information yield the degree
in which dimk H̃s(∆(H1 · · ·Ht)V ; k) is non zero. But, this degree is also expressed by the
equation r1 + · · ·+ rt = j − i− (2t−1). Thus, we may indeed remove the summation symbol
and we have

Theorem 3.14. Let hypergraphs Hi, i = 1, ..., t, on vertex sets [ni] respectively be given.

Assume that for i = 1, ..., t, the hypergraph Hi is ai-uniform with linear resolution. Then the

ij’th N-graded Betti number of the product H1 · · ·Ht is given by the following expression.

βi,j(H1 · · ·Ht) =
∑

|V |=j
V =V1⊔···⊔Vt

t∏

l=1

dimk H̃al−2(∆(Hl)Vl
; k).

2

3.5 The d(a1, ..., at)-complete multipartite hypergraph

As we mentioned before, there are many ways of generalizing the multipartite graph Kn1,...,nt

to a hypergraph analogue. We have already discussed the d-complete multipartite hyper-
graph Kd

n1,...,nt
, and will now move on to consider another class of hypergraphs.

The edge set E(Kd
n1,...,nt

) of Kd
n1,...,nt

consists of all d-edges except those of the form
{xi1 , ..., xid

}, xij
∈ [ns] for some s = 1, ..., t. In the case of the ordinary graph Kn,m, this

just tells us that we have all edges between the disjoint sets [n] and [m] of vertices. This
one may think of as an edge being a choice of two vertices, prescribing a certain number of
vertices in each one of the sets [n] and [m], namely one in each. This is the idea behind

what we now define. The d(a1, ..., at)-complete multipartite hypergraph K
d(a1,...,at)
n1,...,nt is

the d-uniform hypergraph on vertex set [n1] ⊔ [n2] ⊔ · · · ⊔ [nt] and edge set E(K
d(a1,...,at)
n1,...,nt )

consisting of all d-edges such that precisely as elements comes from [ns], as ∈ N, as ≥ 1,∑t
s=1 as = d.3

Proceeding in the same spirit as before we begin our investigation by showing that

R/I(K
d(a1,...,at)
n1,...,nt ) has a linear resolution. First let us simplify the notation a bit. In what

follows, a1, ..., at = a, n1, ..., nt = n and d =
∑t

s=1 as. Thus, d(a1, ..., at) = d(a) and

K
d(a)
n = K

d(a1,...,at)
n1,...,nt .

3The d occuring in the superscript in the symbol K
d(a1,...,at)
n1,...,nt does not have any real purpose here. However,

when we continue our work, the d will be useful since the notations will become more unified.
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Lemma 3.15. The Stanley-Reisner ring R/I(K
d(a)
n ) of the d(a)-complete mutlipartite hy-

pergraph has linear resolution, and βi,j(K
d(a)
n ) 6= 0 only if j = i + (d − 1).

Proof. This will be proved in greater generality in section 3.6. However we give a short proof
here as well. This is since it contains some interesting information which we will not get out
of the more general proof in section 3.6.

By considering the definition of the Alexander dual complex, we immediately get the
following expression.

∆(Kd(a)
n )∗ = Γn1−a1−1(n1) ∗ · · · ∗ Γnt−at−1(nt).

Thus, ∆(K
d(a)
n )∗ is Cohen-Macaulay since we know that each Γns−as−1(ns) is Cohen-Macaulay.

Now, our lemma follows by the Eagon-Reiner theorem.

We now compute the Betti numbers of K
d(a)
n . As one easily realizes, either from the

above lemma or directly from the definition, we have that

Kd(a)
n =

t∏

s=1

Kas
ns

.

Thus, we may apply the results from the previous section.

Theorem 3.16. The N-graded Betti numbers of the d(a)-complete multipartite hypergraph

K
d(a)
n on vertex set [n1] ⊔ · · · ⊔ [nt] are independent of the characteristic of the field k and

may be written as

βi,j(K
d(a)
n ) =

{ ∑
r1+···+rt=i+t−1

ri≥1
[
∏t

l=1 βrl,rl+al−1(K
al
nl

)] if j = i + (d − 1)

0 if j 6= i + (d − 1).

Proof. We know that dimk H̃rl
(∆(Kal

nl
)Vl

; k) 6= 0 only when rl = al − 2, and in this case, we
have

dimk H̃rl
(∆(Kal

nl
)Vl

; k) =

(
jl − 1

al − 1

)

where jl = |Vl|. Using this, the expression

∑

|V |=j
V =V1⊔···⊔Vt

∑

r1+···+rt=j−i−(2t−1)
ri≥0

t∏

l=1

dimk H̃rl
(∆(Kal

nl
)Vl

; k)

obtained from Theorem 3.13 simplifies, via the formula in Theorem 3.14, to

∑

|V |=j
V =V1⊔···⊔Vt

t∏

l=1

(
jl − 1

al − 1

)
.
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This may in turn be written as

∑

jl≥0
j=j1+···+jt

t∏

l=1

(
nl

jl

)(
jl − 1

al − 1

)
.

Now, if some jl ≤ al − 1 the corresponding term is zero. So, we may write jl = rl + al − 1
where rl ≥ 1 for l = 1, ..., t. The above expression then becomes

∑

rl≥1
r1+···+rt=j−d+t

t∏

l=1

(
nl

rl + al − 1

)(
rl + al − 2

al − 1

)
.

Since we know that the resolution is linear, we have the equation j = i + (d− 1). Using this
in the last display we get the formula in the theorem.

Corollary 3.17. The N-graded Betti numbers of the d(a, b)-complete bipartite hypergraph

K
d(a,b)
n,m may be written as

βi,j(K
d(a,b)
n,m ) =

∑

r+s=i+1
r,s≥1

(
n

r + a − 1

)(
r + a − 2

a − 1

)(
m

s + b − 1

)(
s + b − 2

b − 1

)
.

Furthermore, note that by putting a = b = 1, we get

βi,j(K
d(1,1)
n,m ) =

∑

p+q=j
p,q≥1

(
n

p

)(
m

q

)
.

Now K
d(1,1)
n,m = Kn,m, so we have given another proof of Jacques’ formula for βi,j(Kn,m).

Corollary 3.18. Given K
d(a)
n we have

βi(K
d(a)
n ) =

∑

r1+···+rt=i+t−1
ri≥1

[

t∏

l=1

βrl,rl+al−1(K
al
nl

)]

pd(Kd(a)
n ) = N − (d − 1)

where j = i + (d − 1).

Proof. The first assertion is clear. If we put i = N − (d − 1) in the formula we get

βN−(d−1)(K
d(a)
n ) =

t∏

l=1

βnl−(al−1)(K
al
nl

)

which is non zero. At the same time we see that if i > N − (d− 1) every term in the sum is
zero because some factor in every term is zero.
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Example: Consider H = K
5(1,1,3)
3,3,3 . If we denote the set of vertices of this hypergraph

by {a, b, c} ⊔ {A, B, C} ⊔ {d, e, f}, we get

E(H) = {aAdef, aBdef, aCdef, bAdef, bBdef, bCdef, cAdef, cBdef, cCdef}.

The Betti numbers are β0(H) = 1, β1(H) = 9, β2(H) = 18, β3(H) = 15, β4(H) = 6, β5(H) =
1.

Corollary 3.19. The ring R/I
∆(K

d(a)
n

)∗
is Cohen-Macaulay and we have

dim ∆(Kd(a)
n )∗ = N − d − 1

dimR(R/I
∆(K

d(a)
n

)∗
) = N − d

pd(R/I
∆(K

d(a)
n

)∗
) = d.

Proof. The Cohen-Macaulayness follows, for example, from the theorem and the Eagon-
Reiner theorem. By considering the description of the Alexander dual given in Lemma 3.15
the first equation is clear and imply the second. The third is a consequence of the fact that
R/I

∆(K
d(a)
n )∗

is Cohen-Macaulay.

Proposition 3.20. The Stanley-Reisner ring R/I(K
d(a)
n ) of the d(a1, ..., at)-complete mul-

tipartite hypergraph on vertex set [n1] ⊔ · · · ⊔ [nt] is Cohen-Macaulay precisely when as = ns

for all s ∈ {1, ..., t} but possibly one. This single ai is such that it maximizes the expression

ai +
∑t

j 6=i, j=1 nj.

Proof. Let Is ⊆ [ns]. It is necessary and sufficient that at least one set Ii satisfy |Ii| < ai,

for I1 ⊔ · · · ⊔ It to be a face of ∆(K
d(a)
n ). Thus, the dimension of ∆(K

d(a)
n ) is

max{ai − 2 +

t∑

j 6=i, j=1

nj ; i = 1, ..., t}

so

dimR(R/I(Kd(a)
n )) = max{ai − 1 +

t∑

j 6=i, j=1

nj}.

We know that pd(K
d(a)
n ) = N − (d − 1), so depth(R/I(K

d(a)
n )) = d − 1. Now, since by

construction d =
∑t

s=1 as we are done.

Note that this again, in a sense, collapses to an ordinary d-complete hypergraph.

One special, and rather intuitive, way of generalizing the complete bipartite graph, is to

consider the d(1, ..., 1)-complete mulitpartite hypergraph K
d(1,...,1)
n1,...,nt . According to the above

its ij’th Betti number is given by

βi,j(K
d(1,...,1)
n1,...,nt

) =
∑

r1+···+rt=i+t−1
rs≥1

t∏

l=1

(
nl

rl

)
.

21



In [2], Berge defines what he calls the d-partite complete hypergraph. In our language this

is just K
d(1,...,1)
n1,...,nd , so his definition is a special case of ours.

3.6 The d(I1, ..., It)-complete hypergraph

In this section we define another class of complete hypergraphs that actually contains all of
the previously defined classes of complete hypergraphs. We then show that the hypergraphs
in this new class have linear resolutions. In this way, one may think that some of our previous
results are superfluous. We argue that they are not. This is because the main part of the
results so far is about calculating the Betti numbers. The fact that we have had linear
resolutions have mainly been used as a computational aid.

In the case of the d-complete hypergraph we considered all possible d-edges and in the
case of the d(a1, ..., at)-complete hypergraph, we considered those in which precisely as el-
ements came from the vertex set [ns]. We are going to keep the vertex set [n1] ⊔ · · · ⊔ [nt]
of N =

∑t
s=1 ns vertices, but define another edge set. For each s = 1, ..., t let Is be an in-

terval [αs, βs] in {0, ..., ns}. We define the d(I1, ..., It)-complete multipartite hypergraph
to be the d-uniform hypergraph on vertex set [n1] ⊔ · · · ⊔ [nt], and with edge set consisting
of all d-edges I1(a1) ⊔ · · · ⊔ It(at). Here Is(as) is a subset of [ns] of cardinality as ∈ Is

and d =
∑t

s=1 as. We immediately see why this generalizes previously considered hyper-
graphs. If Is = {0, ..., ns} for all s = 1, ..., t we have the d-complete hypergraph Kd

N . If
Is = {0, ..., min{ns, d− 1}} we obtain the d-complete multipartite hypergraph Kd

n1,...,ns
. By

letting Is consist of only one non zero element for all s, we obtain the d(a1, ..., at)-complete

hypergraph K
d(a1,...,at)
n1,...,nt . So, we already know that some special instances of K

d(I1,...,It)
n1,...,nt have

linear resolutions.

One easily realizes that two different sets of intervals I1, ..., It and J1, ..., Jt say, may yield
the same hypergraph. Just consider the case where Is = {as} for all s,

∑t
s=1 as = d, and

Js = {as} for all s 6= 1, J1 = [a1, a1 + 1]. However, to obtain a different hypergraph, we just
need to change J2 say, to [a2 − 1, a2].

From now on, without loss of generality, we will assume that the sequence of intervals

I1, ..., It in a hypergraph K
d(I1,...,It)
n1,...,nt satisfies the following property: If Is = [αs, βs] for

s = 1, ..., t, then

αs +
∑

j 6=s

βj ≥ d

βs +
∑

j 6=s

αj ≤ d

holds for every s. In other words, we assume that there is no redundancy in the sense that
every element as ∈ Is is part of an edge in the hypergraph.

It is clear that a set of intervals I1, ..., It corresponding to a hypergraph K
d(I1,...,It)
n1,...,nt

can be constructed from at least one sequence a1, ..., at, d =
∑t

s=1 as, corresponding to
a d(a1, ..., at)-complete hypergraph, by successively changing the intervals by extending one
of them (or possibly two of them depending on the situation) in such a way that the inequal-
ities above remains true in each step. The following example will clarify this idea.
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Example: Suppose a1 + a2 + a3 = d and consider K
d(I1,I2,I3)
n1,n2,n3 with I1 = [a1 − 1, a1], I2 =

[a2−1, a2 +1], I3 = [a3, a3 +1]. These intervals can be constructed from the trivial intervals
I1 = {a1}, I2 = {a2} and I3 = {a3} in the following way:

{a1}, {a2}, {a3} [a1 − 1, a1], [a2, a2 + 1], {a3} [a1 − 1, a1], [a2 − 1, a2 + 1], [a3, a3 + 1].

Theorem 3.21. The Stanley-Reisner ring R/I
∆(K

d(I1,...It)
n1,...,nt

)
of the d(I1, ..., It)-complete mul-

tipartite hypergraph has linear resolution, and βi,j(K
d(I1,...,It)
n1,...,nt ) 6= 0 only if j = i + (d − 1).

Proof. We start by noting that if t = 1, then ∆(K
d(I1,...,It)
n1,...,nt ) = Kd

n which we know has linear
resolution, and non zero homology only in degree d − 2. If n < d we have the d-uniform
hypergraph with empty edge set and this also has linear resolution. Since the set of intervals

I1, ..., It that corresponds to a hypergraph K
d(I1,...,It)
n1,...,nt can be constructed (as above) from

several sequences a1, ..., at, a1 + · · ·+ at = d we may, without loss of generality, assume that
It = [at, at + r] for some positive integer r. Having already gone through the case where

t = 1, let us assume that all hypergraphs K
d(I1,...,It−1)
n1,...,nt−1 have linear resolutions and non zero

homology only in degree d − 2.

Given K
d(I1,...,It)
n1,...,nt as above, the expression K

(d−at−s)(I1,...,It−1)
n1,...,nt−1 , s ≥ 0 makes sense. It

means precisely what it says but there is one little problem, the intervals I1, ..., It−1 may
no longer be as small as possible. There may very well be an element aj ∈ Ij for some
j = 1, ..., t − 1, that can not be used in a partition of d − at − s. So, we really should use
some other symbols I ′1, ..., I

′
t−1 for the intervals, as they may depend on s. We will however,

for convenience, allow this abuse of notation in this proof.

The next observation we make is that

∆(K(d−at−s)(I1,...,It−1)
n1,...,nt−1

) ⊆ ∆(K(d−at−s+1)(I1,...,It−1)
n1,...,nt−1

).

Indeed, a face in the first complex can not contain an edge from K
(d−at−s+1)(I1,...,It−1)
n1,...,nt−1 , since

it would then automatically also contain an edge from K
(d−at−s)(I1,...,It−1)
n1,...,nt−1 .

By considering the minimal non faces in the complex, one realizes that ∆(K
d(I1,...,It)
n1,...,nt ) has

the following expression.

[
∆(K(d−at)(I1,...,It−1)

n1,...,nt−1
) ∗ ∆nt︸ ︷︷ ︸

L0

∪∆n1+···+nt−1 ∗ Γat−2(nt)︸ ︷︷ ︸
M0

] ⋂

...
[
∆(K(d−at−r+1)(I1,...,It−1)

n1,...,nt−1
) ∗ ∆nt︸ ︷︷ ︸

Lr−1

∪∆n1+···+nt−1 ∗ Γat+r−3(nt)︸ ︷︷ ︸
Mr−1

] ⋂

[
∆(K(d−at−r)(I1,...,It−1)

n1,...,nt−1
) ∗ ∆nt︸ ︷︷ ︸

Lr

∪∆n1+···+nt−1 ∗ Γat+r−2(nt)︸ ︷︷ ︸
Mr

]
.
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Here the expression in each row correspond to the faces that do not contain one type of
minimal non face. We take the intersection of these to obtain the faces that do not contain
any minimal non face, in other words the whole complex.
Put A0 = L0, B0 = M0, ∆(0) = A0 ∪ B0 and define recursively Ar = Lr ∩ ∆(r − 1), Br =
Mr∩∆(r−1), ∆(r) = Ar∪Br. We will now deduce explicit formulas for Ar, Br and Ar∩Br.
Having done this, easy use of Mayer-Vietoris together with the induction hypothesis will give
our result.

We start by considering Ar.

Ar = Lr ∩ ∆(r − 1) = Lr ∩
(
Ar−1 ∪ Br−1

)
= Lr ∩

(
(Lr−1 ∪ Mr−1) ∩ ∆(r − 2)

)
=

Lr ∩ ∆(r − 2) = · · · = Lr ∩ ∆(0) = ∆(K(d−at−r)(I1,...,It−1)
n1,...,nt−1

) ∗ ∆nt
.

The expression for Br we will prove by induction.

Claim: Br =
[⋃r−1

s=0 ∆(K
(d−at−s)(I1,...,It−1)
n1,...,nt−1 ) ∗ Γat+s−1(nt)

]
∪ ∆n1+···+nt−1 ∗ Γat−2(nt).

If we interpret the expression in brackets as ∅ when r = 0, it is clear that the formula
holds for r = 0. Now

B1 =
(
∆n1+···+nt−1 ∗ Γat−1(nt)

) ⋂(
A0 ∪ B0

)
=

∆(K(d−at)(I1,...,It−1)
n1,...,nt−1

) ∗ Γat−1(nt) ∪ ∆n1+···+nt−1 ∗ Γat−2(nt)

so the formula holds for 1 as well. Assume that the formula holds for r. Then

Br+1 = Mr+1

⋂(
Ar ∪ Br

)
.

Let us investigate Mr+1 ∩ Ar and Mr+1 ∩ Br separately. Using the expression for Ar that
we already have, we immediately get

Mr+1 ∩ Ar = ∆(K(d−at−r)(I1,...,It−1)
n1,...,nt−1

) ∗ Γat+r−1(nt).

Furthermore

Mr+1∩Br = Mr+1

⋂[(r−1⋃

s=0

∆(K(d−at−s)(I1,...,It−1)
n1,...,nt−1

)∗Γat+s−1(nt)
)
∪∆n1+···+nt−1∗Γat−2(nt)

]
=

[
(r−1⋃

s=0

∆(K(d−at−s)(I1,...,It−1)
n1,...,nt−1

) ∗ Γat+s−1(nt)
)
] ∪ ∆n1+···+nt−1 ∗ Γat−2(nt).

So,
Br+1 =

(
Mr+1 ∩ Ar

)
∪

(
Mr+1 ∩ Br

)
=

[ r⋃

s=0

∆(K(d−at−s)(I1,...,It−1)
n1,...,nt−1

) ∗ Γat+s−1(nt)
]
∪ ∆n1+···+nt−1 ∗ Γat−2(nt)
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and we have proved the claim.
Lastly, we consider Ar ∩ Br. Using the expressions that we have just deduced, we get

Ar ∩ Br =
[
∆(K(d−at−r)(I1,...,It−1)

n1,...,nt−1
) ∗ ∆nt

] ⋂

[ ( r−1⋃

s=0

∆(K(d−at−s)(I1,...,It−1)
n1,...,nt−1

) ∗ Γat+s−1(nt)
)
∪ ∆n1+···+nt−1 ∗ Γat−2(nt)

]
=

(
∆(K(d−at−r)(I1,...,It−1)

n1,...,nt−1
) ∗ Γat+r−2(nt)

) ⋃(
∆(K(d−at−r)(I1,...,It−1)

n1,...,nt−1
) ∗ Γat−2(nt)

)
=

∆(K(d−at−r)(I1,...,It−1)
n1,...,nt−1

) ∗ Γat+r−2(nt).

Now, since we have descriptions of Ar, Br and Ar ∩ Br, it will be rather easy to finish the
proof.
Ar is a cone, and hence have no homology at all. For Br we write

Br =
[ r−1⋃

s=0

∆(K(d−at−s)(I1,...,It−1)
n1,...,nt−1

) ∗ Γat+s−1(nt)
]

︸ ︷︷ ︸
L

∪∆n1+···+nt−1 ∗ Γat−2(nt)︸ ︷︷ ︸
M

.

M is a cone and have no homology at all, and L can only have homology in degree d − 2.
This follows easily by induction on r using Mayer-Vietoris. The case where r = 1 fol-
lows directly from the results in section 2.5. Furthermore one easily sees that L ∩ M =

∆(K
(d−at)(I1,...,It−1)
n1,...,nt−1 ) ∗ Γat−2(nt). It follows again from the result in section 2.5 that this

complex can only have homology in degree d − 3. Thus, using Mayer-Vietoris on Br we
conclude that the homology of Br can be non zero only in degree d − 2.

Using Künneth’s formula again, we immediately conclude that Ar ∩Br only have homol-
ogy in degree d − 3. Thus, the exact sequence

0 → C.(Ar ∩ Br) → C.(Ar) ⊕ C.(Br) → C.(Ar ∪ Br) → 0

gives, via Mayer-Vietoris, that the homology of Ar ∪ Br can be non zero only in degree
d − 2. Now we are almost done. We aim to use Hochster’s formula to conclude that the
resolution of K

d(I1,...,It)
n1,...,nt is linear. Hence, we would like to conclude that the homology of

every restriction ∆(K
d(I1,...,It)
n1,...,nt )V behaves precisely like that of the whole complex. In other

words, that it only can exist in degree d−2. If V ∩ [ns] 6= ∅ for all s = 1, ..., t and the induced

hypergraph (K
d(I1,...,It)
n1,...,nt )V has non empty edge set, then the restriction ∆(K

d(I1,...,It)
n1,...,nt )V has

precisley the same form as the original complex ∆(K
d(I1,...,It)
n1,...,nt ). Thus, by the above, it may

only have homology in degree d − 2. Next assume that V ∩ [ns] = ∅ for at least one s.

Then F ∈ ∆(K
d(I1,...,It)
n1,...,nt )V if and only if ∆ns

∗ F ∈ ∆(K
d(I1,...,It)
n1,...,nt )V . Hence, in this case

∆(K
d(I1,...,It)
n1,...,nt )V is a cone and have no homology. The last case to consider is if V ∩ [ns] 6= ∅

for all s, but the edge set of (K
d(I1,...,It)
n1,...,nt )V is empty. Also in this case we have a cone, in fact,

a simplex. This is easy since if (K
d(I1,...,It)
n1,...,nt )V has no edges, then there are no minimal non
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faces in ∆(K
d(I1,...,It)
n1,...,nt )V . We have thus proved that if dimk H̃l(∆(K

d(I1,...,It)
n1,...,nt )V ; k) 6= 0, then

l = d − 2. Hence Hochster’s formula gives that βi,j(K
d(I1,...,It)
n1,...,nt ) 6= 0 only if j = i + (d − 1)

and we are done.

Example: Consider H = K
5(I1,I2,I3)
3,3,3 where I1 = [1, 2], I2 = {1}, I3 = [2, 3]. There are

36 5-edges in this hypergraph and using a computer one easily computes the Betti numbers.
They are β0(H) = 1, β1(H) = 36, β2(H) = 90, β3(H) = 87, β4(H) = 39, β5(H) = 7.

By considering the edges in K
d(I1,...,It)
n1,...,nt and the description of the Alexander dual of

∆(K
d(a)
n ), we obtain the following description of ∆(K

d(I1,...,It)
n1,...,nt )∗.

∆(Kd(I1,...,It)
n1,...,nt

)∗ =
⋃

a1+···+at=d
as∈Is

Γn1−a1−1(n1) ∗ · · · ∗ Γnt−at−1(nt).

We immediately get the following

Corollary 3.22. The ring R/I
∆(K

d(I1,...,It)
n1,...,nt

)∗
is Cohen-Macualay and we have

dim ∆(Kd(I1,...,It)
n1,...,nt

)∗ = N − d − 1

dimR(R/I
∆(K

d(I1,...,It)
n1,...,nt

)∗
) = N − d

pd(R/I
∆(K

d(I1,...,It)
n1,...,nt

)∗
) = d.
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A class of hypergraphs that generalizes chordal graphs

Eric Emtander∗

Abstract

In this paper we introduce a class of hypergraphs that we call chordal. We also extend
the definition of triangulated hypergraphs, given in [9], so that a triangulated hypergraph,
according to our definition, is a natural generalization of a chordal (rigid circuit) graph.
In [7], Fröberg shows that the chordal graphs corresponds to graph algebras, R/I(G), with
linear resolutions. We extend Fröberg’s method and show that the hypergraph algebras of
generalized chordal hypergraphs, a class of hypergraphs that includes the chordal hyper-
graphs, have linear resolutions. The definitions we give, yield a natural higher dimensional
version of the well known flag property of simplicial complexes. We obtain what we call
d-flag complexes.

1 Introduction and preliminaries

Let X be a finite set and E = {E1, . . . , Es} a finite collection of non empty subsets of X . The
pair H = (X , E) is called a hypergraph. The elements of X and E , respectively, are called
the vertices and the edges, respectively, of the hypergraph. If we want to specify what
hypergraph we consider, we may write X (H) and E(H) for the vertices and edges respectively.
A hypergraph is called simple if: (1) |Ei| ≥ 2 for all i = 1, . . . , s and (2) Ej ⊆ Ei only if
i = j. If the cardinality of X is n we often just use the set [n] = {1, 2, . . . , n} instead of X .

Let H be a hypergraph. A subhypergraph K of H is a hypergraph such that X (K) ⊆
X (H), and E(K) ⊆ E(H). If Y ⊆ X , the induced hypergraph on Y, HY , is the subhyper-
graph with X (HY) = Y and with E(HY) consisting of the edges of H that lie entirely in Y.
A hypergraph H is said to be d-uniform if |Ei| = d for every edge Ei ∈ E(H). Note that a
simple 2-uniform hypergraph is just an ordinary simple graph.

Throughout the paper we denote by R the polynomial ring k[x1, . . . , xn] over some field k,
where n is the number of vertices of a hypergraph considered at the moment. By identifying
each vertex vi ∈ X (H) with a variable xi ∈ R, we may think of an edge Ei of a hypergraph
as a monomial xEi =

∏
j∈Ei

xj in R. Employing this idea, we may associate to every simple
hypergraph H, a squarefree monomial ideal in R. The edge ideal I(H) of a hypergraph H
is the ideal

I(H) = (xEi ; Ei ∈ E(H)) ⊆ R,

∗Department of Mathematics, Stockholm University, 106 91 Stockholm, erice@math.su.se
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generated “by the edges” of H. This yields the hypergraph algebra R/I(H).

In this way we obtain a 1-1 correspondence

{
simple hypergraphs on [n]

}
!

{
squarefreemonomial ideals I ⊆ R = k[x1, ..., xn]

}
.

We will soon associate to every simple hypergraph a simplicial complex. Therefore, recall
that an (abstract) simplicial complex on vertex set [n] is a collection, ∆, of subsets of
[n] with the property that G ⊆ F, F ∈ ∆ ⇒ G ∈ ∆. The elements of ∆ are called the faces

of the complex and the maximal (under inclusion) faces are called facets. The dimension,
dimF , of a face F in ∆, is defined to be |F | − 1, and the dimension of ∆ is defined as
dim ∆ = max{dimF ; F ∈ ∆}. Note that the empty set ∅ is the unique −1 dimensional
face of every complex that is not the void complex {} which has no faces. The dimension of
the void complex may be defined as −∞. The r-skeleton of a simplicial complex ∆, is the
collection of faces of ∆ of dimension at most r. Let V ⊆ [n]. We denote by ∆V the simplicial
complex

∆V = {F ⊆ [n] ; F ∈ ∆, F ⊆ V }.

For convenience, we consider 0 to be a natural number, i.e., N = {0, 1, 2, 3, . . .}. A vector
j = (j1, . . . , jn) ∈ {0, 1}n is called a squarefree vector in N

n. We may identify j with the set
V ⊆ [n], where i ∈ V precisely when ji = 1. Since this correspondence between the V and
the j is bijective, we may also denote ∆V by ∆j.

Given a simplicial complex ∆, we denote by C.(∆) its reduced chain complex (see any
book on algebraic topology, for example [14], for details), and by H̃n(∆; k) = Zn(∆)/Bn(∆)
its n’th reduced homology group with coefficients in the field k. In general we could use
an arbitrary abelian group instead of k, but we will only consider the case when the coef-
ficients lie in a field. For convenience, we define the homology of the void complex to be zero.

Let ∆ be an arbitrary simplicial complex on [n]. The Alexander dual simplicial

complex ∆∗ to ∆, is defined by

∆∗ = {F ⊆ [n]; [n] r F 6∈ ∆}.

Note that (∆∗)∗ = ∆.

The edge ideal was first introduced by R. H. Villarreal [16], in the case when H = G is
a simple graph. After that, hypergraph algebras has been widely studied. See for instance
[4, 5, 9, 10, 11, 12, 13, 15, 17]. In [9], the authors use certain connectedness properties to
determine a class of hypergraphs such that the hypergraph algebras have linear resolutions.
Furthermore, nice recursive formulas for computing the Betti numbers are given.

Perhaps the most common way to study the connections between the combinatorial in-
formation contained in a hypergraph, and the algebraic information contained in the corre-
sponding hypergraph algebra, is the one given by the Stanley-Reisner correspondence, which
is a 1-1 correspondence:

{
simplicial complexes on [n]

}
!

{
squarefreemonomial ideals I ⊆ R = k[x1, . . . , xn]

}
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∆ ! I∆.

Here, a monomial xF is an element in I∆ precisely when F is a non face in ∆. Note that
using the above two 1-1 correspondences, we also get a 1-1 correspondence between the class
of simple hypergraphs on [n], and the class of simplicial complexes on [n].

Let H = ([n], E(H)) be a simple hypergraph and consider its edge ideal I(H) ⊆ R. Note
that R/I(H) is precisely the Stanley-Reisner ring of the simplicial complex

∆(H) = {F ⊆ [n]; E 6⊆ F, ∀E ∈ E(H)}.

This is called the independence complex of H. The edges in H are precisely the minimal
non faces of ∆(H).

Thus, we may think of the edges of a simple hypergraph as the minimal non faces of a
simplicial complex or, equally well, the relations in R giving the k-algebra R/I(H), that is, the
minimal generators of I(H). The connections betweena (hyper)graph and its independence
complex are explored in, for example [4, 7, 13].

Another way to use hypergraphs to investigate the properties of simplicial complexes was
introduced in [5] by S. Faridi. Given a simplicial complex ∆, denote by {F1, . . . , Ft} the set
of facets of ∆. Faridi then defines another squarefree monomial ideal, the facet ideal of ∆,

F(∆) = (xF ; F is a facet of∆).

In several papers, for example [5, 6, 17], properties of simplicial complexes are studied via
the combinatorial properties of their facet ideals. Note that the set of facets of ∆ is a simple
hypergraph.

In section 4, we introduce the classes of chordal and triangulated hypergraphs. The
definition of triangulated hypergraph is almost identical to Definition 5.5 in [9], however,
ours is more general. These classes of hypergraphs illustrates that d-uniform hypergraphs
behaves much like ordinary simple graphs. However, there are familiar properties of graphs
that do not translate immediately to d-uniform hypergraphs. See for instance Remark 4.1
and Example 1.

It is well known, see [8], that chordal graphs are characterized by the fact that they have
perfect elimination orders. We show that this remain true for hypergraphs.

In Theorem 4.1 we show that the properties of being triangulated, chordal, and having a
perfect elimination order, are equivalent also for hypergraphs.

In section 5 we introduce the class of generalized chordal hypergraphs, which includes the
chordal hypergraphs, and show that the corresponding hypergraph algebras, R/I(H), have
linear resolutions. Our method of proof is a natural generalization of one used by R. Fröberg
in [7]. There, Fröberg characterizes, in terms of the complementary graphs Gc, precisely for
what graphs G the graph algebras R/I(G) have linear resolutions. Fröberg shows:

Theorem 1.1. Let G be a simple graph on n vertices. Then k[x1, . . . , xn]/I(G) has linear

resolution precisely when Gc is chordal (rigid circuit, triangulated,. . . ).
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By Theorem 5.1, we obtain a partial generalization of Fröberg’s theorem.

Let ∆ be an arbitrary simplicial complex, such that the Stanley-Reisner ring R/I∆ has
linear resolution. Then we know that the generators of I∆ all have the same degree, d say.
Thus, we may think of R/I∆ as a hypergraph algebra R/I(H) for some d-uniform hypergraph
H. However, we will look at things in another way. The complementary hypergraph Hc,
of a d-uniform hypergraph H, is defined as the hypergraph on the same set of vertices as H,
and edge set

E(Hc
) = {F ⊆ X (H) ; |F | = d, F 6∈ E(H)}.

The edges of Hc may, in a natural way, be thought of as the (d − 1)-dimensional faces in
the independence complex ∆(H), of H. This is how Fröberg looks at things when he proves
his theorem. We show that the complex ∆(H) is completely determied by the edges in Hc,
which gives us the notion of d-flag complexes.

2 Resolutions and Betti numbers

To every finitely generated graded module M over the polynomial ring R = k[x1, . . . , xn],
we may associate a minimal (N-)graded free resolution

0 →
⊕

j
R(−j)βl,j(M) →

⊕
j
R(−j)βl−1,j(M) → · · · →

⊕
j
R(−j)β0,j(M) → M → 0

where l ≤ n and R(−j) is the R-module obtained by shifting the degrees of R by j. Thus,
R(−j) is the graded R-module in which the grade i component (R(−j))i is Ri−j .
The natural number βi,j(M) is called the ij’th N-graded Betti number of M . If M is
multigraded we may equally well consider the N

n-graded minimal free resolution and Betti
numbers of M . The difference lies just in the fact that we now use multigraded shifts R(−j)
instead of N-graded ones. The total i’th Betti number is βi(M) =

∑
j βi,j . For further

details on resolutions, graded rings and Betti numbers, we refer the reader to [1], sections
1.3 and 1.5.

The Betti numbers of M occur as the dimensions of certain vector spaces over k = R/m,
where m is the unique maximal graded ideal in R. Accordingly, the Betti numbers in general
depend on the characteristic of k.
A minimal free resolution of M is said to be linear if for i > 0, βi,j(M) = 0 whenever
j 6= i + d − 1 for some fixed natural number d ≥ 1.

In connection to this we mention the Eagon-Reiner theorem.

Theorem 2.1. Let ∆ be a simplicial complex and ∆∗ its Alexander dual complex. Then

R/I∆ is Cohen-Macaulay if and only if R/I∆∗ has linear minimal free resolution.

Proof. See [3], Theorem 3.
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3 Hochster’s formula and the Mayer-Vietoris sequence

In topology one defines Betti numbers in a somewhat different manner. Hochster’s formula

provides a link between these and the Betti numbers defined above.

Theorem 3.1. (Hochster’s formula). Let R/I∆ be the Stanley-Reisner ring of a simplicial

complex ∆. The non-zero Betti numbers of R/I∆ are only in squarefree degrees j and may

be expressed as

βi,j(R/I∆) = dimk H̃|j|−i−1(∆j; k).

Hence the total i’th Betti number may be expressed as

βi(R/I∆) =
∑

V ⊆[n]

dim H̃|V |−i−1(∆V ; k).

Proof. See [1], Theorem 5.5.1.

If one has N
n-graded Betti numbers, it is easy to obtain the N-graded ones via

βi,j(R/I∆) =
∑

j′∈N
n

|j′|=j

βi,j′(R/I∆).

Thus,

βi,j(R/I∆) =
∑

V ⊆[n]
|V |=j

dim H̃|V |−i−1(∆V ; k).

Recall that if we have an exact sequence of complexes,1

0 → L → M → N → 0

there is a long exact (reduced) homology sequence associated to it

· · · → Hr(N) → Hr−1(L) → Hr−1(M) → Hr−1(N) → · · · .

When we prove Theorem 5.1, we will use this homology sequence in the special case where
it is associated to a simplicial complex as follows.

Suppose we have a simplicial complex N and two subcomplexes L and M , such that
N = L ∪ M . This gives us an exact sequence of (reduced) chain complexes

0 → C.(L ∩ M) → C.(L) ⊕ C.(M) → C.(N) → 0.

The non trivial maps here are defined by x 7→ (x,−x) and (x, y) 7→ x + y.
The long exact (reduced) homology sequence associated to this particular sequence, is

called the Mayer-Vietoris sequence. More about the Mayer-Vietoris sequence can be found
in [14], section 4.4.

1That is, complexes of modules over some ring R.
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4 The classes of chordal and triangulated hypergraphs

In this section, all hypergraphs are assumed to be simple and d-uniform.

Definition 4.1. Two distinct vertices x, y of a hypergraph H are neighbours if there is an
edge E ∈ E(H), such that x, y ∈ E. For any vertex x ∈ X (H), the neighbourhood of x,
denoted N(x), is the set

N(x) = {y ∈ X (H) ; y is a neighbour of x}.

If N(x) = ∅, x is called isolated. Furthermore, we let N [x] = N(x) ∪ {x} denote the closed

neighbourhood of x.

Remark 4.1. Let H be a hypergraph and V ⊆ X (H). Denote by NV [x] the closed neig-
bourhood of x in the induced hypergraph HV . For ordinary graphs it is clear that NV [x] =
N [x] ∩ V . This is not always the case for hypergraphs, as is shown in the example below.
Note that the notation NV [x] will only occur in this remark and the example below. The
fact that we do not make any greater use of it, is intimately connected to, and in a sense
illustrates, the properties of the hypergraphs that we are to consider.

Example 1. Consider the hypergraph H on vertex set X (H) = {a, b, c, d, e} and edge
set E(H) = {{a, b, c}, {a, d, e}, {b, c, d}}. Let V = {a, b, c, d}. Then NV [a] = {a, b, c} but
N [a] ∩ V = {a, b, c, d}.

Recall the definition of the d-complete hypergraph:

Definition 4.2. The d-complete hypergraph, Kd
n, on a set of n vertices, is defined by

E(Kd
n) =

(
[n]

d

)

where
(
F
d

)
denotes the set of all subsets of F , of cardinality d. If n < d, we interpret Kd

n as
n isolated points.

If H is a hypergraph, we associate a simplicial complex ∆H to it in the following way:

Definition 4.3. Given a hypergraph H = (X (H), E(H)), the complex of H, ∆H, is the
simplicial complex

∆H = {F ⊆ X (H) ;

(
F

d

)
⊆ E(H)}

Note that this implies that if F ⊆ X (H), |F | < d, then F ∈ ∆H.

Remark 4.2. ∆H is completely determined by H. Indeed, all faces of dimension at least d−1
clearly is determined by H, since each one correspond uniquely to a d-complete subhyper-
graph of H.

Remark 4.3. Recall that a flag complex is a simplicial complex in which every minimal non
face consists of precisely 2 elements. As one easily sees, such complex is determined by its
1-skeleton. According to the previous remark, d-flag complexes, i.e. complexes whose
minimal non faces all have cardinality d, in a natural way generalizes flag complexes.
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Proposition 4.1. ∆H = ∆(Hc), where ∆(Hc) is the independence complex of Hc.

Proof. The two complexes has the same set of vertices. F ∈ ∆(Hc) precisely when
(
F
d

)
⊆

E(H). Furthermore, F ∈ ∆(Hc) for every F ⊆ X (H) with |F | < d.

Definition 4.4. Let ∆ be a simplicial complex on a finite set, X , of vertices. For any given
d ∈ N, the d-uniform hypergraph, Hd(∆), of ∆, is the hypergraph with vertex set X , and
with edge set

Ed(∆) = {F ∈ ∆ ; |F | = d}.

Proposition 4.2. Let H be a hypergraph and ∆ an arbitrary d-flag complex on X (H). Then,

• Hd(∆H) = H

• ∆Hd(∆) = ∆

Proof. This follows directly from Definition 4.2 and Definition 4.3.

Definition 4.5. A hypergraph H is called triangulated if for every non empty subset
V ⊆ X (H), either there exists a vertex x ∈ V such that the induced hypergraph HN [x]∩V is

isomorphic to a d-complete hypergraph Kd
n, n ≥ d, or else the edge set of HV is empty.

Definition 4.6. A hypergraph H is called triangulated* if for every non empty subset
V ⊆ X (H), either there exists a vertex x ∈ V such that N [x] ∩ V is a facet of (∆H)V of
dimension greater than or equal to d − 1, or else the edge set of HV is empty.

We will soon show (Theorem 4.1) that the above two definitions are equivalent.

Definition 4.7. A chordal hypergraph is a d-uniform hypergraph, obtained inductively
as follows:

• Kd
n is a chordal hypergraph, n, d ∈ N.

• If G is chordal, then so is H=G
⋃

Kd
j

Kd
i , for 0 ≤ j < i. (This we think of as glueing Kd

i

to G by identifying some edges, or parts of some edges, of Kd
i with the corresponding

part, Kd
j , of G.)

Remark 4.4. For d = 2 this specializes precisely to the class of generalized trees, i.e. gener-
alized n-trees for some n, as defined in [7].

Remark 4.5. In the special case of simple graphs, Definition 4.5 specializes precisely to the
ordinary chordal (rigid cicuit) graphs. Recall that a simple graph is called chordal if every
induced cycle of length > 3, has a chord. By considering minimal cycles, it is clear that
a graph that is triangulated according to Definition 4.5, is chordal. Assume a graph G is
chordal. It follows from Theorems 1 and 2 in [2], that the chordal graphs are precisely the
generalized trees (see Remark 4.4). In a generalized tree we may easily find a vertex x, with
the property that GN [x] is complete, as follows: We know that G = G′ ∪Kj

Ki, 0 ≤ j < i.
Then, we just pick a vertex x ∈ X (Ki) r X (G′), since such x clearly has the property that
GN [x] is complete. Since every induced subgraph of a chordal graph is chordal, the same
thing holds for every GV , V ⊆ X (G).
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Another characterization of chordal graphs may be found in [8]. There it is shown that a
simple graph is chordal precisely when it has a perfect elimination order. Recall that a perfect
elimination order of a graph G = (X , E) is an ordering of its vertices, x1 < x2 < · · · < xn, such
that for each i, GN [xi]∩{xi,xi+1,...,xn} is a complete graph. The concept of perfect elimination
order is well suited for generalizations. We make the following

Definition 4.8. A hypergraph H is said to have a perfect elimination order if its vertices
can be ordered x1 < x2 < · · · < xn, such that for each i, either HN [xi]∩{xi,xi+1,...,xn} is

isomorphic to a d-complete hypergraph Kd
n, n ≥ d, or else xi is isolated in H{xi,xi+1,...,xn}

Note that this specializes precisely to the definition of perfect elimination order for simple
graphs if we put d = 2.

Lemma 4.1. Let H be a hypergraph and x ∈ V ⊆ X (H) a vertex such that HN [x]
∼= Kd

m,

m ≥ d. Then HN [x]∩V either is isomorphic to a d-complete hypergraph Kd
m′ , m′ ≥ d, or else

x is isolated in V .

Proof. Either |N [x] ∩ V | ≥ d or else |N [x] ∩ V | < d.

Remark 4.6. The above lemma in some sense explains what goes on in the proofs hereafter.
It also casts some light on the last comment made in Remark 4.1.

Lemma 4.2. If a hypergraph H with E(H) 6= ∅ has a perfect elimination order, then it has

a perfect elimination order x1 < x2 < · · · < xn in which x1 is not isolated.

Proof. Let x1 < x2 < · · · < xn be a perfect elimination order of H, and put

t = min{i ; xi is not isolated}.

We claim that xt < · · · < xn < x1 < · · · < xt−1 also is a perfect elimination order of H. Since
x1, . . . , xt−1 are isolated, we need only verify that HN [xi]∩{xi,xi+1,...,xn,x1,...,xt−1}

∼= Kd
mi

for
some mi ≥ d, i = t, . . . , n. However, this is clear since HN [xi]∩{xi,xi+1,...,xn,x1,...,xt−1} =
HN [xi]∩{xi,xi+1,...,xn}.

Lemma 4.3. If a hypergraph H is triangulated (triangulated*, chordal), or, has a perfect

elimination order, then so does HV for every V ⊆ X (H).

Proof. Let V ⊆ X (H). If E(HV ) = ∅, HV clearly is triangulated and triangulated*. It
is also chordal since we can add one vertex at a time until we have the desired discrete
hypergraph, and any ordering of V yields a perfect elimination order. Thus we may assume
that E(HV ) 6= ∅.

The lemma is clear for the classes of triangulated and triangulated* hypergraphs, since
if W ⊆ V , we have that (HV )W = HW . Now, let H = G

⋃
Kd

j
Kd

i , 0 ≤ j < i, be chordal.

If V ⊆ X (G), or if V ⊆ X (Kd
i ), we are done by induction. If this is not the case, it is easy

to realize that HV = GV

⋃
(Kd

j
)V

(Kd
i )V . Since GV is chordal by induction, the result follows.

Finally, assume H has a perfect elimination order x1 < x2 < · · · < xn. Then V inherits an
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ordering xi1 < xi2 < · · · < xi|V |
. The fact that this is a perfect elimination order of HV

follows from Lemma 4.1.

Theorem 4.1. Let H = (X (H), E(H)) be a d-uniform hypergraph. Then the following are

equivalent.

(i) H is triangulated.

(ii) H is triangulated*.

(iii) H is chordal.

(iv) H has a perfect elimination order.

Proof. Due to Lemma 4.3, we need only consider the full set X (H) of vertices in our argu-
ments, and we may assume that E(H) 6= ∅.

(i) ⇒ (ii). Since we assume E(H) 6= ∅ and consider only the case where V = X (H),
there is a vertex x such that HN [x]

∼= Kd
n, n ≥ d. Then, N [x] clearly is a face in ∆H of dimen-

sion at least d − 1. Furthermore it has to be a facet, since if there were a y ∈ X (H), y 6= x,
such that N [x]∪{y} ∈ ∆H, then there would exist an edge E with x, y ∈ E. Hence, y ∈ N [x].

(ii) ⇒ (i). By assumption, there is a vertex x such that N [x] is a facet in ∆H of di-
mension greater than or equal to d − 1, whence it is clear (from the definition of ∆H) that
HN [x]

∼= Kd
n for some n ≥ d.

(i) ⇒ (iii). By assumption there is a vertex x ∈ X (H) such that HN [x]
∼= Kd

n, for some
n ≥ d. Let G be the induced hypergraph on X (H) r {x}. Then E(G) consists of all edges of
H, except those that contain x. This yields H = G ∪K Kd

n, where K = Kd
|N(x)| on vertex set

N(x), and by induction we are done.

(iii) ⇒ (i). Assume H = G ∪Kd
j

Kd
i , 0 ≤ j < i, is chordal, where G is chordal by con-

struction. If i ≥ d, any vertex x ∈ X (Kd
i ) r X (G) will do, since HN [x]

∼= Kd
i for such x. If

i < d, we find, by induction, a vertex x ∈ X (G) with the property that HN [x] = GN [x]
∼= Kd

n

for some n ≥ d, since otherwise the edge set of H would be empty, contrary to our assump-
tions.

(i) ⇒ (iv). By assumption we find a vertex x = x1 such that HN [x1]
∼= Kd

n, n ≥ d.
Since the induced hypergraph on X (H) r {x1} is triangulated, by induction it has a perfect
elimination order x2 < · · · < xn. If we put x1 < x2 we are done.

(iv) ⇒ (i). By Lemma 4.2 there is a perfect elimination order x1 < · · · < xn, such that
HN [x1]∩V

∼= Kd
m for some m ≥ d.
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4.1 Some examples

In [4], we considered hypergraph generalizations of the well known complete and complete
multipartite graphs. We use these to create some examples of chordal hypergraphs.

Recall from [4] the definition of the d-complete bipartite hypergraph Kd
n,m: This is the

hypergraph on a vertex set that is a disjoint union, [n]⊔ [m], of two finite sets. The edge set
consists of all sets V ⊆ [n] ⊔ [m], |V | = d, such that V ∩ [n] 6= ∅ 6= V ∩ [m].

Example 2. Here we consider the complement H = (Kd
n,m)c of Kd

n,m. We claim that
H is chordal. It is easy to see, considering the the Stanley-Reisner ring, that ∆H looks like

(∆n ⊔ ∆m) ∪ Γd−2([n] ∪ [m])

where ∆r is the full simplex on [r], and Γd−2([n] ∪ [m]) is the (d − 2)-skeleton of the full
simplex on [n] ⊔ [m].
Clearly, the d-uniform hypergraph of this complex, in other words H, is the disjoint union
two d-complete hypergraphs,

H = Kd
n ∪Kd

0
Kd

m,

so H is chordal.

Example 3. Now consider the complex ∆Kd
n,m

, of Kd
n,m. If n, m < d, we have an

isomorphism Kd
n,m

∼= Kd
n+m, so in this case Kd

n,m is chordal. If n or m is greater than or

equal to d, Kd
n,m is not chordal. This is because no matter which vertex x we choose, the

induced hypergraph on N [x] cannot be d-complete, since it would then contain an edge lying
entirely in either [n] or [m], which is impossible.
The general case of the d-complete multipartite hypergraph, Kd

n1,...,nt
, is similar. Kd

n1,...,nt

is chordal only when ni < d for every i = 1, . . . , t. The arguments are the same as in the
bipartite case.

Another kind of complete hypergraph, is the d(a, b)-complete hypergraph H = K
d(a,b)
n,m ,

where d = a + b, a, b ≥ 1. Here X (H) = [n] ⊔ [m], and E(H) =
(
[n]
a

)
×

(
[m]
b

)
.

Example 4. Consider the complex of K
d(a,b)
n,m . Pick any vertex x and consider N [x].

If the induced hypergraph (K
d(a,b)
n,m )N [x] is to be complete, both n and m must be smaller

than d, and at least one of the two equations n = a, m = b must hold. Otherwise we obtain

a contradiction since K
d(a,b)
n,m would then contain an edge of the wrong shape. If n and m

satisfy these conditions, the hypergraph is chordal.

5 Generalized chordal hypergraphs

It is easy to find an example of a d-uniform hypergraph H that is not chordal, but such that
the Stanley-Reisner ring of ∆H has linear resolution.
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Example 5: Let H be the 3-uniform hypergraph with X (H) = {a, b, c, d}, and E(H) ={
{a, b, c}, {a, c, d}, {a, b, d}

}
. The following simple picture lets us visualize H.

a

�
�
�
�
�
�
�
�
�
�
�
�
�
�

??
??

??
??

d

��
��

��
��

b c

R/I∆H
has linear resolution, but H is not chordal.

If ∆ is a simplicial complex on [n] and E is a finite set, we denote by ∆∪E the simplicial
complex on [n] ∪ E whose set of facets, F(∆ ∪ E), is F(∆) ∪ {E}. Similarly, if H is a (not
necessarily d-uniform) hypergraph and E a finite set, we denote by H ∪ E the hypergraph
on X (H) ∪ E whose edge set is E(H ∪ E) = E(H) ∪ {E}.

Definition 5.1. A generalized chordal hypergraph is a d-uniform hypergraph, obtained
inductively as follows:

• Kd
n is a generalized chordal hypergraph, n, d ∈ N.

• If G is generalized chordal, then so is H=G
⋃

Kd
j

Kd
i , for 0 ≤ j < i.

• If G is generalized chordal and E ⊆ X (G) a finite set, |E| = d, such that at least one
element of

(
E

d−1

)
is not a subset of any edge of G, then G ∪ E is generalized chordal.

Remark 5.1. It is clear that every chordal hypergraph is also a generalized chordal hyper-
graph. Furthermore, for d = 2 chordal graphs and generalized chordal graphs are the same.

Theorem 5.1. Let H = (X (H), E(H)) be a generalized chordal hypergraph and k a field of

arbitrary characteristic. Then the Stanley-Reisner ring of ∆H has linear resolution.

Proof. We consider the three instances of Definition 5.1 one at a time. If H ∼= Kd
n we are

done, since if n ≥ d we have a simplex so the situation is trivial, and if n < d the claim is
proved for example in [4], Theorem 3.1. So, we may assume H 6∼= Kd

n. Let H = G ∪Kd
j

Kd
i ,

0 ≤ j < i, where G is generalized chordal. Let C and B be the simplices determined by Kd
j

and Kd
i , respectively, and consider the complex ∆′

H = ∆G

⋃
B. Note that B ∩ ∆G = C,

B 6= C. We first show that ∆′
H has linear resolution. For every V ⊆ X (H), we have an exact

sequence of chain complexes

0 → C.(CV ) → C.((∆G)V ) ⊕ C.(BV ) → C.((∆′
H)V ) → 0.

By induction, via Hochster’s formula, we know that (∆G)V can have non zero homology
only in degree d − 2. But then, since both BV and CV are simplices and accordingly have
no homology at all, by considering the Mayer-Vietoris sequence we conclude that the only
possible non zero homologies of (∆′

H)V lies in degree d − 2.
Note that it is not in general true that ∆H = ∆′

H. In fact, this holds only when d = 2.
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However, the difference between the two complexes is easy to understand, and we may use
the somewhat easier looking ∆′

H to show that ∆H has linear resolution as well.
To this end, let Γd−2(X (H)) be the (d − 2)-skeleton of the full simplex on vertex set

X (H). Then one sees that
∆H = ∆′

H ∪ Γd−2(X (H)).

The (d− 2)-faces that we add to ∆′
H to obtain ∆H, can certainly not cause any homology in

degrees greater than d − 2, that did not already exist in ∆′
H. Indeed, suppose

∑
i aiσi is a

cycle in a degree r > d− 2, where ai ∈ k and the σi’s are faces of ∆H, of dimension r. Since
every face σi actually lies in ∆′

H, it follows that
∑

i aiσi is a cycle also in ∆′
H. Thus, if ∆′

H

has linear resolution, so does ∆H.
Finally, let H = G ∪ E. Let F1, . . . , Ft be the elements of

(
E

d−1

)
that are not subsets of

any edge of G. Note that ∆H = ∆G ∪E. Take V ⊆ X (H). If E 6⊆ V , then (∆H)V = (∆G)V ,
so, by induction we conclude that the only possible non zero homologies of (∆H)V lies in
degree d − 2. Hence we may assume that E ⊆ V . Then we have an exact sequence

0 → C.((∆G ∩ E)V ) → C.((∆G)V ) ⊕ C.(EV ) → C.((∆H)V ) → 0.

Note that EV is a simplex so it has no homology, and, by induction, we know that R/I∆G

has linear resolution. Using Hochster’s formula, we may conclude that H̃d−1((∆G)V ; k) = 0.
Hence, the Mayer-Vietoris sequence obtained from the above exact sequence looks as follows:

0 → H̃d−1((∆H)V ) → H̃d−2((∆G ∩ E)V ) → H̃d−2((∆G)V ) → H̃d−2((∆H)V ) → 0.

Let z =
∑

j ajσj be an element in Zd−1((∆H)V ), where σ1 = E. Consider the expression
for the derivative of this cycle

0 = d(z) = · · · +
t∑

i=1

±a1Fi + · · · .

Since
∑t

i=1 ±a1Fi only can come from d(E), we conclude that a1 = 0. Hence z ∈
Zd−1((∆G)V ), and, using Hochster’s formula, we may conclude that the Stanley-Reisner ring
of ∆H has linear resolution.

Corollary 5.1. Let H = (X (H), E(H)) be a generalized chordal hypergraph and k a field of

arbitrary characteristic. Then the Stanley-Reisner ring R/I∆∗

H

of the Alexander dual complex

∆∗
H is Cohen-Macaulay.

Proof. This follows by the Eagon-Reiner theorem.

Corollary 5.2. Theorem 5.1 and Corollary 5.1 in particular applies to triangulated and

triangulated* hypergraphs, and also to hypergraphs that have perfect elimination orders.

Question 1: Is there a hypergraph H such that the Stanley-Reisner ring of ∆H has
linear resolution over any field k, but that is not a generalized chordal hypergraph?

Question 2: If H is a generalized chordal hypergraph, are there more equivalent char-
acterizations of H similar to those for a chordal hypergraph given in Theorem 4.1?
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