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Abstract

We consider the nonlinear stationary Schrödinger equation −∆u + V (x)u = f(x, u) in
R

N . Here f is a superlinear, subcritical nonlinearity, and we mainly study the case where
both V and f are periodic in x and 0 belongs to a spectral gap of −∆ + V . Inspired by
previous work of Li et al. [11] and Pankov [13], we develop an approach to find ground state
solutions, i.e., nontrivial solutions with least possible energy. The approach is based on a
direct and surprisingly simple reduction of the indefinite variational problem to a definite
one and gives rise to a new minimax characterization of the corresponding critical value.
Our method works for merely continuous nonlinearities f which are allowed to have weaker
asymptotic growth than usually assumed. For odd f , we obtain infinitely many geometrically
distinct solutions. The approach also yields new existence and multiplicity results for the
Dirichlet problem for the same type of equations in a bounded domain.

1 Introduction

In this paper we will be concerned with the semilinear Schrödinger equation

(1.1)

{
−∆u + V (x)u = f(x, u)
u ∈ H1(RN ).

Here H1(RN ) is the usual Sobolev space. Our assumptions on V and f stated below imply that

the Schrödinger operator −∆ + V is selfadjoint and semi-bounded in L2(RN ) and solutions of

(1.1) are critical points of the functional

(1.2) Φ ∈ C1(H1(RN ), R), Φ(u) =
1

2

∫

RN

(|∇u|2 + V (x)u2) dx −
∫

RN

F (x, u) dx.

∗Supported in part by the Swedish Research Council.
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In the last part of the paper, we will also consider a related variational problem associated with

a semilinear elliptic boundary value problem in a bounded domain. We will be mainly interested

in the case where these problems are indefinite in the sense that 0 is not a local minimum for

the corresponding functionals, but some of our results are new also in the definite case. In the

case of the full space problem (1.1) we focus on periodic data – another setting will be discussed

briefly in Section 4 below. For the Schrödinger operator −∆ + V we assume:

(S1) V is continuous, 1-periodic in x1, . . . , xN and 0 /∈ σ(−∆ + V ), the spectrum of −∆ + V .

Starting with the seminal work of Angenent [2], Coti Zelati and Rabinowitz [6], and Alama-Li [1],

this case has attracted immense attention in the last 15 years. Setting F (x, u) :=
∫ u

0 f(x, s) ds,

we suppose that f satisfies the following assumptions:

(S2) f is continuous, 1-periodic in x1, . . . , xN and |f(x, u)| ≤ a(1 + |u|p−1) for some a > 0 and

p ∈ (2, 2∗), where 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := +∞ if N = 1 or 2.

(S3) f(x, u) = o(u) uniformly in x as |u| → 0.

(S4) F (x, u)/u2 → ∞ uniformly in x as |u| → ∞.

(S5) u 7→ f(x, u)/|u| is strictly increasing on (−∞, 0) and on (0,∞).

While (S1)−(S3) are standard assumptions in this context, the following Ambrosetti-Rabinowitz

type superlinearity condition is commonly used in place of (S4) and (S5):

(AR) ηF (x, u) ≥ f(x, u)u > 0 for some η > 2 and all u ∈ R \ {0}, x ∈ R
N .

We recall that (AR) implies F (x, u) ≥ c|u|η > 0 for |u| ≥ 1 and all x ∈ R
N , so it is a stronger

condition than (S4). To state our results, we fix some notation. Let E := H1(RN ). By (S1)

there is an equivalent inner product 〈. , .〉 in E such that

Φ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫

RN

F (x, u) dx,

where E = E+ ⊕ E− corresponds to the spectral decomposition of −∆ + V with respect to the

positive and negative part of the spectrum, and u = u+ + u− ∈ E+ ⊕ E−. If σ(−∆ + V ) ⊂
(0,+∞), then dimE− = 0, otherwise E− is infinite-dimensional. The following set has been

introduced by Pankov [13]:

(1.3) M :=
{
u ∈ E \ E− : Φ′(u)u = 0 and Φ′(u)v = 0 for all v ∈ E−}

.

By definition, M contains all nontrivial critical points of Φ. The following is our first main

result.

Theorem 1.1 Suppose (S1)-(S5) are satisfied and let c := infu∈M Φ(u). Then c is attained,

c > 0 and if u0 ∈ M satisfies Φ(u0) = c, then u0 is a solution of (1.1).
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Since c is the lowest level for Φ at which there are nontrivial solutions of (1.1), u0 will be called

a ground state. Theorem 1.1 is due to Pankov [13, Section 5] under the following additional

assumptions on the nonlinearity: f ∈ C1, |f ′
u(x, u)| ≤ ã(1 + |u|p−1) and

(1.4) 0 <
f(x, u)

u
< θf ′

u(x, u) for some θ ∈ (0, 1) and all u 6= 0.

The existence of a nontrivial solution has been obtained in [1, 9, 17] under assumption (AR)

and different additional conditions, but it is new under assumptions (S1)-(S5). We point out

that (1.4) is stronger than both (AR) and (S5). In the definite case where σ(−∆+V ) ⊂ (0,∞),

Theorem 1.1 is a slight extension of a recent result by Li et al. [11] which, together with Pankov’s

work [13], inspired us to consider the indefinite problem.

Let us briefly sketch Pankov’s approach. He first shows that M is a C1-manifold, and it is

a natural constraint in the sense that u is a critical point of Φ if and only if u ∈ M and it

is a critical point of Φ|M. Since c := inf Φ|M > −∞, Ekeland’s variational principle yields a

Palais-Smale sequence for Φ|M at the level c. Pankov then uses (1.4) to show that this Palais-

Smale sequence is bounded, and he finds a minimizer by concentration-compactness arguments.

Since we are not assuming f is differentiable and satisfies (1.4), M need not be of class C1 in

our case, and therefore Pankov’s method does not apply. Nevertheless, M is still a topological

manifold, naturally homeomorphic to the unit sphere in E+. To explain this in detail, we define

for u ∈ E \ E− the subspace

(1.5) E(u) := E− ⊕ Ru = E− ⊕ Ru+

and the convex subset

(1.6) Ê(u) := E− ⊕ R
+u = E− ⊕ R

+u+,

of E, where as usual, R
+ = [0,∞). Our approach is based on the following key observations.

I.) For each u ∈ E \ E−, the set M intersects Ê(u) in exactly one point m̂(u) which is the

unique global maximum point of Φ|
Ê(u). Moreover, the map u 7→ m̂(u) is continuous, and

the restriction of m̂ to the unit sphere S+ in E+ defines a homeomorphism between S+

and M.

II.) The composed functional Φ ◦ m̂ : S+ → R is of class C1 (even though m̂ might not

be differentiable) and coercive on S+. Moreover, critical points of Φ ◦ m̂ are in 1 − 1

correspondence with nontrivial critical points of Φ.

We point out that, as a consequence of I.), the least energy value c has a minimax characterization

given by

(1.7) c = inf
w∈E+\{0}

max
u∈Ê(w)

Φ(u).
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Note that this minimax principle is much simpler than the usual characterizations related to

the concept of linking, see e.g. [18]. In the case where f is odd, the characterization reduces to

a mere minimax over linear subspaces, i.e.,

(1.8) c = inf
w∈E+\{0}

max
u∈E(w)

Φ(u).

This equality resembles characterizations of the lowest eigenvalue of a linear selfadjoint operator

in a spectral gap, see e.g. [7, 8]. We also note that (1.7) and (1.8) could be used numerically to

compute the least energy c (and possibly also minimizers). For a related computational minimax

algorithm, see Li and Zhou [10].

Next we consider the multiplicity of solutions of (1.1). We note that if u0 is a solution of (1.1),

then so are all elements of the orbit of u0 under the action of Z
N , O(u0) := {u0(·−k) : k ∈ Z

N}.
Two solutions u1 and u2 are said to be geometrically distinct if O(u1) and O(u2) are disjoint.

Theorem 1.2 Suppose (S1)-(S5) are satisfied and f is odd in u. Then (1.1) admits infinitely

many pairs ±u of geometrically distinct solutions.

Again this result is new under assumptions (S1)-(S5) – even in the definite case. For f

satisfying (AR) and a Lipschitz condition, infinitely many geometrically distinct solutions have

been obtained in [9]. See also [1] where a stronger result (existence of multibumps) has been

proved for a pure power nonlinearity.

We remark that our method simplifies considerably in the definite case E− = {0}. On the

other hand, when E− 6= {0}, then our approach also yields existence and multiplicity results in

the case where the nonlinearity f in (1.1) is replaced by −f , see Theorem 4.1 below.

The paper is organized as follows. Theorems 1.1 and 1.2 are proved in Section 2. In Section 3

we consider a semilinear elliptic problem with zero Dirichlet boundary data in a bounded domain.

The results are the same as above but now some parts of the proofs become simpler because

the Nemytskii operator corresponding to the nonlinearity f is compact. Finally, in Section 4 we

add some remarks on variants of problem (1.1).

2 Proof of the main results

We assume that (S1)− (S5) are satisfied from now on. We start with some elementary observa-

tions. First, (S2) and (S3) imply that

(2.1) for each ε > 0 there is Cε > 0 such that |f(x, u)| ≤ ε|u| + Cε|u|p−1 for all u ∈ R.

Lemma 2.1 F (x, u) > 0 if u 6= 0 and 1
2f(x, u)u ≥ F (x, u) for all u ∈ R.

This follows immediately from (S3) and (S5).
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Lemma 2.2 Let u, s, v ∈ R be numbers with s ≥ −1 and w := su + v 6= 0, and let x ∈ R
N .

Then

f(x, u)[s(
s

2
+ 1)u + (1 + s)v] + F (x, u) − F (x, u + w) < 0.

The proof of this estimate is elementary but not straightforward. We postpone it to the

appendix. In the following we assume E− is nontrivial and for u /∈ E− we consider the subspace

E(u) and the convex subset Ê(u) as defined in (1.5) and (1.6).

Proposition 2.3 If u ∈ M, then

Φ(u + w) < Φ(u) for every w ∈ Z := {su + v : s ≥ −1, v ∈ E−}, w 6= 0.

Hence u is the unique global maximum of Φ|
Ê(u).

Proof We let B : E × E → R denote the symmetric bilinear form given by

B(v1, v2) =

∫

RN

(∇v1∇v2 + V (x)v1v2) dx for v1, v2 ∈ E.

Let w = su + v ∈ Z; i.e., v ∈ E− and s ≥ −1. Then u + w = (1 + s)u + v ∈ Ê(u). We calculate

Φ(u + w) − Φ(u) =
1

2
[B(u + w, u + w) − B(u, u)] +

∫

RN

(F (x, u) − F (x, u + w)) dx

=
1

2
[B((1 + s)u + v, (1 + s)u + v) − B(u, u)] +

∫

RN

(F (x, u) − F (x, u + w)) dx

=
1

2

(
[(1 + s)2 − 1]B(u, u) + 2(1 + s)B(u, v) + B(v, v)

)
+

∫

RN

(F (x, u) − F (x, u + w)) dx

= −‖v‖2

2
+ B(u, s(

s

2
+ 1)u + (1 + s)v) +

∫

RN

(F (x, u) − F (x, u + w)) dx

= −‖v‖2

2
+

∫

RN

(
f(x, u)[s(

s

2
+ 1)u + (1 + s)v] + F (x, u) − F (x, u + w)

)
dx,

where in the last step we used the fact that, since u ∈ M,

0 = Φ′(u)z = B(u, z) −
∫

RN

f(x, u)z(x) dx for all z ∈ E(u).

Since w is nonzero on a set of of positive measure, we conclude by Lemma 2.2 that Φ(u + w) <

Φ(u), as claimed. 2

Lemma 2.4

(a) There exists α > 0 such that c = inf
M

Φ ≥ inf
Sα

Φ(u) > 0, where Sα := {u ∈ E+ : ‖u‖ = α}.
(b) ‖u+‖ ≥ max{‖u−‖,

√
2c} for every u ∈ M.
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Proof (a) For u ∈ E+ we have Φ(u) = 1
2‖u‖2 −

∫
RN F (x, u) dx and

∫
RN F (x, u) dx = o(‖u‖2)

as u → 0 by (2.1), hence the second inequality follows if α > 0 is sufficiently small. The first

inequality is a consequence of Proposition 2.3, since for every u ∈ M there is s > 0 such that

su+ ∈ Ê(u) ∩ Sα.

(b) For u ∈ M we have

c ≤ 1

2
(‖u+‖2 − ‖u−‖2) −

∫

RN

F (x, u) dx ≤ 1

2
(‖u+‖2 − ‖u−‖2),

hence ‖u+‖ ≥ max{
√

2c, ‖u−‖}. 2

Lemma 2.5 If V ⊂ E+ \ {0} is a compact subset, then there exists R > 0 such that Φ ≤ 0 on

E(u) \ BR(0) for every u ∈ V.

Proof Without loss of generality, we may assume that ‖u‖ = 1 for every u ∈ V. Suppose by

contradiction that there exist un ∈ V and wn ∈ E(un), n ∈ N such that Φ(wn) ≥ 0 for all n and

‖wn‖ → ∞ as n → ∞. Passing to a subsequence, we may assume that un → u ∈ E+, ‖u‖ = 1.

Set vn = wn/‖wn‖ = snun + v−n , then

(2.2) 0 ≤ Φ(wn)

‖wn‖2
=

1

2
(s2

n − ‖v−n ‖2) −
∫

RN

F (x,wn)

w2
n

v2
n dx.

Hence ‖v−n ‖2 ≤ s2
n = 1 − ‖v−n ‖2 and therefore 1√

2
≤ sn ≤ 1. So, for a subsequence, sn → s > 0,

vn ⇀ v and vn(x) → v(x) a.e. in R
N . Hence v = su + v− 6= 0 and, since |wn(x)| → ∞ if

v(x) 6= 0, it follows from (S4) and Fatou’s lemma that

(2.3)

∫

RN

F (x,wn)

w2
n

v2
n dx → ∞,

contrary to (2.2). 2

Lemma 2.6 For each u 6∈ E− the set M∩ Ê(u) consists of precisely one point m̂(u) which is

the unique global maximum of Φ|
Ê(u).

Proof By Proposition 2.3, it suffices to show that M ∩ Ê(u) 6= ∅. Since Ê(u) = Ê(u+), we

may assume that u ∈ E+, ‖u‖ = 1. By Lemma 2.5, there exists R > 0 such that Φ ≤ 0 on

E(u) \ BR(0). By Lemma 2.4(a), Φ(tu) > 0 for small t > 0, and since Φ ≤ 0 on Ê(u) \ BR(0),

0 < sup
Ê(u) Φ < ∞. It is easy to see that Φ is weakly upper semicontinuous on Ê(u), therefore

Φ(u0) = sup
Ê(u) Φ for some u0 ∈ Ê(u)\{0}. This u0 is a critical point of Φ|E(u), so 〈Φ′(u0), u0〉 =

〈Φ′(u0), v〉 = 0 for all v ∈ E(u). Consequently, u0 ∈ M∩ Ê(u), as required. 2

Proposition 2.7 Φ is coercive on M, i.e., Φ(u) → ∞ as ‖u‖ → ∞, u ∈ M.
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Proof Arguing by contradiction, suppose there exists a sequence (un)n ⊂ M such that ‖un‖ →
∞ and Φ(un) ≤ d for some d ∈ [c,∞). Let vn := un/‖un‖. Then vn ⇀ v and vn(x) → v(x) a.e.

in R
N after passing to a subsequence. By Lemma 2.4(b), ‖v+

n ‖2 ≥ 1/2. Let yn ∈ R
N satisfy

(2.4)

∫

B1(yn)
(v+

n )2 dx = max
y∈RN

∫

B1(y)
(v+

n )2 dx.

Since Φ and M are invariant under translations of the form u 7→ u(· − k) with k ∈ Z
N , we may

assume that (yn) is bounded in R
N . Suppose

(2.5)

∫

B1(yn)
(v+

n )2 dx → 0 as n → ∞.

Then v+
n → 0 in Lp(RN ) for 2 < p < 2∗ according to P.L. Lions’ lemma [18, Lemma 1.21], and

therefore (2.1) implies that
∫

RN F (x, sv+
n ) dx → 0 for every s ∈ R. Since sv+

n ∈ Ê(un) for s ≥ 0,

Proposition 2.3 implies that

d ≥ Φ(un) ≥ Φ(sv+
n ) =

s2

2
‖v+

n ‖2 −
∫

RN

F (x, sv+
n ) dx ≥ s2

4
−

∫

RN

F (x, sv+
n ) dx → s2

4
.

This yields a contradiction if s >
√

4d. Hence (2.5) is false and since v+
n → v+ in L2

loc(R
N ),

v+ 6= 0. Since |un(x)| → ∞ if v(x) 6= 0, it follows again from (S4) and Fatou’s lemma that

∫

RN

F (x, un)

u2
n

v2
n dx → ∞

and therefore

0 ≤ Φ(un)

‖un‖2
=

1

2
(‖v+

n ‖2 − ‖v−n ‖2) −
∫

RN

F (x, un)

u2
n

v2
n dx → −∞

as n → ∞, a contradiction. The proof is finished. 2

Lemma 2.8 The map E+ \ {0} → M, u 7→ m̂(u) (see Lemma 2.6) is continuous.

Proof Let u ∈ E+ \ {0}. By a standard argument, the continuity of m̂ in u is reduced to the

following assertion:

(2.6) if un → u for a sequence (un)n ⊂ E+ \ {0}, then m̂(un) → m̂(u) for a subsequence.

To prove (2.6), we let (un)n ⊂ E+ \ {0} be a sequence with un → u. Without loss of generality,

we may assume that ‖un‖ = ‖u‖ = 1 for all n, so that m̂(un) = ‖m̂(un)+‖un + m̂(un)−. By

Lemma 2.5 there exists R > 0 such that

Φ(m̂(un)) = sup
E(un)

Φ ≤ sup
BR(0)

Φ ≤ sup
u∈BR(0)

‖u+‖2 = R2 for every n.
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Hence m̂(un) is bounded by Proposition 2.7. Passing to a subsequence, we may assume that

tn := ‖m̂(un)+‖ → t and m̂(un)− ⇀ u−
∗ in E as n → ∞,

where t ≥
√

2c > 0 by Lemma 2.4(b). Moreover, by Lemma 2.6,

Φ(m̂(un)) ≥ Φ(tnun + m̂(u)−) → Φ(tu + m̂(u)−) = Φ(m̂(u)).

Therefore by Fatou’s lemma and the weak lower semicontinuity of the norm,

Φ(m̂(u)) ≤ lim
n→∞

Φ(m̂(un)) = lim
n→∞

(
1

2
t2n − 1

2
‖m̂(un)−‖2 −

∫

RN

F (x, m̂(un)) dx

)

≤ 1

2
t2 − 1

2
‖u−

∗ ‖2 −
∫

RN

F (x, tu + u−
∗ ) dx = Φ(tu + u−

∗ ) ≤ Φ(m̂(u)).

Hence all inequalities above must be equalities and it follows that m̂(un)− → u−
∗ , and by

Lemma 2.6, u−
∗ = m̂(u)−. So m̂(un) → m̂(u). 2

We now consider the functional

Ψ̂ : E+ \ {0} → R, Ψ̂(u) := Φ(m̂(u)),

which is continuous by Lemma 2.8. The following somewhat surprising observation is crucial for

our approach.

Proposition 2.9 Ψ̂ ∈ C1(E+ \ {0}, R), and

Ψ̂′(w)z =
‖m̂(w)+‖

‖w‖ Φ′(m̂(w))z for w, z ∈ E+, w 6= 0.

Proof We put u = m̂(w) ∈ M, so we have u = u− + ‖u+‖
‖w‖ w. Let z ∈ E+. Choose δ > 0 such

that wt := w+ tz ∈ E+ \{0} for |t| < δ and put ut = m̂(wt) ∈ M. We may write ut = u−
t +stwt

with st > 0. Then s0 = ‖u+‖
‖w‖ , and the function (−δ, δ) → R, t 7→ st, is continuous by Lemma 2.8.

Lemma 2.6 and the mean value theorem now imply that

Ψ̂(wt) − Ψ̂(w) = Φ(ut) − Φ(u) = Φ(u−
t + stwt) − Φ(u− + s0w)

≤ Φ(u−
t + stwt) − Φ(u−

t + stw) = Φ′(u−
t + st[w + τt(wt − w)])st(wt − w)

= s0Φ
′(u)tz + o(t) as t → 0,

with some τt ∈ (0, 1). By a similar reasoning, we also have that

Ψ̂(wt) − Ψ̂(w) = Φ(u−
t + stwt) − Φ(u− + s0w) ≥ Φ(u− + s0wt) − Φ(u− + s0w)

= Φ′(u− + s0[w + ηt(wt − w)])s0(wt − w)

= s0Φ
′(u)tz + o(t) as t → 0,
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with some ηt ∈ (0, 1). Combining these inequalities, we conclude that the directional derivative

∂zΨ̂(w) exists and is given by

∂zΨ̂(w) = lim
t→0

Ψ̂(wt) − Ψ̂(w)

t
= s0Φ

′(u)z =
‖m̂(w)+‖

‖w‖ Φ′(m̂(w))z.

Hence ∂zΨ̂(w) is linear (and continuous) in z and depends continuously on w. So the assertion

follows by [18, Proposition 1.3]. 2

Next we consider the unit sphere S+ := {w ∈ E+ : ‖w‖ = 1} in E+. We note that the

restriction of the map m̂ to S+ is a homeomorphism with inverse given by

(2.7) m̌ : M → S+, m̌(u) =
u+

‖u+‖ .

We also consider the restriction Ψ : S+ → R of Ψ̂ to S+.

Corollary 2.10

(a) Ψ ∈ C1(S+), and

Ψ′(w)z = ‖m̂(w)+‖ Φ′(m̂(w))z for z ∈ TwS+ = {v ∈ E+ : 〈w, v〉 = 0}.

(b) (wn)n is a Palais-Smale sequence for Ψ if and only if (m̂(wn))n is a Palais-Smale sequence

for Φ.

(c) We have

inf
S+

Ψ = inf
M

Φ = c.

Moreover, u ∈ S+ is a critical point of Ψ if and only if m̂(u) ∈ M is a critical point of Φ, and

the corresponding critical values coincide.

Proof (a) is a direct consequence of Proposition 2.9.

To prove (b), let (wn)n be a sequence such that C := supn Ψ(wn) = supn Φ(m̂(wn)) < ∞, and

let un := m̂(wn) ∈ M. Since for every n we have an orthogonal splitting

E = E(wn) ⊕ Twn
S+ = E(un) ⊕ Twn

S+ (with respect to 〈· , ·〉)

and Φ′(un)v = 0 for all v ∈ E(un), we find that ∇Φ(un) ∈ Twn
S+ and using (a),

(2.8) ‖Ψ′(wn)‖ = sup
z∈Twn S+

‖z‖=1

Ψ′(wn)z = sup
z∈TwnS+

‖z‖=1

‖u+
n ‖Φ′(wn)z = ‖u+

n ‖ ‖Φ′(un)‖.

According to Lemma 2.4(b) and Proposition 2.7,
√

2c ≤ ‖u+
n ‖ ≤ supn ‖u+

n ‖ < ∞. Hence (wn)n
is a Palais-Smale sequence for Ψ if and only if (un)n is a Palais-Smale sequence for Φ.

(c) The proof is similar as in (b) but easier. 2

Proof of Theorem 1.1 (completed). From Lemma 2.4(a) we know that c > 0. Moreover, if

u0 ∈ M satisfies Φ(u0) = c, then m̌(u0) ∈ S+ is a minimizer of Ψ and therefore a critical point
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of Ψ, so that u0 is a critical point of Φ by Corollary 2.10. It remains to show that there exists

a minimizer u ∈ M of Φ|M. By Ekeland’s variational principle [18], there exists a sequence

(wn)n ⊂ S+ with Ψ(wn) → c and Ψ′(wn) → 0 as n → ∞. Put un = m̂(wn) ∈ M for n ∈ N.

Then Φ(un) → c and Φ′(un) → 0 as n → ∞ by Corollary 2.10(b). By Proposition 2.7, (un) is

bounded and hence un ⇀ u after passing to a subsequence. Let yn ∈ R
N satisfy

∫

B1(yn)
u2

n dx = max
y∈RN

∫

B1(y)
u2

n dx.

Using once more that Φ and M are invariant under translations of the form u 7→ u(· − k) with

k ∈ Z
N , we may assume that (yn) is bounded in R

N . If

(2.9)

∫

B1(yn)
u2

n dx → 0 as n → ∞,

then un → 0 in Lp(RN ), 2 < p < 2∗, again by [18, Lemma 1.21]. From (2.1) and the Sobolev

embeddings E → L2(RN ), E → Lp(RN ), we infer that
∫

RN f(x, un)u+
n dx = o(‖u+

n ‖) as n → ∞,

hence

o(‖u+
n ‖) = Φ′(un)u+

n = ‖u+
n ‖2 −

∫

RN

f(x, un)u+
n dx = ‖u+

n ‖2 − o(‖u+
n ‖)

and therefore ‖u+
n ‖ → 0, contrary to Lemma 2.4(b). It follows that (2.9) cannot hold, so

un ⇀ u 6= 0 and Φ′(u) = 0.

It remains to show that Φ(u) = c. By Lemma 2.1, Fatou’s lemma and since (un)n is bounded,

c + o(1) = Φ(un) − 1

2
Φ′(un)un =

∫

RN

(
1

2
f(x, un)un − F (x, un)

)
dx

≥
∫

RN

(
1

2
f(x, u)u − F (x, u)

)
dx + o(1) = Φ(u) − 1

2
Φ′(u)u + o(1) = Φ(u) + o(1).

Hence Φ(u) ≤ c. The reverse inequality follows from the definition of c since u ∈ M. 2

The remainder of this section is devoted to the proof of Theorem 1.2. So from now on we

assume that – in addition to (S1)− (S5) – the nonlinearity f = f(x, u) is odd in u. We need the

following simple fact.

Lemma 2.11 The map m̌ defined in (2.7) is Lipschitz continuous.

Proof For u, v ∈ M we have, by Lemma 2.4(b),

‖m̌(u) − m̌(v)‖ =

∥∥∥∥
u+

‖u+‖ − v+

‖v+‖

∥∥∥∥ =

∥∥∥∥
u+ − v+

‖u+‖ +
(‖v+‖ − ‖u+‖)v+

‖u+‖ ‖v+‖

∥∥∥∥

≤ 2

‖u+‖‖(u − v)+‖ ≤
√

2

c
‖u − v‖.

2
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Remark 2.12 It is easy to see that both maps m̂, m̌ are equivariant with respect to the Z
N -

action given by u 7→ u(·−k) for k ∈ Z
N . So, by Corollary 2.10(c), the orbits O(u) ⊂ M consisting

of critical points of Φ are in 1−1 correspondence with the orbits O(w) ⊂ S+ consisting of critical

points of Ψ.

We need some more notation. For d ≥ e ≥ c we put

Φd := {u ∈ M : Φ(u) ≤ d}, Φe := {u ∈ M : Φ(u) ≥ e}, Φd
e = Φe ∩ Φd,

Ψd := {w ∈ S+ : Ψ(w) ≤ d}, Ψe := {w ∈ S+ : Ψ(w) ≥ e}, Ψd
e = Ψe ∩ Ψd,

K := {w ∈ S+ : Ψ′(w) = 0}, Kd := {w ∈ K : Ψ(w) = d} and

ν(d) := sup{‖u‖ : u ∈ Φd}.

We point out that ν(d) < ∞ for every d by Proposition 2.7. We may choose a subset F of K

such that F = −F and each orbit O(w) ⊂ K has a unique representative in F . By Remark 2.12,

it suffices to show that the set F is infinite. So from now on we assume by contradiction that

(2.10) F is a finite set.

Lemma 2.13 κ := inf{‖v − w‖ : v,w ∈ K, v 6= w} > 0.

Proof Choose vn, wn ∈ F and kn, ln ∈ Z
N such that vn(· − kn) 6= wn(· − ln) for all n and

‖vn(· − kn) − wn(· − ln)‖ → κ as n → ∞.

Put mn = kn− ln. Passing to a subsequence, vn = v ∈ F , wn = w ∈ F and either mn = m ∈ Z
N

for almost all n or |mn| → ∞. In the first case,

0 < ‖vn(· − kn) − wn(· − ln)‖ = ‖v − w(· − m)‖ = κ for all n.

In the second case w(· − mn) ⇀ 0 and therefore κ = lim
n→∞

‖v − w(· − mn)‖ ≥ ‖v‖ = 1. 2

We need the following key lemma.

Lemma 2.14 (Discreteness of PS-sequences) Let d ≥ c. If (v1
n)n, (v2

n)n ⊂ Ψd are two Palais-

Smale sequences for Ψ, then either ‖v1
n − v2

n‖ → 0 as n → ∞ or lim sup
n→∞

‖v1
n − v2

n‖ ≥ ρ(d) > 0,

where ρ(d) depends on d but not on the particular choice of Palais-Smale sequences.

This property is related to the notion of a discrete Palais-Smale attractor as considered by

Bartsch and Ding [3] for the functional Φ (under somewhat different assumptions). However, it

is not clear that a discrete Palais-Smale attractor for Φ gives rise to a corresponding one for Ψ

since m̂ might not be Lipschitz continuous. Moreover, the discreteness property stated above is

somewhat simpler and directly yields nice properties of the corresponding pseudo-gradient flow,

11



see Lemma 2.15 below.

Proof We put u1
n := m̂(v1

n) and u2
n := m̂(v2

n) for n ∈ N. Then both sequences (u1
n)n, (un)2n ⊂ Φd

are bounded Palais-Smale sequences for Φ. We distinguish two cases.

Case 1: ‖u1
n − u2

n‖p → 0 as n → ∞. By a result of Troestler [16], see also [5, Proposition 2.3],

the orthogonal projection of E on E+ is continuous in the Lp-norm, so ‖(u1
n − u2

n)+‖p → 0.

Using (S2), (S3),

‖(u1
n − u2

n)+‖2 = Φ′(u1
n)(u1

n − u2
n)+ − Φ′(u2

n)(u1
n − u2

n)+

+

∫

RN

[f(x, u1
n) − f(x, u2

n)](u1
n − u2

n)+ dx

≤ ε‖(u1
n − u2

n)+‖ +

∫

RN

(
ε(|u1

n| + |u2
n|) + Cε(|u1

n|p−1 + |u2
n|p−1)

)
|(u1

n − u2
n)+| dx

≤ (1 + C0)ε‖(u1
n − u2

n)+‖ + Dε‖(u1
n − u2

n)+‖p

for all n ≥ nε, where ε > 0 is arbitrary, Cε, Dε, nε do and C0 does not depend on the choice

of ε. Hence lim supn→∞ ‖(u1
n − u2

n)+‖2 ≤ lim supn→∞(1 + C0)ε‖(u1
n − u2

n)+‖ for each ε > 0 and

therefore ‖(u1
n − u2

n)+‖ → 0. Similarly, ‖(u1
n − u2

n)−‖ → 0, so ‖u1
n − u2

n‖ → 0 as n → ∞ and

Lemma 2.11 yields ‖v1
n − v2

n‖ = ‖m̌(u1
n) − m̌(u2

n)‖ → 0 as n → ∞.

Case 2: ‖u1
n −u2

n‖p 6→ 0 as n → ∞. Then – again by [18, Lemma 1.21] – there exists ε > 0 and

yn ∈ R
N such that, after passing to a subsequence,

(2.11)

∫

B1(yn)
(u1

n − u2
n)2 dx = max

y∈RN

∫

B1(y)
(u1

n − u2
n)2 dx ≥ ε for all n.

Using that m̂, m̌ and ∇Φ, ∇Ψ are all equivariant with respect to translations of the form

u 7→ u(· − k) with k ∈ Z
N , we may assume that (yn) is bounded in R

N . We may pass to a

subsequence such that

u1
n ⇀ u1 ∈ E, u2

n ⇀ u2 ∈ E, where u1 6= u2 by (2.11) and Φ′(u1) = Φ′(u2) = 0,

and

‖(u1
n)+‖ → α1, ‖(u2

n)+‖ → α2,

where
√

2c ≤ αi ≤ ν(d) for i = 1, 2 by Lemma 2.4(b). We first consider the case where u1 6= 0

and u2 6= 0, so that u1, u2 ∈ M and

v1 := m̌(u1) ∈ K, v2 := m̌(u2) ∈ K, v1 6= v2.

We then have

lim inf
n→∞

‖v1
n − v2

n‖ = lim inf
n→∞

∥∥∥∥
(u1

n)+

‖(u1
n)+‖ − (u2

n)+

‖(u2
n)+‖

∥∥∥∥ ≥
∥∥∥∥
(u1)+

α1
− (u2)+

α2

∥∥∥∥ = ‖β1v1 − β2v2‖,

12



where β1 := ‖(u1)+‖
α1

≥
√

2c
ν(d) and β2 := ‖(u2)+‖

α2
≥

√
2c

ν(d) . Since ‖v1‖ = ‖v2‖ = 1, an elementary

geometric argument and the inequalities above imply that

lim inf
n→∞

‖v1
n − v2

n‖ ≥ ‖β1v
1 − β2v

2‖ ≥ min{β1, β2}‖v1 − v2‖ ≥
√

2cκ

ν(d)
.

It remains to consider the case where either u1 = 0 or u2 = 0. If u2 = 0, then u1 6= 0, and

lim inf
n→∞

‖v1
n − v2

n‖ = lim inf
n→∞

∥∥∥∥
(u1

n)+

‖(u1
n)+‖ − (u2

n)+

‖(u2
n)+‖

∥∥∥∥ ≥ ‖(u1)+‖
α1

≥
√

2c

ν(d)
.

The case u1 = 0 is treated similarly. The proof is finished. 2

It is known (see e.g. [15, Lemma II.3.9]) that Ψ admits a pseudo-gradient vector field, i.e.,

there exists a Lipschitz continuous map H : S+\K → TS+ with H(w) ∈ TwS+ for all w ∈ S+\K
and

(2.12)
‖H(w)‖ < 2‖∇Ψ(w)‖

〈H(w),∇Ψ(w)〉 >
1

2
‖∇Ψ(w)‖2



 for all w ∈ S+ \ K.

Let η : G → S+ \ K be the corresponding (Ψ-decreasing) flow defined by

(2.13)





d

dt
η(t, w) = −H(η(t, w)),

η(0, w) = w,

where

G :=
{
(t, w) : w ∈ S+ \ K, T−(w) < t < T+(w)

}
⊂ R × (S+ \ K)

and T−(w) < 0, T+(w) > 0 are the maximal existence times of the trajectory t 7→ η(t, w) in

negative and positive direction. Note that Ψ is strictly decreasing along trajectories of η.

For deformation type arguments, the following lemma is crucial.

Lemma 2.15 For every w ∈ S+ the limit lim
t→T+(w)

η(t, w) exists and is a critical point of Ψ.

Proof Fix w ∈ S+ and put d := Ψ(w).

Case 1: T+(w) < ∞. For 0 ≤ s < t < T+(w) we have by (2.12) and (2.13)

‖η(t, w) − η(s,w)‖ ≤
∫ t

s

‖H(η(τ, w))‖ dτ ≤ 2
√

2

∫ t

s

√
〈H(η(τ, w)),∇Ψ(η(τ, w))〉 dτ

≤ 2
√

2(t − s)
(∫ t

s

〈H(η(τ, w)),∇Ψ(η(τ, w))〉 dτ
) 1

2

= 2
√

2(t − s)[Ψ(η(s,w)) − Ψ(η(t, w))]
1

2 ≤ 2
√

2(t − s)[Ψ(w) − c]
1

2 .
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Since T+(w) < ∞, this implies that limt→T+(w) η(t, w) exists and then it must be a critical point

of Ψ (otherwise the trajectory t 7→ η(t, w) could be continued beyond T+(w)).

Case 2: T+(w) = ∞. To prove that limt→∞ η(t, w) exists, it clearly suffices to establish the

following property:

(2.14) for every ε > 0, there exists tε > 0 with ‖η(tε, w) − η(t, w)‖ < ε for t ≥ tε.

We suppose by contradiction that (2.14) is false. Then there exists 0 < ε < 1
2ρ(d) – where ρ(d) is

given in Lemma 2.14 – and a sequence (tn)n ⊂ [0,∞) with tn → ∞ and ‖η(tn, w)−η(tn+1, w)‖ =

ε for every n. Choose the smallest t1n ∈ (tn, tn+1) such that ‖η(tn, w) − η(t1n, w)‖ = ε
3 and let

κn := mins∈[tn,t1n] ‖∇Ψ(η(s,w))‖. Then

ε

3
= ‖η(t1n, w) − η(tn, w)‖ ≤

∫ t1n

tn

‖H(η(s,w))‖ ds ≤ 2

∫ t1n

tn

‖∇Ψ(η(s,w))‖ ds

≤ 2

κn

∫ t1n

tn

‖∇Ψ(η(s,w))‖2 ds ≤ 4

κn

∫ t1n

tn

〈H(η(s,w)),∇Ψ(η(s,w))〉 ds

=
4

κn

(
Ψ(η(tn, w)) − Ψ(η(t1n, w))

)
.

Since Ψ(η(tn, w)) − Ψ(η(t1n, w)) → 0 as n → ∞, κn → 0 and there exist s1
n ∈ [tn, t1n] such

that ∇Ψ(w1
n) → 0, where w1

n := η(s1
n, w). Similarly we find a largest t2n ∈ (t1n, tn+1) for which

‖η(tn+1, w) − η(t2n, w)‖ = ε
3 and then w2

n := η(s2
n, w) satisfying ∇Ψ(w2

n) → 0. As ‖w1
n −

η(tn, w)‖ ≤ ε
3 and ‖w2

n − η(tn+1, w)‖ ≤ ε
3 , (w1

n)n, (w2
n)n are two Palais-Smale sequences such

that
ε

3
≤ ‖w1

n − w2
n‖ ≤ 2ε < ρ(d).

This however contradicts Lemma 2.14, hence (2.14) is true. So limt→∞ η(t, w) exists, and

obviously it must be a critical point of Ψ. 2

In the following, for a subset P ⊂ S+ and δ > 0, we put

Uδ(P ) := {w ∈ S+ : dist(w,P ) < δ}.

Lemma 2.16 Let d ≥ c. Then for every δ > 0 there exists ε = ε(δ) > 0 such that

(a) Ψd+ε
d−ε ∩ K = Kd and

(b) lim
t→T+(w)

Ψ(η(t, w)) < d − ε for w ∈ Ψd+ε \ Uδ(Kd).

Proof In view of (2.10), (a) is obviously satisfied for ε > 0 small enough. Without loss of

generality, we may assume Uδ(Kd) ⊂ Φd+1 and δ < ρ(d + 1). In order to find ε such that (b)

holds, we put

τ := inf{‖∇Ψ(w)‖ : w ∈ Uδ(Kd) \ U δ

2

(Kd)}
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and claim that τ > 0. Indeed, suppose by contradiction that there exists a sequence (v1
n)n ⊂

Uδ(Kd)\U δ

2

(Kd) such that ∇Ψ(v1
n) → 0. Passing to a subsequence, using the finiteness condition

(2.10) and the Z
N -invariance of Ψ, we may assume v1

n ∈ Uδ(w0) \ U δ

2

(w0) for some w0 ∈ Kd.

Let v2
n → w0. Then ∇Ψ(v2

n) → 0 and

δ

2
≤ lim sup

n→∞
‖v1

n − v2
n‖ ≤ δ < ρ(d + 1),

contrary to Lemma 2.14. Hence τ is positive. Let A := sup{‖∇Ψ(w)‖ : w ∈ Uδ(Kd) \U δ

2

(Kd)}
and choose ε < δτ2

8A
such that (a) holds. By Lemma 2.15 and (a), the only way (b) can fail is

that η(t, w) → w̃ ∈ Kd as t → T+(w) for some w ∈ Ψd+ε \ Uδ(Kd). In this case we let

t1 := sup{t ∈ [0, T+(w)) : η(t, w) 6∈ Uδ(w̃)} and t2 := inf{t ∈ (t1, T
+(w)) : η(t, w) ∈ U δ

2

(w̃)}.

Then

δ

2
= ‖η(t1, w) − η(t2, w)‖ ≤

∫ t2

t1

‖H(η(s,w))‖ ds ≤ 2

∫ t2

t1

‖∇Ψ(η(s,w))‖ ds ≤ 2A(t2 − t1),

and

Ψ(η(t2, w)) − Ψ(η(t1, w)) = −
∫ t2

t1

〈∇Ψ(η(s,w)),H(η(s,w))〉 ds

≤ −1

2

∫ t2

t1

‖∇Ψ(η(s,w))‖2 ds ≤ −1

2
τ2(t2 − t1) ≤ −δτ2

8A
.

Hence Ψ(η(t2, w)) ≤ d + ε − δτ2

8A
< d and therefore η(t, w) 6→ w̃, contrary to our assumption. 2

Proof of Theorem 1.2 (completed). For j ∈ N, we consider the family Σj of all closed and

symmetric subsets A ⊂ S+ (i.e., A = −A = A) with γ(A) ≥ j, where γ denotes the usual

Krasnoselski genus (see, e.g., [14, 15]). Moreover, we consider the nondecreasing sequence of

Lusternik-Schnirelman values for Ψ defined by

ck := inf{d ∈ R : γ(Ψd) ≥ k} (k ∈ N).

We claim:

(2.15) Kck
6= ∅ and ck < ck+1 for all k ∈ N.

To prove this, let k ∈ N and put d = ck. By Lemma 2.13, γ(Kd) = 0 or 1 (depending on

whether Kd is empty or not). By the continuity property of the genus, there exists δ > 0

such that γ(U) = γ(Kd), where U := Uδ(Kd) and δ < κ
2 . Choose ε = ε(δ) > 0 such that the

properties of Lemma 2.16 hold. Then for every w ∈ Ψd+ε \ U there exists t ∈ [0, T+(w)) with

Φ(η(t, w)) < d − ε. Hence we may define the entrance time map

(2.16) e : Ψd+ε \ U → [0,∞), e(w) := inf{t ∈ [0, T+(w)) : Ψ(η(t, w)) ≤ d − ε},

15



which satisfies e(w) < T+(w) for every w ∈ Ψd+ε \U . Since d− ε is not a critical value of Ψ by

Lemma 2.16, it is easy to see that e is a continuous (and even) map. Consequently, the map

h : Ψd+ε \ U → Ψd−ε, h(w) = η(e(w), w)

is odd and continuous. Hence γ(Ψd+ε \ U) ≤ γ(Ψd−ε) ≤ k − 1 and therefore

γ(Ψd+ε) ≤ γ(U ) + k − 1 = γ(Kd) + k − 1.

The definition of d = ck and of ck+1 implies that γ(Kd) ≥ 1 if ck+1 > ck and γ(Kd) > 1 if

ck+1 = ck. Since γ(F) = γ(Kd) ≤ 1, (2.15) follows.

It follows now from (2.15) that there is an infinite sequence (±wk) of pairs of geometrically

distinct critical points of Ψ with Ψ(wk) = ck, contrary to (2.10). The proof is finished. 2

3 A semilinear problem on a bounded domain

Let Ω ⊂ R
N be a bounded domain and consider the boundary value problem

(3.1)

{
−∆u − λu = f(x, u)
u ∈ H1

0 (Ω),

where λ ∈ R. We assume that f : Ω × R → R is continuous and satisfies

(3.2)





|f(x, u)| ≤ c(1 + |u|p−1) for some c > 0 and p ∈ (2, 2∗);

f(x, u) = o(u) uniformly in x as |u| → 0;

F (x, u)/u2 → ∞ uniformly in x as |u| → ∞;

u 7→ f(x, u)/|u| is strictly increasing on (−∞, 0) and on (0,∞).

The corresponding functional is

Φ(u) :=
1

2

∫

Ω
(|∇u|2 − λu2) dx −

∫

Ω
F (x, u) dx,

it is of class C1 in E := H1
0 (Ω) and critical points of Φ correspond to solutions of (3.1). Setting

E = E+ ⊕ E0 ⊕ E− and u = u+ + u0 + u−, where E+, E0, E− correspond to the positive, zero

and negative part of the spectrum of −∆ − λ in E, we can define an equivalent inner product

〈. , .〉 in such a way that

Φ(u) =
1

2
‖u+‖2 − 1

2
‖u−‖2 −

∫

Ω
F (x, u) dx.

Let

M :=
{
u ∈ E \ (E0 ⊕ E−) : Φ′(u)u = 0 and Φ′(u)v = 0 for all v ∈ E0 ⊕ E−}

.

Theorem 3.1 Suppose assumptions (3.2) are satisfied and let c := infu∈M Φ(u). Then c is

attained, c > 0 and if Φ(u0) = c, then u0 is a solution of (3.1).
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Proof If E0 = {0} (i.e., 0 /∈ σ(−∆ − λ)), the argument is similar to that in Theorem 1.1

but simpler because E− is finite-dimensional and the embedding E → Lq(Ω) is compact for

1 ≤ q < 2∗. Note in particular that in Proposition 2.7 this compactness replaces translation

invariance by elements of Z
N and in the final step (un) ⊂ M is a Palais-Smale sequence which

is bounded by Proposition 2.7, hence un → u after passing to a subsequence, by compactness

again.

If dimE0 > 0, the same is true except that the proofs of Lemma 2.5 and Proposition 2.7

require small modifications. We still have (2.2) but now this implies that ‖v−n ‖2 ≤ s2
n ≤ 1 −

‖v0
n‖2 − ‖v−n ‖2 (where v0

n denotes the orthogonal projection of vn on E0). If sn → s > 0

after passing to a subsequence, then (2.3) follows as before. Otherwise sn → 0, so up to a

subsequence, v−n → 0 and v0
n → v0 6= 0. Hence (2.3) follows again. In a similar way, the proof

of Proposition 2.7 is adjusted. We leave the details to the reader. 2

Theorem 3.2 Suppose f is odd in u and assumptions (3.2) are satisfied. Then (3.1) has in-

finitely many pairs of solutions ±uk such that |uk|∞ → ∞.

Proof The functional Ψ is of class C1 on S+ according to Corollary 2.10, it is obviously even

and Ψ′(w) = 0 implies m̂(w) is a critical point of Φ. We shall show Ψ satisfies the Palais-Smale

condition. Suppose Ψ(wn) is bounded and Ψ′(wn) → 0. Then Φ(m̂(wn)) is bounded, hence

so is m̂(wn) by Proposition 2.7. We may assume taking a subsequence that m̂(wn) is weakly

convergent in E and strongly convergent in Lq(Ω), 1 ≤ q < 2∗. Employing Corollary 2.10 again,

(3.3) Φ′(m̂(wn)) = 〈m̂(wn)+ − m̂(wn)−, ·〉 −
∫

Ω
f(x, m̂(wn)) · dx → 0

and we see from (3.3) that m̂(wn) → u for some u ∈ M. Hence wn → m̌(u) = u+/‖u+‖ (see

(2.7) for the definition of m̌).

Let

ck := inf
γ(A)≥k

sup
w∈A

Ψ(w),

where the infimum is taken over all closed subsets A ⊂ S+ with A = −A. Since infM Ψ > 0,

ck are well defined and positive for all k ≥ 1. Now standard arguments using the deformation

lemma, see e.g. [14, 15, 18] imply that all ck are critical values and ck → ∞ (that ck → ∞ is

seen as in [14, Proposition 9.33]). Hence, setting uk := m̂(wk), we have

ck = Ψ(wk) = Φ(uk) = Φ(uk) −
1

2
Φ′(uk)uk =

∫

Ω

(
1

2
f(x, uk) − F (x, uk)

)
dx.

By Lemma 2.1, the integrand above is nonnegative, so ck → ∞ implies |uk|∞ → ∞. 2

For continuous f , Theorem 3.2 is new even if E− = E0 = {0} (i.e., λ < λ1, where λ1 is the

first eigenvalue of −∆ in E). In this case it extends [12, Theorem 2.3], where f needs to be

differentiable and f ′
u satisfies (1.4) with θ = 1.
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4 Remarks on variants of (1.1)

Here we briefly discuss different assumptions on f and V in the nonlinear Schrödinger equation

(1.1).

I. Suppose that f is replaced by −f in (1.1) and f still satisfies (S2)-(S5). Then we can

consider −Φ instead of Φ and replace M by

M̃ :=
{
u ∈ E \ E+ : Φ′(u)u = 0 and Φ′(u)v = 0 for all v ∈ E+

}
.

If σ(−∆ + V ) ⊂ (0,∞), then E = E+, M̃ = ∅ and (1.1) has only the trivial solution u = 0.

Indeed, since F is strictly convex, so is Φ and Φ′(u) = 0 if and only if u = 0. However, it is easy

to see applying our arguments to −Φ that the following holds:

Theorem 4.1 Suppose the assumptions (S1)-(S5) are satisfied, σ(−∆ + V )∩ (−∞, 0) 6= ∅ and

let c := inf
u∈ fM(−Φ(u)). Then the conclusions of Theorems 1.1 and 1.2 hold for (1.1) with f

replaced by −f .

Note that the functional Ψ will now be defined on the unit sphere S− ⊂ E−.

II. Suppose (S2)-(S5) are satisfied, except that f need not be periodic, and (S1) is replaced

by

(S′
1) V is continuous and V (x) → ∞ as |x| → ∞.

Let

H1
V (RN ) := {u ∈ H1(RN ) :

∫

RN

V (x)u2 dx < ∞}

and consider the problem

(4.1)

{
−∆u + V (x)u = f(x, u)
u ∈ H1

V (RN ).

It is well known that the embedding H1
V (RN ) → Lp(RN ) is compact for 2 ≤ p < 2∗; therefore

σ(−∆+V ) in L2(RN ) consists of eigenvalues λn → ∞. It follows that H1
V (RN ) = E+⊕E0⊕E−,

where E0, E− are finite-dimensional, and it is easy to see that the conclusions of Theorems 3.1

and 3.2 are valid for (4.1), with the same proofs. Different conditions (including (S′
1) as a special

case) under which the above embedding is compact have been discussed in [4]. Also under these

conditions there exists a ground state solution and, for odd f , infinitely many solutions to (4.1).

The details are left to the reader.

Remark 4.2 Consider (3.1) and (4.1) with f replaced by −f and let

M :=
{
u ∈ E \ (E+ ⊕ E0) : Φ′(u)u = 0 and Φ′(u)v = 0 for all v ∈ E+ ⊕ E0

}
.
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Then the functional Ψ corresponding to −Φ is defined on the unit sphere S− ⊂ E− and dimS− =

k−1, where k is the number of negative eigenvalues of −∆−λ in H1
0 (Ω) or −∆+V in H1

V (RN )

(counted with their multiplicities). If k ≥ 1, the conclusion of Theorem 3.1 remains valid for

(3.1) and (4.1). For odd f , the number of pairs of solutions will be at least k because γ(S−) = k.

However, in this case our method only provides a somewhat unusual finite-dimensional reduction

because existence and multiplicity results under weaker assumptions on f can be obtained by

other methods. For (3.1) no growth restriction is necessary and it suffices to assume that

f(x, u) = o(u) uniformly in x as |u| → 0 and there is u > 0 such that f(x, u) ≥ λu for all x.

Then a truncation argument together with a minimax principle can be used as in [14, Theorem

9.6]. For (4.1), if one sets

ϕ(u) := min
w∈E+⊕E0

Φ(u− + w),

then the minimizer above is unique and ϕ ∈ C1(E−, R) under appropriate convexity assumptions

on F . Again, a suitable minimax principle can be used. We omit the details.

A Appendix

Here we give the proof of Lemma 2.2. We fix x ∈ R
N , u, s, v ∈ R with s ≥ −1, w := su + v 6= 0

and put

g := f(x, u)[s(
s

2
+ 1)u + (1 + s)v] + F (x, u) − F (x, u + w).

We need to show g < 0. We first consider the case u = 0. Then w = v 6= 0 by assumption,

and hence g = −F (x,w) < 0 by Lemma 2.1. We may therefore assume u 6= 0 from now on. We

define f̃ : R → R by f̃(t) = f(x,t)
t

for t 6= 0 and f̃(0) = 0. We have

g = f(x, u)[(
s

2
+ 1)w +

s

2
v] −

∫ 1

0
f(x, u + tw)w dt

= f̃(u)[uw +
su

2
(v + w)] −

∫ 1

0
f̃(u + tw)(uw + tw2) dt

= f̃(u)[uw +
1

2
(w2 − v2)] −

∫ 1

0
f̃(u + tw)(uw + tw2) dt

= −1

2
f̃(u)v2 +

∫ 1

0
h(t) dt,(A.1)

where h(t) := [f̃(u) − f̃(u + tw)](uw + tw2) for 0 ≤ t ≤ 1. We now distinguish different cases.

Case 1: uw > 0. Then uw + tw2 > 0 and f̃(u) − f̃(u + tw) < 0 for t > 0 by (S5), so that

h(t) < 0 for t > 0 and therefore g < −1
2 f̃(u)v2 ≤ 0.

Case 2: uw < 0 and |w| ≤ |u|. Then, for t ∈ (0, 1), uw+tw2 < 0 and by (S5), f̃(u)−f̃(u+tw) >

0. So h(t) < 0 as t ∈ (0, 1) and again, g < −1
2 f̃(u)v2 ≤ 0.

Case 3: uw < 0 and |w| > |u|. For 0 ≤ t ≤ − u
w

we have f̃(u) − f̃(u + tw) ≥ 0, uw + tw2 ≤ 0
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and therefore h(t) ≤ 0, hence

(A.2)

∫ 1

0
h(t) dt ≤

∫ 1

− u

w

h(t) dt

For − u
w

< t ≤ 1 we have uw + tw2 > 0 and f̃(u + tw) > 0, so that

∫ 1

− u

w

h(t) dt =

∫ 1

− u

w

[f̃(u) − f̃(u + tw)](uw + tw2) dt <

∫ 1

− u

w

f̃(u)(uw + tw2) dt

=
1

2
f̃(u)((1 + s)u + v)2.(A.3)

Next we claim that

(A.4) ((1 + s)u + v)2 ≤ v2.

To see this, we distinguish the cases w > −u > 0 and w < −u < 0. If su + v = w > −u > 0,

we have v ≥ (1 + s)u + v > 0 and thus (A.4) holds. If su + v = w < −u < 0, we have

v ≤ (1 + s)u + v < 0 and therefore (A.4) holds again. Combining (A.1), (A.2), (A.3) and (A.4),

we obtain

g = −1

2
f̃(u)v2 +

∫ 1

0
h(t) dt < 0,

as claimed. This completes the proof of Lemma 2.2.
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21


