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p ) = 1. Identify themoni polynomials of degree n in Zp[X ] with Zn
p via Xn +a1X

n−1 + · · ·+an 7→ (a1, . . . , an). In [Sko℄ the1



measure of the nth degree polynomials that satisfy ertain fatorization patterns are omputed. Firstlythe measure of the polynomials of degree n that split ompletely is a rational funtion of p. For example,the measure of the 2nd degree polynomials that split ompletely is 1
2(1+p) . Seondly, the measure of thepolynomials of degree n that are irreduible and unrami�ed is also a rational funtion of p.Assoiated to p is a ring sheme alled the Witt vetors and whih we denote by W, with the propertythat the Fp-rational points on W, W(Fp), are isomorphi to Zp. Moreover, if q = pr then W(Fq) isisomorphi to the integral losure of Zp in the unrami�ed �eld extension of degree r of Qp. (For every rthere is exatly one suh extension in a �xed algebrai losure of Qp.) If we now ompute the measureof the n'th degree polynomials with oe�ients in W(Fq) that split ompletely we get the same rationalfuntion as for Zp, but with p replaed with q. For example, the measure of the degree 2 polynomialswith oe�ients in W(Fq) that split ompletely is 1

2(1+q) .To explain this phenomenon we will de�ne the measure of ertain subshemes of Wn. This measurewill take its values in the ompletion of a loalization of the Grothendiek ring of �nite type shemes over
Fp, so that the measure of a subsheme of Wn an be represented by a fration of linear ombinations of
Fp-shemes. It will have the following property: If the measure of the sheme X ⊂ Wn is represented by
[X1]/[X2] where X1 and X2 are Fp-shemes then the Haar measure of the Fq-rational points of X equalsthe number of Fq-rational points of X1 divided by the number of Fq-rational points of X2. For example,what was said above indiates that the measure of the sheme of degree 2 polynomials with oe�ientsin W(Fp) that splits ompletely should be 1

2(1+[AFp ]) .We will de�ne this measure and ompute it in the ase of polynomials that split ompletely. This willbe done in hapter 3. We have also tried to ompute the measure of the sheme of irreduible unrami�edpolynomials, but so far without suess. As a warm-up for that problem we do the omputations inhapter 2 whih turns out to be interesting in their own right.The type of measure disussed above is alled a motivi measure, referring to the fat that the Haarmeasures for di�erent W(Fq) ould be pereived as di�erent paintings of the same motive, the measure inthe Grothendiek ring. Hene the name has the same explanation as the name of the ategory of motives,whih is a ategory through whih every Weil ohomology fators. Here the ohomology theories are thepaintings. (This is the explanation given in [Man68℄.) Also, the fat that there already is a ategoryof motives prevents us from alling the elements of our Grothendiek ring motives. We say that weompute motivi measures and motivi integrals but never that the integral is a motive. This is furtherompliated by the fat that there are several di�erent theories of motivi integration, and in some ofthem the measure takes values in the Grothendiek ring over the ategory of motives.For an overview of motivi integration together with further referenes, see [Loo00℄. The variantwhih we use in hapter 3 is developed to suit our partiular problem.Outline of the thesisIn hapter 1 we ollet some of the bakground material that is needed in order to understand this thesis,and whih we do not onsider to be well known. We introdue the notions of Grothendiek rings and
λ-rings and de�ne the partiular rings that we are interested in. We also give an introdution to a ringsheme that is alled the Witt vetors. Even though all the material in this hapter is already known westill give proofs of some of the results. Oasionally we just give a referene to a proof and sometimes wedo neither.Chapter 2 ontains the omputation of the lass of an algebrai torus in the Grothendiek ring ofvarieties over a �eld. We arrive at a losed formula expressed in terms of elements of the Burnside ringof the symmetri group Σn. We then express these elements in terms of the λ-ring struture on B(Σn),so this hapter also ontains an investigation of this partiular λ-ring.Chapter 3 is our attempt to generalize the above-mentioned Haar measure omputations to a ompu-tation of a motivi measure. 2



Notation and prerequisitesWe use the following standard notations: N = {0, 1, 2, . . .}, Z = ring of integers, Q = �eld of rationalnumbers, R = �eld of real numbers, C = �eld of omplex numbers and Fq = �eld with q elements, qa power of a prime. Also, Zp = ring of p-adi integers and Qp = �eld of p-adi numbers. To denote ageneral �eld we use the letter k.By a ring we will mean a ommutative ring with unit.When X is isomorphi to Y we write X ≃ Y . If X is de�ned to be Y we write X := Y . Finally
X ⊂ Y means that X is a, not neessarily proper, subset of Y .We use Sets, Rings, AlgA and Sch to denote the ategories of sets, rings, A-algebras and shemesrespetively.We assume knowledge of the language of shemes as presented in hapter II of [Har77℄. In partiularif A is a ring, B an A-algebra and X is a sheme over A, then X(B) is the set of points of X withoordinates in B, HomA−shemes(Spec B, X), whereas XB is the sheme over B obtained from X by baseextension, X ×A Spec B. We also frequently use the following two fats about shemes: An A-sheme
X is determined by its funtor of points X(−) : AlgA → Sets, and a funtor F : AlgA → Sets is ana�ne sheme if and only if it is representable by an A-algebra C, so that F (B) = HomA−alg(C, B) forevery A-algebra B. This also makes it easy to de�ne an a�ne ring sheme over A, whih is just a funtor
AlgA → Rings whose omposition with the forgetful funtor to Sets is representable.We use Gm and Ga to denote the multipliative and additive group shemes respetively. By a toruswe mean a group sheme that beomes isomorphi to Gm × · · · × Gm after an extension of the base.If A is a ring we use D(f) and V(I) to denote the open respetively losed subshemes of Spec Adetermined by the element f ∈ A respetively the ideal I ⊂ A. If A is graded we use D+ and V+ todenote the orresponding subshemes of ProjA.If R is a ring then R× is the group of invertible elements in R.By Σn we mean the symmetri groups, i.e., Σn is the permutation group of {1, . . . , n}.By a partition of n we mean a weakly dereasing sequene of positive integers whih sum to n. Wewrite λ ⊢ n to indiate that λ is a partition of n.AknowledgmentI would like to thank my thesis supervisor professor Torsten Ekedahl for his unfailing support.
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Chapter 1Bakground materialIn this hapter we will bring up de�nitions and theorems that are of repeated use in this thesis.1.1 Grothendiek ringsLet A be an abelian ategory. The Grothendiek group of A is then de�ned to be the free abelian groupgenerated by {[A] : A ∈ ob(A)}, subjet to the relations that if 0 → A → B → C → 0 is exat then
[B] = [A] + [C]. (It follows in partiular that [A] = [B] if A ≃ B.) We denote this group by K0(A).Let C be a non-abelian ategory. As above we an form the free abelian group generated by {[A] :
A ∈ ob(C)} and then form a quotient of this group. We will sometimes all this a Grothendiek group of
C, in analogy with the ase when C is abelian.A muh studied example of a Grothendiek group is K0(ModR) where ModR is the ategory of�nitely generated projetive modules over the ommutative ring R. This ategory is in general notabelian but we use the same de�ning relations as if it where. Sine every short exat sequene ofprojetive modules is split this means equivalently that the de�ning relations of K0(ModR) is [P1] = [P2]if P1 ≃ P2 and [P1 ⊕ P2] = [P1] + [P2]. This group an also be given the struture of a ring by de�ning
[P1]·[P2] := [P1⊗RP2]. This produt is well de�ned: If P2 ≃ P1⊕P3 then P⊗RP2 ≃ (P⊗RP1)⊕(P⊗RP3).It hene follows that [P ] · [P2] = [P ] · [P1] + [P ] · [P3] if [P2] = [P1] + [P3].By a Grothendiek ring we mean a ring onstruted in analogy with the above example, i.e., an abeliangroup where the generators are isomorphism lasses of objets in some ategory. These generators aresubjet to relations that were given above if the ategory is abelian and that we have to de�ne from aseto ase if the ategory is not abelian. The ring also has a multipliation that we have to de�ne in eahpartiular ase.If R is an abelian group and we want to de�ne a group homomorphism K0(A) → R then we oftendo this by giving a map φ : ob(A) → R. We then have to hek that φ respets the relations. In theabelian ase this means that φ(B) = φ(A)+ φ(C) if 0 → A → B → C → 0 is exat. Moreover, if we havegiven K0(A) the struture of a ring and R is a ring, then we get a ring homomorphism if φ respets themultipliation on the generators.1.1.1 The Grothendiek ring of shemes of �nite type over a �eldFix a �eld k, and let Schk be the ategory of shemes of �nite type over k. We now onstrut aGrothendiek ring over this ategory. Sine Schk is not abelian we have to de�ne the relations that weuse. 4



De�nition 1.1.1. Let k be a �eld. The Grothendiek ring of shemes of �nite type over k, K0(Schk),is the free abelian group generated by symbols [Y ], for Y ∈ Schk, with a multipliation given by
[Y ] · [Z] := [Y ×Speck Z]and subjet to the following relations:

[Y ] = [Z] if Y ≃ Z

[Y ] = [Y \ Z] + [Z] if Z is a losed subsheme of [Y ].This is well de�ned for if Z is a losed subsheme of Y then Z ×k X is a losed subsheme of Y ×k Xwith omplement (Y \ Z) ×k X .In K0(Schk) we have that 0 = [∅] and 1 = [Spec k]. As a speial ase of the seond relation weget [Spec A ⊕ B] = [Spec A] + [Spec B]. Also, every sheme Y has a unique redued losed subsheme
Yred → Y having the same underlying topologial spae as Y . From the seond relation we see that
[Y ] = [∅] + [Yred] and hene [Yred] = [Y ].De�ne L := [A1

k]. (L is for Lefshetz). Sine An
k = A1

k × · · ·×A1
k we get [An

k ] = Ln. To �nd [Pn
k ] reallthat Pn−1

k ≃ Projk[X0 . . . , Xn]/(X0) is isomorphi to a losed subsheme of Pn
k = Projk[X0 . . . , Xn] withsupport V+(X0). Sine D+(X0) ≃ Spec k[X1/X0, . . . , Xn/X0] ≃ An

k we get [Pn
k ] = Ln + [Pn−1

k ] when
n ≥ 1. When n = 0 we get [P0

k] = [Spec k] + [Projk] = 1 + 0 so the formula [Pn
k ] = Ln + Ln−1 + · · · + 1follows by indution.Remark. Perhaps a more ommon onstrution is to use instead the ategory of varieties over k, wherevariety here means a redued, separated sheme of �nite type over k. However, this onstrution givesan isomorphi ring, so we ould refer to K0(Schk) as the Grothendiek ring of varieties over k. (Someauthors even use the term variety to mean a sheme of �nite type over a �eld, see for example [Liu02℄.)We also remark that if we instead do this onstrution over the ategory of all shemes over k then weend up with the zero ring, beause if Y is any k-sheme and Z is an in�nite disjoint union of opies of Ythen [Z] = [Z] + [Y ] and hene [Y ] = 0. On the other hand, there are many open questions about thestruture of K0(Schk). For example, if char(k) 6= 0 then it is not known whether K0(Schk) is a domain.If instead char(k) = 0 then, by [Poo02℄, K0(Schk) is not a domain.We next onsider some examples of how the relations work.Exampel 1.1.2. Consider the open subsheme D(X) ⊂ Spec k[X ] = A1

k. Sine V (X) an be given thestruture of a losed subsheme isomorphi to Spec k[X ]/(X) ≃ Spec k we get
[D(X)] = [A1

k] − [V (X)] = L − [Spec k] = L − 1.On the other hand, D(X) ≃ Spec k[X ]X ≃ Spec k[X, 1/X ] ≃ Gm, so [Gm] = L − 1.Exampel 1.1.3. Let k be a �eld of harateristi di�erent from 2 and let CP be an irreduible projetiveoni with a k-rational point. (Every oni has a k-rational point if k is algebraially losed or �nite.) Wethen know that there exists an isomorphism CP ≃ P1
k so [CP ] = L+1. The situation is more ompliatedin the ase of an a�ne oni. Consider for example the unit irle CA := Spec k[X, Y ]/(X2 + Y 2 − 1).We have

L + 1 =
[
Projk[X, Y, Z]/(X2 + Y 2 − Z2)

]

=[V+(Z)] + [D+(Z)]

=
[
Projk[X, Y ]/(X2 + Y 2)

]
+ [CA],where [

Projk[X, Y ]/(X2 + Y 2)
]

= [V+(Z)] + [D+(Z)] = 0 +
[
Spec k[X ]/(X2 + 1)].5



So if −1 is a square in k then [CA] = L + 1 − [Spec k2] = L − 1 whereas if −1 is a non-square then
[CA] = L+1− [SpecK] where K = k(

√
−1). An element of the form [Spec K] where K/k is a �nite �eldextension is an example of what later will be alled an artin lass.We expand the de�nition of the lass of a sheme in K0(Schk) so that we also an talk about the lassof a onstrutible subset of a sheme (i.e., a �nite disjoint union of loally losed sets). For the followingproposition, see the introdution to [DL99℄.Proposition 1.1.4. If Y is a sheme of �nite type over k then the map Y ′ → [Y ′] from the set oflosed subshemes of Y extends uniquely to a map Z → [Z] from the set of onstrutible subsets of Y to

K0(Schk), satisfying [Z ∪ Z ′] = [Z] + [Z ′] − [Z ∩ Z ′].So if we are given a onstrutible subset Z of a �nite type sheme over k then it has a well de�nedimage [Z] ∈ K0(Schk).If k ⊂ K is a �nite �eld extension, then extension and restrition of salars give rise to maps between
K0(Schk) and K0(SchK).De�nition-Lemma 1.1.5. Let K be a �eld extension of k of �nite degree. De�ne ResK

k : K0(SchK) →
K0(Schk) by the map SchK → K0(Schk) that take the K-sheme X to the lass of X, viewed as a
k-sheme. We have that ResK

k is additive but not multipliative.Also, de�ne SceK
k : K0(Schk) → K0(SchK) by the map Schk → K0(SchK) that take the k-sheme

X to the lass of X ×k Spec K, viewed as a K-sheme. This is a ring homomorphism. (Sce is short forsalar extension.)The fat that ResK
k fails to be multipliative an be seen for example if we let k = Fp and K = Fp2 ,for then we have ResK
k

(
1 · [Spec Fp6 ]

)
= [Spec Fp6 ] whereas Fp2 ⊗Fp Fp6 = F2

p6 so
ResK

k (1) · ResK
k

(
[Spec Fp6 ]

)
= [Spec Fp2 ] · [Spec Fp6 ] = [Spec F2

p6 ] = 2 · [Spec Fp6 ].Rather then being multipliative, ResK
k has a similar property: If X is k-sheme and Z is a K-sheme thenfrom the universal property de�ning �bre produts we get that Z×K(Spec K×kX) ≃ Z×kX as k-shemes.It follows that if we apply the restrition map to [Z] · [XK ] ∈ K0(SchK) we get [Z] · [X ] ∈ K0(Schk). Wewill use this in the speial ase when X = An

k and Z = Spec L where L is a �nite dimensional K-algebra,so we state this as the following proposition.Proposition 1.1.6. If K is a �nite �eld extension of k and L is a �nite dimensional K-algebra, thenfor every n ∈ N we have
ResK

k ([Spec L] · Ln) = [Spec L] · Ln.In partiular, ResK
k (1) = [Spec K] and ResK

k (Ln) = [Spec K] · Ln.If we work over a �nite �eld then the onstrution of K0(Schk) is ompatible with point ounting, asthe following shows.De�nition-Lemma 1.1.7. For q a prime power, let Cq : K0(SchFq) → Z be the map de�ned by X 7→
|X(Fq)| : ob(SchFq) → Z. Then Cq is a ring homomorphism.Proof. Let T ∈ SchFq be arbitrary. If f : Y → Z is an isomorphism then g 7→ f ◦ g : Y (T ) →
Z(T ) is a bijetion. Moreover, sine Spec Fq is a point, |Hom(Spec Fq, Y )| = |Hom(Spec Fq, Z)| +
|Hom(Spec Fq, Y \ Z)| if Z is a losed subsheme of Y . Hene Cq is well de�ned. It is multipliativesine

(Y ×Fq Z)(T ) →Y (T ) × Z(T )

f 7→(πY ◦ f, πZ ◦ f)is a bijetion by the universal property that de�nes the �bre produt.6



Exampel 1.1.8. In example 1.1.3 we saw that if p is an odd prime and if −1 is a square in Fp, that isif p ≡ 1 (mod 4), then the lass of the irle X2 + Y 2 − 1 equals L − 1 in K0(SchFp). Hene for every qthat is a power of p, the number of Fq-points on the irle is q − 1.If instead p ≡ 3 (mod 4) then the lass of the irle in K0(SchFp) equals L + 1− [Spec Fp2 ]. Hene if
q is an odd power of p then the number of Fq-points on the irle is q + 1 whereas if q is an even powerof p then the number of Fq-points equals q − 1.1.1.2 The Burnside ringLet G be a �nite group. In this setion we onsider the Grothendiek ring of �nite G-sets. However, thisring already has a name, namely the Burnside ring of G. For more on the Burnside ring, as well as proofsof the statements below, see [Knu73℄ hapter II, 4. There are several ways to generalize the onstrutionof the Burnside ring to ertain lasses of in�nite groups. We will need to do this when G is pro�nite, i.e.,
G is the inverse limit of a direted system of �nite groups, with the inverse limit topology.Let G be a group. Reall that a G-set is a set with a G ation, and if S and T are G-sets then
f : S → T is G-equivariant if g · f(s) = f(g · s) for every s ∈ S and g ∈ G.De�nition 1.1.9. Let G be a �nite group. De�ne G−Sets to be the ategory where an objet is a �niteset with a G-ation and where a morphisms is a G-equivariant map of suh sets. We will denote themorphisms between the G-sets S and T by HomG(S, T ).More generally, if G is pro�nite we let G − Sets be the ategory of �nite sets with a ontinuous
G-ation.De�nition 1.1.10. Let G be a �nite group. The Burnside ring of G, whih we denote by B(G), is the freeabelian group generated by the symbols [S], for every G-set S, subjet to the relations [S

�∪T ] = [S] + [T ]and with a multipliation given by [S] · [T ] := [S × T ], where G ats diagonally on S × T .If G is pro�nite, B(G) is onstruted in the same way but using the �nite ontinuous G-sets.Sine every G-set an be written as a disjoint union of transitive G-sets we see that the transitivesets generates B(G), and in fat it is free on the isomorphism lasses of transitive G-sets. Moreover,every �nite transitive G-set is isomorphi to G/H where H is a (not neessarily normal) subgroup, and
G/H ≃ G/H ′ if and only if H and H ′ are onjugate subgroups. So every element of B(G) an be writtenuniquely as ∑

H∈R

aH [G/H ]where R is a system of representatives of the set of onjugay lasses of subgroups of G and where aH ∈ Zfor every H .Next, let φ : H → G be a group homomorphism. If S is a G-set we an onsider it as a H-set byde�ning h · s := φ(h)s. Also, if instead S is a H-set then we an onstrut a G-set in the following way.De�nition 1.1.11. Let φ : H → G be a group homomorphism and let S be an H-set. De�ne an equiva-lene relation on G× S by (g · φ(h), s) ∼ (g, hs) for (g, s) ∈ G× S and h ∈ H. Let G ×H S := G × S/ ∼with a G-ation given by
g′ · (g, s) := (g′g, s).We will only use this de�nition in the ase ase when H is a subgroup of G. In this ase, note thatif we hoose a set of oset representatives of G/H , R = {g1, . . . , gr}, then we an represent G ×H S as

R × S with G-ation given by g · (gi, s) = (gj, hs), where ggi = gjh for h ∈ H .This gives rise to two maps betwen Burnside rings.7



De�nition-Lemma 1.1.12. Let φ : H → G be a homomorphism of pro�nite groups. Then ResG
H : B(G) →

B(H) is the map indued by restriting the G-ation on a G-set S to a H-ation, i.e., S is onsidered asa H-set via h · s := φ(h)s for h ∈ H and s ∈ S. This map is a ring homomorphism.Also, we de�ne the indution map IndG
H : B(H) → B(G) by assoiating to the H-set S the lass of the

G-set G ×H S in B(G). This map is additive but not multipliative.1.1.3 The subring of artin lasses in K0(Schk)Given a �eld k with absolute Galois group G. In this subsetion we de�ne a map from the Burnsidering of G (where G is given the pro�nite topology) to K0(Schk). The image of this onsists of linearombinations of lasses of zero dimensional shemes. An element in the image will be alled an artinlass.We shall use the notion of a �nite separable algebra:De�nition 1.1.13. A �nite separable algebra over the �eld k is a k-algebra L with the property that if
ks is a separable losure of k then L ⊗k ks ≃ ks × · · · × ks.For a list of equivalent onditions, see [Wat79℄, page 46. The notion of a separable k-algebra is usedin the following formulation of Galois theory. For a proof see for example lo.it., page 48.Theorem 1.1.14. Fix a �eld k together with a separable losure ks. Set G := Gal(ks/k). Then we havea ontravariant equivalene between the ategory of �nite separable k-algebras and the ategory of �niteontinuous G-sets (where the morphisms in the latter ategory are G-equivariant maps of sets).This equivalene takes the k-algebra L to Homk(L, ks) with G-ation given by fσ(l) := σ ◦ f(l). Itspseudo-inverse takes the G-set S to HomG(S, ks), i.e., the G-equivariant maps of sets from S to ks,onsidered as a ring by pointwise addition and multipliation and with a k-algebra struture given by
(α · f)(s) := α · f(s).Proposition 1.1.15. Under the orrespondene in theorem 1.1.14, if L orresponds to S then the di-mension of L equals the number of elements in S. Moreover, if also L′ orresponds to S′, then L ⊗k L′orresponds to S ×S′ with diagonal G-ation and the algebra L×L′ orresponds to S

�∪S′. In partiular,separable �eld extensions of k orrespond to transitive G-sets.Proof. The �rst statement is true beause the equality dimk L = |S| is equivalent to L being separable.(See [Wat79℄). The seond statement is true sine S ×S′ ≃ Homk(L⊗k L′, ks) follows from the universalproperty de�ning the tensor produt in the ategory of k-algebras. The third statement follows sine ksontains no non-trivial idempotents so a homomorphism L×L′ → ks is zero on one of the oordinates.De�nition-Lemma 1.1.16. Let Artk : B(G) → K0(Schk) be indued by the map G −Sets → K0(Schk)that takes the G-set S to the lass of Spec HomG(S, ks). (If the �eld k is lear from the ontext then wejust write Art.) Then Artk is a ring homomorphism.Remark. It is also true that Artk is injetive, so we an think of B(G) as a subring of K0(Schk).De�nition 1.1.17. De�ne an artin lass to be an element in the image of Artk. Let ArtClk ⊂ K0(Schk),the subring of artin lasses, be the image of B(G) under Artk.We next study how Art behaves with respet to restrition of salars. The following proposition isdue to Grothendiek but we have not been able to �nd a referene so we inlude a proof for ompleteness.Proposition 1.1.18. Fix a �eld k together with a separable losure ks and let G := Gal(ks/k). Let Kbe a �nite �eld extension of k suh that K ⊂ ks. Let L be a �nite separable K-algebra and let S bethe orresponding Gal(ks/K)-set. View L as a k-algebra and let S′ be the orresponding G-set. Then
S′ ≃ G ×Gal(ks/K)S. 8



Proof. The map
φ : G ×S →S′

(σ, f) 7→σfhas the property that if τ ∈ Gal(ks/K) then φ(στ, f) = στf = φ(σ, τf). Hene it gives rise to a map of
G-sets ϕ : G ×Gal(ks/K)S → S′. If φ(σ, f) = φ(τ, g) then τ−1σf = g so sine f and g �xes K pointwisewe must have that τ−1σ ∈ Gal(ks/K). It follows that (τ, g) = (τ, τ−1σf) ∼ (ττ−1σ, f) = (σ, f) so ϕ isinjetive.Let d := [K : k]. Suppose that L has dimension n as a K-algebra, i.e., S has n elements. Then L hasdimension nd as a k-algebra so S′ has nd elements. On the other hand, by Galois theory, |G /Gal(ks/K)| =
[K : k] = d. So by the remark after de�nition 1.1.11, G ×Gal(ks/K)S also has nd elements. Sine ϕ isinjetive it follows that it also is surjetive, hene an isomorphism of G-sets.Proposition 1.1.18 has the following onsequene.Proposition 1.1.19. Let k be a �eld and ks a separable losure. De�ne G := Gal(ks/k) and let K be a�nite �eld extension of k suh that K ⊂ ks. Then the following diagram ommutes:

B
(
Gal(ks/K)

)ArtK //

IndG

Gal(ks/K)

��

K0(SchK)

ResK
k

��
B(G)

Artk // K0(Schk)1.1.4 The representation ringThe �nal Grothendiek ring that we introdue is the representation ring of a pro�nite group. We will notwork so muh in this ring; we use it only to prove fats about the Burnside ring, for example proposition2.4.10. For this reason we just de�ne the ring of Q-representation, even though the same onstrutionworks over any �eld. The representation ring is a standard tool in representation theory, see for example[Ser77℄.Let G be a �nite group. A Q-representation of G is a �nitely generated Q[G]-module, or equiva-lently a �nite dimensional Q-vetor spae with a G-ation. A morphism of suh representations is ahomomorphism of Q[G]-modules, or equivalently a G-equivariant linear map of Q-vetor spaes. The
Q-representations of G form an abelian ategory. More generally, if G is pro�nite then we de�ne a Q-representation of G in the same way as above but we also require the G-ation to fator through a �niteontinuous quotient of G.De�nition 1.1.20. The representation ring of G (over Q) is the Grothendiek group of the ategory of
Q-representations of G with a multipliation given by [V1] · [V2] := [V1 ⊗Q V2], the G-ation on the tensorprodut being given by g · (v1 ⊗ v2) = gv1 ⊗ gv2. We denote this ring with RQ(G).By Mashke's theorem, every short exat sequene of Q-representations splits, hene we an think ofthe relations just as [V1 ⊕ V2] = [V1] + [V2].As an abelian group, the rational representation ring is free on the isomorphism lasses of irreduible
Q-representations. Sine we have a bijetion between the set of suh lasses and the onjugay lasses ofyli subgroups of G, the rank of RQ(G) equals the number of onjugay lasses of yli subgroups in
G. (See [Ser77℄, 12.4 for this.)In this ring we also get a restrition map and an indution map.9



De�nition-Lemma 1.1.21. Let H → G be a group homomorphism. Then ResG
H : RQ(G) → RQ(H) isthe map indued by restriting the G-ation on the Q-vetor spae V to a H-ation on V . This map is aring homomorphism.Moreover, we de�ne a map IndG

H : Rk(H) → Rk(G) by assoiating to the Q[H ]-module V the lass ofthe Q[G]-module Q[G] ⊗Q[H] V in RQ(G). This map is additive but not multipliative.We need to know a little about how the indution map works.Proposition 1.1.22. Let H be a subgroup of G and let R = {g1, . . . , gr} be a system of oset represen-tatives for G/H. Then R is a basis for Q[G] onsidered as a right Q[H ]-module. Hene Q[G] is free ofrank |G/H |.Let V be an H-representation of dimension n. Let B be a Q-basis for V . Then a basis for Q[G]⊗Q[H]Vas a Q-vetor spae is {gi ⊗ v}gi∈R,v∈B and the G-ation is given by g · gi ⊗ v = gj ⊗ hv where ggi = gjhfor h ∈ H.Proof. Let r := |G/H | and let g1, . . . , gr be oset representatives. De�ne
ϕ : Q[G] →

r⊕

i=1

Q[H ]on the anonial basis for Q[G] by mapping g = gih, where h ∈ H , to the tuple with ith omponent
h and zeros elsewhere. Sine G is the disjoint union of its osets this is a bijetion. It is additive and
Q-linear by de�nition. Finally, if g = gih then

ϕ(gh′) = ϕ
(
gi(hh′)

)
= (0, . . . , hh′, . . . , 0) = (0, . . . , h, . . . , 0) · h′ = ϕ(g)h′for h′ ∈ H , hene ϕ is H-equivariant.To be able to use the representation ring to prove fats about the Burnside ring we will need a mapbetween them.De�nition-Lemma 1.1.23. Let G be a pro�nite group. Let S be a �nite ontinuous G-set. We anassoiate to S the permutation representation Q[S], i.e., the Q-vetor spae with basis S and G-ation onthe basis elements. This gives rise to a ring homomorphism B(G) → RQ(G) whih we denote by h.Proof. If S and T are G-sets then

Q[S
�∪T ] ≃Q[S] ⊕ Q[T ] and

Q[S × T ] ≃Q[S] ⊗Q Q[T ]as Q[G]-modules, hene this onstrution really de�nes a ring homomorphism from B(G) to RQ(G).This map is studied in [Seg71℄, where it is proved that if every element in G has prime power order,then h is surjetive. It is an isomorphism if and only if G is yli. Sine B(G) has rank equal to thenumber of onjugay lasses of subgroups of G whereas RQ(G) has rank equal to the number of onjugaylasses of yli subgroups of G, it is in general not injetive. We will later prove that the restrition of
h to a ertain subring of B(Σn) is injetive.The map h ommutes with the indution and restrition maps.Proposition 1.1.24. Let H be a subgroup of G. Then the following diagram ommutes.

B(G)
h // RQ(G)

B(H)
h //

IndG
H

OO

RQ(H)

IndG
H

OO

10



Also, if H → G is a group homomorphism then h ommutes with the restrition maps ResG
H .Proof. We prove the �rst part of the proposition. For every H-set S we have to �nd a G-equivariantisomorphism of Q-vetor spaes

ϕ : Q[G ×H S] → Q[G] ⊗Q[H] Q[S].De�ne a map φ : G×S → Q[G]⊗Q[H] Q[S] as (g, s) 7→ g⊗s. Sine φ(gh, s) = φ(g, hs) this fators through
G ×H S and by linear extension we get our map ϕ.Choose a system of oset representatives R = {g1, . . . , gr} for G/H . We have seen in 1.1.22 that
Q[G] ⊗Q[H] Q[S] has a basis given by {gi ⊗ s}gi∈R,s∈S and G-ation g · (gi ⊗ s) = (gj ⊗ hs), where
ggi = gjh, hene ϕ is G-equivariant and surjetive. Also, we have seen that G ×H S an be representedas {(gi, s)}gi∈R,s∈S so the two vetor spaes have the same dimension. Hene ϕ is an isomorphism.We next de�ne a map from the representation ring.De�nition-Lemma 1.1.25. Let G be a pro�nite group. If g is an element of G then we have a mapfrom the ategory of G-representations to Q that sends the G-representation V to χV (g). This indues aring homomorphism Cg : RQ(G) → Q.We have that if g and g′ are onjugate then Cg = Cg′ . Let R be a system of representatives of the setof onjugay lasses of G. Sine a representation is determined by its harater the following propositionis expeted.Proposition 1.1.26. With the above notation, the map ∏g∈R Cg : RQ(G) →∏

g∈R Q is injetive.We have the following ommutation property.Proposition 1.1.27. Let φ : G → H be a group homomorphism and let g ∈ G. The following diagramommutes.
RQ(H)

ResH
G //

Cφ(g)
%%JJJJJJJJJJ

RQ(G)

Cg

��
ZProof. Let V be a Q-representation of H and denote it by V ′ when we onsider it as a representation of

G via φ. Then g ats on V ′ by φ(g) so χV ′(g) = χV (φ(g)), hene Cg(ResH
G [V ]) = Cφ(g)([V ]). Sine everyelement of RQ(H) is a di�erene of lasses of H-representations the result follows.1.2 The motivi ringIn this setion we de�ne the ring in whih our motivi measure will take its values. It is obtained fromthe Grothendiek ring of varieties by a proess of loalization and ompletion. This material togetherwith referenes an be found in [Bli05℄. For basi fats about �ltrations and ompletions, see [Ser00℄,hapter II.De�nition 1.2.1. Given a �eld k, let Mk be the loalization of K0(Schk) with respet to {Ln}n∈N.De�nition 1.2.2. If x ∈ K0(Schk) we say that dimx ≤ n if x an be expressed as a linear ombinationof lasses of shemes, eah of dimension ≤ n. (By onvention, the empty sheme has dimension −∞.)We de�ne a �ltration of Mk, {Fn(Mk)}n∈Z by letting Fn(Mk) be the subgroup of Mk generated byelements of the form x · L−i with dim x − i ≤ n. Let M̂k be the ompletion of Mk with respet to this�ltration. 11



So we have homomorphisms
K0(Schk) → Mk → M̂k.It is not known whether any of these maps are injetive but we still denote by [Y ] the images in Mk and

M̂k of [Y ] ∈ K0(Schk).The following holds sine M̂k is a ompletion with respet to a �ltration.Proposition 1.2.3. A sequene {an}n∈N in M̂k is Cauhy, hene onvergent, if and only if an+1−an →
0. In partiular, the sum ∑

n∈N an is onvergent if and only if an → 0.The following is a onsequene.Proposition 1.2.4. If {an}n∈N ⊂ M̂k and if ∑n∈N an is onvergent then every rearrangement of∑
n∈N an is onvergent, and they all onverges to the same limit.We will use this result a great deal so we will not refer to it every time. The same holds for itsonsequene that if {anm}(n,m)∈N2 ⊂ M̂k then ∑(n,m) anm is well de�ned and if it onverges then itequalls ∑n

∑
m anm.Finally we have the following formula:Proposition 1.2.5. In M̂k we have the equality ∑i∈N Lni = (1 − L−n)−1 for every positive integer n.1.3 λ-ringsThe de�nition of a λ-ring is due to Grothendiek. An introdution to this subjet is given for examplein the �rst part of [AT69℄ or in [Knu73℄. We de�ne only the part of theory that we need.De�nition 1.3.1. A λ-ring is a ommutative ring R with identity together with a set of maps λn : R → R,for eah n ∈ N, suh that for all x, y ∈ R

λ0(x) = 1

λ1(x) = x

λn(x + y) =

n∑

i=0

λi(x)λn−i(y).

(1.1)A morphism of λ-rings is a homomorphism of ommutative rings, ommuting with the λ-operations.For an indeterminate t, de�ne λt(x) :=
∑

n≥0 λn(x)tn ∈ R[[t]]. The last axiom an then be expressedas the equality
λt(x + y) = λt(x)λt(y) (1.2)in R[[t]], so a λ-ring struture on R is the same thing as homomorphism λt from the additive group of Rto the multipliative group of R[[t]] full�lling the two �rst axioms of (1.1).Sometimes when de�ning λ-strutures it is more onvenient to de�ne the λn:s impliitly. One way isto �rst de�ne funtions σn, full�lling the same axioms as the λn:s (so R is a λ-ring also with respet tothe σn:s), de�ne σt(x) :=

∑
n≥0 σn(x)tn ∈ R[[t]] and then de�ne the λ-operations by

σt(x)λ−t(x) = 1. (1.3)Proposition 1.3.2. Given a olletion of maps σn on R full�lling the axioms (1.1). Then (1.3) de�nea unique λ-ring struture on R.Moreover, if f : R → R′ is a ring homomorphism ommuting with the σn:s, then it is a morphism of
λ-rings. 12



Proof. First, λ−t(x) exists uniquely sine σt(x) has onstant oe�ient equal to 1, hene is invertible,and inverses are unique when they exist. Moreover, we have that λ0(x) = σ0(x) = 1 and −σ0(x)λ1(x) +
σ1(x)λ0(x) = 0 so that λ1(x) = σ1(x) = x. The third axiom follows from its formulation as (1.2) for wehave

λ−t(x + y) =σt(x + y)−1

=σt(x)−1σt(y)−1

=λ−t(x)λ−t(y),so it follows that λt(x + y) = λt(x)λt(y).For the last part of the proposition, Sine f is a homomorphism it indues a homomorphism onthe power series rings R[[t]] → R′[[t]], ∑i≥0 ait
i 7→ ∑

i≥0 f(ai)t
i whih we also denote by f . Sine fommutes with σt we then have

σt

(
f(x)

)
· f
(
λ−t(x)

)
=f
(
σt(x)

)
· f
(
λ−t(x)

)

=f
(
σt(x) · λ−t(x)

)

=f(1)

=1 ∈ R′[[t]].Sine λ−t

(
f(x)

) is unique with this property it follows that f
(
λ−t(x)

)
= λ−t

(
f(x)

).The aim of this setion is to de�ne a λ-ring struture on B(Σn). In setion 2.4 we will then prove anexpliit formula for λi({1, . . . , n}). However, we are not able to prove this formula diretly so we have tomove it to the representation ring RQ(Σn) and prove it there instead. So we begin by desribing a λ-ringstruture on the representation ring. This struture is also one of the best-known and most studied ofall λ-rings.Remark. In the theory of λ-rings a great part enters around the onept of a speial λ-ring, whih is a
λ-ring where λn(xy) is a universal polynomial in λi(x) and λi(y) for i ≤ n, and λn(λm(x)) is a universalpolynomial in λi(x) for i ≤ mn. In that theory there is not suh a symmetry between λ and σ, for R anbe speial with respet to λ bur not with respet to σ. Of the rings we shall enounter, the representationring is speial but the Burnside ring is not.1.3.1 The λ-ring struture on the representation ringDe�ne λt : RQ(G) → RQ(G)[[t]] by assoiating to the G-representation V the power series

∑

n≥0

[∧n V ] · tnwhere ∧n V has the G-ation g · v1 ∧ · · · ∧ vn := gv1 ∧ · · · ∧ gvn. Then λt is a well de�ned homomorphismfrom the additive group of RQ(G) to the multipliative group of RQ(G)[[t]] beause for every n ∈ N wehave an isomorphism
∧n(U ⊕ V )

∼−→
n⊕

i=0

∧i U ⊗Q ∧n−i V,whih is G-equivariant. When referring to RQ(G) as a λ-ring we will always use this λ-ring struture.When G is the trivial group we see that RQ(G) is isomorphi to Z via V 7→ dimQ V . Under thisisomorphism, the orresponding λ-ring struture on Z is λn(m) =
(
m
n

).13



Next we de�ne σt by assoiating to the G-representation V the power series
∑

n≥0

[Sn(V )] · tn ∈ RQ(G)[[t]],where Sn(V ) is the symmetri n:th-power of V as a Q-vetor spae and with a G-ation given by g ·
ve1
1 · · · vej

j := (gv1)
e1 · · · (gvj)

ej , where e1 + · · · + ej = n. This is really the σ orresponding to λ that wede�ned previously, for σt(x) ·λ−t(x) = 1 follows for example from an investigation of the Koszul omplexgiven in [MD84℄, hapter V.G.1.3.2 The λ-ring struture on the Burnside ringWe are now going to de�ne a λ-ring struture on B(G). This will be used to de�ne elements in B(Σn)that will give us a very ompat way of writing the formula for [L∗] ∈ K0(Schk) that we will �nd inhapter 2. It turns out that our λ-struture on B(G) will be rather hard to work with. We will thereforeuse the homomorphism h: B(Σn) → RQ(Σn) (de�nition 1.1.23) whih will allow us to move a ruialpart of the omputations in B(Σn) to the orresponding omputations in RQ(Σn) whih will be easier tohandle. For this we will have to prove that h respets the λ-strutures.We begin by de�ning the λ-struture on B(G). We do this impliitly by �rst de�ning σt. De�ne amap that takes the G-set S to the power series
∑

n≥0

[Sn/ Σn] ∈ B(G)[[t]],where Σn ats on Sn by permuting the entries. There is an isomorphism of G-sets
(S

�∪T )n/Σn →
�⋃

i+j=n
Si/Σi × T j/ Σj ,so this de�nes a homomorphism from the additive group of B(G) to the multipliative group of B(G)[[t]]whih is our σt.We then de�ne λt by the formula

σt(x)λ−t(x) = 1for every x ∈ B(G). By proposition 1.3.2 this de�nes a λ-ring struture on B(G).Next we desribe a onnetion between B(G) and RQ(G) with the λ-strutures we have given them.Lemma 1.3.3. Let G be a �nite group and let h: B(G) → RQ(G) be the map de�ned in 1.1.23. Then his a homomorphism of λ-rings.Proof. To show that h ommutes with the λ-operations we begin by showing that it ommutes with σifor every i. For this we have to show that if T is a G-set then
Q[T i/ Σi] ≃ Si

(
Q[T ]

)as Q[G]-modules. Let T = {t1, . . . , tj} and identify T i/ Σi with the set of monomials of degree i,
{te1

1 · · · tej

j : e1 + · · · + ej = i}.Then Q[T i/ Σi] is the Q-vetor spae with this basis and G-ation given by
g · te1

1 · · · tej

j = (gt1)
e1 · · · (gtj)

ej .The same holds for Si
(
Q[T ]

). Hene h ommutes with the σn:s, so it follows from the seond part ofproposition 1.3.2 that h is a morphism of λ-rings. 14



Remark. This is not the only possible λ-struture on B(G), for example one ould have de�ned λn([S]) =
[Pn(S)], the subsets of S of ardinality i. This would almost make h a morphism of λ-rings for then
h
(
λn([S])

) is naturally isomorphi to λn
(
h([S])

) as Q-vetorspaes. However, this isomorphism is not ingeneral G-equivariant.1.4 The Witt vetorsIn this setion we de�ne a ring sheme alled the Witt vetors and denoted by W. This material isessentially in [Ser79℄ pp. 40-44 and in [Dem72℄.1.4.1 De�nitionsFix a prime p. Consider the following sequene of polynomials in Z[X0, . . . , Xn, . . . ]:
W0 =X0

W1 =Xp
0 + pX1...

Wn =

n∑

i=0

piXpn−i

i = Xpn

0 + pXpn−1

1 + · · · + pnXn...It is a fat (see [Ser79℄ for a proof) that for everyΦ ∈ Z[X, Y ] there exists a unique sequene (ϕ0, . . . , ϕn, . . . )of polynomials in Z[X0, . . . , Xn, . . . ; Y0, . . . , Yn, . . . ] suh that
Wn(ϕ0, . . . , ϕn) = Φ

(
Wn(X0, . . . , Xn), Wn(Y0, . . . , Yn)

)
n ∈ N.Note that ϕn only involves the variables X0, . . . , Xn and Y0, . . . , Yn. If Φ = X + Y we denote theassoiated ϕn with Sn and we get

S0 =X0 + Y0

S1 =X1 + Y1 +
Xp

0 + Y p
0 − (X0 + Y0)

p

p

S2 =X2 + Y2 +
1

p
(Xp

1 + Y p
1 ) − 1

p

(
X1 + Y1 +

Xp
0 + Y p

0 − (X0 + Y0)
p

p

)p

+
1

p2

(
Xp2

0 + Y p2

0 − (X0 + Y0)
p2)...If instead Φ = XY we set Pn := ϕn and we get

P0 =X0Y0

P1 =X1Y
p
0 + Xp

0Y1 + pX1Y1... 15



We are now ready to de�ne the Witt vetors as the funtor W : Rings → Rings that takes the ring Ato AN with the ring operations de�ned as follows: Let a = (a0, . . . , an, . . . ) and b = (b0, . . . , bn, . . . ) betwo elements of AN and set
a + b :=

(
S0(a,b), . . . , Sn(a,b), . . .

)

a · b :=
(
P0(a,b), . . . , Pn(a,b), . . .

)
.(Where we view polynomials Q ∈ Z[X0, . . . , Xn, . . . ; Y0, . . . , Yn, . . . ], i.e., Sn and Pn, as funtions AN ×

AN → A by de�ning Q(a,b) to be the value of Q when we replae Xi by ai and Yi by bi.) To prove that
W(A) is a ring one observes that the map

W∗(A) : W(A) → AN

a 7→
(
W0(a), . . . , Wn(a), . . .

)is a homomorphism. (It atually de�nes a morphism of ring shemes from W to AN
Z , where the latter isviewed as a ring sheme using the produt ring struture.) If p is invertible in A, W∗(A) is an isomorphism.(That is WZ[1/p] ≃ AN

Z[1/p] as ring shemes.) So if p is invertible in A then W(A) is a ring with identityelement (1, 0, 0, . . . ). But if W(A) is a ring and B is any sub- or quotient ring of A then W(B) is aring. Sine W(Z[1/p, Xα]) is a ring for any family {Xα} of indeterminates, it follows that W(Z[Xα])is a ring. But if A is an arbitrary ring it is a quotient of some polynomial ring, hene W(A) is a ring.(One an verify that W(A) is a ring diretly from the de�nitions but the proof of the assoiative and thedistributive laws beomes very ompliated.)It an be of interest to see the underlying double Hopf-algebra of W. As a funtor to Sets it is learthat W is represented by Z[Xi]
∞
i=0. We also need two omultipliations,

∆a, ∆m : Z[Xi]
∞
i=0 → Z[Xi]

∞
i=0 ⊗Z Z[Xi]

∞
i=0,one for addition and one for multipliation. If now (a0, a1, . . . ) and (b0, b1, . . . ) in W(A) orrespond to

f and g in Hom
(
Z[Xi]

∞
i=0, A

), that is f(Xi) = ai and g(Xi) = bi, then we shall have (f, g)∆a(Xi) =
Si(a0 . . . ai, b0 . . . bi). It is now lear hove to onstrut ∆a, given that we know Si for all i ∈ N. We get

∆a(X0) =X0 ⊗ 1 + 1 ⊗ X0

∆a(X1) =X1 ⊗ 1 + 1 ⊗ X1 +
(X0 ⊗ 1)p + (1 ⊗ X0)

p − (X0 ⊗ 1 + 1 ⊗ X0)
p

p...In the same way one onstruts ∆m from Pi, i ∈ N.We have seen that W is an a�ne ring sheme, but it is not of �nite type over Spec Z. However weare going to work in a Grothendiek ring generated by shemes of �nite type over Spec Fp. Now the
Sn and Pn that de�ne the ring operations in W(A) only involve variables of index ≤ n. Hene we ande�ne the Witt vetors of length n, Wn, to be the funtor that takes the ring A to An, with addition andmultipliation de�ned in the same way as for W, that is if a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) ∈ Anthen

a + b :=
(
S0(a,b), . . . , Sn−1(a,b)

)

a · b :=
(
P0(a,b), . . . , Pn−1(a,b)

)
.This sheme is of �nite type over Spec Z . One has that W1 is the identity funtor, that is W1(A) = A.We also have that the ring W(A) is the inverse limit of the rings Wn(A) as n → ∞. We de�ne theprojetion map πn : W → Wn by

(a0, a1, . . . ) 7→ (a0, . . . , an−1) : W(A) → Wn(A)16



for every ring A.We will be interested in the Fq-rational points on W. This is beause W(Fp) = Zp and if q = pnthen W(Fq) is the integral losure of Zp in the unique unrami�ed degree n extension of Qp. (In a �xedalgebrai losure of Qp.) See [Ser79℄ for a proof.1.4.2 Operations on WDe�ne V: W → W by V a = (0, a0, . . . , an−1, . . . ). V is short for "Vershiebung". It is not a morphismof ring shemes but it is additive. To see this we use the same observation as above; it su�es to proveadditivity for W(A) when p is invertible in A, and in this ase W∗(A) is an isomorphism so it su�es toshow that W∗(A) transforms V to an additive map. But this is true sine
Wn(V a) =

n∑

i=1

piapn−i

i−1 = p

n∑

i=1

pi−1ap(n−1)−(i−1)

i−1 = pWn−1(a)so W∗ transforms V(A) to the map AN → AN that sends (w0, w1, . . . ) to (0, pw0, pw1, . . . ) and this islearly additive. Note that W/ Vn W ≃ Wn. This identi�ation will be used a lot.Next we de�ne the map r : W1 → W by a 7→ (a, 0, . . . , 0, . . . ). Sine
Wn

(
r(a)

)
= (a, ap, . . . , apn

, . . . )we see that W∗ transforms r(A) to the map A → AN that sends w to (w, wp, wp2

, . . . ). This map ismultipliative so when p is invertible in A it follows that r(A) is multipliative. As above this impliesthat r is multipliative.Finally over Fp (where p is the prime that was �xed in the beginning of this setion) we de�ne theFrobenius morphism F: WFp → WFp by Fa = (ap
0, . . . , a

p
n, . . . ). It is a morphism of ring shemes. Thenext proposition will be very useful to us.Proposition 1.4.1. If A is an Fp-algebra and a,b ∈ W(A) the following formulas hold:

V Fa = FV a = pa

a · Vb = V(Fa · b).Proof. For the �rst formula see [Ser79℄. For the seond formula it su�es to prove this when A is perfetso we may assume that b = F c. The �rst formula, the distributive law and the fat that F is a ringhomomorphism then give
V(Fa · b) = V(Fa · F c) = V F(a · c) = p(a · c) = a · (pc) = a · V F c = a · V b.Corollary 1.4.2. If A is an Fp-algebra, a,b ∈ W(A) and i, j ∈ N then

Vi a · Vj b = Vi+j
(
Fj a · Fi b

)
.Exampel 1.4.3. Let b := (b0, . . . , bn) ∈ Wn+1(A). We then have

(0, . . . , 0, a) · b = Vn r a · b = Vn(r a · Fn b) = (0, . . . , 0, a · bpn

0 )Corollary 1.4.4. Let ∆ ∈ W(A)[X1, . . . , Xn] be a form of degree d. If a1, . . . ,an ∈ W(A) then
∆(V a1, . . . , V an) = Fd−1 Vd ∆(a1, . . . ,an)17



Proof. Let ∆ = Xd
1 . The formula is true for d = 1. Suppose that it is true for d− 1. Then with the helpof orollary 1.4.2,

∆(V a) =(V a)(V a)d−1

=(V a)(Fd−2 Vd−1 ad−1)

=Vd(Fd−1 a · Fd−1 ad−1)

=Fd−1 Vd ∆(a).Next, let d and n be arbitrary and suppose the formula is proved for every Xd1

1 · · ·Xdn−1

n−1 with
d1 + · · · + dn−1 ≤ d. Let ∆ = Xd1

1 · · ·Xdn
n with d1 + · · · + dn = d. Then

∆(V a1, . . . , V an) =(V a1)
d1

n∏

i=2

(V ai)
di

=Fd1−1 Vd1 ad1
1 · Fd−d1−1 Vd−d1

n∏

i=2

adi

i .Sine F and V ommutes we an use orollary 1.4.2 on this expression to get
Vd

(
Fd−1 ad1

1 · Fd−1
n∏

i=2

adi

i

)and beause F is a homomorphism this equals Fd−1 Vd ∆(a1, . . . ,an).Now, for an arbitrary degree d form, the result follows sine V is additive.1.5 Misellaneous results1.5.1 The norm mapDe�nition 1.5.1. Let A → B be an algebra suh that B is free of rank n as an A-module. If f : B → B isa morphism of A-modules, de�ne det f to be the determinant of the matrix of f in some basis. Sine thedeterminant is multipliative this de�nition is independent of the hoie of basis. If x ∈ B, let fx : B → Bbe the map y 7→ xy. De�ne NB/A : B → A as x 7→ det fx.It follows from the de�nition that NB/A is multipliative and NB/A(1) = 1. Hene if x ∈ B× then
NB/A(x) ∈ A×. On the other hand if NB/A(x) ∈ A×, i.e., if det fx ∈ A×, then by Cramer's rule(whih holds over every ommutative ring) we have that fx is invertible so there exists y ∈ B suh that
1 = fx(y) = xy, hene x ∈ B×. We therefore have B× = N−1

B/A(A×).1.5.2 Equalizers in the ategory of shemesDe�nition 1.5.2. If f, g : X → Y are morphisms of shemes, de�ne the equalizer Equal(f, g) → X of fand g as the sheme that represents the funtor Equal(f, g)(S) = {x ∈ X(S) : f(x) = g(x)}.To see that this sheme exists let Z be the �bre produt
Z

p //

q

��

X

g

��
X

f // Y18



De�ne Equal(f, g) as the �bre produt
Equal(f, g)

s //

��

X

∆

��
Z

(p,q) // X × XBy the universal property of the �bre produt, s : Equal(f, g) → X has the properties that fs = gs andif x : S → X is a map of shemes suh that fx = gx then there exists a unique map x′ : S → Equal(f, g)suh that x = sx′. This implies that Equal(f, g)(S) = {x ∈ X(S) : f(x) = g(x)} for every S.1.5.3 DesentSometimes one an prove that a morphism of shemes has some property by extending the salars andsee that the property holds for the extension. We ollet here some results of this kind that will be ofuse to us.Lemma 1.5.3. Let f : X → Y be a morphism of A-shemes, A a ring. If A → B is faithfully �at and
fB : XB → YB is an isomorphism, then f is an isomorphism.See [Gro71℄, page 213 for this.Lemma 1.5.4. Let A → B be a �at ring homomorphism and let X be a noetherian A-sheme. Then theanonial homomorphism OX(X) ⊗A B → OXB (XB) is an isomorphism.For a proof of this see [Liu02℄, page 85.Lemma 1.5.5. Let A → B be a faithfully �at ring homomorphism and let X be a noetherian A-sheme.If XB is a�ne then X is a�ne.Proof. The identity map OX(X) → OX(X) gives a morphism of shemes X → SpecOX(X) whih is anisomorphism if and only if X is a�ne. By extension of salars we get the morphism XB → SpecOX(X)×A

Spec B = Spec(OX(X)⊗A B) = SpecOXB (XB) and sine XB is a�ne this is an isomorphism. Hene bylemma 1.5.3 the original morphism is an isomorphism.
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Chapter 2The lass of a torus in K0(Schk)Given a �eld k and a separable k-algebra L of dimension n we de�ne an a�ne group sheme L∗ by letting
L∗(M) = (L⊗k M)× for every k-algebra M . If we extend the base of L∗ to a separable losure of k then
L∗ beomes isomorphi to Gn

m as an algebrai group, hene L∗ is a torus. The objetive of this hapter isto ompute, for an arbitrary separable k-algebra L, the lass of L∗ in K0(Schk) in terms of the Lefshetzlass L and artin lasses.2.1 De�nitionsDe�nition-Lemma 2.1.1. Let K be a ring and let L be a free K-algebra of �nite rank. We de�ne thea�ne ring sheme L̃ over K as the funtor L̃ : AlgK → Rings given by
L̃(M) = L ⊗K M for every K-algebra Mand if f : M → N is morphism of K-algebras then L̃(f) : L̃(M) → L̃(N) maps l ⊗ m ∈ L ⊗K M to

l ⊗ f(m) ∈ L ⊗k N .Proof. We have to show that this funtor really de�nes an a�ne ring sheme, i.e., that its ompositionwith the forgetful funtor to Sets is representable. This is true beause if M is a K-algebra then we haveanonial isomorphims of K-modules
L ⊗K M ≃ L∨∨ ⊗K M ≃ HomK(L∨, M) ≃ HomK−alg(S(L∨), M

)
,hene the omposition is represented by S(L∨). Therefore L̃ is an a�ne ring sheme. (This ringsheme struture an also be given by oalgebra strutures ∆a, ∆m : S(L∨) → S(L∨) ⊗ S(L∨) suh that

HomK−alg(S(L∨), M
)
≃ L ⊗k M as K-algebras. Then ∆a is de�ned by f 7→ 1 ⊗ f + f ⊗ 1 when f ∈ L∨and ∆m is de�ned by the map L∨ → L∨ ⊗ L∨ that is the omposition of the dual of the multipliation

L ⊗ L → L with the inverse of the anonial isomorphism L∨ ⊗ L∨ → (L ⊗ L)∨. However, we will notuse this.)The proof shows that as a sheme, L̃ = Spec S(L∨). Hene L̃ is the vetor bundle assoiated to thefree OSpecK-module L.Note in partiular that K̃ is the ring sheme with additive group (Ga)K and multipliative group
(Gm)K . Also, if we hoose a K-basis of L we get an isomorphism S(L∨) ≃ K[X1, . . . , Xn], where n is therank of L. Hene L̃ ≃ An

K as shemes.We next de�ne the objet that we are interested in.20



De�nition 2.1.2. Let K be a ring and let L be a free K-algebra of �nite rank. With L̃ as above, de�ne
L∗ as the subfuntor given by L∗(M) = (L ⊗K M)×. We will see that this is an a�ne group sheme.We now give another onstrution of L∗, whih will be useful to us. It also shows that L∗ really is asheme. For this we use the general de�nition of the norm map. (A disussion of the norm map an befound in setion 1.5.1.)Sine L is assumed to be free of rank n over K the norm map NL/K : L → K is de�ned. Also, if Mis a K-algebra then L ⊗K M is free of rank n as an M -module so NL⊗KM/M is de�ned. Hene we ande�ne a map of K-shemes ÑL/K : L̃ → K̃ by

ÑL/K(M) := NL⊗KM/M for every k-algebra M .This is funtorial, if f : M → N is a morphism of K-algebras then
L̃(M)

eNL/K //

eL(f)

��

K̃(M)

eK(f)

��
L̃(N) // K̃(N)ommutes. In fat, NL⊗M/M (l ⊗ m) = NL/K(l) · mn so the upper half of the diagram maps l ⊗ m to

NL/K(l) ·f(mn) whereas the lower half maps it to NL/K(l) ·f(m)n. Therefore ÑL/K really is a morphismof shemes. Note however that it is not a morphism of ring shemes.We now laim that L∗ = Ñ
−1

L/K(Gm) as subfuntors of L̃. We need a fat from setion 1.5.1: If S is afree R-algebra of �nite rank then N−1
S/R(R×) = S×. Using this we see that for every K-algebra M ,

Ñ
−1

L/K(Gm)(M) ={x ∈ L̃(M) : ÑL/K(M)(x) ∈ Gm(M)}
={x ∈ L ⊗K M : NL⊗KM/M (x) ∈ M×}
=(L ⊗K M)×

=L∗(M).Therefore L∗ = Ñ
−1

L/K(Gm) as funtors. In partiular, L∗ is an open a�ne subsheme of L̃.We will be interested in the ase when K is a �eld. However we will also be fored to onsider thease when K is a �nite produt of �elds. The following proposition shows that the latter ase an alwaysbe redued to the former.Proposition 2.1.3. Let K =
∏

v∈I Kv where the Kv:s are �elds and I is �nite. Let L be a free K-algebraof rank n. Then L must be of the form ∏v∈I Lv where, for eah v, Lv is a Kv-algebra of dimension n. Foreah v, onstrut the Kv-ring sheme L̃v and view this as a K-sheme. Then as K-shemes, L̃ ≃ �∪v L̃v.Moreover, let L∗
v be onstruted with respet to the Kv-algebra struture on Lv. Then L∗ is isomorphito �∪v L∗

v as shemes over K.Proof. Sine S(L∨) ≃ S
(∏

v∈I L∨
v ) ≃∏v∈I S(L∨

v ) as K-algebras we have
L̃ = Spec S(L∨) ≃ Spec

∏

v∈I

S(L∨
v ) ≃ �∪v∈I Spec S(L∨

v ) =
�∪v∈I L̃vas K-shemes. 21



To prove that L∗ ≃ �∪(Lv/Kv)
∗ as K-shemes we prove that their funtors of points are equal. Let Mbe a K-algebra. Then M =

∏
v Mv where Mv is a Kv-algebra (possibly equal to zero). An M -point on

�∪(Lv/Kv)
∗ is a morphism f :

�∪v Spec Mv → �∪(Lv/Kv)
∗ that ommutes with the strutural morphismsto �∪v Spec Kv. Sine the image of Spec Mv under the strutural morphism is ontained in Spec Kv wemust have f(Spec Mv) ⊂ L∗

v. Therefore f is determined by a set of morphisms {fv : Spec Mv → L∗
v}v∈Iwhere fi is a morphism of Kv-shemes. Hene we an identify f with an element in ∏L∗

v(Mv). The sameis true for an M -point on L∗ for
L∗(M) =

((∏
Lv

)
⊗Q

Kv

(∏
Mv

))×

≃
∏

(Lv ⊗Kv Mv)
× =

∏
L∗

v(Mv).So by Yoneda's lemma, L∗ ≃ �∪L∗
v. (This method ould also have been used to prove the �rst part of theproposition, but there we knew the algebra representing L̃ and that gave a shorter proof.)2.2 A reursive omputation of [L∗]Now that we have de�ned the sheme that we are interested in we an start the omputations. Let k bea �eld and let L be a separable k-algebra of dimension n. We are going to show that [L∗] ∈ K0(Schk) isa polynomial in L with oe�ients that are artin lasses. We begin with the simplest ase.Theorem 2.2.1. If L = kn then [L∗] = (L − 1)n ∈ K0(Schk).Proof. We have L̃(M) = Mn and hene L∗(M) = (Mn)× = (M×)n. We therefore have an isomorphism

L∗(M) → Gn
m(M) for every M and this isomorphism is funtorial in M , hene L∗ is isomorphi to Gn

mas shemes so [L∗] = (L − 1)n ∈ K0(Schk).We next onsider a simple example whih still will take up some spae sine we work it out in detail.Exampel 2.2.2. Let K be a separable extension �eld of k of degree 2. We an think of K as k[T ]/
(
f(T )

)where f(T ) = T 2 + αT + β is irreduible, in partiular β 6= 0. If char k 6= 2 we may and will assume that
α = 0.We an now desribe K̃. We havẽ

K(M) = K ⊗k M ≃ M [T ]/
(
f(T )

)for every k-algebra M . A basis for the M -algebra K̃(M) is {1, t} where t is the lass of T modulo f(T ).If m1, m2 ∈ M then (m1 + m2t) · t = −m2β + (m1 − m2α)t, hene
N eK(M)/M (m1 + m2t) = m2

1 − m1m2α + m2
2β.So if we identify K̃ with Spec k[X1, X2] then

K∗ = D
(
X2

1 − αX1X2 + βX2
2

)
⊂ K̃,for we have

K∗(M) =
(
M [T ]/

(
f(T )

))×

={m1 + m2t : N eK(M)/M (m1 + m2t) ∈ M×}
={(m1, m2) ∈ M2 : m2

1 − αm1m2 + βm2
2 ∈ M×}

=D
(
X2

1 − αX1X2 + βX2
2

)
(M).22



for every k-algebra M . We now have an expliit equation desribing K∗. To ompute [K∗] we �rstompute its omplement in K̃, X := Spec k[X1, X2]/(X2
1 − αX1X2 + βX2

2 ) ⊂ K̃. With respet to X wehave
V
(
X2

)
≃ Spec k[X1]/(X2

1 ) ⊂ X,hene [V(X2

)]
= 1. And

D
(
X2

)
≃Spec

k[X1, X2, 1/X2](
X2

1 − αX1X2 + βX2
2

)

=Spec
k[X1, X2, 1/X2](

(X1/X2)2 − αX1/X2 + β
)

≃Spec
k[Y1, Y2, 1/Y2](
Y 2

1 − αY1 + β
) .Now if char k 6= 2 then α = 0 so Y 2

1 −αY1 +β = f(Y1) and this is also true if char k = 2 for then −α = α.Hene the above expression equals
Spec k[Y2, 1/Y2] ×k Spec Kso [D(X2

)]
= (L − 1) · [Spec K].We therefore have [X ] = 1 + (L − 1) · [Spec K], hene

[K∗] =
[
K̃
]
− [X ] = L2 − [Spec K] · L + [Spec K] − 1.Next we look at an example whih suggests what the answer should be in a more ompliated ase.Exampel 2.2.3. Suppose that k = Fq and L = Fq3 . We know that
L ⊗k Fqm =

{
F3

qm if 3 | m

Fq3m if 3 ∤ m.It follows that
L∗(Fqm) =

{
(F×

qm)3 if 3 | m

(Fq3m)× if 3 ∤ m,and therefore
∣∣L∗(Fqm)

∣∣ =

{
(qm − 1)3 if 3 | m

q3m − 1 if 3 ∤ m.Sine ∣∣Spec Fq3(Fqm)
∣∣ = 3 if 3 | m and 0 otherwise, we have reason to believe that

[L∗] = L3 − [Spec Fq3 ] · L2 + [Spec Fq3 ] · L − 1.In example 2.3.6 we will see that this formula is true.Our �rst result onerning the general problem will be the following.Theorem 2.2.4. Let L be a separable k-algebra of dimension n. Then there exist artin lasses
a1, . . . , an ∈ ArtClk ⊂ K0(Schk) suh that

[L∗] = Ln + a1Ln−1 + a2Ln−2 + · · · + an ∈ K0(Schk).Moreover, there exists an algorithm for omputing the ai:s.23



The rest of this setion will be devoted to proving this theorem by desribing the algorithm. Thiswill be done in the following way. We �rst desribe subshemes of L̃, denoted L1, . . . , Ln suh that
[L∗] = Ln −∑n

i=1[Li]. We are then redued to ompute [Li] for every i. For every i we �nd a subsheme
Ti of Li and an OTi -algebra of dimension less that n suh that Li ≃ (L′

i/Ti)
∗ as k-shemes. We showthat Ti is the spetrum of a produt of �elds, ∏Kv, and that (L′

i/Ti)
∗ ≃ �∪(Lv/Kv)

∗ where Lv is a Kv-algebra of dimension less than n. We are then in the situation we started with, only that the algebras havedimension less then n, for having omputed [(Lv/Kv)
∗] ∈ K0(SchKv ) we an �nd [(Lv/Kv)

∗] ∈ K0(Schk)with the help of proposition 1.1.6.We will now give the de�nitions of Li, Ti and L′
i. To prove that Li ≃ (L′

i/Ti)
∗ we will onstrut amap between them. It will then su�e to show that this map is an isomorphism when L = kn. For thisreason we give an expliit desription of Li, Ti and L′

i in this ase.Desription of LiThe norm map NL/k fators as
L → End(L) → k

x 7→ fx 7→ det fxwhere fx is the map that takes y to xy and det fx is the determinant of the matrix of fx in some basisfor L. Consider the subsheme of endomorphisms of orank i in Ẽnd(L). To be more preise we wantthe M -rational points of this sheme to be the elements of Ẽnd(L)(M) of orank i, i.e., the loally losedsubsheme
V(n − i + 1-minors) \ V(n − i-minors) ⊂ Spec k[Xij ]1≤i,j≤n ≃ Ẽnd(L).Here a j-minor is the determinant of a j × j submatrix of (Xij)1≤i,j≤n.Let Li be the inverse image in L̃ of the subsheme of endomorphism of orank i in Ẽnd(L). Then

L∗ = L0 and L̃ =
�∪0≤i≤n Li, hene [L∗] = Ln −∑n

i=1[Li].We next desribe Li when L = kn. First we hoose the standard basis for L = kn. When we then let
k[X1, . . . , Xn] represent L̃ we see that, under the isomorphism L̃(M) = Mn ≃ Homk-alg(k[X1, . . . , Xn], M),the element (mj)

n
j=1 orresponds to Xj 7→ mj : k[X1, . . . , Xn] → M . We use this to identify the M -rational points on Li:We have that Xj 7→ mj ∈ L̃(M) is in Li(M) if and only if Xij 7→ δijXi 7→ δijmi is in

(
V(n − i + 1-minors) \ V(n − i-minors))(M),i.e., if it maps all n− i+1-minors to 0 but maps some n− i minor to an invertible number. Now the map

Xij 7→ δijXi maps every minor to zero, exept those oming from sub-matries on the diagonal. Theymap to ∏j∈S Xj where
S ∈ Pl := the l-subsets of {1, . . . , n}for some l. Hene the ondition for (Xj 7→ mj) ∈ L̃(M) to lie in Li(M) is that ∏j∈S mj = 0 for every

S ∈ Pn−i+1 and that there exists an S ∈ Pn−i suh that ∏j∈S mj ∈ M×. This means that there is an
S ∈ Pn−i suh that mj ∈ M× if j ∈ S. Moreover if j′ /∈ S then mj′

∏
j∈S mj = 0 so mj′ = 0.For S ∈ Pi, let eS be the n-tuple of zeros and ones suh that

(eS)j =

{
0 j ∈ S

1 j 6∈ S
. (2.1)24



Then the M -points on Li an be given as
Li(M) =

�⋃
S∈Pi

(eSMn)×. (2.2)for every k-algebra M .We also give a desription of Li as a loally ringed spae: Let I := (
∏

j∈S Xj)S∈Pn−i+1 and onsiderthe losed subsheme V(I) of L̃, i.e., V(I) = Spec k[X1, . . . , Xn]/I. Let PS :=
∏

j∈S Xj . Then
Li =

⋃

S∈Pn−i

D(PS) ⊂ V(I),where we have identi�ed PS with its image in k[X1, . . . , Xn]/I. So Li is an open subsheme of V(I),hene a loally losed subsheme of L̃.Desription of TiFirst we onstrut the subsheme Idem L̃ = {e ∈ L̃ : e2 = e} ⊂ L̃, by whih we mean the sheme suhthat for every k-algebra M , (Idem L̃)(M) = {e ∈ L̃(M) : e2 = e}. It is not obvious that this shemeexists but we an show that it does by using the more general onstrution of an equalizer. (It is astandard fat that equalizers exist in the ategory of k-shemes, see setion 1.5.2 for the de�nition of anequalizer and a onstrution.) Let x2 be the omposition L̃
∆−→ L̃ ×k L̃ → L̃ and let x : L̃ → L̃ be theidentity. Then Idem L̃ = Equal(x, x2).Now we �x an i and de�ne the sheme of onneted omponents of Li, denoted Ti, as Li ∩ Idem L̃,i.e., the �bre produt

Ti
//

��

Li

��
Idem L̃ // L̃

(2.3)It follows that if M is a k-algebra then Ti(M) = {m ∈ Li(M) : m2 = m}.We next desribe Ti when L = kn. We have Ti(M) = {m = (m1, . . . , mn) ∈ Li(M) : m2 = m} soif M has no non-trivial idempotents then mj = 0 or 1 for eah j, hene the above desription of Li(M)gives that Ti(M) = {eS}S∈Pi where eS was de�ned in (2.1).Let
RS :=

k[X1, . . . , Xn]

(Xj)j∈S · (Xj − 1)j /∈S
.We laim that Ti is represented by ∏S∈Pi

RS . For this, de�ne
T ′

i := Spec
∏

S∈Pi

RS .We have to show that Ti = T ′
i as subshemes of L̃, i.e., that Ti(M) = T ′

i (M) for every k-algebra M . Butby the onstrution of Ti as a �bre produt it is a losed subsheme of Li, whih in turn is a loally losedsubsheme of L̃. Sine L̃ is noetherian it follows that Ti is noetherian. Also T ′
i is noetherian, hene toshow that Ti = T ′

i it su�es to show that Ti(M) = T ′
i (M) for every noetherian k-algebra M .We �rst show that the equality is true if M has no non-trivial idempotents and for this we just have toshow that T ′

i (M) = {eS}S∈Pi sine we just notied that this holds for Ti(M). Let fT ∈ ∏S∈Pi
RS havethe entry with index T equal to 1 and zeros in the other entries. An element of Homk-alg(∏S∈Pi
RS , M)25



has to send idempotents to idempotents and (1, . . . , 1) to 1, hene every fT maps to 0 or 1, and∑T∈Pi
fTmaps to 1. Moreover if T 6= T ′ then fT fT ′ maps to 0 so at least one of fT and fT ′ maps to 0. Hene all

fT are mapped to 0 exept one whih are mapped to 1. So
T ′

i (M) = Homk-alg( ∏
S∈Pi

RS , M

)
= {φS : φS(fT ) = 1 if T = S, and 0 otherwise}S∈Pi .To see whih element in L̃(M) that orresponds to φS we have to ompose the map k[X1, . . . , Xn] →∏

S∈Pi
RS with φS . The �rst map sends Xj to

∑

T∈Pi:j /∈T

fTand this in turn is mapped by φS to 0 if j ∈ S and to 1 if j /∈ S. Hene φS = eS as elements of L̃(M) so
T ′

i (M) = {eS}S∈Pi = Ti(M) in this ase.For the general ase we may assume that M has only a �nite number of orthogonal idempotents, forif x1, . . . , xl+1 ∈ M are orthogonal idempotents and xl+1 =
∑l

j=1 hjxj then if we multiply with xl+1 weget x2
l+1 = 0, i.e., xl+1 = 0, hene if there are an in�nite number of orthogonal idempotents then M is notnoetherian. Therefore we an write M =

∏l
j=1 Mj where eah Mj ontains no non-trivial idempotents.Sine the produt is �nite we have Spec M =

�∪1≤j≤l Spec Mj (by this we mean open disjoint union, i.e.,the oprodut in the ategory of shemes). So by the de�ning universal property of oproduts,
Ti(M) = Hom(

�∪ Spec Mj , Ti) =

l∏

j=1

Hom(Spec Mj, Ti) =

l∏

j=1

Ti(Mj).By the same reasoning, T ′
i (M) =

∏l
j=1 T ′

i (Mj) so Ti(M) = T ′
i (M). (Note that sine we know that T ′

iis a�ne we don't need to know that the produt is �nite in this ase, for T ′
i = Spec R so T ′

i (
∏

Mj) =
Homk-alg(R,

∏
Mj) =

∏
Homk-alg(R, Mj) =

∏
T ′

i (Mj) for any produt. So if we knew a priori that Tiwhere a�ne then the above proof would be shorter.)Hene we have identi�ed Ti as a losed subsheme of L̃ = Spec k[X1, . . . , Xn], namely we have
Ti = Spec

∏

S∈Pi

RS =

�⋃
S∈Pi

Spec RS . (2.4)Let TS := Spec RS . We see that RS ≃ k for every S so TS ≃ Spec k, hene Ti onsists of (ni) points.We have now seen that Ti is a�ne when L = kn. It follows that this is true also in the general ase.Proposition 2.2.5. Let L be a separable k-algebra and onstrut Ti with respet to L. Then Ti is a�ne.In fat it is the spetrum of a produt of �elds.Proof. Let ks be a separable losure of k. Sine L is separable, L ⊗k ks ≃ (ks)n. Hene, by the above,
(Ti)ks is the spetrum of (ks)

(
n
i

). In partiular it is a�ne. From lemma 1.5.5 it follows that Ti isa�ne and then that it is the spetrum of a separable algebra. Sine we also have that (Ti)ks is zerodimensional it follows that dimTi = 0 (dimension is invariant under base extension from a �eld to analgebrai extension.). Hene Ti is the spetrum of a produt of �elds. (Alternatively, if we use that anysheme whose underlying topologial spae has �nite ardinality and dimension 0 is a�ne then we don'tneed lemma 1.5.5.) 26



Desription of L′

iNext let π : Ti → Spec k be the strutural morphism. From proposition 2.2.5 we know that Ti is a�ne,say Ti = Spec R. The OTi -algebra π∗L is then isomorphi to L ⊗k R, hene it is free and we an de�ne
π̃∗L. The dual of the R-module π∗L is L∨⊗k R. Sine the symmetri algebra ommutes with base hangewe then have S

(
(π∗L)∨

)
≃ S(L∨) ⊗k R. It follows that π̃∗L isomorphi to L̃ ×k Ti as a Ti-sheme.We have a map e : Ti → L̃ ×k Ti, given by the identity map Ti → Ti together with the map Ti → L̃from the de�nition of Ti (see (2.3)). The map e is a global setion of π̃∗L → Ti. It hene orresponds toa global setion e ∈ (π∗L)(Ti).Lemma 2.2.6. The global setion e ∈ (π∗L)(Ti) is an idempotent.Proof. e was de�ned via the isomorphism (L̃×k Ti

)
(Ti) ≃ L̃(Ti)×Ti(Ti) and under this identi�ation, theseond oordinate of e is an idempotent by the de�nition of Ti and the �rst oordinate is an idempotent ifit lies in (Idem L̃)(Ti) ⊂ L̃(Ti). But this follows sine it fators through Idem L̃ by its de�nition (2.3).De�ne L′

i := e(π∗L). Then sine e2 = e, we have that L′
i is a free OTi -algebra so the norm map

L′
i → OTi is de�ned. Hene we an form (L′

i)
∗ and we will see that (L′

i)
∗ and Li are isomorphi asshemes over Spec k. For this we de�ne a map betwen them: First note that sine L′

i ⊂ π∗L we have amap L̃′
i → π̃∗L. Sine (L′

i)
∗ ⊂ L̃′

i this gives a map (L′
i)

∗ → π̃∗L = L̃ ×k Ti. Composing this with themap from the �bre produt to L̃ gives the map g : (L′
i)

∗ → L̃. We will see that g is an isomorphism onto
Li ⊂ L̃.We now desribe L′

i when L = kn. First we identify π∗L. Let πS be the restrition of π to TS .Then πS is an isomorphism (orresponding to the isomorphism of k-algebras k → RS) so (π∗
SL)(TS) ≃

L(Spec k) = L. Therefore (π∗L)(TS) = (π∗
SL)(TS) = L so if I ⊂ Pi then

(π∗L)

(
�⋃

S∈I
TS

)
=
∏

S∈I

L.Then to �nd e it su�es to �nd its omponent over TS , eS ∈ (π∗L)(TS). The anonial map TS → TS × L̃orresponds to the map RS ⊗k k[X1, . . . , Xn] → RS that maps Xi to its image in RS , namely 0 if i ∈ Sand 1 otherwise. Next RS ⊗k k[X1, . . . , Xn] is anonially isomorphi to S
(
(π∗

SL)(TS)∨
)

= S(L∨) under
Xi 7→ fi, where fi maps the i:th basis element of L to 1 and the rest to zero. Hene Ti → Ti × L̃orresponds to the element in L∨∨ that maps fi to 0 if i ∈ S and to 1 otherwise. This in turn orrespondsto eS ∈ L = (π∗

SL)(TS) with j:th oordinate 0 if j ∈ S and 1 otherwise. Therefore e = (eS) ∈ ∏S∈Pi
L.Now by de�nition L′

i = e(π∗L), hene
L′

i

(
�⋃

S∈I
TS

)
=
∏

S∈I

(eS · L).with Ti-algebra struture given by the map ∏S∈Pi
RS → ∏

S∈Pi
(eS · L). To �nd (L′

i)
∗ we �rst have tounderstand NL′

i/OTi
. This an be done on eah onneted omponent, L′

i|TS is just the k-algebra eS · L.Then by the same reasoning as when we determined L∗, the M -points on (L′
i|TS )∗ is (L′

i|TS )∗(M) =
{eS ·m : m = (m1, . . . , mn) ∈ Mn,

∏
j /∈S mj ∈ M×} = (eSMn)×.

Li is isomorphi to (L′

i
/Ti)

∗To prove that the map g de�ned previously really is an isomorphism we use lemma 1.5.3 whih says thatto hek that a morphism of shemes is an isomorphism it su�es to hek this after an extension of thebase. 27



Now sine L is separable there exists an extension �eld K ⊃ k suh that L ⊗k K ≃ Kn. Beause oflemma 1.5.3 we only have to prove that g is an isomorphism over Spec K. We may therefore assume that
L = kn. In this ase we have identi�ed expliitly the rational points of (L′

i)
∗ and Li and we now showthat they are isomorphi via g:Lemma 2.2.7. If L = kn then g : (L′

i)
∗ → Li is an isomorphism.Proof. From (2.2) we know the M -points on Li for every k-algebra M . De�ne a map ρ : Li → Ti by

eS · (m1, . . . , mn) ∈ Li(M) 7→ eS ∈ Ti(M). Sine Li =
�∪ ρ−1TS and (L′

i)
∗ =

�∪(L′
i|TS )∗ =

�∪(eSL)∗ itsu�es to show that g|(eSL)∗ : (eSL)∗ → ρ−1TS is an isomorphism for every S. We have already seenwhat the M -points on these shemes are, they have both been identi�ed with (eSMn)×. It remains tosee that g|(eSL)∗(M) gives this identi�ation.Now g|(eSL)∗(M) �rst maps eS · m to (eS , eS · m) ∈ (Ti × L̃)(M), then this is mapped to eS · m ∈
ρ−1(TS)(M) ⊂ Li(M). Hene g(M) is a bijetion and it follows from Yoneda's lemma that g is anisomorphism.From this it now follows:Proposition 2.2.8. For any �nite dimensional k-algebra L, we have that Li is isomorphi to (L′

i/Ti)
∗as k-shemes via the map g de�ned above.Proposition 2.2.9. Let L be a separable k-algebra of dimension n. Then

[L∗] = Ln −
n−1∑

j=1

[
(L′

i/Ti)
∗
]
− 1 ∈ K0(Schk).Proof of theorem 2.2.4Above we were given k and L and we then onstruted the k-shemes L̃ and L∗. To be able to omputethe lass of L∗ we onstruted Li for i = 1, . . . , n. Moreover we onstruted a k-sheme Ti and a Ti-algebra L′

i. We then onstruted (L′
i)

∗, whih we also write as (L′
i/Ti)

∗ to indiate that we onstrutit with respet to the Ti-algebra struture of L′
i. We showed that it is isomorphi to Li as a k-sheme.When performing the indution we will have to repeat the above a number of times. We therefore usethe notation Ti(L/k), L′

i(L/k) and Li(L/k) and we have Li(L/k) ≃ (L′
i(L/k)/Ti(L/k))∗. To go furtherwe will need a lemma.Lemma 2.2.10. Let L be a separable k-algebra. Then Ti(L/k) =

�∪Spec Kv where Kv are �elds. And
L′

i(L/k) =
∏

Lv where Lv is a Kv-algebra. Moreover, (L′
i(L/k)/Ti(L/k))∗ is isomorphi to �∪(Lv/Kv)

∗as k-shemes.Proof. By proposition 2.2.5, Ti is a produt of �elds. It follows that L′
i is a produt of algebras over thepoints of Ti. The last part was dealt with in proposition 2.1.3.This enables us to prove what we want.Proof, theorem 2.2.4. We use indution over n, the dimension of L. For every �eld k the theorem istrivially true for n = 1 for then [L∗] = [k∗] = L − 1. Suppose that for every �eld k and every separable

k-algebra L of dimension n′ < n we have
[L∗] = Ln′

+ a1Ln′−1 + · · · + an′ ∈ K0(Schk).where as ∈ ArtClk. 28



Fix a separable k-algebra L of dimension n. By proposition 2.2.9 we have
[L∗] = Ln −

n−1∑

j=1

[
(L′

i/Ti)
∗
]
− 1 ∈ K0(Schk).And by lemma 2.2.10 (L′

i/Ti)
∗ ≃ �∪v(Li,v/Ki,v)

∗. Here the dimension of Li,v/Ki,v is n− i. We postponethe proof of this to orollary 2.3.6 beause we will then be able to see it very easily. But assuming thisresult for the moment, the indution hypothesis gives
[(Li,v/Ki,v)

∗] = Ln−i + a1Ln−i−1 + · · · + an−i ∈ K0(SchKv), (2.5)with aj ∈ ArtClKv , hene by proposition 1.1.6
[(Li,v/Ki,v)

∗] = [Spec Ki−v] · Ln−i + a′
1Ln−i−1 + · · · + a′

n−i ∈ K0(Schk),with a′
j ∈ ArtClk. Summation over every (i, v) gives that the formula holds for the k-algebra L.A formula for the ai:sTo get more ompat formulas we use the following notation.De�nition 2.2.11. Let K be a �nite separable k-algebra and L a �nite separable K-algebra, so K =∏

v Kv where Kv are separable extension �elds of k and L =
∏

v Lv where Lv is a separable Kv-algebra.Let
Li(L/K) :=

�∪v Li(Lv/Kv).Furthermore, de�ne
Ti(L/K) :=

�∪v Ti(Lv/Kv)and de�ne L′
i(L/K) to be the Ti(L/K)-algebra whih is L′

i(Lv/Kv) on Ti(Lv/Kv).With this notation proposition 2.2.8 and lemma 2.2.10 generalizes to:Lemma 2.2.12. Let K be a �nite separable k-algebra and L a �nite separable K-algebra, so K =
∏

v Kvwhere Kv are separable extension �elds of k and L =
∏

v Lv where Lv is a separable Kv-algebra. Then
Ti(L/K) =

�∪Spec Kv where Kv are �elds. And L′
i(L/K) =

∏
Lv where Lv is a Kv-algebra. Moreover,

Li(L/K) ≃
(
L′

i(L/K)/Ti(L/K)
)∗as k-shemes.Proposition 2.2.8 may now be expressed as Li(L/k) ≃

(
L′

i(L/k)/Ti(L/k)
)∗. In the next step we there-fore want to ompute Li2

(
L′

i1
(L/k)/Ti1(L/k)

) for 1 ≤ i2 ≤ n−i1. We then onstrut Ti2

(
L′

i1
(L/k)/Ti1(L/k)

)and its algebra L′
i2

(
L′

i1(L/k)/Ti1(L/k)
) and we use that Li2

(
L′

i1(L/k)/Ti1(L/k)
) is isomorphi to

(
L′

i2

(
L′

i1(L/k)/Ti1(L/k)
)
/Ti2

(
L′

i1(L/k)/Ti1(L/k)
))∗

.For the rest of this setion, we �x a �eld k and a separable k-algebra L of dimension n. We nowintrodue some notation whih allows us to write up a rather ompat formula for [L∗]: Given a sequeneof positive integers i1, . . . , iq, onstrut the algebra L′
i1/Ti1 = L′

i1(L/k)/Ti1(L/k). De�ne the algebra
L′

i2,i1
/Ti2,i1 as L′

i2
(L′

i1
/Ti1)/Ti2(L

′
i1

/Ti1) and de�ne indutively L′
ir+1,...,i1

/Tir+1,...,i1 as
L′

ir+1
(L′

ir ,...,i1/Tir,...,i1)/Tir+1(L
′
ir,...,i1/Tir,...,i1).With this notation we have the following generalization of proposition 2.2.9.29



Lemma 2.2.13. Let α = (ir, . . . , i1) where ∑r
s=1 is = i. Then

[
(L′

α/Tα)∗
]

= [Tα] · Ln−i −
n−i−1∑

j=1

[
(L′

j,α/Tj,α)∗
]
− [Tα] ∈ K0(Schk).Proof. From the de�nitions of Tα and L′

α, and from lemma 2.2.10 it follows that Tα =
�∪v Spec Kv where

Kv are �elds and L′
α =

∏
v Lv where Lv is a Kv-algebra, where v is in some �nite index set I. It thenfollows from lemma 2.2.10 that (L′

α/Tα)∗ is equal to the disjoint union of the (Lv/Kv)
∗. Now by orollary2.3.11, whih we will prove later, L′

α has rank n − i as a Tα-module, hene Lv has dimension n − i as a
Kv-vetor spae for every v. It follows that

(Lv/Kv)
∗ = Ln−i −

n−i−1∑

j=1

[(L′
j(Lv/Kv)/Tj(Lv/Kv))

∗] − 1 ∈ K0(SchKv)and hene by proposition 1.1.6
(Lv/Kv)

∗ = [Spec Kv] · Ln−i −
n−i−1∑

j=1

[(L′
j(Lv/Kv)/Tj(Lv/Kv))

∗] − [Spec Kv] ∈ K0(Schk). (2.6)Sine [Tα] =
∑

v[Spec Kv] ∈ K0(Schk) and
(L′

j,α/Tj,α)∗ =
(
L′

j(L
′
α/Tα)/Tj(L

′
α/Tα)

)∗

=
( �⋃

v
L′

j(Lv/Kv)/Tj(Lv/Kv)
)∗

=

�⋃
v

(
L′

j(Lv/Kv)/Tj(Lv/Kv)
)∗

,so [(L′
j,α/Tj,α)∗

]
=
∑

v

[(
L′

j(Lv/Kv)/Tj(Lv/Kv)
)∗], the result follows when we add together the equa-tions (2.6) for every v.We are now ready to prove the main theorem of this setion.Theorem 2.2.14. With the same notation as above we have

[L∗] = Ln + a1Ln−1 + · · · + an−1L + anwhere
aj =

j∑

r=1

(−1)r
∑

(i1,...,ir):
i1+···+ir=j

is≥1

[Tir ,...,i1 ]for j = 1, . . . , n.Proof. We evaluate [L∗] in n steps, using lemma 2.2.13. In the �rst step we write
[(L/k)∗] = Ln − [(L′

1/T1)
∗] − · · · − [(L′

n−1/Tn−1)
∗] − 1so we get the ontribution Ln − 1. We then evaluate the remaining terms, using lemma 2.2.13, so instep two we get a sum onsisting of two parts. First, [(L′

i2,i1/Ti2,i1)
∗
] shows up with sign (−1)2, for30



2 ≤ i2 + i1 < n (we always have is ≥ 1). This is the terms that we will take are of in step three. Theseond part of the sum ontributes to our formula. It onsists of the terms
(−1)2

(
−[Tj] · Ln−j + [Tj ]

)
1 ≤ j < n.Continuing in this way we �nd that in step r we get a sum onsisting of two parts. Firstly, every term ofthe form [

(L′
ir ,...,i1

/Tir,...,i1)
∗
] with oe�ient (−1)r, for ∑r

s=1 is < n. This part is taken are of in step
r + 1. And seondly we get a ontribution to our formula onsisting of

(−1)r
(
−[Tir−1,...,i1 ] · Ln−j + [Tir−1,...,i1 ]

)
r − 1 ≤ j < nfor every r − 1-tuple (ir−1, . . . , i1) suh that ∑r−1

s=1 is = j. This proess ends in step n.Colleting terms we now see that if 1 ≤ j ≤ n − 1 then the oe�ient in front of Ln−j beomes
j+1∑

r=2

(−1)r+1
∑

(i1,...,ir−1):
i1+···+ir−1=j

is≥1

[Tir−1,...,i1 ].This equals
j∑

r=1

(−1)r
∑

(i1,...,ir):
i1+···+ir=j

is≥1

[Tir,...,i1 ]. (2.7)The onstant oe�ient beomes
−1 +

n∑

r=2

(−1)r
n−1∑

j=r−1

∑

(i1,...,ir−1):
i1+···+ir−1=j

is≥1

[Tir−1,...,i1 ].Sine [Tn] = 1 it follows that if 1 ≤∑r−1
s=1 is = j < n then Tn−j,ir−1,...,i1 = Tir−1,...,i1 so this beomes

−1 +

n∑

r=2

(−1)r
∑

(i1,...,ir):
i1+···+ir=n

is≥1

[Tir,...,i1 ].Hene formula (2.7) holds also when j = n.2.3 The formula for [L∗] expressed using the Burnside ringIn the preeding setion we only gave expliit desriptions of Li and Ti when L is a produt of opies of
k. In this setion we want to desribe them when L is an arbitrary separable k-algebra. The strategy forthis will be to lift them to ks where we know what they look like. Then we have to be able to go bakagain and this will be ahieved with the help of some Galois theory.Galois theoryTo be able to make expliit omputations using the results in the previous setion we use the followingformulation of Galois theory. 31



De�nition 2.3.1. Let k ⊂ K be Galois and G := Gal(K/k). Then the ategory of separable K − G-algebras is de�ned to be the ategory whose objets is separable K-algebras L together with a G-ation onthe underlying ring suh that K → L is G-equivariant, and whose morphisms are G-equivariant maps of
K-algebras.Theorem 2.3.2. Fix a �eld k together with a separable losure ks. Set G := Gal(ks/k). Then wehave an equivalene between the ategory of �nite separable k-algebras and the ategory of �nite separable
ks − G-algebras.This equivalene takes the k-algebra L to L⊗k ks with G-ation σ(l⊗α) := l⊗σ(α). Its pseudo-inversetakes the ks − G-algebra U to UG.If we have a G-set T and a k-algebra A then the following lemma gives a riterion for whether Torresponds to A under the Galois orrespondene or theorem 1.1.14.Lemma 2.3.3. Fix a �eld k with absolute Galois group G.Let A be a separable �nite dimensional k-algebra and give A⊗k ks the struture of a k −G-algebra by
σ(x ⊗ α) := x ⊗ σ(α).Let T be a G-set and de�ne a k − G-algebra as ∏t∈T kset with G-ation

σ
(∑

t∈T

αtet

)
:=
∑

t∈T

σ(αt)eσ(t). (2.8)Then T orresponds to A under the Galois orrespondene of theorem 1.1.14, (i.e., Artk[T ] = [Spec A])if and only if A ⊗k ks and ∏t∈T kset are isomorphi as k − G-algebras.Proof. We have that ∏t∈T kset is isomorphi to HomSets(T, ks) as k − G algebras, the G-ation on thelatter being given by (σf)(t) = σ ◦ f ◦ σ−1(t). And with this G-ation we get HomSets(T, ks)G =
HomG(T, ks). It follows from theorem 2.3.2 that if A ⊗k ks ≃∏t∈T kset then

A ≃ (A ⊗k ks)G ≃
(
∏

t∈T

kset

)G

≃ HomG(T, ks),whih means that A orresponds to T .On the other hand, suppose that A ≃ HomG(T, ks). Then A ⊗k ks ≃ HomSets(T, ks)G ⊗k ks as
k − G-algebras, and the latter is isomorphi to HomSets(T, ks) by theorem 2.3.2.ComputationsWe now go bak to our problem, we have a separable n-dimensional k-algebra L and we want to desribe
Ti and L′

i.De�nition 2.3.4. If S is a set then we de�ne Pi(S) to be the set of subsets of S of ardinality i. If
S = {1, . . . , n} then we sometimes (as in the preeding setion) write Pi or P(n)

i .If S is a G-set for a group G then Pi(S) is a G-set beause if T ⊂ S then gT ⊂ S has the sameardinality as T for every g ∈ G.Lemma 2.3.5. Let S be the G-set orresponding to L under the equivalene of theorem 1.1.14, i.e.,
S = Homk(L, ks) so Artk[S] = [Spec L]. Consider Pi(S) as a G-set with the ation indued from that on
S. Then Ti orresponds to Pi(S), so

Ti ≃ Spec HomG(Pi(S), ks).Moreover, L′
i orresponds to the set {(s, T ) ∈ S ×Pi(S) : s /∈ T } (with omponentwise G-ation) and the

Ti-algebra struture on L′
i orresponds to the projetion (s, T ) 7→ T .32



Proof. Let Ti = Spec Ri. From (2.4) we know that Ri ⊗k ks ≃ (ks)

(
n
i

). For every T ∈ Pi(S), let e′Tbe the tuple indexed by Pi(S) with 1 in position T and zeros elsewhere. Sine Pi(S) has (ni) elementswe have Ri ⊗k ks ≃ ∏
T∈Pi(S) kse′T . If we now an prove that G ats on this as σ(

∑
T∈Pi(S) αT e′T ) =∑

T∈Pi(S) σ(αT )e′σ(T ), i.e., with ation (2.8), then by lemma 2.3.3, Ri orresponds to Pi(S).To prove that the G-ation on∏T∈Pi(S) kse′T is ation (2.8) we use that we know the ation on L⊗kks,for S orresponds to L by de�nition, hene by lemma 2.3.3 we have that L⊗ ks ≃∏s∈S kses with ation(2.8). So if eT :=
∑

s/∈T es then σ(eT ) = eσT . We now look at the element e in the Ri-algebra π∗L thatwe de�ned previously. Its image in the Ri⊗ks-algebra π∗L⊗ks is e⊗1, hene σ(e⊗1) = e⊗σ(1) = e⊗1.But at the same time, π∗L⊗k ks = (π⊗1)∗(L⊗k ks) as an Ri ⊗ks-algebra and the latter we have alreadyomputed, it beomes ∏T∈Pi(S)(L⊗ ks)e′T when we identify Ri ⊗ ks with ∏T∈Pi(S) kse′T . We also knowwhat e ⊗ 1 is in this algebra,
e ⊗ 1 =

∑

T∈Pi(S)

eT e′T . (2.9)Hene σ(e ⊗ 1) =
∑

T∈Pi(S) eσT σ(e′T ). Sine σ(e ⊗ 1) = e ⊗ 1 we must have ∑T∈Pi(S) eT e′T =∑
T∈Pi(S) eσT σ(e′T ), hene σ(e′T ) = e′σ(T ).Now when we know the G-ation on e′T we an also determine whih G-set orresponds to π∗L. Forwe have

π∗L ⊗k ks =
∏

T∈Pi(S)

(
∏

s∈S

kses

)
e′T ≃

∏

(s,T )∈S×Pi(S)

kse′s,T (2.10)asRi =
∏

T∈Pi(S) kse′T -algebras, where es,T has 1 in position (s, T ) and zeros elsewhere. Here∑T (
∑

s αs,T es)e
′
Torresponds to∑(s,T ) αs,T e′s,T and σ

(∑
T (
∑

s αs,T es)e
′
T

)
=
∑

T (
∑

s σ(αs,T )eσs)e
′
σT so σ(

∑
(s,T ) αs,T e′s,T ) =∑

(s,T ) σ(αs,T )e′σs,σT . Therefore π∗L orresponds to S × Pi(S) with omponentwise G-ation. (This analso be seen more diretly, π∗L ≃ L ⊗k Ri, hene orresponds to S × Pi(S).)Using this together with (2.9) we get
L′

i ⊗k ks = (e ⊗ 1)(π∗L ⊗k ks)

=

(
∑

T∈Pi(S)

eT e′T

)
·
∏

T∈Pi(S)

(
∏

s∈S

kses

)
e′T

=
∏

T∈Pi(S)

(
eT

∏

s∈S

kses

)
e′T

=
∏

T∈Pi(S)

(
∏

s∈S\T

kses

)
e′T .Under the orrespondene in (2.10) this beomes

∏

(s,T )∈S×Pi(S)
s/∈T

kse′s,Twith the same G-ation as that in (2.10). Hene L′
i orresponds to {(s, T ) ∈ S × Pi(S) : s /∈ T }.Finally, the Ti⊗kks-algebra struture on L′

i⊗kks is given by∑T∈Pi(S) e′T 7→∑
T∈Pi(S)(

∑
s∈S\T es)e

′
Tand this omes from the projetion map (s, T ) 7→ T .Corollary 2.3.6. L′

i has rank n − i as a Ti-module.33



Proof. The G-set {(s, T ) ∈ S × Pi(S) : s /∈ T } has ardinality (n − i)
(
n
i

), hene by proposition 1.1.15 L′
ihas dimension (n− i)

(
n
i

) as a k-algebra. Sine the dimension of the oordinate ring of Ti is (ni) the resultfollows.Exampel 2.3.7. Let k = Fq and L = Fq3 . We then have
[L∗] = L3 − [L1] − [L2] − 1 ∈ K0(Schk). (2.11)Let G := Gal(k/k) and let σ be G:s topologial generator, the Frobenius automorphism α 7→ αq. Then Lorresponds to the G-set S := Homk(L, k) = {1, σ, σ2}, where we have identi�ed σ with its restrition to

L. We have P1(S) = {{1}, {σ}, {σ2}} ≃ S. Therefore T1 ≃ Spec L. Moreover, L′
1 orresponds to

{
(1, {σ}), (1, {σ2}), (σ, {1}), (σ, {σ2}), (σ2, {1}), (σ2, {σ})

}and this is the union of two sets on whih G ats transitive, hene it is isomorphi to S
�∪S as a G-set.So L′

1 ≃ L2. Therefore [(L′
1/T1)

∗] = (L − 1)2 ∈ K0(SchL) and hene by proposition 1.1.6
[L1] = ResL

k

(
(L − 1)2

)
= [Spec L] · (L − 1)2 ∈ K0(Schk)Next P2(S) = {{1, σ}, {σ, σ2}, {1, σ2}}. Sine G ats transitively on this we have P2(S) ≃ S so

T2 ≃ Spec L. Moreover, L′
2 orresponds to

{
(σ2, {1, σ}), (1, {σ, σ2}), (σ, {1, σ2})

}and this is also isomorphi to S so L′
2 ≃ L. Therefore [(L′

2/T2)
∗] = L − 1 ∈ K0(SchL) and hene

[L2] = ResL
k (L − 1) = [Spec L] · (L − 1) ∈ K0(Schk)Putting this into (2.11) now give that

[L∗] = L3 − [Spec L] · L2 + [Spec L] · L − 1 ∈ K0(Schk),in agreement with example 2.2.3.We now want to prove a more general version of lemma 2.3.5.Lemma 2.3.8. Let k be a �eld and K a separable k-algebra of dimension t. Let L be a separable K-algebra of rank n. Let G := Gal(ks/k) and let K and L orrespond to T respetively S as G-sets. Write
T = Homk(K, ks) = {τ1, . . . , τt}. The map S → T orresponding to K → L is n : 1. Let Sj be theinverse image of τj . We use the notation Ti(L/K) and L′

i(L/K) from de�nition 2.2.11. Then Ti(L/K)orresponds to the G-set
t⋃

j=1

Pi(Sj)and L′
i(L/K) orresponds to {

(f, U) ∈
t⋃

j=1

Sj × Pi(Sj) : f /∈ U

}Proof. Suppose �rst thatK is a �eld. Aording to lemma 2.3.5, Ti(L/K) orresponds to Pi

(
HomK(L, ks)

)as a Gal(ks/K)-set. Hene by proposition 1.1.18 it orresponds to
G ×Gal(ks/K)Pi

(
HomK(L, ks)

)34



as a G-set, with the G-ation given in that proposition. Sine we assumed that K is a �eld we may write Tas {τ1|K , . . . , τt|K}, where τj ∈ G, and this in turn an be identi�ed with a system of oset representativesof G /Gal(ks/K). We hene want to show that we have an isomorphism of G-sets,
φ : T × Pi

(
HomK(L, ks)

)
→

t⋃

j=1

Pi(Sj)To onstrut this, de�ne φ as (τj |K , U) 7→ τjU . (Note that τj have to be �xed for every j, if we replaeit with τ ′
j suh that τj |K = τ ′

j |K we may get another φ.) First φ is well de�ned beause every element in
U �xes K, so every element of τjU is in Sj , the inverse image of τj |K in S. Hene φ(τj |K , U) ∈ Pi(Sj).It is also G-equivariant, beause if σ ∈ G is suh that στj = τlτ

′, where τ ′ ∈ Gal(ks/K), then
φ
(
σ(τj |K , U)

)
= φ(τl, τ

′U) = τlτ
′Uand

σφ(τj |K , U) = σ(τjU) = στjU = τlτ
′U.Next φ is injetive: If φ(τj |K , U) = φ(τl|K , U ′) then they both must be in Pi(Sj), so l = j. Hene

τjU = τjU
′ and sine τj is an isomorphism, U = U ′. So φ is an injetive morphism between two G-setsof ardinality t ·

(
n
i

), hene an isomorphism.For the general ase when K is a separable k-algebra of dimension t, note that we an identify T with
�⋃

v
Homk(Kv, k

s)where K =
∏

v Kv, by sending f ∈ Homk(Kv0 , k
s) to (αv) 7→ f(αv0) ∈ T . Denote the map S → T by π.We have that Ti(L/K) =

�∪v Ti(Lv/Kv). This orresponds to the G-set
�⋃

v

⋃

τ∈Homk(Kv ,ks)

Pi(π
−1τ) =

⋃

τ∈T

Pi(π
−1τ) =

t⋃

j=1

Pi(Sj)As for L′
i(L/K), assume �rst that K is a �eld. As a Gal(ks/K)-set, L′

i(L/K) orresponds to
M := {(f, U) ∈ HomK(L, ks) × Pi

(
HomK(L, ks)

)
: f /∈ U},hene it orresponds to T × M as a G-set. De�ne a map

T × M →
{

(f, U) ∈
t⋃

j=1

Sj × Pi(Sj) : f /∈ U

}by (
τj |K , (f, U)

)
7→ (τj ◦ f, τjU).As above one shows that this is an isomorphism of G-sets. The ase when K is an arbitrary separable

k-algebra is handled in the same way as Ti.A formula for [L∗] in terms of the G-set orresponding to LWe are now ready to give a losed formula for [L∗]. To express this we �rst generalize de�nition 2.3.4.De�nition 2.3.9. Given a G-set S of ardinality n and a positive integer r. Moreover, let (i1, . . . , ir)be an r-tuple of positive integers suh that i1 + · · · + ir ≤ n. Then Pir,...,i1(S) is the G-set of r-tuples
(Sr, . . . , S1) where Sj is a subset of S of ardinality ij and the Sj :s are pairwise disjoint. In partiular
Pi(S) has the same meaning as before (up to isomorphism).35



Note that if i1 + · · ·+ ir = j then Pir ,...,i1(S) ≃ Pir ,...,i1,n−j(S) and also that if (i′1, . . . , i
′
r) is a permu-tation of (i1, . . . , ir) then Pi′r ,...,i′1

(S) ≃ Pir ,...,i1(S). In partiular, if λ is the partition of n orrespondingto (ir, . . . , i1, n − j) then Pir,...,i1,n−j(S) ≃ Pλ(S).For the rest of this setion, we �x a �eld k and a separable k-algebra L of dimension n suh that
L orresponds to the G-set S. Reall the notation used at the end of the preeding setion: Given asequene of positive integers i1, . . . , iq. Construt the algebra L′

i1
/Ti1 = L′

i1
(L/k)/Ti1(L/k). De�ne thealgebra L′

i2,i1
/Ti2,i1 as L′

i2
(L′

i1
/Ti1)/Ti2(L

′
i1

/Ti1) and de�ne indutively L′
ir+1,...,i1

/Tir+1,...,i1 as
L′

ir+1
(L′

ir ,...,i1/Tir,...,i1)/Tir+1(L
′
ir,...,i1/Tir,...,i1).Proposition 2.3.10. Let α = (ir, . . . , i1) be an r-tuple of positive integers suh that i1 + · · · + ir = iwhere 1 ≤ i ≤ n. The algebra L′

α/Tα in the ategory of k-algebras orresponds to the G-sets
{(

s, (Sr, . . . , S1)
)
∈ S × Pα(S) : s /∈ ∪r

t=1St

}and Pα(S) together with the projetion morphism.Proof. By lemma 2.3.5 the proposition holds for r = 1. Suppose the formula has been proved for
r. We have Tir+1,ir ,...,i1 = Tir+1(L

′
ir ,...,i1/Tir,...,i1). By the indution hypothesis and lemma 2.3.8 thisorresponds to ⋃

(Sr,...,S1)∈Pir,...,i1(S)

Pir+1

({(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

})whih is isomorphi to
⋃

(Sr ,...,S1)∈Pir,...,i1 (S)

{(
{s1, . . . , sir+1}, Sr, . . . , S1

)
: sit /∈ ∪r

t=1St

}and this in turn is equal to Pir+1,ir ,...,i1(S).And L′
ir+1,ir ,...,i1

orresponds to the pairs (f, U) in
⋃

(Sr,...,S1)∈Pir,...,i1 (S)

{(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

}
× Pir+1

({(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

})suh that f /∈ U . This is isomorphi to
⋃

(Sr,...,S1)∈Pir,...,i1 (S)

{(
s, (Sr+1, Sr, . . . , S1)

)
∈ S × Pir+1,ir,...,i1(S) : s /∈ ∪r+1

t=1St

}whih equals {(
s, (Sr+1, Sr, . . . , S1)

)
∈ S × Pir+1,...,i1(S) : s /∈ ∪r+1

t=1St

}
.Sine the projetion is n − i : 1 we have the following.Corollary 2.3.11. L′

α has rank n − i as a Tα-module.We are now ready to give our �rst losed formula for [L∗]. It follows from theorem 2.2.14 andproposition 2.3.10. 36



Theorem 2.3.12. Let L be a k-algebra of dimension n and S a G-set suh that Art
(
[S]
)

= [Spec L].Then we have
[L∗] = Ln + a1 · Ln−1 + · · · + an−1 · L + an ∈ K0(Schk)where ai = Artk(ρi(S)) and

ρi(S) =

i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is≥1

(−1)t[Pit,...,i1(S)] ∈ B(G).The universal nature of the formulaFix a �eld k with absolute Galois group G. Also, �x a separable k-algebra L of dimension n orrespondingto the G-set S. De�ne a homomorphism φ : G → Σn as the omposition of G → Aut(S) with anisomorphism Aut(S) → Σn. Let ResΣn

G denote the restrition maps with respet to φ. Then ResΣn

G isindependent of the hosen isomorphism Aut(S) → Σn.We have that
ResΣn

G

[
{1, . . . , n}

]
= [S] ∈ B(G).Also, ResΣn

G

(
[Pα]

)
= [Pα(S)]. We therefore use the notation that if ρ ∈ B(Σn) then ρ(S) := ResΣn

G (ρ) ∈
B(G).This disussion gives the following formulation of theorem 2.3.12.Theorem 2.3.13. Fix a positive integer n. There exist elements ρ

(n)
i ∈ B(Σn), i = 1, . . . , n, with theproperty that for every �eld k with absolute Galois group G and every separable k-algebra of dimension norresponding to the G-set S,

[L∗] = Ln + a1 · Ln−1 + · · · + an−1 · L + an ∈ K0(Schk)where ai = Artk(ρ
(n)
i (S)).The ρ

(n)
i :s an be given expliit as

ρ
(n)
i =

i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is≥1

(−1)t[Pit,...,i1 ] ∈ B(Σn).We illustrate with two examples.Exampel 2.3.14. We have
ρ
(3)
1 = − [P(3)

1 ]

ρ
(3)
2 = − [P(3)

2 ] + [P(3)
1,1 ]

ρ
(3)
3 = − [P(3)

3 ] + 2 · [P(3)
2,1 ] − [P(3)

1,1,1].We apply this to example 2.3.7, where L/k = Fq3/Fq. Then G is generated by the Frobenius map F andwe an identify S, the G-set orresponding to L, with {1, F, F2}. As in that example we get [P1(S)] =

[P2(S)] = [S]. We also have that [P(3)
2,1 ] = [P(3)

2 ], hene [P(3)
2,1 (S)] = [S]. Moreover,

P1,1(S) =
{
({1}, {F}), ({F}, {F2}), ({F2}, {1})

}

�∪
{
({1}, {F2}), ({F}, {1}), ({F2}, {F})

}

≃S
�∪S. 37



and hene [P1,1,1(S)] = [P1,1(S)] = 2 · [S]. Finally P3(S) =
{
({1, F, F2})

} so [P3(S)] = 1. We thereforehave
ρ
(3)
1 (S) = − [S]

ρ
(3)
2 (S) = − [S] + 2 · [S] = [S]

ρ
(3)
3 (S) = − 1 + 2 · [S] − 2 · [S] = −1whih gives the same formula for [L∗] as in example 2.3.7.Exampel 2.3.15. It follows from theorem 2.3.13 that

ρ
(4)
1 = − [P(4)

1 ]

ρ
(4)
2 = − [P(4)

2 ] + [P(4)
1,1 ]

ρ
(4)
3 = − [P(4)

3 ] + 2 · [P(4)
2,1 ] − [P(4)

1,1,1]

ρ
(4)
4 = − [P(4)

4 ] + 2 · [P(4)
3,1 ] + [P(4)

2,2 ] − 3 · [P(4)
2,1,1] + [P(4)

1,1,1,1].Let L/k = Fq4/Fq. Sine G is generated by the Frobenius map F we an identify S, the G-set orrespondingto L, with {1, F, F2, F3}. We ompute the [Pµ(S)]:s in the same way as in the preeding example. Forexample,
P(4)

2 (S) =
{
{1, F}, {F, F2}, {F2, F3}, {1, F3}

} �∪
{
{1, F2}, {F, F3}

}
.The �rst of these sets is isomorphi to S. The seond is transitive of ardinality 2 so it orresponds to a�eld extension of k of degree 2, i.e., Fq2 . Reasoning in this way we �nd that

[L∗] = L4 − [Spec Fq4 ] · L3 +
(
2[SpecFq4 ] − [Spec Fq2 ]

)
· L2 − [Spec Fq4 ] · L + [Spec Fq2 ] − 1.If instead L/k = Fq2 ×Fq2/Fq then S = {e1, F e1}

�∪{e2, F e2} where e1 and e2 are the projetion maps.We then get, for example,
P(4)

2 (S) =
{
{e1, F e1}

} �∪
{
{e2, F e2}

} �∪
{
{e1, e2}, {F e1, F e2}

} �∪
{
{e1, F e2}, {F e1, e2}

}
.This kind of omputations show that

[L∗] = L4 − 2[Spec Fq2 ] · L3 +
(
4[Spec Fq2 ] − 2

)
· L2 − 2[Spec Fq2 ] · L + 1.2.4 [L∗] expressed in terms of the λ-ring struture on B(Σn)In setion 1.3.2 we de�ned a λ-ring struture on Burnside rings. De�ne ℓi := λi

(
[{1, . . . , n}]

)
∈ B(Σn).In this setion we will see that the ρi:s that where introdued in theorem 2.3.13 an be desribed in termsof this λ-struture. Namely we will prove that ρi = (−1)iℓi. This formula is suggested in the followingway. We an give K0(Schk) the struture of a λ-ring that extend the struture already de�ned on thesubring h

(
B(G)

). (Reall that h is injetive.) See [LL02℄ for this onstrution. Moreover, let K0(Ql −G)be the Grothendiek ring of ontinuous Ql-representations of G. We then have a ommutative square of
λ-rings

B(G) //

��

K0(Schk)

��
RQ(G) // K0(Ql − G)38



where the map K0(Schk) → K0(Ql −G) sends the lass of X to the lass of its l-adi ohomology. By thelassial omputation of the ohomology of a torus then, the image of [L∗] an be expressed in terms ofthe λ-struture on K0(Ql − G). This suggest that a similar formula should hold in K0(Schk). And eventhough that is not the ase for an arbitrary torus, it is true for L∗.The result is the following theorem.Theorem 2.4.1. Let ρ
(n)
i be the elements de�ned in theorem 2.3.13, i.e., the elements in B(Σn) desribing

[L∗] ∈ K0(Schk) for every separable, n-dimensional algebra k → L. Then ρ
(n)
i = (−1)iℓ

(n)
i where

ℓ
(n)
i = λi([{1, . . . , n}]).Proof. We will prove an expliit formula for ℓi ∈ B(Σn), namely the one in theorem 2.4.13. The theoremthen follows when we ompare it with the formula for ρi obtained in theorem 2.3.12.So from now on this setion ontains no referene to the algebra L that we started with, it is anindependent investigation of B(Σn). We begin by proving a proposition in the representation ring thatwill help us prove a theorem in the Burnside ring that we are not able to prove diretly.The representation ring RQ(Σn)The theorem that we are not able to prove diretly in the Burnside ring orresponds to the following inthe representation ring.Proposition 2.4.2. Let Sn := {1, . . . , n} and let Q[Sn] be the assoiated permutation representation of

Σn. Given n and i, view Σn and Σi as the permutation groups of Sn and Si respetively. View Σn−i asthe permutation group of {i + 1, . . . , n}. We get a restrition map RQ(Σi) → RQ(Σi ×Σn−i) with respetto the map Σi ×Σn−i → Σi whih is projetion on the �rst oordinate. We also get an indution map
RQ(Σi ×Σn−i) → RQ(Σn) given by the inlusion (τ, ρ) 7→ τρ = ρτ : Σi ×Σn−i → Σn. Putting thesetogether we get a map RQ(Σi) → RQ(Σn). We have

IndΣn

Σi ×Σn−i
◦Res

Σi ×Σn−i

Σi

(
λi
([

Q[Si]
]))

≃ λi
([

Q[Sn]
])

∈ RQ(Σn).Proof. To see what we are doing, identify Sn with {e1, . . . , en} with Σn-ation given σ(ei) = eσ(i). Then
λi
([

Q[Sn]
]) is the lass of the Q-vetorspae with basis {ej1 ∧ · · · ∧ eji}1≤j1<···<ji≤n and Σn-ation givenby

σ(ej1 ∧ · · · ∧ eji) = eσj1 ∧ · · · ∧ eσji .In partiular, in RQ(Σi) we have that λi
([

Q[Si]
]) is the lass of the Q-vetorspae with basis e1∧· · ·∧eiand Σi-ation given by

τ(e1 ∧ · · · ∧ ei) = sgn(τ) · e1 ∧ · · · ∧ ei.We have
IndΣn

Σi ×Σn−i
◦Res

Σi ×Σn−i

Σi

([
∧i Q[Si]

])
=
[
Q[Σn] ⊗Q[Σi ×Σn−i] ∧i Q[Si]

]and we want to de�ne a Σn-equivariant isomorphism of Q-vetorspaes
ϕ : Q[Σn] ⊗Q[Σi ×Σn−i] ∧i Q[Si] → ∧i Q[Sn].Let r :=

(
n
i

) and let σ1, . . . , σr be oset representatives for Σn / Σi ×Σn−i. By proposition 1.1.22, wemay identify the left hand side with a Q-vetor spae with basis {σj ⊗ e1 ∧ · · · ∧ ei}r
j=1. For σ ∈ Σn, let

σσj = σkτρ where (τ, ρ) ∈ Σi ×Σn−i. The Σn-ation is then given by
σ(σj ⊗ e1 ∧ · · · ∧ ei) = (σkτρ) ⊗ e1 ∧ · · · ∧ ei = sgn τ · (σk ⊗ e1 ∧ · · · ∧ ei).39



Now de�ne ϕ on this basis by ϕ(σj ⊗ e1 ∧ · · · ∧ ei) := eσj1 ∧ · · · ∧ eσji. This is surjetive for given
1 ≤ k1 < · · · < ki ≤ n, hoose σ ∈ Σn suh that σ(j) = kj for k = 1, . . . , i. Let σ = σjτρ. Then
ϕ
(
σj ⊗ (sgn τ · e1 ∧ · · · ∧ ei)

)
= ek1 ∧ · · · ∧ eki . Sine ϕ is a surjetive map of Q-vetor spaes of dimension(

n
i

) it is an isomorphism of vetor spaes. Finally, ϕ is Σn-equivariant for if σσj = σkτρ then
σϕ(σj ⊗ e1 ∧ · · · ∧ ei) = sgn τ · (σk(e1 ∧ · · · ∧ ei))

=ϕ
(
σ(σj ⊗ e1 ∧ · · · ∧ ei)

)
.The Burnside ring B(Σn)In what follows we will prove some fats about the λ-operations on B(Σn). For this we use the map

h: B(Σn) → RQ(Σn) de�ned in 1.1.23. Muh of the below ould have been done in greater generality,i.e., for any �nite group. However, the general ase often follows by restrition from the speial ase,sine every �nite group an be embedded in some Σn. In any ase we are only interested in B(Σn).We will use Sn to denote the set {1, . . . , n}. Reall that if i1 + · · ·+ ij = n then P(n)
i1,...,ij

is the Σn-setonsisting of j-tuples of pairwise disjoint subsets of Sn, where the �rst subset has ardinality i1 and so on.When the integer n is lear from the ontext we just write Pi1,...,ij . Reall also that if µ is the partitionof n orresponding to (i1, . . . , ij), then Pi1,...,ij are isomorphi to Pµ as a Σn-set, hene they de�ne thesame element in B(Σn). Also if i1 + · · · + ij = n′ < n then we sometimes write Pi1,...,ij for Pi1,...,ij ,n−n′ .One sees that Pµ is a transitive Σn-set. Moreover, if µ and µ′ are two partitions suh that µ 6= µ′then Pµ 6≃ Pµ′ as Σn-sets.In what follows, reall that we write µ ⊢ n when µ is a partition of n.De�nition 2.4.3. Let Schn ⊂ B(Σn) be the additive subgroup generated by {[Pµ]}µ⊢n. Here, Sch is shortfor Shur.The following proposition will show that Schn is a ring.Proposition 2.4.4. Let α = (α1, . . . , αs) and β = (β1, . . . , βt). Then [P(n)
α ] · [P(n)

β ] belongs to Schn.Proof. For every s × t integer matrix M = (mij), de�ne the Σn-set
PM := {(S1, . . . , Ss, T1, . . . , Tt) : |Si ∩ Tj| = mij}where Si has ardinality αi, Ti has ardinality βi, Si ∩ Sj = ∅ and Ti ∩ Tj = ∅. (Si and Ti are subsets of

{1, . . . , n}.) We have that Pα × Pβ =
�∪M PM .Let mi• :=

∑t
j=1 mij and m•j :=

∑t
i=1 mij . Mapping the element (S1, . . . , Ss, T1, . . . , Tt) ∈ PM to

(
S1 \ ∪t

j=1S1 ∩ Tj , . . . , Ss \ ∪t
j=1Ss ∩ Tj ,

T1 \ ∪1
i=1S1 ∩ Ti, . . . , Tt \ ∪t

i=1Si ∩ Tt,

S1 ∩ T1, S1 ∩ T2, . . . , Ss ∩ Tt

)in
Pi1−mi•,...,is−ms•,j1−m•1,...,jt−m•t,m11,m12,...,mst (2.12)gives an isomorphism, hene [Pα] · [Pβ ] =

∑
M [PM ] belongs to Schn.Corollary 2.4.5. Schn is a subring of B(Σn).Remark. Schn is not a λ-ring sine it is not losed under the λ-operations.40



We next desribe the ation of σi and λi on [{1, . . . , n}].Notation 2.4.6. De�ne s
(n)
i := σi

(
[{1, . . . , n}]

)
∈ B(Σn) and ℓ

(n)
i := λi

(
[{1, . . . , n}]

)
∈ B(Σn). Here, ifthe supersript n is lear from the ontext we leave it out.We will give a formula for s

(n)
i whih shows that it lies in Schn and then dedue from this that also

ℓ
(n)
i is in Schn.Lemma 2.4.7. To any partition of i, µ = (µ1, , . . . , µj), where µ1 = · · · = µα1 > µα1+1 = · · · = µα1+α2 >
· · · > µj−αl+1 = · · · = µj , assoiate the tuple α(µ) := (α1, . . . , αl). Then

s
(n)
i =

∑

µ⊢i:
ℓ(µ)≤n

[P(n)
α(µ)].Proof. Identify {1, . . . , n} with {s1, . . . , sn}. Then {1, . . . , n}i/ Σi is identi�ed with the set of monomials

{se1
1 · · · sen

n : e1 + · · · + en = 1} =

�⋃
e1+···+en=i

e1≥e2···≥en≥0

Σn ·se1
1 · · · sen

n ,where the index set on the disjoint union an be identi�ed with the set of µ ⊢ i suh that ℓ(µ) ≤ n. Nowlet e1 = · · · = eα1 > eα1+1 = · · · = eα1+α2 > · · · > en−αl+1 = · · · = en Then
Σn ·se1

1 · · · sen
n =Σn ·(s1 · · · sα1)

e1(sα1+1 · · · sα1+α2)
eα1+1 · · · (sn−αl+1 · · · sn)en−αl+1

≃Σn

(
{s1, . . . , sα1}, {sα1+1, . . . , sα1+α2}, . . . , {sn−αl+1, . . . , sn}

)

≃P(n)
α1,...,αl

,hene the lemma follows.Proposition 2.4.8. ℓ
(n)
i ∈ Schn for every i.Proof. From the de�nition of ℓi we have that

−(−1)iℓ
(n)
i =

i−1∑

j=0

(−1)jℓ
(n)
j s

(n)
i−j . (2.13)Sine we know that Schn is a ring, and that the s

(n)
j :s and ℓ

(n)
1 = [P(n)

n ] are in Schn, the formula followsby indution.We need some fats about the behavior of the the indution operation. In what follows we view Σi asthe permutation group of Si and embed it in Σn, the permutation group of Sn. Moreover we view Σn−ias the permutation group of {i + 1, . . . , n}.Proposition 2.4.9. Let µ ⊢ i. Then IndΣn

Σi ×Σn−i
◦Res

Σi ×Σn−i

Σi

(
[P(i)

µ ]
)

= [P(n)
µ ] ∈ B(Σn).Proof. Let R = {σ1, . . . , σr}, where r =

(
n
i

), be a system of oset representatives for Σn / Σi ×Σn−i.We know that Σn ×Σi ×Σn−iP(i)
µ an be identi�ed with the set of pairs (σj , t), where σj ∈ R and t =

(T1, . . . , Tl) ∈ P(i)
µ . From this set we de�ne a map to P(n)

µ by
(σj , t) 7→

(
σjT1, . . . , σjTl, σj{i + 1, . . . , n}

)
.41



This map is surjetive for given t′ = (T ′
1, . . . , T

′
l , T

′
l+1) ∈ P(n)

µ , there is a σ ∈ Σn suh that σ{1, . . . , µ1} =
T ′

1, . . . , σ{i − µl + 1, . . . , i} = T ′
l . Let σj ∈ R be suh that σ = σjτρ. Then

(
σj , τ({1, . . . , µ1}, . . . , {i − µl + 1, . . . , i})

)
7→ t′.Sine both sets have n!/(µ1! · · ·µl!(n− i)!) elements this is a bijetion. Finally, the map is G-equivariant,hene it is an isomorphism.Proposition 2.4.10. We have IndΣn

Σi
◦Res

Σi ×Σn−i

Σi

(
ℓ
(i)
i

)
= ℓ

(n)
i ∈ B(Σn).It is this proposition that fores us to go over to the representation ring, for we haven't been able toprove it diretly in the Burnside ring. To prove it we need the following theorem.Theorem 2.4.11. Let h: B(Σn) → RQ(Σn) be the λ-ring homomorphism de�ned in 1.1.23. The restri-tion of h to Schn is injetive.Proof. For every λ ⊢ n let σλ ∈ Σn be an element in the onjugay lass determined by λ and let

Cσλ
: RQ(Σn) → Z be the homomorphism from de�nition 1.1.25, i.e., the map de�ned by V 7→ χV (σλ).(This is independent of the hoie of σλ.) This gives a homomorphism

RQ(Σn) →
∏

λ⊢n

Zand it su�es to show that the omposition of this with the restrition of h to Schn is injetive, i.e., that
ϕ : Schn →

∏

λ⊢n

Z

[T ] 7→
(
|T σλ |

)
λ⊢nis injetive. To do this, de�ne a total ordering on the set of partitions of n by λ > λ′ if λ1 = λ′

1, . . . , λj−1 =
λ′

j−1 and λj > λ′
j for some j (i.e., lexiographi order). We laim that Pσλ

λ′ = ∅ if λ > λ′ whereas
|Pσλ

λ | 6= 0. For the seond assertion, hoose for example
σλ = (1, . . . , λ1)(λ1 + 1, . . . , λ1 + λ2) · · · (n − λℓ(λ) + 1, . . . , n).Then (

{1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . , {n− λℓ(λ) + 1, . . . , n}
)
∈ Pλis �xed by σλ.For the �rst assertion, suppose λ′ < λ and t = (T1, . . . , Tl) ∈ Pλ′ , where l = ℓ(λ′). Suppose moreoverthat t is �xed by σλ. If now λ1 > λ2 > · · · > λℓ(λ) then, with the same σλ as above, we must have

T1 = {1, . . . , λ1}, . . . , Tl = {n−λl +1, . . . , n} (beause λj ≥ λ′
j for every j and if 1 lies in Tj then so does

σλ(1) = 2, hene also 3, , . . . , , λ1. So Tj has ardinality at least λ1 and the only λ′
j that an be that bigis λ′

1.). But if λ and λ′ di�ers in position j it is impossible for Tj to full�ll this sine it has ardinality
λ′

j < λj . In the general ase, when we may have λj = λj+1, the above argument works the same onlythat we for example an have T1 = {λ1 + 1, . . . , λ1 + λ2} and T2 = {1, . . . , λ1} if λ1 = λ2.We are now ready to prove that ϕ is injetive. Let x =
∑

λ⊢n aλ[Pλ], where aλ ∈ Z, and suppose that
x 6= 0. Choose the maximal λ0 suh that aλ0 6= 0. Let ϕλ0 be the λ0:t omponent of ϕ. Then

ϕλ0 (x) =
∑

λ⊢n

aλ|Pσλ0

λ | = aλ0 |P
σλ0

λ0
| 6= 0,hene ϕ(x) 6= 0. 42



We are now ready to prove proposition 2.4.10.Proof, proposition 2.4.10. Sine h is a morphism of λ-rings that ommutes with the indution and re-strition maps we have that if we write f for IndΣn

Σi
◦Res

Σi ×Σn−i

Σi
then

h ◦f
(
ℓ
(i)
i

)
=f ◦ h

(
λi([Si])

)

=f
(
λi
(
[Q[Si]]

))

=λi
(
[Q[Sn]]

)
∈ RQ(Σn).where the �rst equality is proposition 1.1.24, the seond is lemma 1.3.3 and the last equality is proposition2.4.2. Sine h is injetive on Schn and h

(
ℓ
(n)
i

)
= λi

(
[Q[Sn]]

) in RQ(Σn) we have that f
(
ℓ
(i)
i

)
= ℓ

(n)
i in

B(Σn).Now when this proposition is proved we may forget everything about the representation ring; fromnow on we work exlusively in the Burnside ring.As before, let Sn = {1, . . . , n} and ℓ
(n)
i := λi([Sn]) ∈ B(Σn).Proposition 2.4.12. There exists integers aµ, where µ ⊢ i, suh that

ℓ
(n)
i =

∑

µ⊢i

aµ

[
P(n)

λ,n−i

]
.Proof. Sine ℓ

(i)
i ∈ Schi we have ℓ

(i)
i =

∑
µ⊢i aµ

[
P(i)

µ

] so sine the indution map is additive it followsfrom proposition 2.4.9 and proposition 2.4.10 that ℓ
(n)
i =

∑
µ⊢i aµ

[
P(n)

µ,n−i

] in Schn.Theorem 2.4.13. Given n, for i = 1, . . . , n we have that
ℓ
(n)
i = (−1)i

i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is≥1

(−1)t
[
P(n)

it,...,i1

]
∈ B(Σn).Proof. For i = 1 the formula beomes ℓ

(n)
1 = [P(n)

1,n−1] whih is true for every n.Given i, suppose the formula is true for every pair (i′, n) where i′ < i and n is an arbitrary integergreater than or equal to i′. We want to show that it holds for (i, n) where n is an arbitrary integer greaterthan or equal to i.Assume �rst that n is muh greater than i. From proposition 2.4.12 we see that there are integers aµsuh that
ℓ
(n)
i =

∑

µ⊢i

aµ

[
P(n)

µ,n−i

]
. (2.14)Beause of our assumption, n− i is muh greater than all the entries in µ so we may de�ne the degree of[

P(n)
µ

], where µ ⊢ j and j ≤ i, to be j. Proposition 2.4.12 then tells us that ℓ
(n)
i is a linear ombinationof elements of degree i.On the other hand, by the de�nition of ℓ

(n)
i we have

−(−1)iℓ
(n)
i =

i−1∑

j=0

(−1)jℓ
(n)
j s

(n)
i−j . (2.15)43



By indution and the formula for s
(n)
j , the right hand side equals

∑

µ⊢i

[P(n)
α(µ)] +

i−1∑

j=1

(−1)j

(
(−1)j

j∑

t=1

∑

(i1,...,it):
i1+···+it=j

is≥1

(−1)t
[
P(n)

it,...,i1

]
)

·
(
∑

µ⊢i−j

[P(n)
α(µ)]

) (2.16)To evaluate this expression seems to be very ompliated, and we haven't managed to to so. However,we only have to evaluate it in degree i, for we have already seen that ℓ
(n)
i is zero in every other degree.So we next ompute the degree i part of (2.16). We see that for every j suh that 0 ≤ j < i we havea produt of two sums, one onsisting of elements of degree j and one onsisting of elements of degreeless that of equal to i − j, for if µ ⊢ i − j then [Pα(µ)] has degree ≤ i − j with equality if and only if

µ = (1, 1, . . . , 1), in whih ase α(µ) = (i − j).Also, if [P(n)
it,...,i1

] has degree j, i.e., i1+, . . . , +it = j, and [P(n)
αs,...,α1 ] has degree m ≤ i − j then byequation (2.12) in the proof of proposition 2.4.4,

[P(n)
it,...,i1

] · [P(n)
αs,...,α1

] = [P(n)
it,...,i1,αs,...,α1

] + terms of degree < j + m.Hene only the degree i − j part of ∑µ⊢i−j [P
(n)
α(µ)] ontributes to the degree i part of (2.16). Thereforethe only part of (2.16) that ontains elements of degree i is

[P(n)
i ] +

i−1∑

j=1

(−1)j

(
(−1)j

j∑

t=1

∑

(i1,...,it):
i1+···+it=j

is≥1

(−1)t
[
P(n)

it,...,i1

]
)

· [P(n)
i−j ]and the degree i part of this is

[P(n)
i ] +

i−1∑

j=1

j∑

t=1

∑

(i1,...,it):
i1+···+it=j

is>0

(−1)t[P(n)
i1,...,it,i−j ]. (2.17)Fix (i′1, . . . , i

′
t′) suh that i′1 + · · · + i′t′ = i and is > 0. If t′ > 1 then [P(n)

i′1,...,i′
t′
] ours in (2.17)when i1 = i′1, . . . , it = i′t′−1 and i − j = i′t′ . So it ours exatly one time and the oe�ient is then

(−1)t = −(−1)t′ . If t′ = 1 then i′1 = i and [P(n)
i ] ours one time in (2.17), namely as the �rst term, theoe�ient being 1 = −(−1)t′ . Hene (2.17) equals

−
i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is>0

(−1)t[P(n)
i1,...,it

].So (2.15) together with the knowledge that ℓ
(n)
i is zero in degree di�erent from i give that

ℓ
(n)
i = (−1)i

i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is>0

(−1)t[P(n)
i1,...,it

]when n is muh greater then i. Now by the proof of proposition 2.4.12 the oe�ients in (2.14) arethe same for every n. Sine we have determined them for every n big enough it follows that they aredetermined for every n, we are through. 44



2.5 An alternative proof of theorem 2.4.1In this setion we give a proof of the equality ρ
(n)
i = (−1)iλ

(n)
i that does not depend on the expliitformula for ℓ

(n)
i from theorem 2.4.13. We begin with some lemmas.Lemma 2.5.1. Let L be a separable Fq-algebra of dimension n, orresponding to the G := Gal

(
Fq/Fq

)-set
S. Choose an isomorphism Aut(S) → Σn and ompose it with the homomorphism G → Aut(S) to geta homomorphism φ : G → Σn. Let F be the topologial generator of G and de�ne σ := φ(F) ∈ Σn. Let
ResΣn

G denote the restrition maps with respet to φ for Burnside as well as representation rings. Let Cσand CF be the maps from the representation rings to Z de�ned in 1.1.25. Let the map from K0(SchFq)to Z be the ounting funtion Cq. Then the following diagram ommutes
B(Σn)

ResΣn
G //

h

��

B(G)

h

��

Art

%%KKKKKKKKKK

RQ(Σn)
ResΣn

G //

Cσ

%%J
JJJJ

JJJJ
J

RQ(G)

CF

��

K0(SchFq)

Cq

xxrrrrrrrrrrr

ZProof. From Proposition 1.1.24 we know that the square in the upper left orner of the diagram ommutes.The triangle in the lower left orner ommutes by proposition 1.1.27. Finally, for the right triangle, if Tis G-set then χQ[T ](F) = |T F|. At the same time, if T maps to X in K0(SchFq) then
|X(Fq)| = |HomFq(Spec Fq, X)| = |HomG({•}, T )| = |T F|.Lemma 2.5.2. Let M be a transitive n × n permutation matrix. Then the harateristi polynomial of

M equals T n − 1.Proof. Sine the transitive permutation matries form a onjugay lass (they orrespond to the per-mutations of yle type (n)) it su�es to ompute the harateristi polynomial for one partiular suhmatrix, for example 


0 1 0 0
0 1 . . .

0 0 0 1
1 0 0


Using indution one shows that the harateristi polynomial of this matrix is T n − 1.We are now ready to give the alternative proof of theorem 2.4.1, whih is based on ounting pointsover �nite �elds. What we need to know is the following: We need to know the existene of the universalelements ρ

(n)
i proved in theorem 2.3.13. We do not need the expliit desription of them given in thattheorem, however when one has proved the existene it is not suh a long step to desribe the elements.For the ℓ

(n)
i we only need to know that they lie in Schn whih was one of the �rst things we proved aboutthem. We also need to know that h is injetive on Schn.45



Proof of theorem 2.4.1. Fix a positive integer n. We want to prove that ρi = (−1)iℓi ∈ B(Σn). Sinethey both lie in Schn it su�es to show that h(ρi) = (−1)i h(ℓi) ∈ RQ(Σn) and by proposition 1.1.26we an prove this by proving that if R is a set of representatives of the onjugay lasses of Σn then forevery σ ∈ R,
Cσ h(ρi) = (−1)iCσ h(ℓi).We do this simultaneously for i = 0, . . . , n by showing that

n∑

i=0

Cσ h(ρi)X
n−i =

n∑

i=0

(−1)iCσ h(ℓi)X
n−i ∈ Z[X ] (2.18)for every σ ∈ R.From now on, �x a σ ∈ R. Let q be an arbitrary prime power, let k = Fq and let G := Gal(k/k). Asbefore, if S is a G-set of ardinality n, then hoosing any enumeration of S, the ation of G on S givesa map φ : G → Aut(S) ≃ Σn whih in turn gives our ResΣn

G . (Independent of the hosen φ.) Choose Ssuh that the topologial generator for G, the Frobenius automorphism F, maps to (a permutation in thesame onjugay lass as) σ under φ. Equivalently, let S =
�∪1≤j≤m Tj suh that Tj is a transitive G-setof ardinality nj , where σ has yle-type (n1, . . . , nm). Suh an S always exists for by theorem 1.1.14 itomes from L =

∏m
j=1 Kj where Kj is a degree nj �eld extension of k, i.e., Kj = Fqnj .We begin by omputing the right hand side of (2.18) in terms of (n1, . . . , nm). Let f be an endomor-phism of the vetor spae V of dimension n. From linear algebra ([MD84℄ or [Knu73℄, page 83) we knowthe following expression for the harateristi polynomial of f :

det(X · En − f) =

n∑

i=0

(−1)i Tr(∧i f)Xn−i.Putting f = F gives
det(X · En − F) =

n∑

i=0

(−1)iχ∧i Q[S](F)Xn−i. (2.19)Sine h(ℓi(S)) =
[
∧i Q[S]

]
∈ RQ(G) we have that CF h(ℓi(S)) = χ∧i Q[S](F), hene lemma 2.5.1 gives thatthe right hand side of (2.19) equals

n∑

i=0

(−1)iCσ h(ℓi)X
n−i.As for the left hand side of (2.19), sine S is a union of transitive G-sets Tj we have Q[S] = ⊕m

j=1Q[Tj]where Q[Tj] is irreduible, hene the matrix for F is of the form



M1 0
M2 . . .0 Mm


where Mj is a transitive nj × nj permutation matrix. Therefore by lemma 2.5.2 det(XEn − F ) =∏m

j=1 det(XEnj − Mj) =
∏m

j=1(X
nj − 1). From (2.19) we therefore get

m∏

j=1

(Xnj − 1) =

n∑

i=0

(−1)iCσ h(ℓi)X
n−i. (2.20)46



We next ompute the left hand side of (2.18). By the de�nition of the ρi:s we have
[L∗] =

n∑

i=0

Art
(
ρi(S)

)
Ln−i ∈ K0(Schk).Applying Cq to this gives

|L∗(k)| =
n∑

i=0

(−1)iCq Art(ρi(S)) · qn−i. (2.21)By lemma 2.5.1, Cq Art(ρi(S)) = Cσ h(ρi), so the right hand side of (2.21) equals
n∑

i=0

Cσ h(ρi)q
n−i.On the other hand, sine we saw that L =

∏m
j=1 Fqnj we have L∗(k) = L× =

∏m
j=1 F×

qnj so |L∗(k)| =∏m
j=1(q

nj − 1). Hene (2.21) says that
m∏

j=1

(qnj − 1) =

n∑

i=0

Cσ h(ρi)q
n−i.Sine q is an arbitrary prime power it follows that

m∏

j=1

(Xnj − 1) =

n∑

i=0

Cσ h(ρi)X
n−i. (2.22)Comparing (2.20) to (2.22) now gives (2.18).
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Chapter 3Calulation of an integralThe aim of this hapter is to generalize the omputations of some p-adi integrals to omputations in theGrothendiek ring of varieties. For this we �rst have to de�ne a suitable version of motivi integration.There are already existing theories for this but we ontent ourselves with a de�nition that only inludesas muh as we need for the integrals that we are interested in omputing.We must emphasize that many of the de�nitions in this hapter are not suitable in general.3.1 De�nition of the motivi integralFix a �eld k of harateristi p. Let Mk and M̂k be the rings de�ned in setion 1.2. We now de�ne themeasures of ertain subsets of Wn
k . (Here W is the Witt vetors onstruted with respet to p and Wkis the salar extension to k of W.) This measure will take values in M̂k.Fix an n > 0 and let Z ⊂ Wn

k be a disjoint union of loally losed subshemes. Let πm : Wn → Wn
mbe the projetion map, and let Zm = πmZ. So

Zm(A) = {[a] ∈ (W(A)/ Vm W(A))n}a∈Z(A) ∀A ∈ Algk.If Zm is a onstrutible subset of Wn
N for every m and if limm→∞[Zm]/Lnm exists in M̂k then we de�ne

volZ ∈ M̂k to be this limit. We then also say that Z is measurable.We will be interested in the measure of the following type of subshemes. Let f1, . . . , fs be polynomialsin W(k)[X1, . . . , Xn]. Let α = (α1, . . . , αs) ∈ Ns. Let {ordfi ≥ αi}s
i=1 ⊂ Wn

k be the funtor whose
A-points are

{a ∈ Wn(A) : fi(a) ≡ 0 (mod Vαi) for i = 1, . . . , s} ∀A ∈ Algk.This is well de�ned sine W(A) is a W(k)-algebra when A is a k-algebra. We will also write, for example,
{ord f1 ≥ α1 ∧ ord f2 ≥ α2} for {ord fi ≥ αi}2

i=1.Proposition 3.1.1. The funtor {ordfi ≥ αi}s
i=1 is a losed subsheme of Wn

k . Moreover, it is mea-surable.Proof. Write P := k[Xi0, . . . , XiN , . . . ]ni=1 and let Wn be represented by P , i.e., if a = (a1, . . . , an) ∈
Wn(A) where ai = (ai0, . . . , aiN , . . . ) ∈ W(A) for i = 1, . . . , n, then a is identi�ed with

(XiN 7→ aiN )1≤i≤n,N∈N ∈ Homk(P, A).48



We now want to show that {ordfi ≥ αi}s
i=1 is represented by a quotient of P . For i = 1, . . . , n let

xi := (Xi0, . . . , XiN , . . . ) = (XiN )N∈N ∈ W(P ). In W(P ) we then have, for j = 1, . . . , s,
fj(x1, . . . , xn) = (fj0(X•0), fj1(X•0, X•2), . . . , fjN (X•0, . . . , X•N), . . . )where fjN (X•0, . . . , X•N ) := fjN (X10, . . . , X1N , . . . , Xn0, . . . , XnN ) is an element of P that lies in thesubring PN := k[Xi0, . . . , XiN ]ni=1. Now a = (a1, . . . , an) ∈ Wn(A) is suh that fj(a) ≡ 0 (mod Vαj+1)if and only if fj0(a•0) = · · · = fjαj (a•0, . . . , a•αj ) = 0, i.e., if (XiN 7→ aiN )1≤i≤n,N∈N maps fj0, . . . , fjαjto zero. It hene follows that {ord fi ≥ αi + 1}s

i=1 is represented by
P

(fj0, . . . , fjαj )
s
j=0

.We next want to show that {ord fi ≥ αi + 1}s
i=1 is measurable. We have that Wn

N+1 is representedby PN . Let Z := {ordfi ≥ αi + 1}s
i=1. If N > m := max{α1 + 1, . . . , αs + 1} then ZN+1 is representedby

PN

(fj0, . . . , fjαj )
s
j=0

≃ Pm−1

(fj0, . . . , fjαj )
s
j=0

⊗k k[Xim, . . . , XiN ]ni=1,hene [ZN+1] = [Zm] · L(N−m+1)n ∈ K0(Schk). It follows that
volZ = lim

N→∞

[ZN+1]

L(N+1)n
=

[Zm]

Lmn
∈ M̂k.If βj ≥ αj for j = 1, . . . , s then the above proof shows that {ordfi ≥ βi}s

i=1 is a losed subsheme of
{ord fi ≥ αi}s

i=1. Let f ∈ W(k)[X1, . . . , Xn]. For α ∈ N we de�ne
{ordf = α} := {ord f ≥ α} \ {ord f ≥ α + 1}.This is an open subsheme of {ordf ≥ α}, hene a loally losed subsheme of Wn.Proposition 3.1.2. If α ∈ N and f ∈ W(k)[X1, . . . , Xn] then {ordf = α} is measurable. We have

vol{ord f = α} = vol{ordf ≥ α} − vol{ord f ≥ α + 1}.Proof. Looking bak at the preeding proof we see that {ordf ≥ α + 1}N is a losed subsheme of
{ord f ≥ α}N and that {ord f = α}N = {ordf ≥ α}N \ {ord f ≥ α + 1}N when N > α. It thenfollows that [{ord f = α}N ] = [{ord f ≥ α}N ] − [{ord f ≥ α + 1}N ] ∈ K0(Schk) and hene that
vol{ord f = α} = vol{ordf ≥ α} − vol{ord f ≥ α + 1} ∈ M̂k.We are now ready to de�ne the type of integrals we are interested in. For f ∈ W(k)[X1, . . . , Xn],de�ne ∫

Wn

∣∣f(X1, . . . , Xn)
∣∣dX1 · · ·dXn :=

∑

i≥0

vol{ord f(X1, . . . , Xn) = i} · L−i ∈ M̂k. (3.1)This sum always onverges as the following proposition shows.Proposition 3.1.3. Let f ∈ W(k)[X1, . . . , Xn]. Then ∫
Wn

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn exists in M̂k.Proof. By proposition 1.2.3 it su�es to show that vol(ord f = m)/Lm → 0 as m → ∞. And for this itsu�es to show that vol(ord f ≥ m)/Lm → 0 as m → ∞ for then we also have vol(ord f ≥ m+1)/Lm → 0so the result follows by proposition 3.1.2. We proeed to prove that vol(ord f ≥ m)/Lm → 0.49



By the proof of proposition 3.1.1 we have that
vol(ord f ≥ m)/Lm =

[{ordf ≥ m}m+1]

L(m+1)n
· 1

Lm
.Sine {ord f ≥ m}m+1 ⊂ Wn

m+1 ≃ An(m+1)
k it has dimension ≤ n(m + 1). It follows that [{ordf ≥

m}m+1]/L(m+1)n+m ∈ F−m(Mk), hene it tends to zero as m → ∞.We onlude this setion by de�ning some notions that we will need when omputing integrals of thiskind. To begin with, if f1, . . . , fs ∈ W(k)[X1, . . . , Xn] then
∪s

j=1{ordfi ≥ αi if i 6= j, ord fj ≥ αj + 1}is a losed subsheme of {ord fj ≥ αj}s
j=1. De�ne a loally losed subsheme of Wn

{ord fj = αj}s
j=1 := {ord fj ≥ αj}s

j=1 \ ∪s
j=1{ord fi ≥ αi if i 6= j, ord fj ≥ αj + 1}Proposition 3.1.4. The sheme {ordfj = αj}s

j=1 is measurable, its volume is
vol{ordfj = αj}s

j=1 = vol{ordfj ≥ αj}s
j=1

−
s∑

j=1

vol{ord fi ≥ αi if i 6= j, ord fj ≥ αj + 1}

+
∑

j,l

vol{ord fi ≥ αi if i /∈ {j, l}, ordfj ≥ αj + 1, ordfl ≥ αl + 1}...
(−1)s vol{ordfj ≥ αj + 1}s

j=1.Proof. By the same argument as in the proof of proposition 3.1.1 we have that the redution of {ordfj =

αj}s
j=1 modulo VN is a losed subsheme of the redution of {ordfj ≥ αj}s

j=1 modulo VN , it followsthat vol{ord fj = αj}s
j=1 = vol{ord fj ≥ αj}s

j=1 − vol
(
∪s

j=1{ordfi ≥ αi if i 6= j, ord fj ≥ αj + 1}
).Again ounting modulo VN we see that the intersetion of {ordfi ≥ αi if i 6= j, ord fj ≥ αj + 1}and {ord fi ≥ αi if i 6= l, ordfj ≥ αl + 1} is {ordfi ≥ αi if i /∈ {j, l}, ordfj ≥ αj + 1, ord fl ≥ αl + 1},hene vol

(
∪s

j=1{ordfi ≥ αi if i 6= j, ord fj ≥ αj + 1}
)

=
∑s

j=1 vol{ord fi ≥ αi if i 6= j, ord fj ≥ αj +

1}− vol
(
∪j,l{ordfi ≥ αi if i /∈ {j, l}, ordfj ≥ αj + 1, ordfl ≥ αl + 1}

). Continuing in this way the resultfollows.We are now ready to de�ne the most general sets that we will work with. For a (�nite of in�nite)subset I ⊂ Nn, m ∈ N and f ∈ W(k)[X1, . . . , Xn], let
UI,m(f) := ∪(α1,...,αn)∈I{ordXi = αi, ord f = m}n

i=1(This is a subset of Wn but not in general a subsheme). When f is lear from the ontext we write thisas just UI,m.Proposition 3.1.5. UI,m(f) is measurable. We have volUI,m(f) =
∑

(α1,...,αn)∈I vol{ordXi = αi, ord f =

m}n
i=1, where the sum to the right is onvergent.Proof. If α = (α1, . . . , αn), write Uα,m := {ordXi = αi, ord f = m}n

i=1.First assume that I is �nite. Then (UI,m)N =
�∪α∈I(Uα,m)N , hene [(UI,m)N ] =

∑
α∈I [(Uα,m)N ].Dividing by LnN and letting N tend to in�nity proves the proposition sine Uα,m is measurable byproposition 3.1.4. 50



If I is in�nite, then the N -projetion still is a �nite disjoint union sine it an't see α > N . Morepreisely,
[(UI,m)N ] =

∑

α:
αi≤N

[(Uα,m)N ] =
∑

α∈I

[(Uα,m)N ].Therefore
volUI,m = lim

N→∞

[(UI,m)N ]

LnN
= lim

N→∞

∑

α∈I

[(Uα,m)N ]

LnN
=
∑

α∈I

vol{ordXi = αi, ord f = m}n
i=1if this sum onverges, or equivalently if vol{ordXi = αi, ord f = m}n

i=1 → 0 as M := min(α1, . . . , αn) →
∞. Beause of proposition 3.1.4 it su�es to show that vol{ordXi ≥ αi, ord f ≥ m}n

i=1 → 0 and this istrue if we just assume that α1 → ∞. For by the proof of proposition 3.1.1, if α1 ≥ αi and α1 ≥ m then
vol{ordXi ≥ αi, ord f ≥ m}n

i=1 = [({ordXi ≥ αi, ord f ≥ m}n
i=1)α1 ]/Lnα1and the dimension of ({ordXi ≥ αi, ord f ≥ m}n

i=1)α1 is less than or equal to α1(n − 1) so [({ordXi ≥
αi, ord f ≥ m}n

i=1)α1 ]/Lnα1 ∈ F−α1(Mk).We use this to de�ne a more general integral. Let I ⊂ Nn and let UI,m(f) have the same meaning asabove. Also, let UI := ∪(α1,...,αn)∈I{ordXi = αi}n
i=1. (This is measurable by the same argument as for

UI,m.) De�ne ∫

UI

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn :=

∑

m≥0

volUI,m(f) · L−m ∈ M̂k.Proposition 3.1.6. Let I ⊂ Nn and f ∈ W(k)[X1, . . . , Xn]. Then ∫
UI

∣∣f(X1, . . . , Xn)
∣∣dX1 . . . dXn existsand we have

∫

UI

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn =

∑

(α1,...,αn)∈I

∫

{ord Xi=αi}n
i=1

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXnProof. To prove existene we have to prove that volUI,m/Lm → 0 as m → ∞. This is done in the sameway as in the proof of proposition 3.1.3. The equality follows from proposition 3.1.5.Corollary 3.1.7.

∫

Wn

∣∣f(X1, . . . , Xn)
∣∣dX1 · · ·dXn =

∑

(α1,...,αn)∈Nn

∫

{ord Xi=αi}n
i=1

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn3.2 The motivi integral of a polynomial in one variableIn this setion we ompute the integral over W of Q(X) in W(k)[X ] in the ase when Q is separablemodulo V. We begin by repeating some arguments from the preeding setion in this speial ase.Let k be a �eld of harateristi p and let Q = adX

d + · · ·+a1X +a0 ∈ W(k)[X ]. Let T α := {ordQ ≥
α} ⊂ W be the sheme de�ned above, i.e., T α(A) = {a ∈ W(A) : Q(a) ≡ 0 (mod V α)} when A is a
k-algebra. We want to ompute volT α ∈ M̂k.Let P := k[X0, X1, . . . , XN , . . . ] and set x := (X0, X1, . . . , XN , . . . ) ∈ W(P ). Sine k ⊂ P we have
W(k) ⊂ W(P ) and hene we an ompute Q(x) in W(P ). We then get

Q(x) =
(
Q0(X0), Q1(X0, X1), . . . , QN(X0, . . . , XN ), . . .

)
∈ W(P ) (3.2)51



where QN ∈ k[X0, . . . , XN ]. Therefore T α is de�ned by the set of formulas
0 = Q0(X0)

0 = Q1(X0, X1)...
0 = Qα−1(X0, . . . , Xα−1).Hene

T α
N = Spec

k[X0, . . . , XN−1]

(Q0, . . . , Qα−1)
for N ≥ αand

T α
N = Spec

k[X0, . . . , XN−1]

(Q0, . . . , QN−1)
for N = 1, . . . , α.In the same way as before we now prove that volT α ∈ M̂k. If N > α then

k[X0, . . . , XN−1]

(Q0, . . . , Qα−1)
≃ k[X0, . . . , Xα−1]

(Q0, . . . , Qα−1)
⊗k k[Xα, . . .XN−1]and hene [T α

N ] = [T α
α ×k AN−α

k ] = [T α
α ] · LN−α ∈ K0(Schk). Therefore volT α = limN→∞[T α

N ]/LN =

[T α
α ]/Lα ∈ M̂k.We are now ready to prove an analogue of the p-adi Newton's lemma.Proposition 3.2.1 (Motivi Newton's lemma). Assume that we are in the above situation and assumealso that Q is separable modulo V, that is Q0 is separable. Let T α := {ordQ ≥ α}. If α is a positiveinteger then there is an isomorphism of k-shemes T α

α → T α
1 = Spec k[X0]/Q0(X0). It follows that

[T α
α ] = [T α

1 ] ∈ K0(Schk) and hene volT α = [T α
1 ]/Lα ∈ M̂k.Proof. Let

Ri :=
k[X0, . . . , Xi−1]

(Q0, . . . , Qi−1)
i ≥ 1.Then T α

i = Spec Ri for i = 1, . . . , α and we want to prove that Rα ≃ R1. We do this by proving that theanonial homomorphism Ri → Ri+1 is an isomorphism for i ≥ 1.Let x := (X0, . . . , Xi) ∈ Wi+1

(
k[X0, . . . , Xi]

). We let x̃ := (X0, . . . , Xi−1, 0), so x = x̃ + Vi r(Xi),and then Taylor expand:
Q(x) =Q

(
x̃ + Vi r(Xi)

)

=Q(x̃) + Q′(x̃) · Vi r(Xi) + O
(
Vi r(Xi)

)2 ∈ Wi+1(Ai+1).
(3.3)Here Q(x̃) = (Q0, . . . , Qi−1, P ), where P is a polynomial in k[X0, . . . , Xi−1]. Moreover, sine π1Q = Q0,it follows that if Q′(x) = (Q∗

0, . . . , Q
∗
i ) then Q∗ = Q′

0. Hene Q′(x̃) = (Q′
0, . . . ). Finally by proposition1.4.1 (Vi r(Xi)

)2
= F i V2i

(
r(Xi)

)
= 0 ∈ Wi

(
k[X1, . . . , Xi]

). Hene if we write expliitly we see that theright hand side of (3.3) is
(Q0, . . . , Qi−1, P ) + (Q′

0, . . . ) · (0, . . . , 0, Xi) =(Q0, . . . , Qi−1, P ) + (0, . . . , 0, Q′pi

0 Xi)

=(Q0, . . . , Qi−1, P + Q′pi

0 Xi).52



Sine the left hand side of (3.3) equals (Q0, . . . , Qi) we get the identity
Qi(X0, . . . , Xi) = P (X0, . . . , Xi−1) + Q′

0(X0)
pi · Xi (3.4)in k[X0, . . . , Xi].We shall also use the hypothesis that Q is separable modulo V. This means that Q′

0 is invertible in
R1. Let Q′−1

0 be suh that Q′
0(X0)Q

′−1
0 (X0) = 1 + h(X0)Q0(X0) in k[X0].We now prove that Ri → Ri+1 is injetive. Let f(X0, . . . , Xi−1) ∈ k[X1, . . . , Xi−1]. We have to provethat if f = 0 ∈ Ri+1 then f = 0 ∈ Ri. So suppose that f = h0Q0 + · · · + hiQi where hj ∈ k[X1, . . . , Xi].By (3.4) this gives

f(X0 . . . , Xi−1) = h0 · Q0(X0) + · · · + hi−1 · Qi−1(X0, . . . , Xi−1)

+ hi ·
(
P (X0, . . . , Xi−1) + Q′

0(X0)
pi · Xi

)
.Substituting −P (X0, . . . , Xi−1) · Q′

0(X0)
−pi for Xi then gives

f(X0 . . . , Xi−1) = h∗
0 · Q0(X0) + · · · + h∗

i−1 · Qi−1(X0, . . . , Xi−1)

+ h∗
i ·
(
P (X0, . . . , Xi−1) − P (X0, . . . , Xi−1) + h∗ · Q0(X0)

)where the h∗
j and h∗ are polynomials in k[X0, . . . , Xi−1]. Hene f = 0 ∈ Ri and onsequently Ri → Ri+1is injetive.Finally we prove that Ri → Ri+1 is surjetive. Identifying Ri with its image in Ri+1 it su�es toshow that Xi ∈ Ri. Working in Ri+1, (3.4) beomes

0 = P (X0, . . . , Xi−1) + Q′
0(X0)

pi

· Xi.Sine Q0 is separable we an write this as
Xi = −P (X0, . . . , Xi−1) · Q′

0(X0)
−pi

.and the right hand side involves only the variables X0, . . . , Xi−1 and hene is in Ri.We are now going to ompute the motivi integral of a polynomial in one variable. Let Q ∈ Zp[X ] beseparable modulo p. Using Newton's lemma one shows that
∫

W(Fq)

|Q(X)|pdX = 1 +
∣∣{x ∈ Fq : Q(x) ≡ 0 (p)}

∣∣ ·
(

q

q + 1
− 1

) (3.5)where Q is the redution of Q modulo p and q = pk. For �xed p we are going to prove that this is truemotivially.Proposition 3.2.2. If Q ∈ W(k)[X ] is separable modulo V we have that
∫

W

|Q(X)|dX = 1 + [Spec k[X0]/(Q0(X0))] ·
(

L
L + 1

− 1

)
∈ M̂k.Proof. By de�nition we have

∫

W

|Q(X)|dX =
∑

m≥0

L−m vol{ordQ(X) = m}.53



Sine [(ordQ(X) = m)n] = [T m
n \ T m+1

n ] = [T m
n ] − [T m+1

n ] for n > m ≥ 1 we have
vol{ordQ(X) = m} = lim

n→∞

[T m
n ] − [T m+1

n ]

Ln

=
[T 1

1 ] · (Ln−m − Ln−m−1)

Ln

=[T 1
1 ] · (L−m − L−(m+1))for m ≥ 1. For m = 0 we have vol(ordQ(X) = 0) = lim[Wn \ T 1

n ]/Ln = 1 − [T 1
1 ]/L. Therefore, with thehelp of proposition 1.2.5,

∫

W

|Q(X)|dX =1 + [T 1
1 ] ·

(
−L−1 +

∑

m≥1

L−m(L−m − L−(m+1))

)

=1 + [T 1
1 ] ·

(
∑

m≥1

L−2m −
∑

m≥0

L−2m−1

)

=1 + [T 1
1 ] ·

(
L

L + 1
− 1

)
.Note also that if Q is irreduible of degree k then Fp[X0]/(Q0) ≃ Fpk and so [T 1

1 ] = [Spec Fpk ].3.3 Many variablesThe theorems in this setion are all well known and rather trivial for ordinary integrals but for motiviintegrals they need a great deal of spae to prove. Throughout this setion, let k be a �eld of harateristi
p.A primitive hange of variables formulaLet aij ∈ W(k) for 1 ≤ i, j ≤ n be suh that the determinant of the matrix M := (aij) is in W(k)×.Proposition 3.3.1. Given f ∈ W(k)[X1, . . . , Xn], de�ne g(X1, . . . , Xn) := f

(
(X1, . . . , Xn)M

). Thenfor every α ∈ N,
vol(ord g(X1, . . . , Xn) ≥ α) = vol(ord f(X1, . . . , Xn) ≥ α) ∈ M̂kProof. For every k-algebra A we have a map

{a ∈ Wn(A) : f(a1, . . . , an) ≡ 0 (mod Vα)} → {a ∈ Wn(A) : g(a1, . . . , an) ≡ 0 (mod Vα)},given by (a1, . . . , an) 7→ (a1, . . . , an)M−1. This is a bijetion, for it is well de�ned sine g(aM−1) =
f(aM−1M) = f(a) = 0, and it has a well de�ned inverse a 7→ aM . Hene {ordg(X1, . . . , Xn) ≥ α}and {ord f(X1, . . . , Xn) ≥ α} are isomorphi as subshemes of Wn so their restritions modulo VN areisomorphi for every N , hene they have the same volume.Proposition 3.3.2. We have the following equality:

∫

Wn

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn =

∫

Wn

|g(X1, . . . , Xn)|dX1 · · ·dXn.Proof. From proposition 3.3.1 it follows that vol{ordf = α} = vol{ord g = α}, hene the result.54



Separation of variablesThe main result of this setion is theorem 3.3.6 and its onsequene theorem 3.3.7. However, to provetheorem 3.3.6 requires very ompliated notation. We therefore just prove it in a speial ase, namelyproposition 3.3.5.Lemma 3.3.3. Let P, Q ∈ W(k)[X ]. For µ, ν ∈ N we have
vol
{
ordP (X) = µ ∧ ordQ(Y ) = ν

}
= vol

{
ordP (X) = µ

}
· vol

{
ordQ(Y ) = ν

}
∈ M̂k.Proof. Let x = (X0, . . . , Xm) ∈ Wm+1

(
k[X0, . . . , Xm]

). Then there are polynomials Pi, Qi ∈ k[X0, . . . , Xm]with the property that
P (x) =

(
P0(X0), . . . , Pm(X0, . . . , Xm)

)

Q(x) =
(
Q0(X0), . . . , Qm(X0, . . . , Xm)

)
∈ Wm+1

(
k[X0, . . . , Xm]

)Let T µ,ν := {ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν}. Then T µ,ν is de�ned by the set of formulas
Pi(X0, . . . , Xi) =0 i = 0, . . . , µ − 1

Qj(Y0, . . . , Yj) =0 j = 0, . . . , ν − 1.Also, let Uµ := {ordP (X) ≥ µ} and V ν := {ordQ(Y ) ≥ ν}. Then for n ≥ µ, ν we have
T µ,ν

n =Spec
k[X0, . . . , Xn−1, Y0, . . . , Yn−1]

(P0, . . . , Pµ−1, Q0, . . . , Qν−1)

=Spec
k[X0, . . . , Xn−1]

(P0, . . . , Pµ−1)
×k Spec

k[Y0, . . . , Yn−1]

(Q0, . . . , Qν−1)

=Uµ
n ×k V ν

nand so [T µ,ν
n ] = [Uµ

n ] · [V ν
n ] ∈ K0(Schk). From this we get

vol
{
ordP (X) =µ ∧ ordQ(Y ) = ν

}

= lim
n→∞

1

L2n

(
[T µ,ν

n ] − [T µ+1,ν
n ] − [T µ,ν+1

n ] + [T µ+1,ν+1
n ]

)

= lim
n→∞

[Uµ
n ] − [Uµ+1

n ]

Ln
· [V ν

n ] − [V ν+1
n ]

Ln

= vol
{
ordP (X) = µ

}
· vol

{
ordQ(Y ) = ν

}
.Lemma 3.3.4. Let P, Q ∈ W(k)[X ]. Then for ξ ∈ N,

vol
{
ordP (X)Q(Y ) = ξ

}
=

∑

µ+ν=ξ

vol
{
ordP (X) = µ ∧ ordQ(Y ) = ν

}
.Proof. We are going to prove that

{ordP (X)Q(Y ) ≥ ξ} =
⋃

µ+ν=ξ

{ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν} ⊂ W2. (3.6)
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It then follows that
{ordP (X)Q(Y ) = ξ}

= {ordP (X)Q(Y ) ≥ ξ} \ {ordP (X)Q(Y ) ≥ ξ + 1}
=

⋃

µ+ν=ξ

{ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν} \
⋃

µ+ν=ξ+1

{ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν}

=
�⋃

µ+ν=ξ
{ordP (X) = µ ∧ ordQ(Y ) = ν}.So the two sides de�ne the same subsheme of W2. Moreover, the volume of this subsheme equals∑

µ+ν=ξ vol{ordP (X) = µ ∧ ordQ(Y ) = ν} beause the union is disjoint.To prove (3.6) we use the same method as in the proof of the preeding lemma: Let x = (X0, . . . , Xm, . . . )and y = (Y0, . . . , Ym, . . . ) ∈ W
(
k[Xm, Ym]m∈N

). We then have
P (x) =

(
P0(X0), . . . , Pm(X0, . . . , Xm), . . .

)

Q(y) =
(
Q0(Y0), . . . , Qm(Y0, . . . , Ym), . . .

)
∈ W

(
k[Xm, Ym]m∈N

)and
P (x)Q(y) =

(
S0(X0, Y0), . . . , Sm(X0, . . . , Xm, Y0, . . . , Ym), . . .

)
∈ W

(
k[Xm, Ym]m∈N

)
.Therefore {ordP (X)Q(Y ) ≥ ξ} is de�ned by the set of formulas Si(X0, . . . , Xi, Y0, . . . , Yi) = 0 for

i = 0, . . . , ξ − 1. Also ∪µ+ν=ξ{ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν} is de�ned by Pi(X1, . . . , Xi) = 0 and
Qj(Y0, . . . , Yj) = 0 for i = 0, . . . , µ − 1 and ν = 0, . . . , ν − 1 for some µ, ν with µ + ν = ξ. Now if a and
b ∈ W(A) ful�lls Pi(a) = 0 for i = 0, . . . , µ − 1 and Qj(b) = 0 for j = 0, . . . , ν − 1, where µ + ν = ξ,then by orollary 1.4.2 we have

P (a)Q(b) = Vµ(Pµ(a), . . . ) · Vν(Qν(b), . . . )

= Vξ(Pµ(a)pν

Qν(b)pµ

, . . . ) ∈ W(A)hene S0(a,b) = · · · = Sξ−1(a,b) = 0. If instead µ + ν < ξ and Pµ(a) 6= 0 and Qν(b) 6= 0 then
Sµ+ν(a,b) 6= 0 and we have µ + ν ≤ ξ − 1 so the onverse also holds.The next proposition follows from these two lemmas.Proposition 3.3.5. Let P, Q ∈ W(k)[X ]. Then for ξ ∈ N,

vol{ordP (X)Q(Y ) = ξ} =
∑

µ+ν=ξ

vol
{
ordP (X) = µ

}
· vol

{
ordQ(Y ) = ν

} (3.7)We proeed to give the more general versions of proposition 3.3.5. Let P ∈ W(k)[X1, . . . , Xn] and
Q ∈ W(k)[Y1, . . . , Ym]. Let I ⊂ Nn and J ⊂ Nm. De�ne, in the same way as before,

UI,µ(P ) := ∪α∈I{ordXi = αi, ordP (X1, . . . , Xn) = µ}n
i=1 ⊂ Wn

UJ,ν(Q) := ∪β∈J{ordYi = βi, ordQ(Y1, . . . , Ym) = ν}m
i=1 ⊂ Wm

UI×J,ξ(PQ) := ∪(α,β)∈I×J{ordXi = αi, ordYj = βj , ordP (X1, . . . , Xn) · Q(Y1, . . . , Ym) = ξ} ⊂ Wn+m.De�ne UI , UJ and UI×J in the same way but with the restritions of the orders of P and Q removed.With this notation we have the following theorem. 56



Theorem 3.3.6. For every ξ ∈ N we have
volUI×J,ξ(PQ) =

∑

µ+ν=ξ

volUI,µ(P ) · volUJ,ν(Q).In partiular, when I = J we get
volUI,ξ(PQ) =

∑

µ+ν=ξ

volUI,µ(P ) · volUI,ν(Q).The proof is idential to that of the speial ase given in proposition 3.3.6 but the notation is muhmore ompliated. We omit it.Theorem 3.3.7 (Separation of variables). For P ∈ W(k)[X1, . . . , Xn] and Q ∈ W(k)[Y1, . . . , Ym] wehave
∫

UI×J

∣∣P (X1, . . . , Xn)Q(Y1, . . . , Ym)
∣∣dX1 · · ·dXndY1 · · ·dYm

=

∫

UI

∣∣P (X1, . . . , Xn)
∣∣dX1 · · · dXn ·

∫

UJ

∣∣Q(Y1, . . . , Ym)
∣∣dY1 · · ·Ym.Proof. Theorem 3.3.6 gives that

∫

UI×J

|P (X)Q(Y )|dXdY =

=
∑

ξ≥0

vol
(
UI×J,ξ(PQ)

)
· L−ξ

=
∑

ξ≥0

(
∑

µ+ν=ξ

volUI,µ(P ) · volUJ,ν(Q)

)
· L−ξ

=

(
∑

µ≥0

volUI,µ(P ) · L−µ

)
·
(
∑

ν≥0

volUJ,ν(Q)) · L−ν

)

=

∫

UI

|P (X)|dX ·
∫

UJ

|Q(Y )|dY.We will need the following.Lemma 3.3.8 (Ultrametri inequality). If A is a ring, let a and b ∈ W(A) be suh that a = Vi(a0, a1, . . . )where a0 ∈ A× and b = Vi(0, b1, . . . ). Then a− b = Vi(a0, a1 − b1, . . . ).Proof. Beause V is additive we have a − b = Vi
(
(a0, a1, . . . ) − (0, b1, . . . )

) so the lemma follows fromthe shape of the polynomials de�ning addition.Proposition 3.3.9. Let Q ∈ W(k)[X1, . . . , Xn]. Fix 1 ≤ i, j ≤ n. Let I ⊂ Nn be suh that αi < αj forevery α = (α1, . . . , αn) ∈ I. Then
∫

UI

∣∣Q(X1, . . . , Xn) · Xi

∣∣dX1 · · · dXn =

∫

UI

∣∣Q(X1, . . . , Xn) · (Xi − Xj)
∣∣dX1 · · · dXn.57



Proof. This follows if we an prove that
volUI,ξ

(
Q(X1, . . . , Xn) · Xi

)
= volUI,ξ

(
Q(X1, . . . , Xn) · (Xi − Xj)

) (3.8)for every ξ ∈ N.By theorem 3.3.6 we have
volUI,ξ

(
Q(X1, . . . , Xn) · Xi

)
=

∑

µ+ν=ξ

volUI,µ

(
Q(X1, . . . , Xn)

)
· volUI,ν(Xi).Now (a1, . . . , an) is an A-point on UI,ν(Xi) if and only if it ful�lls the onditions for UI and ai =

Vν(ai0, . . . ) where ai0 ∈ A×. By lemma 3.3.8 this is equivalent to that ai − aj = Vν(ai0, . . . ) andthat (a1, . . . , an) ful�lls the onditions for UI , hene UI,ν(Xi) = UI,ν(Xi − Xj). Therefore we have
volUI,ν(Xi) = volUI,ν(Xi − Xj) so (3.8) follows.3.4 Reduible polynomialsWe are now ready to generalize the p-adi omputations from [Sko℄ to the motivi ase.In [Sko℄ the author sets out to ompute the measure of the set of points (a1, . . . , an) ∈ Zn

p suhthat Xn + a1X
n−1 + · · · + an splits ompletely over Zp. He starts by making the hange of variables

ai = (−1)iσi(b1, . . . , bn), where the σi are the elementary symmetri polynomials, to get the integral
1

n!

∫

Zn
p

∏

1≤i<j≤n

|bi − bj |pdb1 . . . dbn.He then gives a reursive way to ompute this integral. We are going to show that this reursion alsoworks on the integral ∫

Wn

∣∣ ∏

1≤i<j≤n

(Xi − Xj)
∣∣dX1 . . . dXn ∈ M̂Fp .We have already proved that this integral exists (proposition 3.1.6). The reursive method will allow usto ompute an expliit formula for it for any given n. In partiular this will show that it atually is arational funtion in L.Observe that we have not proved that the funtor of polynomials that split ompletely is motivi. Todo that would require a motivi hange of variables formula.NotationDe�ne

V n :=
1

n!

∫

Wn

|∆n|dX1 . . . dXn ∈ M̂Fp ⊗Z Qwhere ∆n :=
∏

1≤i<j≤n(Xi − Xj). The reason why we tensor M̂Fp with Q is to make it possible for usto divide by n!. We ould avoid this but the notation would then be even more messy than it already is.For an l-tuple α of positive integers with sum n, that is α = (n1, . . . , nl) where n1 + · · · + nl = n, let
α! := n1! · · ·nl!. We will write

Uα := {ordp X1 = · · · = ordp Xn1 < · · · < ordp Xn−nl+1 = · · · = ordp Xn} ⊂ Wn.By this we mean ⋃

(β1,...,βn)∈I

{ordXi = βi}n
i=158



where I := {(β1, . . . , βn) ∈ Nn : β1 = · · · = βn1 < · · · < βn−nl+1 = · · · = βn}.De�ne
V n

α (s, t) :=
1

α!

∫

Uα

∣∣∣∣
( n∏

i=1

Xi

)s

Xt
n∆n

∣∣∣∣dX1 . . . dXn.De�ne V n(s, t) in the same way; the same integrand but integrating over Wn. We then have V n =
V n(0, 0) and we will also write V n

α := V n
α (0, 0).Desription of the reursionPartitioning Wn and using that ∆n is symmetri together with the hange of variables formula, propo-sition 3.3.2, we see that for every s ∈ N, V n(s, 0) =

∑
α V n

α (s, 0) where the sum is taken over all tuplesof positive integers whih sum to n.On the other hand, using the hange of variables Yi = Xi − Xn, i = 1, . . . , n − 1 and Yn = Xn, itfollows from proposition 3.3.2 that
V n =

1

n!

∫

Wn

∣∣∣∣
(n−1∏

i=1

Yi

)
∆n−1(Y1, . . . , Yn−1)

∣∣∣∣dY1 . . . dYn.By theorem 3.3.7 this equals 1
nV n−1(1, 0) ·

∫
W

∣∣1
∣∣dYn Sine the seond integral is equal to 1 we �nd that

V n = 1
nV n−1(1, 0).Together the above gives

∑tuples α with sum n

V n
α =

1

n

∑tuples β with sum n−1

V n−1
β (1, 0). (3.9)If α = (n1, . . . , nl) with n1 + · · ·+ nl = n, let (α, m) = (n1, . . . , nl, m). The problem now omes down toproving the two formulas

V n+m
(α,m)(s, t) = L−(ms+t+m(m+1)/2)V n

α (s + m, sm + t + m(m + 1)/2)V m
(m)(s, t) (3.10)and

V n
(n)(s, t) =

1 − L−n(n+1)/2

1 − L−(sn+t+n(n+1)/2)
V n

(n). (3.11)Using them, (3.9) takes the form V n
(n) = rational funtion in L, V 1

(1), . . . , V
n−1
(n−1). Sine V 1

(1) = 1 thisreursively gives us a formula for V n
(n), hene, again using (3.10) and (3.11), for Vα. Sine Vn =

∑
α V n

αwe are through.Proofs of (3.10) and (3.11)To prove (3.10) and (3.11) we need a lemma:Lemma 3.4.1. Let ∆ ∈ Zp[X1, . . . , Xn] be a form of degree d. For every pair of non-negative integers
m and k we have

vol(ord∆ = m ∧ ordXi = k, i = 1, . . . , n) = L−kn vol(ord ∆ = m − dk ∧ ordXi = 0, i = 1, . . . , n).
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Proof. By proposition 3.1.4 the left hand side equals
vol(ord∆ ≥ m ∧ ordXi ≥ k)

−
n∑

i=1

vol(ord∆ ≥ m ∧ ordXj ≥ k, j 6= i ∧ ordXi ≥ k + 1)+

· · · + (−1)n vol(ord ∆ ≥ m ∧ ordXi ≥ k + 1)

−
(
vol(ord∆ ≥ m + 1 ∧ ordXi ≥ k)

−
n∑

i=1

vol(ord∆ ≥ m + 1 ∧ ordXj ≥ k, j 6= i ∧ ordXi ≥ k + 1)+

· · · + (−1)n vol(ord∆ ≥ m + 1 ∧ ordXi ≥ k + 1)
)so it su�es to show that, for ki ∈ {k, k + 1},

vol(ord ∆ ≥ m ∧ ordXi ≥ ki) = L−kn vol(ord ∆ ≥ m − dk ∧ ordXi ≥ ki − k).We do this for the speial ase ki = k, i = 1, . . . , n. The general ase is similar but the indexing is evenmore ompliated.For 1 ≤ i ≤ n, let Xi = (Xi0, . . . , XiN ) ∈ WN+1

(
Fp[Xi0, . . . , XiN ]ni=1

). We then have
∆(X1, . . . , Xn) =

(
∆0(X•0), . . . , ∆N (X•0, . . . , X•N)

)where ∆j(X•0, . . . , X•j) := ∆j(X10, . . . , X1j , . . . , Xn0, . . . , Xnj) ∈ Fp[Xi0, . . . XiN ]ni=1 for j = 0, . . . , N .Let
TN+1 := Spec

Fp[Xi0, . . . , XiN ]ni=1(
∆0(X•0), . . . , ∆m−dk(X•0, . . . , X•m−dk)

) .Then
vol(ord∆ ≥ m − dk ∧ ordXi ≥ 0) = lim

N→∞

[TN+1]

Ln(N+1)
.On the other hand, let 0 be an n-tuple of zeros and set

SN+1 := Spec
Fp[Xik, . . . , XiN ]ni=1(

∆0(0), . . . , ∆m(0, . . . ,0, X•k, . . . , X•m)
) .Then

vol(ord∆ ≥ m ∧ ordXi ≥ k) = lim
N→∞

[SN+1]

Ln(N+1)
.Now, let A be an Fp-algebra and let a1, . . . ,an ∈ W(A). Corollary 1.4.4 says that

∆(V a1, . . . , V an) = F d−1V d∆(a1, . . . ,an).In WN+1

(
Fp[Xi0, . . . , XiN ]ni=1

) we therefore have
∆(V kX1, . . . , V

kXn) = F (d−1)kV dk∆(X1, . . . , Xn).
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(We may assume that N is muh bigger thenm.) This gives the following equalities in Fp[Xi0, . . . , XiN ]ni=1:
∆0(0) = 0

∆1(0,0) = 0...
∆kd−1(0, . . . ,0, X•0, . . . , X•kd−1−k) = 0

∆kd(0, . . . ,0, X•0, . . . , X•kd−k) =
(
∆0(X•0)

)p(d−1)k...
∆m(0, . . . ,0, X•0, . . . , X•m−k) =

(
∆m−dk(X•0, . . . , X•m−dk)

)p(d−1)kSo the hange of variables Xij 7→ Xi,j−k gives an isomorphism
Fp[Xik, . . . , XiN ]ni=1(

∆0(0), . . . , ∆m(0, . . . ,0, X•k, . . . , X•m)
) → Fp[Xi0, . . . , Xi,N−k]ni=1(

∆0(X•0), . . . , ∆m−dk(X•0, . . . , X•m−dk)
)p(d−1)kand so we get [SN+1] · Lnk = [TN+1] and hene

vol(ord∆ ≥ m − dk ∧ ordXi ≥ 0) = lim
N→∞

[TN+1]

Ln(N+1)

= lim
N→∞

[SN+1] · Lnk

Ln(N+1)

=Lnk lim
N→∞

[SN+1]

Ln(N+1)

=Lnk vol(ord∆ ≥ m ∧ ordXi ≥ k).Both (3.10) and (3.11) will be onsequenes of the following:Corollary 3.4.2. Let s, t and k be non-negative integers and set Vk = {ordXi = k, i = 1, . . . , n}. Let
e = e(n, s, t) = ns + t + n(n + 1)/2. Then

∫

Vk

∣∣∣∣
( n∏

i=1

Xi

)s

Xt
n∆n

∣∣∣∣dX1 . . . dXn = L−ek

∫

V0

|∆n|dX1 . . . dXnProof. We have
∫

Vk

∣∣∣∣
( n∏

i=1

Xi

)s

Xt
n∆n

∣∣∣∣dX1 · · · dXn =
∑

ξ≥0

L−ξ vol

(
ord
( n∏

i=1

Xi

)s

Xt
n∆n = ξ ∧ ordXi = k

)

=
∑

ξ≥0

L−ξ vol(ord∆n = ξ − (ns + t)k ∧ ordXi = k).By the lemma this equals
∑

ξ≥0

L−ξL−kn vol
(
ord∆n = ξ − (ns + t)k − n(n−1)

2 k ∧ ordXi = 0
)61



Let ξ′ = ξ − (ns + t)k − n(n−1)
2 k. Sine ord∆n ≥ 0, we have vol(ord∆n = ξ′ ∧ ordXi = 0) = 0 when

ξ′ < 0 so our expression beomes
L−(ns+t)k− n(n−1)

2 kL−nk
∑

ξ′≥0

L−ξ′

vol(ord ∆n = ξ′ ∧ ordXi = 0)so we are through.Now (3.11) is immediate.Proof of (3.11). Using the orollary we get
V n

(n)(s, t) =
∑

ξ≥0

∫

Vξ

∣∣∣∣
( n∏

i=1

Xi

)s

Xt
n∆n

∣∣∣∣dX1 . . . dXn

3.4.2
=
∑

ξ≥0

L−e(n,s,t)ξ

∫

V0

|∆n|dX1 . . . dXn

=
1

1 − L−e(n,s,t)

∫

V0

|∆n|dX1 . . . dXnand in partiular, putting s = t = 0 so that e(n, s, t) = n(n + 1)/2,
V n

(n) =
1

1 − L−n(n+1)/2

∫

V0

|∆n|dX1 . . . dXn.So (3.11) follows by putting these two equations together.Finally we prove (3.10):Proof of (3.10). Let α be a tuple of positive integers with sum n, so (α, m) is a tuple with sum n + m.Then
V n+m

(α,m)(s, t) =
1

α!m!

∫

U(α,m)

∣∣∣∣
( ∏

1≤i≤n+m

Xi

)s

Xt
n+m∆n+m

∣∣∣∣dX1 . . . dXn+mNow by proposition 3.3.9 we may replae Xi −Xj with Xi for i, j suh that 1 ≤ i ≤ n < j ≤ n + m. Put
∆′

m =
∏

n<i<j≤n+m(Xi − Xj). Then
V n+m

(α,m)(s, t) =
1

α!m!

∫

U(α,m)

∣∣∣∣
( ∏

1≤i≤n

Xi

)s+m

∆n

( ∏

n<i≤n+m

Xi

)s

Xt
n+m∆′

m

∣∣∣∣dX1 . . . dXm+n. (3.12)We write this as
V n+m

(α,m)(s, t) =
1

α!m!

∑

k≥0

∫
U(α,m)

ord Xn=k

|I|dX1 . . . dXm+n (3.13)where the integrand I :=
(∏

1≤i≤n Xi

)s+m

∆n

(∏
n<i≤n+m Xi

)s

Xt
n+m∆′

m is the same as in (3.12). Wetake are of eah term in this sum separately. For every k ∈ N, theorem 3.3.7 gives that
1

α!m!

∫
U(α,m)

ord Xn=k

|I|dX1 . . . dXm+n

=

(
1

α!

∫

Uα
ord Xn=k

∣∣∣∣
( n∏

i=1

Xi

)s+m

∆n

∣∣∣∣dX1 . . . dXm

)
·
(

1

m!

∫

k<|Xi|=|Xj |

∣∣∣∣
( n+m∏

i=n+1

Xi

)s

Xt
n+m∆′

m

∣∣∣∣dXn+1 . . . dXn+m

)
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We �rst take are of the seond fator in this produt. For every k ∈ N we use orollary 3.4.2 in thefollowing omputation:
1

m!

∫

k<|Xi|=|Xj|

∣∣∣∣
( m∏

i=1

Xi

)s

Xt
m∆m

∣∣∣∣dX1 . . . dXm

=
1

m!

∞∑

ξ=k+1

∫

Vξ

∣∣∣∣
( m∏

i=1

Xi

)s

Xt
m∆m

∣∣∣∣dX1 . . . dXm

3.4.2
=

1

m!

∞∑

ξ=k+1

L−e(m,s,t)ξ

∫

V0

|∆m|dX1 . . . dXm

=
1

m!
L−e(m,s,t)(k+1)

∞∑

ξ=0

L−e(m,s,t)ξ

∫

V0

|∆m|dX1 . . . dXm

3.4.2
= L−e(m,s,t)(k+1) 1

m!

∫

0≤|Xi|=|Xj |

∣∣∣∣
( m∏

i=1

Xs
i

)
Xt

n∆m

∣∣∣∣dX1 . . . dXm

= L−e(m,s,t)(k+1)V m
(m)(s, t).Putting this into equation (3.13) gives

V n+m
(α,m)(s, t) = V m

(m)(s, t)L
−e(m,s,t)

∑

k≥0

(
1

α!

∫

Uα
ord Xn=k

∣∣∣∣
n∏

i=1

Xs+m
i ∆n

∣∣∣∣dX1 . . . dXn

)
L−e(m,s,t)k.We ompute the sum in this expression, with e := e(m, s, t).

∑

k≥0

(
1

α!

∫

Uα
ord Xn=k

∣∣∣∣
n∏

i=1

Xs+m
i ∆n

∣∣∣∣dX1 . . . dXn

)
L−ek

=
1

α!

∑

k≥0

∑

ξ≥0

vol

(
ord

( n∏

i=1

Xs+m
i

)
∆n = ξ ∧ Uα ∧ ordXn = k

)
L−ξL−ek

=
1

α!

∑

k≥0

∑

ξ≥0

vol

(
ord

( n∏

i=1

Xs+m
i

)
Xe

n∆n = ξ + ek ∧ Uα ∧ ordXn = k

)
L−(ξ+ek)

=
1

α!

∑

τ≥0

vol

(
ord

( n∏

i=1

Xs+m
i

)
Xe

n∆n = τ ∧ Uα

)
L−τ

=Vα(s + m, e).Therefore we �nally get
V n+m

(α,m)(s, t) = L−eV m
(m)(s, t)V

n
α

(
s + m, e(m, s, t)

)
.
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