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0.1 Introduction

Let p be a prime number and let Z, be the ring of p-adic integers. The product Zj is a compact
topological group and hence has a Haar measure y which we normalize so that u(Z;) = 1. Identify the
monic polynomials of degree n in Z,[X] with Z7 via X" +a, X"~ ' +---+a, — (a1,...,a,). In[Sko] the



measure of the nth degree polynomials that satisfy certain factorization patterns are computed. Firstly
the measure of the polynomials of degree n that split completely is a rational function of p. For example,
the measure of the 2nd degree polynomials that split completely is ﬁ. Secondly, the measure of the
polynomials of degree n that are irreducible and unramified is also a rational function of p.

Associated to p is a ring scheme called the Witt vectors and which we denote by W, with the property
that the F,-rational points on W, W(F},), are isomorphic to Z,. Moreover, if ¢ = p” then W (F,) is
isomorphic to the integral closure of Z, in the unramified field extension of degree r of Q,. (For every r
there is exactly one such extension in a fixed algebraic closure of Q,.) If we now compute the measure
of the n’th degree polynomials with coefficients in W (IF) that split completely we get the same rational
function as for Z,, but with p replaced with ¢g. For example, the measure of the degree 2 polynomials
with coefficients in W (F,) that split completely is 2(1—1+q).

To explain this phenomenon we will define the measure of certain subschemes of W™. This measure
will take its values in the completion of a localization of the Grothendieck ring of finite type schemes over
), so that the measure of a subscheme of W™ can be represented by a fraction of linear combinations of
Fp-schemes. It will have the following property: If the measure of the scheme X C W™ is represented by
[X1]/[X2] where X and X, are IF,,-schemes then the Haar measure of the F,-rational points of X equals
the number of [F -rational points of X; divided by the number of F,-rational points of X5. For example,
what was said above indicates that the measure of the scheme of degree 2 polynomials with coefficients
in W(IF,) that splits completely should be m.

We will define this measure and compute it in the case of polynomials that split completely. This will
be done in chapter 3. We have also tried to compute the measure of the scheme of irreducible unramified
polynomials, but so far without success. As a warm-up for that problem we do the computations in
chapter 2 which turns out to be interesting in their own right.

The type of measure discussed above is called a motivic measure, referring to the fact that the Haar
measures for different W(F,) could be perceived as different paintings of the same motive, the measure in
the Grothendieck ring. Hence the name has the same explanation as the name of the category of motives,
which is a category through which every Weil cohomology factors. Here the cohomology theories are the
paintings. (This is the explanation given in [Man68].) Also, the fact that there already is a category
of motives prevents us from calling the elements of our Grothendieck ring motives. We say that we
compute motivic measures and motivic integrals but never that the integral is a motive. This is further
complicated by the fact that there are several different theories of motivic integration, and in some of
them the measure takes values in the Grothendieck ring over the category of motives.

For an overview of motivic integration together with further references, see [Loo00|. The variant
which we use in chapter 3 is developed to suit our particular problem.

QOutline of the thesis

In chapter 1 we collect some of the background material that is needed in order to understand this thesis,
and which we do not consider to be well known. We introduce the notions of Grothendieck rings and
A-rings and define the particular rings that we are interested in. We also give an introduction to a ring
scheme that is called the Witt vectors. Even though all the material in this chapter is already known we
still give proofs of some of the results. Occasionally we just give a reference to a proof and sometimes we
do neither.

Chapter 2 contains the computation of the class of an algebraic torus in the Grothendieck ring of
varieties over a field. We arrive at a closed formula expressed in terms of elements of the Burnside ring
of the symmetric group 3,. We then express these elements in terms of the A-ring structure on B(X,)
so this chapter also contains an investigation of this particular A-ring.

Chapter 3 is our attempt to generalize the above-mentioned Haar measure computations to a compu-
tation of a motivic measure.



Notation and prerequisites

We use the following standard notations: N = {0,1,2,...}, Z = ring of integers, Q = field of rational
numbers, R = field of real numbers, C = field of complex numbers and F, = field with ¢ elements, ¢
a power of a prime. Also, Z, = ring of p-adic integers and Q, = field of p-adic numbers. To denote a
general field we use the letter k.

By a ring we will mean a commutative ring with unit.

When X is isomorphic to Y we write X ~ Y. If X is defined to be Y we write X := Y. Finally
X C Y means that X is a, not necessarily proper, subset of Y.

We use Sets, Rings, Alg, and Sch to denote the categories of sets, rings, A-algebras and schemes
respectively.

We assume knowledge of the language of schemes as presented in chapter II of [Har77]. In particular
if A is a ring, B an A-algebra and X is a scheme over A, then X (B) is the set of points of X with
coordinates in B, Hom 4 _schemes(Spec B, X ), whereas X is the scheme over B obtained from X by base
extension, X X4 Spec B. We also frequently use the following two facts about schemes: An A-scheme
X is determined by its functor of points X(—): Alg, — Sets, and a functor F': Alg, — Sets is an
affine scheme if and only if it is representable by an A-algebra C, so that F(B) = Homa_a,(C, B) for
every A-algebra B. This also makes it easy to define an affine ring scheme over A, which is just a functor
Alg , — Rings whose composition with the forgetful functor to Sets is representable.

We use G,,, and G, to denote the multiplicative and additive group schemes respectively. By a torus
we mean a group scheme that becomes isomorphic to G,, x --- x G,, after an extension of the base.

If A is a ring we use D(f) and V(I) to denote the open respectively closed subschemes of Spec A
determined by the element f € A respectively the ideal I C A. If A is graded we use Dy and V4 to
denote the corresponding subschemes of Proj A.

If R is a ring then R* is the group of invertible elements in R.

By ¥,, we mean the symmetric groups, i.e., 3, is the permutation group of {1,...,n}.

By a partition of n we mean a weakly decreasing sequence of positive integers which sum to n. We
write A F n to indicate that A is a partition of n.
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Chapter 1

Background material

In this chapter we will bring up definitions and theorems that are of repeated use in this thesis.

1.1 Grothendieck rings

Let A be an abelian category. The Grothendieck group of A is then defined to be the free abelian group
generated by {[4] : A € ob(A)}, subject to the relations that if 0 — A — B — C — 0 is exact then
[B] = [A] + [C]. (It follows in particular that [A] = [B] if A ~ B.) We denote this group by Kq(A).

Let C be a non-abelian category. As above we can form the free abelian group generated by {[A] :
A € ob(C)} and then form a quotient of this group. We will sometimes call this a Grothendieck group of
C, in analogy with the case when C is abelian.

A much studied example of a Grothendieck group is Ko(Modg) where Modpg is the category of
finitely generated projective modules over the commutative ring R. This category is in general not
abelian but we use the same defining relations as if it where. Since every short exact sequence of
projective modules is split this means equivalently that the defining relations of Ko(Modg) is [P1] = [P]
if P| ~ Py and [Py & Po] = [P1] + [P2]. This group can also be given the structure of a ring by defining
[P1]-[Ps] := [Pi®R P»). This product is well defined: If P, ~ Py @& P; then PQr Py ~ (PRrP1)®(PRgPs).
Tt hence follows that [P] - [Py] = [P] - [P1] + [P] - [Ps] if [P2] = [P1] + [P5].

By a Grothendieck ring we mean a ring constructed in analogy with the above example, i.e., an abelian
group where the generators are isomorphism classes of objects in some category. These generators are
subject to relations that were given above if the category is abelian and that we have to define from case
to case if the category is not abelian. The ring also has a multiplication that we have to define in each
particular case.

If R is an abelian group and we want to define a group homomorphism Ko(A) — R then we often
do this by giving a map ¢: ob(A) — R. We then have to check that ¢ respects the relations. In the
abelian case this means that ¢(B) = ¢(A)+¢(C) it 0 - A — B — C — 0 is exact. Moreover, if we have
given Ko(A) the structure of a ring and R is a ring, then we get a ring homomorphism if ¢ respects the
multiplication on the generators.

1.1.1 The Grothendieck ring of schemes of finite type over a field

Fix a field k, and let Schy be the category of schemes of finite type over k. We now construct a
Grothendieck ring over this category. Since Schy is not abelian we have to define the relations that we
use.



Definition 1.1.1. Let k be a field. The Grothendieck ring of schemes of finite type over k, Ko(Schy),
is the free abelian group generated by symbols [Y], for Y € Schy, with a multiplication given by

[Y] : [Z] = [Y X Speck Z]
and subject to the following relations:

Y] =[Z] ifY ~Z
Y=Y \Z]+ 7] if Z is a closed subscheme of [Y].

This is well defined for if Z is a closed subscheme of Y then Z x; X is a closed subscheme of Y x; X
with complement (Y \ Z) x; X.

In Ko(Schy) we have that 0 = [] and 1 = [Speck]. As a special case of the second relation we
get [Spec A & B] = [Spec A] + [Spec B]. Also, every scheme Y has a unique reduced closed subscheme
Yiea — Y having the same underlying topological space as Y. From the second relation we see that
[Y] = [0] + [Yrea] and hence [Yieq] = [Y].

Define L := [A}]. (L is for Lefschetz). Since A} = A} x ---x A} we get [A?] = L". To find [P}] recall
that P} ™" ~ Projk[Xo ..., X,]/(Xo) is isomorphic to a closed subscheme of P? = Projk[Xj ..., X,,] with
support Vi (Xo). Since Dy (Xo) =~ Speck[X1/Xo,...,Xn/Xo] =~ A? we get [P?] = L™ + [P}~!] when
n > 1. When n = 0 we get [PY] = [Speck] + [Projk] = 1 + 0 so the formula [P}] =L" + L" ! + ... +1
follows by induction.

Remark. Perhaps a more common construction is to use instead the category of varieties over k, where
variety here means a reduced, separated scheme of finite type over k. However, this construction gives
an isomorphic ring, so we could refer to Ko(Schy) as the Grothendieck ring of varieties over k. (Some
authors even use the term variety to mean a scheme of finite type over a field, see for example [Liu02].)
We also remark that if we instead do this construction over the category of all schemes over £ then we
end up with the zero ring, because if Y is any k-scheme and Z is an infinite disjoint union of copies of Y
then [Z] = [Z] + [Y] and hence [Y] = 0. On the other hand, there are many open questions about the
structure of Ko(Schy). For example, if char(k) # 0 then it is not known whether Ky(Schy) is a domain.
If instead char(k) = 0 then, by [Poo02], Ko (Schy) is not a domain.

We next consider some examples of how the relations work.

Exampel 1.1.2. Consider the open subscheme D(X) C Speck[X] = A}. Since V(X) can be given the
structure of a closed subscheme isomorphic to Spec k[X]/(X) ~ Speck we get

[D(X)] = [A}] - [V(X)] = L — [Speck] = L — 1.
On the other hand, D(X) ~ Spec k[X]x ~ Speck[X,1/X]| ~ G,,, so [G,,] =L — 1.

Exampel 1.1.3. Let k be a field of characteristic different from 2 and let C'p be an irreducible projective
conic with a k-rational point. (Every conic has a k-rational point if k is algebraically closed or finite.) We
then know that there exists an isomorphism Cp ~ P} so [Cp] = L+ 1. The situation is more complicated
in the case of an affine conic. Consider for example the unit circle C4 := Speck[X,Y]/(X? +Y? —1).
We have

L+ 1=[Projk[X,Y, Z]/(X*+Y? - 2?)]
=[V4(2)] + [D+(2)]
= [Proj k[X,Y]/(X2 + Y?)] + [Cal,

where
[Proj k[X,Y]/(X? +Y?)] = [Vi(Z)] + [D4(Z)] = 0+ [Spec k[X]/(X? + 1)].



So if —1 is a square in k then [Ca] = L + 1 — [Speck?®] = L — 1 whereas if —1 is a non-square then
[Ca] =L+1—[Spec K] where K = k(v/—1). An element of the form [Spec K| where K/k is a finite field
extension is an example of what later will be called an artin class.

We expand the definition of the class of a scheme in Ky(Schy) so that we also can talk about the class
of a constructible subset of a scheme (i.e., a finite disjoint union of locally closed sets). For the following
proposition, see the introduction to [DL99].

Proposition 1.1.4. If Y is a scheme of finite type over k then the map Y’ — [Y'] from the set of
closed subschemes of Y extends uniquely to a map Z — [Z] from the set of constructible subsets of Y to
Ko(Schy,), satisfying [ZUZ'| = [Z]+[Z'] = [ZNZ"].

So if we are given a constructible subset Z of a finite type scheme over k then it has a well defined
image [Z] € Ko(Schy,).

If £ C K is a finite field extension, then extension and restriction of scalars give rise to maps between
Ko(Schy) and Ko(Schg).

Definition-Lemma 1.1.5. Let K be a field extension of k of finite degree. Define ReskK: Ko(Schg) —
Ko(Schy) by the map Schx — Ko(Schy) that take the K-scheme X to the class of X, viewed as a
k-scheme. We have that Resy. is additive but not multiplicative.

Also, define Scel : Ko(Schy) — Ko(Schg) by the map Schy — Ko(Schy) that take the k-scheme
X to the class of X X Spec K, viewed as a K-scheme. This is a ring homomorphism. (Sce is short for
scalar extension.)

The fact that ReskK fails to be multiplicative can be seen for example if we let k = F, and K = F2,
for then we have Resf (1 - [SpecF,s]) = [SpecF,s] whereas Fe ®p, Fpo = Fis S0

Resy (1) - Resy ([SpecFs]) = [SpecFyz] - [SpecFo] = [SpecF2s] = 2 - [Spec Fyo].

Rather then being multiplicative, ReskK has a similar property: If X is k-scheme and Z is a K-scheme then
from the universal property defining fibre products we get that Z x x (Spec K x;, X ) ~ Zx;, X as k-schemes.
It follows that if we apply the restriction map to [Z] - [X k] € Ko(Schg) we get [Z] - [X] € Ko(Schy). We
will use this in the special case when X = A} and Z = Spec L where L is a finite dimensional K-algebra,
so we state this as the following proposition.

Proposition 1.1.6. If K is a finite field extension of k and L is a finite dimensional K-algebra, then
for every n € N we have

Resy ([Spec L] - L") = [Spec L] - ™.
In particular, Resf (1) = [Spec K| and Resy (L") = [Spec K] - ™.

If we work over a finite field then the construction of Ko(Schy) is compatible with point counting, as
the following shows.

Definition-Lemma 1.1.7. For q a prime power, let Cy: Ko(Schr,) — Z be the map defined by X —
|X(Fg)|: ob(Schg,) — Z. Then Cy is a ring homomorphism.

Proof. Let T' € Schg, be arbitrary. If f: Y — Z is an isomorphism then g +— fog: Y(T) —
Z(T) is a bijection. Moreover, since SpecF, is a point, |Hom(SpecF,,Y)| = |Hom(SpecF,, Z)| +
|[Hom(SpecF,,Y \ Z)| if Z is a closed subscheme of Y. Hence C, is well defined. It is multiplicative
since
(Y xp, Z)(T) =Y (T) x Z(T)
f (v o fumz o )

is a bijection by the universal property that defines the fibre product. O



Exampel 1.1.8. In example 1.1.3 we saw that if p is an odd prime and if —1 is a square in I, that is
if p=1 (mod 4), then the class of the circle X?> +Y? — 1 equals L — 1 in Ko(Schr,). Hence for every q
that is a power of p, the number of Fy-points on the circle is ¢ — 1.

If instead p = 3 (mod 4) then the class of the circle in Ko(Schr,) equals L + 1 — [SpecF,2]. Hence if
q is an odd power of p then the number of Fy-points on the circle is ¢ + 1 whereas if q is an even power
of p then the number of F,-points equals ¢ — 1.

1.1.2 The Burnside ring

Let G be a finite group. In this section we consider the Grothendieck ring of finite G-sets. However, this
ring already has a name, namely the Burnside ring of G. For more on the Burnside ring, as well as proofs
of the statements below, see [Knu73] chapter II, 4. There are several ways to generalize the construction
of the Burnside ring to certain classes of infinite groups. We will need to do this when G is profinite, i.e.,
G is the inverse limit of a directed system of finite groups, with the inverse limit topology.

Let G be a group. Recall that a G-set is a set with a G action, and if S and T are G-sets then
f: S — Tis G-equivariant if g - f(s) = f(g - s) for every s € S and g € G.

Definition 1.1.9. Let G be a finite group. Define G — Sets to be the category where an object is a finite
set with a G-action and where a morphisms is a G-equivariant map of such sets. We will denote the
morphisms between the G-sets S and T by Homg (S, T).

More generally, if G is profinite we let G — Sets be the category of finite sets with a continuous
G-action.

Definition 1.1.10. Let G be a finite group. The Burnside ring of G, which we denote by B(G), is the free

abelian group generated by the symbols [S], for every G-set S, subject to the relations [SUT) = [S] + [T]
and with a multiplication given by [S] - [T] := [S x T, where G acts diagonally on S x T.
If G is profinite, B(G) is constructed in the same way but using the finite continuous G-sets.

Since every G-set can be written as a disjoint union of transitive G-sets we see that the transitive
sets generates B(G), and in fact it is free on the isomorphism classes of transitive G-sets. Moreover,
every finite transitive G-set is isomorphic to G/H where H is a (not necessarily normal) subgroup, and
G/H ~ G/H' if and only if H and H' are conjugate subgroups. So every element of B(G) can be written
uniquely as

> au(G/H]

HER
where R is a system of representatives of the set of conjugacy classes of subgroups of G and where ay € Z
for every H.

Next, let ¢: H — G be a group homomorphism. If S is a G-set we can consider it as a H-set by
defining h - s := ¢(h)s. Also, if instead S is a H-set then we can construct a G-set in the following way.

Definition 1.1.11. Let ¢: H — G be a group homomorphism and let S be an H-set. Define an equiva-
lence relation on G x S by (g- ¢(h),s) ~ (g,hs) for (g,s) € Gx S and h€ H. Let G xyg S:=G xS/ ~
with a G-action given by

gl : (973) = (glgvs)'

We will only use this definition in the case case when H is a subgroup of G. In this case, note that
if we choose a set of coset representatives of G/H, R = {¢g1,...,gr}, then we can represent G Xy S as
R x S with G-action given by g - (g, s) = (gj, hs), where gg; = g;h for h € H.

This gives rise to two maps betwen Burnside rings.



Definition-Lemma 1.1.12. Let ¢: H — G be a homomorphism of profinite groups. Then Res$: B(G) —
B(H) is the map induced by restricting the G-action on a G-set S to a H-action, i.e., S is considered as
a H-set via h-s:= ¢(h)s for h € H and s € S. This map is a ring homomorphism.

Also, we define the induction map Indg: B(H) — B(G) by associating to the H-set S the class of the
G-set G xg S in B(G). This map is additive but not multiplicative.

1.1.3 The subring of artin classes in K(Schy)

Given a field k with absolute Galois group G. In this subsection we define a map from the Burnside
ring of G (where G is given the profinite topology) to Ko(Schy). The image of this consists of linear
combinations of classes of zero dimensional schemes. An element in the image will be called an artin
class.

We shall use the notion of a finite separable algebra:

Definition 1.1.13. A finite separable algebra over the field k is a k-algebra L with the property that if
k% is a separable closure of k then L @y k® ~ k® x -+ X k.

For a list of equivalent conditions, see [Wat79], page 46. The notion of a separable k-algebra is used
in the following formulation of Galois theory. For a proof see for example loc.cit., page 48.

Theorem 1.1.14. Fiz a field k together with a separable closure k*. Set G := Gal(k®/k). Then we have
a contravariant equivalence between the category of finite separable k-algebras and the category of finite
continuous G-sets (where the morphisms in the latter category are G-equivariant maps of sets).

This equivalence takes the k-algebra L to Homy (L, k*) with G-action given by fo(l) :== oo f(l). Iis
pseudo-inverse takes the G-set S to Homg (S, k®), i.e., the G-equivariant maps of sets from S to k*,
considered as a ring by pointwise addition and multiplication and with a k-algebra structure given by

(a-f)(s):=a-f(s)
Proposition 1.1.15. Under the correspondence in theorem 1.1.14, if L corresponds to S then the di-
mension of L equals the number of elements in S. Moreover, if also L' corresponds to S, then L @y L'

corresponds to S x S” with diagonal G-action and the algebra L x L' corresponds to SUS'. In particular,
separable field extensions of k correspond to transitive G-sets.

Proof. The first statement is true because the equality dimy L = |S| is equivalent to L being separable.
(See |Wat79]). The second statement is true since S x S’ ~ Homy (L ® L', k*) follows from the universal
property defining the tensor product in the category of k-algebras. The third statement follows since k°
contains no non-trivial idempotents so a homomorphism L x L' — k® is zero on one of the coordinates. [

Definition-Lemma 1.1.16. Let Arty: B(G) — Ko(Schy) be induced by the map G —Sets — Ko(Schy,)
that takes the G-set S to the class of Spec Homg (S, k®). (If the field k is clear from the context then we
just write Art.) Then Arty is a ring homomorphism.

Remark. Tt is also true that Arty is injective, so we can think of B(G) as a subring of Ko(Schy,).

Definition 1.1.17. Define an artin class to be an element in the image of Arty. Let ArtCly C Ko(Schy),
the subring of artin classes, be the image of B(G) under Arty.

We next study how Art behaves with respect to restriction of scalars. The following proposition is
due to Grothendieck but we have not been able to find a reference so we include a proof for completeness.

Proposition 1.1.18. Fiz a field k together with a separable closure k®* and let G := Gal(k®/k). Let K
be a finite field extension of k such that K C k°. Let L be a finite separable K-algebra and let S be
the corresponding Gal(k®/K)-set. View L as a k-algebra and let S’ be the corresponding G-set. Then
SI ~ g Xgal(ks/K)S'



Proof. The map

¢: GxS =S5
(0,f)—of

has the property that if 7 € Gal(k®/K) then ¢(oT, f) = o7f = ¢(o,7f). Hence it gives rise to a map of
G-sets ©: G Xgaks/)S — S I ¢(0, f) = ¢(7,g) then 770 f = g so since f and g fixes K pointwise
we must have that 7710 € Gal(k®/K). It follows that (7,9) = (1,7 Yo f) ~ (r77 o, f) = (0, f) so ¢ is
injective.

Let d := [K : k]. Suppose that L has dimension n as a K-algebra, i.e., S has n elements. Then L has
dimension nd as a k-algebra so S’ has nd elements. On the other hand, by Galois theory, |G / Gal(k®/K)| =
[K : k] = d. So by the remark after definition 1.1.11, G Xga(xs/k)S also has nd elements. Since ¢ is
injective it follows that it also is surjective, hence an isomorphism of G-sets. O

Proposition 1.1.18 has the following consequence.

Proposition 1.1.19. Let k be a field and k* a separable closure. Define G := Gal(k®/k) and let K be a
finite field extension of k such that K C k®. Then the following diagram commutes:

Art g

B(Gal(k*/K)) ™~ Ko(Schg)

I“dgaukS/K)l lResf

B(G) — 2" Ko(Schy)

1.1.4 The representation ring

The final Grothendieck ring that we introduce is the representation ring of a profinite group. We will not
work so much in this ring; we use it only to prove facts about the Burnside ring, for example proposition
2.4.10. For this reason we just define the ring of Q-representation, even though the same construction
works over any field. The representation ring is a standard tool in representation theory, see for example
[Ser77].

Let G be a finite group. A Q-representation of G is a finitely generated Q[G]-module, or equiva-
lently a finite dimensional Q-vector space with a G-action. A morphism of such representations is a
homomorphism of Q[G]-modules, or equivalently a G-equivariant linear map of Q-vector spaces. The
Q-representations of G form an abelian category. More generally, if G is profinite then we define a Q-
representation of G in the same way as above but we also require the G-action to factor through a finite
continuous quotient of G.

Definition 1.1.20. The representation ring of G (over Q) is the Grothendieck group of the category of
Q-representations of G with a multiplication given by [V1] - [Va] := [Vi ®q Va], the G-action on the tensor
product being given by g - (v1 @ v2) = gu1 @ gve. We denote this ring with Rg(G).

By Maschke’s theorem, every short exact sequence of Q-representations splits, hence we can think of
the relations just as [Vi @ Vo] = [V1] + [V2].

As an abelian group, the rational representation ring is free on the isomorphism classes of irreducible
Q-representations. Since we have a bijection between the set of such classes and the conjugacy classes of
cyclic subgroups of G, the rank of Rg(G) equals the number of conjugacy classes of cyclic subgroups in
G. (See [Ser77], 12.4 for this.)

In this ring we also get a restriction map and an induction map.



Definition-Lemma 1.1.21. Let H — G be a group homomorphism. Then Res$: Ro(G) — Ro(H) is
the map induced by restricting the G-action on the Q-vector space V' to a H-action on V. This map is a
ring homomorphism.

Moreover, we define a map Ind%: Ru(H) — Ri(G) by associating to the Q[H|-module V the class of
the Q[G]-module Q[G] ®qim V in Ro(G). This map is additive but not multiplicative.

We need to know a little about how the induction map works.

Proposition 1.1.22. Let H be a subgroup of G and let R = {¢1,...,9-} be a system of coset represen-
tatives for G/H. Then R is a basis for Q|G| considered as a right Q[H]-module. Hence Q[G] is free of
rank |G/ H|.

Let'V be an H-representation of dimension n. Let B be a Q-basis for V.. Then a basis for Q[G]®@q;m V
as a Q-vector space is {g; @ v}y,erven and the G-action is given by g - g; @ v = g; ® hv where gg; = g;h
for he H.

Proof. Let r:=|G/H| and let g1, ..., g, be coset representatives. Define
p: Q6] — P QIH]
i=1

on the canonical basis for Q[G] by mapping g = g;h, where h € H, to the tuple with ith component
h and zeros elsewhere. Since G is the disjoint union of its cosets this is a bijection. It is additive and
Q-linear by definition. Finally, if g = g;h then

o(gh’) = o(gi(hh')) = (0,...,hR',...,0) = (0,..., h,...,0) - B = @(g)h’
for h' € H, hence ¢ is H-equivariant. O

To be able to use the representation ring to prove facts about the Burnside ring we will need a map
between them.

Definition-Lemma 1.1.23. Let G be a profinite group. Let S be a finite continuous G-set. We can
associate to S the permutation representation Q[S], i.e., the Q-vector space with basis S and G-action on
the basis elements. This gives rise to a ring homomorphism B(G) — Ro(G) which we denote by h.

Proof. If S and T are G-sets then

Q[SUT] ~Q[S] & Q[T] and
Q[S x T ~QIS] ®q Q[T]

as Q[G]-modules, hence this construction really defines a ring homomorphism from B(G) to Ro(G). O

This map is studied in [Seg71|, where it is proved that if every element in G has prime power order,
then h is surjective. It is an isomorphism if and only if G is cyclic. Since B(G) has rank equal to the
number of conjugacy classes of subgroups of G whereas Rg(G) has rank equal to the number of conjugacy
classes of cyclic subgroups of G, it is in general not injective. We will later prove that the restriction of
h to a certain subring of B(X,,) is injective.

The map h commutes with the induction and restriction maps.

Proposition 1.1.24. Let H be a subgroup of G. Then the following diagram commutes.

B(G) —>Rg(G)

Indg T Indg

B(H) —"> Rg(H)
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Also, if H — G is a group homomorphism then h commutes with the restriction maps Resg.

Proof. We prove the first part of the proposition. For every H-set S we have to find a G-equivariant
isomorphism of Q-vector spaces

¢: Q[G xg S] — Q[G] ®q[a) Q[S].

Define a map ¢: G xS — Q[G]|®qa Q[S] as (g, s) — g®s. Since ¢(gh,s) = ¢(g, hs) this factors through
G x g S and by linear extension we get our map .

Choose a system of coset representatives R = {g1,...,g,} for G/H. We have seen in 1.1.22 that
QI[G] ®qia) Q[S] has a basis given by {g; ® s}y,erses and G-action g - (g; ® s) = (g; ® hs), where
99i; = gjh, hence ¢ is G-equivariant and surjective. Also, we have seen that G xy S can be represented
as {(gi, s)}g;eR,ses so the two vector spaces have the same dimension. Hence ¢ is an isomorphism. O

We next define a map from the representation ring.

Definition-Lemma 1.1.25. Let G be a profinite group. If g is an element of G then we have a map
from the category of G-representations to Q that sends the G-representation V to xv(g). This induces a
ring homomorphism Cjy: Ro(G) — Q.

We have that if g and ¢’ are conjugate then Cy = Cy. Let R be a system of representatives of the set
of conjugacy classes of (G. Since a representation is determined by its character the following proposition
is expected.

Proposition 1.1.26. With the above notation, the map [[,cp Cy: Ro(G) — [[,cp Q is injective.

gER

We have the following commutation property.

Proposition 1.1.27. Let ¢: G — H be a group homomorphism and let g € G. The following diagram

commutes.
Rcsg

Ro(H) — Rq(G)

CQ

Z

Proof. Let V be a Q-representation of H and denote it by V’ when we consider it as a representation of
G via 6. Then g acts on V" by 6(g) 50 xv+(g) = xv(9(9)). hence Cy(Res?[V]) = Cyiy) ([V]). Since every
element of Rg(H) is a difference of classes of H-representations the result follows. O

1.2 The motivic ring

In this section we define the ring in which our motivic measure will take its values. It is obtained from
the Grothendieck ring of varieties by a process of localization and completion. This material together
with references can be found in [Bli05]. For basic facts about filtrations and completions, see [Ser00],
chapter II.

Definition 1.2.1. Given a field k, let My, be the localization of Ko(Schy) with respect to {L"™},en.

Definition 1.2.2. If x € Ko(Schy) we say that dimxz < n if © can be expressed as a linear combination
of classes of schemes, each of dimension < n. (By convention, the empty scheme has dimension —oo.)
We define a filtration of My, {F"(My)}nez by letting F"(My) be the subgroup of My, generated by
elements of the form x - L™ with dimxz —i < n. Let M\k be the completion of My, with respect to this
filtration.
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So we have homomorphisms .
Ko(Schy) — My — M.

Tt is not known whether any of these maps are injective but we still denote by [Y] the images in M, and
M. of [Y] S KO(Schk)

The following holds since My is a completion with respect to a filtration.
Proposition 1.2.3. A sequence {ay nen in M\k is Cauchy, hence convergent, if and only if any1 —an —
0. In particular, the sum )\ an is convergent if and only if a, — 0.

The following is a consequence.

Proposition 1.2.4. If {a,}nen C M\k and if ZnEN an s convergent then every rearrangement of
Y nen n i convergent, and they all converges to the same limit.

We will use this result a great deal so we will not refer to it every time. The same holds for its
consequence that if {anm}m,myenz C My, then Z(n m) Gnm is well defined and if it converges then it

equalls D= > apm.
Finally we have the following formula:

Proposition 1.2.5. In M\k we have the equality ), L™ = (1 — L)~ for every positive integer n.

1.3 A-rings

The definition of a A-ring is due to Grothendieck. An introduction to this subject is given for example
in the first part of [AT69] or in [Knu73|. We define only the part of theory that we need.

Definition 1.3.1. A A\-ring is a commutative ring R with identity together with a set of maps \": R — R,
for each n € N, such that for all z,y € R

N(z) =1
M) = ° (1.1)
ANz +y) =Y N(@)A" " (y).
1=0

A morphism of \-rings is a homomorphism of commutative rings, commuting with the A-operations.

For an indeterminate ¢, define A\;(z) := > -, A"(2)t" € R[[t]]. The last axiom can then be expressed
as the equality B

At(r +y) = ()M (y) (1.2)

in R[[t]], so a A-ring structure on R is the same thing as homomorphism A from the additive group of R
to the multiplicative group of R][¢]] fullfilling the two first axioms of (1.1).

Sometimes when defining A-structures it is more convenient to define the A\™:s implicitly. One way is
to first define functions ¢, fullfilling the same axioms as the A":s (so R is a A-ring also with respect to
the ¢":s), define oy (x) := 3", . 0™ (2)t" € R[[t] and then define the A-operations by

Ut(.’L'))\_t({E) =1. (13)

Proposition 1.3.2. Given a collection of maps o™ on R fullfilling the azioms (1.1). Then (1.3) define
a unique \-ring structure on R.

Moreover, if f: R — R’ is a ring homomorphism commuting with the oc™:s, then it is a morphism of
A-Tings.
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Proof. First, A_(x) exists uniquely since o¢(x) has constant coefficient equal to 1, hence is invertible,
and inverses are unique when they exist. Moreover, we have that \°(z) = 0%(z) = 1 and —o®(2)\!(z) +
ol (2)A\°(x) = 0 so that A\ (z) = o' (x) = 2. The third axiom follows from its formulation as (1.2) for we
have

iz +y) =0z +y) "

=oy(z) o (y)
=A_t(z)A-t(y),

so it follows that \i(z + y) = M (2)Ae(y).

For the last part of the proposition, Since f is a homomorphism it induces a homomorphism on
the power series rings R[[t]] — R'[[t]], Y ,50ait’ — > ;50 f(a;)t" which we also denote by f. Since f
commutes with o; we then have

Since A_;(f(x)) is unique with this property it follows that f(A_(z)) = A_¢(f(z)). O

The aim of this section is to define a A-ring structure on B(%,). In section 2.4 we will then prove an

explicit formula for A'({1,...,n}). However, we are not able to prove this formula directly so we have to
move it to the representation ring Rg(3,) and prove it there instead. So we begin by describing a A-ring
structure on the representation ring. This structure is also one of the best-known and most studied of
all A-rings.
Remark. In the theory of A-rings a great part centers around the concept of a special A-ring, which is a
A-ring where \"(zy) is a universal polynomial in \'(x) and A\'(y) for i < n, and \*(A\™(x)) is a universal
polynomial in A\*(x) for i < mn. In that theory there is not such a symmetry between \ and o, for R can
be special with respect to A bur not with respect to o. Of the rings we shall encounter, the representation
ring is special but the Burnside ring is not.

1.3.1 The A-ring structure on the representation ring

Define A;: Rg(G) — Rg(G)[[t]] by associating to the G-representation V' the power series

S IATV] -t

n>0

where A" V has the G-action g-v; A--- Av, := gvy A---Agvu,. Then )\ is a well defined homomorphism
from the additive group of Rg(G) to the multiplicative group of Rg(G)][[t]] because for every n € N we
have an isomorphism

N(U V)= @A U e AV,
i=0
which is G-equivariant. When referring to Rg(G) as a A-ring we will always use this A-ring structure.

When G is the trivial group we see that Rg(G) is isomorphic to Z via V' +— dimg V. Under this

isomorphism, the corresponding A-ring structure on Z is \"(m) = (7:)
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Next we define oy by associating to the G-representation V' the power series

D _ISM(V)] - 1" € Ro(@)[[H].

n>0

where S™(V) is the symmetric n:th-power of V' as a Q-vector space and with a G-action given by g¢ -
vyt ~v§j = (gv1)°* - -+ (gv;)%, where e; + - - - + e; = n. This is really the o corresponding to X that we
defined previously, for o (2) - A_t(x) = 1 follows for example from an investigation of the Koszul complex

given in [McD84|, chapter V.G.

1.3.2 The A-ring structure on the Burnside ring

We are now going to define a A-ring structure on B(G). This will be used to define elements in B(3,,)
that will give us a very compact way of writing the formula for [L*] € K(Schy) that we will find in
chapter 2. It turns out that our A-structure on B5(G) will be rather hard to work with. We will therefore
use the homomorphism h: B(X,) — Rg(Z,) (definition 1.1.23) which will allow us to move a crucial
part of the computations in B(3,,) to the corresponding computations in Rg(X,,) which will be easier to
handle. For this we will have to prove that h respects the A-structures.

We begin by defining the A-structure on B(G). We do this implicitly by first defining o;. Define a
map that takes the G-set S to the power series

> 18"/ £ € B@)[[t],
n>0

where 3, acts on S™ by permuting the entries. There is an isomorphism of G-sets

(SUT)”/zn—»U Sty x TI) %,

i+j=n

so this defines a homomorphism from the additive group of B(G) to the multiplicative group of B(G)|[[t]]
which is our oy.
We then define A\; by the formula
or(x)A_¢(x) =1

for every = € B(G). By proposition 1.3.2 this defines a A-ring structure on B(G).
Next we describe a connection between B(G) and Rg(G) with the A-structures we have given them.

Lemma 1.3.3. Let G be a finite group and let h: B(G) — Rg(G) be the map defined in 1.1.23. Then h
is a homomorphism of \-rings.

Proof. To show that h commutes with the A-operations we begin by showing that it commutes with o’
for every i. For this we have to show that if T is a G-set then

QT"/ %) ~ S'(Q[T))
as Q[G]-modules. Let T' = {t1,...,t;} and identify 7%/ %; with the set of monomials of degree 1,
{t?-utjj tep 4 te =i}
Then Q[T"/ %] is the Q-vector space with this basis and G-action given by
g1t = (gt)™ - (gt5)
The same holds for Si(Q[T]). Hence h commutes with the o™:s, so it follows from the second part of

proposition 1.3.2 that h is a morphism of A\-rings. O
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Remark. This is not the only possible A-structure on B(G), for example one could have defined A" ([S]) =
[P,.(S)], the subsets of S of cardinality i¢. This would almost make h a morphism of A-rings for then
h(A™([S])) is naturally isomorphic to A" (h([S])) as Q-vectorspaces. However, this isomorphism is not in
general G-equivariant.

1.4 The Witt vectors

In this section we define a ring scheme called the Witt vectors and denoted by W. This material is
essentially in [Ser79] pp. 40-44 and in [Dem72].

1.4.1 Definitions

Fix a prime p. Consider the following sequence of polynomials in Z[Xo, ..., X,,...]:
Wo =Xo
W1 :Xg +pX1

n . n—1 n n—1
Wo=>p' X" = X5 +pX7 4+ 4 X,
1=0

It is a fact (see [Ser79] for a proof) that for every ® € Z[X, Y] there exists a unique sequence (@o, ..., ¢n, ... )
of polynomials in Z[Xy,..., Xn,...;Y0,...,Y,,...] such that

Wi (90, -+ 0n) = D(Wn(Xo, .-, X)), Wa (Yo, ..., V) neN.

Note that ¢, only involves the variables Xg,..., X, and Yy,...,Y,. If ® = X + Y we denote the
associated ¢, with S, and we get

S() =Xo+ Yo

XP+YY — (Xo+Yo)?
D

S1=X1+Y1 +

1 1
52=X2+Y2+§(Xf+ylp)—§(X1+Y1+

XP+YP - (Xo -l—Yo)p)p
p
1

+
p2

(XE + Y — (Xo + Vo))

If instead ® = XY we set P, := ¢, and we get

Py =XoYy
P =X1Y] + X{Y1 + pXiYh
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We are now ready to define the Witt vectors as the functor W: Rings — Rings that takes the ring A
to AN with the ring operations defined as follows: Let a = (ag,...,an,...) and b = (bg,...,by,...) be
two elements of AN and set

a+b :z(So(a,b),...,S’n(a,b),...)
a-b :z(Po(a,b),...,Pn(a,b),...).

(Where we view polynomials Q € Z[Xo,..., Xpn,...;Y0,..., Yy, ...], i.e.,, S, and P,, as functions AN x
AN — A by defining Q(a,b) to be the value of Q when we replace X; by a; and Y; by b;.) To prove that
W (A) is a ring one observes that the map

W.(A): W(A) — AN
a— (Wo(a),...,Wy(a),...)

is a homomorphism. (It actually defines a morphism of ring schemes from W to A%, where the latter is
viewed as a ring scheme using the product ring structure.) If p is invertible in A, W, (A) is an isomorphism.
(That is Wy /) ~ A%l/m as ring schemes.) So if p is invertible in A then W (A) is a ring with identity
element (1,0,0,...). But if W(A) is a ring and B is any sub- or quotient ring of A then W(B) is a
ring. Since W(Z[1/p, X4]) is a ring for any family {X,} of indeterminates, it follows that W (Z[X,])
is a ring. But if A is an arbitrary ring it is a quotient of some polynomial ring, hence W(A) is a ring.
(One can verify that W(A) is a ring directly from the definitions but the proof of the associative and the
distributive laws becomes very complicated.)

It can be of interest to see the underlying double Hopf-algebra of W. As a functor to Sets it is clear
that W is represented by Z[X;]5°,. We also need two comultiplications,

Ao, A ZIXi]720 — ZIXi]72 @z Z1Xi] 2,

one for addition and one for multiplication. If now (ag, as,...) and (bg,b1,...) in W(A) correspond to
f and g in Hom(Z[X;]32,, A), that is f(X;) = a; and g(X;) = b;, then we shall have (f,g)Aq(X;) =
Si(ag...a;,bg...b;). It is now clear hove to construct A,, given that we know S; for all i € N. We get
Ay Xo)=X021+1® Xy
(Xo1)P+ (1@ X0)P — (Xo®1+1® Xo)P
p

A X)) =X1®21+10 X, +

In the same way one constructs A,, from P;, i € N.

We have seen that W is an affine ring scheme, but it is not of finite type over Spec Z. However we
are going to work in a Grothendieck ring generated by schemes of finite type over SpecF,. Now the
Sp and P, that define the ring operations in W (A) only involve variables of index < n. Hence we can
define the Witt vectors of length n, W,,; to be the functor that takes the ring A to A", with addition and
multiplication defined in the same way as for W, that is if a = (ag,...,a,—1) and b = (bg,...,b,—1) € A"
then

a+b:=(S(a,b),...,S.-1(a,b))
a-b:=(Py(a,b),...,P,_1(a,b)).

This scheme is of finite type over SpecZ . One has that W is the identity functor, that is W1(4) = A.
We also have that the ring W(A) is the inverse limit of the rings W, (A4) as n — oco. We define the
projection map m,: W — W,, by

(ag,a1,...)— (ag,...,an—1): W(A) — W, (A)
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for every ring A.

We will be interested in the Fy-rational points on W. This is because W(F,) = Z, and if ¢ = p"
then W(F,) is the integral closure of Z, in the unique unramified degree n extension of Q,. (In a fixed
algebraic closure of Q,,.) See [Ser79] for a proof.

1.4.2 Operations on W

Define V: W — W by Va = (0,aq,...,an-1,...). V is short for "Verschiebung". It is not a morphism
of ring schemes but it is additive. To see this we use the same observation as above; it suffices to prove
additivity for W(A) when p is invertible in A, and in this case W, (A) is an isomorphism so it suffices to
show that W, (A) transforms V to an additive map. But this is true since

n

n

R - (n—1)—(i—1)

Wn(Va) = E pzazill ZPE P’ laf71 :an—l(a)
=1 =1

so W, transforms V(A) to the map AN — AN that sends (wg,ws,...) to (0,pwo, pwi,...) and this is
clearly additive. Note that W/ V"W ~ W,,. This identification will be used a lot.
Next we define the map r: W; — W by a — (a,0,...,0,...). Since

n

Wn(r(a)) = (a,aP,...,a" |...)

we see that W, transforms r(A4) to the map A — AN that sends w to (w,wp,wpz, ...). This map is
multiplicative so when p is invertible in A it follows that r(A) is multiplicative. As above this implies
that r is multiplicative.

Finally over IF,, (where p is the prime that was fixed in the beginning of this section) we define the

Frobenius morphism F: Wy, — Wg by Fa = (af,...,ak,...). It is a morphism of ring schemes. The

sy WUno
next proposition will be very useful to us.

Proposition 1.4.1. If A is an Fp-algebra and a,b € W(A) the following formulas hold:

VFa=FVa=pa
a-Vb=V(Fa-b).

Proof. For the first formula see [Ser79]|. For the second formula it suffices to prove this when A is perfect
so we may assume that b = Fc. The first formula, the distributive law and the fact that F is a ring
homomorphism then give

V(Fa-b)=V(Fa-Fc¢)=VF(a-c)=pla-c)=a-(pc) =a-VFc=a-Vb.

Corollary 1.4.2. If A is an Fy-algebra, a,b € W(A) and i,j € N then
Via- Vb=V (F/a -F'b).
Exampel 1.4.3. Let b := (bg,...,b,) € Wy+1(A). We then have
(0,...,0,a) - b=V"ra-b=V"ra-F"b) = (0,...,0,a-b"")
Corollary 1.4.4. Let A € W(A)[X1,...,X,] be a form of degree d. If a;1,...,a, € W(A) then

A(Vay,...,Va,)=F"1ViA(a,...,a,)
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Proof. Let A = X{. The formula is true for d = 1. Suppose that it is true for d — 1. Then with the help
of corollary 1.4.2,
A(Va)=(Va)(Va)l!
:(V a) (Fd_2 Vd—l ad—l)
—VI(Fi1a. Fil ad-1)
=F VI A(a).
Next, let d and n be arbitrary and suppose the formula is proved for every X ---Xgi’ll with
dy+-+dy 1 <d Let A=X%... X% with d; 4 --- +d, = d. Then

A(Vai,...,Va,)=(Va))h ﬁ(V a;)%

=2

n
_ Fd1—1 le aiil . Fd—d1—1 Vd—d1 H agi.
=2

Since F and V commutes we can use corollary 1.4.2 on this expression to get

v (Fd_l a‘fl it Ha?)

i=2
and because F is a homomorphism this equals -ty Aag,...,a,).
Now, for an arbitrary degree d form, the result follows since V is additive. O

1.5 Miscellaneous results

1.5.1 The norm map

Definition 1.5.1. Let A — B be an algebra such that B is free of rank n as an A-module. If f: B — B is
a morphism of A-modules, define det f to be the determinant of the matrixz of [ in some basis. Since the
determinant is multiplicative this definition is independent of the choice of basis. If x € B, let f,: B— B
be the map y — zy. Define Ng/a: B — A as x + det f,.

It follows from the definition that Np,4 is multiplicative and Ng,4(1) = 1. Hence if 2 € B* then
Npsa(x) € A*. On the other hand if Np/4(z) € A*, ie., if det f, € A, then by Cramer’s rule
(which holds over every commutative ring) we have that f, is invertible so there exists y € B such that

1 = f.(y) = zy, hence 2z € B*. We therefore have B* = N;}A(AX).

1.5.2 Equalizers in the category of schemes

Definition 1.5.2. If f,g: X — Y are morphisms of schemes, define the equalizer Equal(f,g) — X of f
and g as the scheme that represents the functor Equal(f, g)(S) = {x € X(5): f(z) = g(x)}.

To see that this scheme exists let Z be the fibre product

p

Z —X
f
X—Y



Define Equal(f, g) as the fibre product

Equal(f, g) — X

l |
(p,q)

Z—= X x X

By the universal property of the fibre product, s: Equal(f, g) — X has the properties that fs = gs and
if x: S — X is a map of schemes such that fz = gz then there exists a unique map z’: S — Equal(f, g)
such that x = sz’. This implies that Equal(f, ¢)(S) = {x € X(5): f(x) = g(x)} for every S.

1.5.3 Descent

Sometimes one can prove that a morphism of schemes has some property by extending the scalars and
see that the property holds for the extension. We collect here some results of this kind that will be of
use to us.

Lemma 1.5.3. Let f: X — Y be a morphism of A-schemes, A a ring. If A — B is faithfully flat and
fB: Xp — Yg is an isomorphism, then f is an isomorphism.

See [GroT71], page 213 for this.

Lemma 1.5.4. Let A — B be a flat ring homomorphism and let X be a noetherian A-scheme. Then the
canonical homomorphism Ox(X) @4 B — Ox,(Xg) is an isomorphism.

For a proof of this see [Liu02], page 85.

Lemma 1.5.5. Let A — B be a faithfully flat ring homomorphism and let X be a noetherian A-scheme.
If Xp is affine then X is affine.

Proof. The identity map Ox(X) — Ox(X) gives a morphism of schemes X — Spec Ox(X) which is an
isomorphism if and only if X is affine. By extension of scalars we get the morphism Xp — Spec Ox (X)X 4
Spec B = Spec(Ox (X) ®a B) = Spec Ox,(Xp) and since X is affine this is an isomorphism. Hence by
lemma 1.5.3 the original morphism is an isomorphism. O
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Chapter 2

The class of a torus in Ky(Sch;.)

Given a field k and a separable k-algebra L of dimension n we define an affine group scheme L* by letting
L*(M) = (L®y M)* for every k-algebra M. If we extend the base of L* to a separable closure of k then
L* becomes isomorphic to G}, as an algebraic group, hence L* is a torus. The objective of this chapter is
to compute, for an arbitrary separable k-algebra L, the class of L* in Ko(Schy) in terms of the Lefschetz
class L and artin classes.

2.1 Definitions

Definition-Lemma 2.1.1. Let K be a ring and let L be a free K-algebra of finite rank. We define the
affine ring scheme L over K as the functor L: Alg;, — Rings given by

E(M) =L®x M for every K -algebra M

and if f: M — N is morphism of K -algebras then L(f): L(M) — L(N) maps @ m € L ®x M to
l® f(m) e L®;N.

Proof. We have to show that this functor really defines an affine ring scheme, i.e., that its composition
with the forgetful functor to Sets is representable. This is true because if M is a K-algebra then we have
canonical isomorphims of K-modules

L®xg M ~L" @x M ~Hompg (LY, M) ~ HomK_alg(S(Lv),M),

hence the composition is represented by S(LY). Therefore L is an affine ring scheme. (This ring
scheme structure can also be given by coalgebra structures Ay, A,,: S(LY) — S(LY) ® S(LV) such that
Hompg _aig (S(LY), M) ~ L ®, M as K-algebras. Then A, is defined by f — 1® f+ f® 1 when f € LY
and A,, is defined by the map LY — LY ® LV that is the composition of the dual of the multiplication
L ® L — L with the inverse of the canonical isomorphism LY @ LY — (L ® L)¥. However, we will not
use this.) O

The proof shows that as a scheme, L = Spec S(LY). Hence L is the vector bundle associated to the
free Ogpec k-module L.

Note in particular that K is the ring scheme with additive group (G,)x and multiplicative group
(Gy) k- Also, if we choose a K-basis of L we get an isomorphism S(LY) ~ K[X7,..., X,], where n is the
rank of L. Hence L ~ A", as schemes.

We next define the object that we are interested in.
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Definition 2.1.2. Let K be a ring and let L be a free K-algebra of finite rank. With L as above, define
L* as the subfunctor given by L*(M) = (L ®@x M)*. We will see that this is an affine group scheme.

We now give another construction of L*, which will be useful to us. Tt also shows that L* really is a
scheme. For this we use the general definition of the norm map. (A discussion of the norm map can be
found in section 1.5.1.)

Since L is assumed to be free of rank n over K the norm map Ny /g : L — K is defined. Also, if M
is a K-algebra then L ®x M is free of rank n as an M-module so Npg, a7/0s is defined. Hence we can

define a map of K-schemes ﬁL/K: LK by
NL/K(M) = Nrgem/m for every k-algebra M.
This is functorial, if f: M — N is a morphism of K-algebras then

~ ﬁL/K ~

L(M) —= K(M)

f(f)l lff(f)

L(N) — K(N)

n

commutes. In fact, Npga/ar(l ® m) = N g (l) - m™ so the upper half of the diagram maps [ ® m to

Nz /i (l)- f(m™) whereas the lower half maps it to Nz k(1) - f(m)". Therefore NL/K really is a morphism
of schemes. Note however that it is not a morphism of ring schemes.

We now claim that L* = N;}K(Gm) as subfunctors of L. We need a fact from section 1.5.1: If Sis a
free R-algebra of finite rank then NE}R(RX) = 5. Using this we see that for every K-algebra M,
Ne)ie(@n)(M) ={z € L(M) : Npjic(M) (@) € G (M)}
={z € L®rx M : Npg, m/m(v) € M*}
=(L®r M)*
=L*(M).

Therefore L* = ﬁL;K (G,,) as functors. In particular, L* is an open affine subscheme of L.

We will be interested in the case when K is a field. However we will also be forced to consider the
case when K is a finite product of fields. The following proposition shows that the latter case can always
be reduced to the former.

Proposition 2.1.3. Let K = Hve[ K, where the K, :s are fields and I is finite. Let L be a free K-algebra

of rank n. Then L must be of the form [],.; L, where, for each v, L, is a K,-algebra of dimension n. For

each v, construct the K,-ring scheme Z; and view this as a K-scheme. Then as K -schemes, L~ Uy Z;
Moreover, let Ly be constructed with respect to the K,-algebra structure on L,. Then L* is isomorphic

to Uy, L} as schemes over K.

Proof. Since S(LY) ~ S(IT,c; LY) ~ [ 1,7 S(LY) as K-algebras we have

L = SpecS(L") ~ Spec H S(LY) ~ Uyer Spec S(LY) = Uper Ly
vel

as K-schemes.
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To prove that L* ~ U(L,/K,)* as K-schemes we prove that their functors of points are equal. Let M
be a K-algebra. Then M = [] M, where M, is a K,-algebra (possibly equal to zero). An M-point on

U(Ly/K,)* is a morphism f: U, Spec M, — U(L,/K,)* that commutes with the structural morphisms

to U, Spec K. Since the image of Spec M, under the structural morphism is contained in Spec K, we
must have f(Spec M,)) C L¥*. Therefore f is determined by a set of morphisms {f,: Spec M,, — L*},¢cr
where f; is a morphism of K,-schemes. Hence we can identify f with an element in [[ L% (M, ). The same
is true for an M-point on L* for

L*(M) = ((H LU) 1 K, (H M)> s [[(Zo ®x, M) =] Li(M.).

So by Yoneda’s lemma, L* ~ U L?. (This method could also have been used to prove the first part of the
proposition, but there we knew the algebra representing L and that gave a shorter proof.) O

2.2 A recursive computation of [L*]

Now that we have defined the scheme that we are interested in we can start the computations. Let k be
a field and let L be a separable k-algebra of dimension n. We are going to show that [L*] € Ko(Schy,) is
a polynomial in L with coefficients that are artin classes. We begin with the simplest case.

Theorem 2.2.1. If L = k™ then [L*] = (L — 1)™ € Ko(Schy).

Proof. We have L(M) = M™ and hence L*(M) = (M™)* = (M*)™. We therefore have an isomorphism
L*(M) — G, (M) for every M and this isomorphism is functorial in M, hence L* is isomorphic to G,
as schemes so [L*] = (L — 1)" € K((Schy). O

We next consider a simple example which still will take up some space since we work it out in detail.

Exampel 2.2.2. Let K be a separable extension field of k of degree 2. We can think of K as k[T]/(f(T))
where f(T) = T?+aT + 3 is irreducible, in particular 3 # 0. If char k # 2 we may and will assume that
a=0.

We can now describe K. We have

K(M) =K ®, M ~ M[T/(f(T))

for every k-algebra M. A basis for the M -algebra l?(M) is {1,t} where t is the class of T modulo f(T).
If my,mo € M then (my1 + mat) -t = —maofS + (m1 — maa)t, hence

N%(M)/M(ml + mot) = m% — mimaoo + m%ﬁ.
So if we identify K with Spec k[ X7, Xo| then
K*=D(X}? - aXi X, + fX3) C K,
for we have
« X
K* (M) =(M[T)/ (£(T)) )
:{ml + meot : N%(M)/M(ml + mgt) S MX}

={(m1,ms) € M?: m% — amima —I—ﬁm% e M*}
=D(X7 — aX Xy + BX3)(M).
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for every k-algebra M. We now have an explicit equation describing K*. To compute [K*] we first
compute its complement in K, X := Spec k[X1, Xo]/(X}? — aX1Xs + 3X2) C K. With respect to X we
have

V(X2) = Speck[X1]/(X]) C X,

hence [V(Yg)] =1. And

k[X1, Xa,1/X5)

(X7 — aX1 X3 + BX3)
k[X1, X2,1/X5)
((X1/X2)? — aX1/Xs + )
k[Y1,Y2,1/Y3]
(Y? — oY1 + ﬁ) '

D (72) ~ Spec

= Spec

~ Spec

Now if chark # 2 then o = 0 so Y? —aY1+ 3 = f(Y1) and this is also true if chark = 2 for then —a = «.
Hence the above expression equals
Spec k[Ya, 1/Ys3] X, Spec K

so [D(X2)] = (L —1) - [Spec K].
We therefore have [X] =14 (L — 1) - [Spec K|, hence

[K*] = [K] — [X] = L? — [Spec K] - L + [Spec K] — 1.

Next we look at an example which suggests what the answer should be in a more complicated case.

Exampel 2.2.3. Suppose that k =F, and L = F . We know that

F3.. if3
L®Fygm = q Zf | m

Fq3m Zf 3 J[ m.
It follows that

(Fq3m)>< Zf 3 J[ m,

and therefore

B R AT
Since |SpecFa(Fgm)| =3 if 3| m and 0 otherwise, we have reason to believe that
[L*] =L° — [SpecF ] - L? + [SpecFs] - L — 1.
In example 2.3.6 we will see that this formula is true.

Our first result concerning the general problem will be the following.

Theorem 2.2.4. Let L be a separable k-algebra of dimension n. Then there exist artin classes
ai,...,a, € ArtCly C Ko(Schy) such that

[L*]=L"+aL" ' +aL" 2+ -+ + a, € Ko(Schy).

Moreover, there exists an algorithm for computing the a;:s.
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The rest of this section will be devoted to proving this theorem by describing the algorithm. This
will be done in the following way. We first describe subschemes of L, denoted Lq,...,L, such that
[L*] =L™ =" [L;]. We are then reduced to compute [L;] for every i. For every ¢ we find a subscheme
T; of L; and an Op;-algebra of dimension less that n such that L; ~ (L,/T;)* as k-schemes. We show
that T; is the spectrum of a product of fields, [[ K, and that (L/T;)* ~ L'J(LU/KU)* where L, is a K-
algebra of dimension less than n. We are then in the situation we started with, only that the algebras have
dimension less then n, for having computed [(L,/K,)*] € Ko(Schg,) we can find [(L,/K,)*] € Ko(Schy)
with the help of proposition 1.1.6.

We will now give the definitions of L;, T; and L}. To prove that L; ~ (L}/T;)* we will construct a
map between them. It will then suffice to show that this map is an isomorphism when L = k™. For this
reason we give an explicit description of L;, T; and L/ in this case.

Description of L;

The norm map Ny, /. factors as

L —End(L) — k
T fo o det fo

where f, is the map that takes y to zy and det f, is the determinant of the matrix of f, in some basis

for L. Consider the subscheme of endomorphisms of corank ¢ in End(L). To be more precise we want

—~—

the M-rational points of this scheme to be the elements of End(L)(M) of corank i, i.e., the locally closed
subscheme

V(n — i + 1-minors) \ V(n — ¢-minors) C Spec k[X;;]1<i j<n =~ End(L).

Here a j-minor is the determinant of a j x j submatrix of (X;;)1<i j<n-

Let L; be the inverse image in L of the subscheme of endomorphism of corank i in End(L). Then
L* = Lo and L = Up<i<n Ly, hence [L*] = L™ — 37 [L4].

We next describe L; when L = k™. First we choose the standard basis for L = k. When we then let
E[X1,..., X,] represent L we see that, under the isomorphism L(M) = M™ ~ Homp.aig (k[ X1, ..., Xp], M),
the element (m;)7_, corresponds to X; ~— mj;: k[X1,...,X,] — M. We use this to identify the M-
rational points on L;: _

We have that, Xj = my S L(M) is in LZ(M) if and OIlly if Xij = 5ZJX1 = 5ljmz is in

(V(n — i+ 1-minors) \ V(n — é-minors)) (M),

i.e., if it maps all n — ¢+ 1-minors to 0 but maps some n — ¢ minor to an invertible number. Now the map
Xij — 0;;X; maps every minor to zero, except those coming from sub-matrices on the diagonal. They
map to [[;cq X; where

S € P, := the l-subsets of {1,...,n}

for some [. Hence the condition for (X; — m;) € L(M) to lie in L;(M) is that [I;esm; = 0 for every
S € P,—it1 and that there exists an S € P,,_; such that Hjes m; € M*. This means that there is an
S € Pp—i such that m; € M if j € S. Moreover if j' ¢ S then mj [[;cgm; = 0so my = 0.

For S € P;, let es be the n-tuple of zeros and ones such that

~JO jes8
<es>j—{1 s (2.1)
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Then the M-points on L; can be given as

Li(M) = U (esM™)*. (2.2)

for every k-algebra M.
We also give a description of L; as a locally ringed space: Let I := ([[,c5

the closed subscheme V(I) of L, i.e., V(I) = Speck[X1, ..., X,]/I. Let P := [[;cs Xj- Then

Xj)sep,_ .+, and consider

U D(Ps) c v,
SEPn_i

where we have identified Pg with its image in k[X1,...,X,]/I. So L; is an open subscheme of V(I),
hence a locally closed subscheme of L.

Description of 7;

First we construct the subscheme Idem L = {e € L : ¢ = ¢} C L, by which we mean the scheme such
that for every k-algebra M, (Idem L)(M) = {e € L(M) : ¢ = e}. It is not obvious that this scheme
exists but we can show that it does by using the more general construction of an equalizer. (It is a
standard fact that equalizers exist in the category of k-schemes, see section 1.5.2 for the definition of an

equalizer and a construction.) Let z? be the composition =N X ke L — L and let z: L — L be the
identity. Then Idem L = Equal(z, 22).
Now we fix an ¢ and define the scheme of connected components of L;, denoted T3, as L; N Idem Z,
i.e., the fibre product
T, — L, (2.3)

|

Idem L — L

It follows that if M is a k-algebra then T;(M) = {m € L;(M) : m? = m}.

We next describe T; when L = k™. We have T;(M) = {m = (m1,...,my) € L;(M) : m? = m} so
if M has no non-trivial idempotents then m; = 0 or 1 for each j, hence the above description of L;(M)
gives that T;(M) = {eg}sep, where eg was defined in (2.1).

Let

E[Xq,..., X,
(Xj)jes - (X5 — Djgs

We claim that T; is represented by HSGPi Rg. For this, define

Rg =

T! := Spec H Rs.
SeP;

We have to show that T; = T/ as subschemes of L, i.e., that T;(M) = T/ (M) for every k-algebra M. But
by the construction of T; as a fibre product it is a closed subscheme of L;, which in turn is a locally closed
subscheme of L. Since L is noetherian it follows that T; is noetherian. Also 7T/ is noetherian, hence to
show that T; = T/ it suffices to show that T;(M) = T}/(M) for every noetherian k-algebra M.

We first show that the equality is true if M has no non-trivial idempotents and for this we just have to
show that T](M) = {es}sep, since we just noticed that this holds for T;(M). Let fr € [[gcp, Rs have
the entry with index 7" equal to 1 and zeros in the other entries. An element of Homy aig([[gcp, Rs, M)
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has to send idempotents to idempotents and (1,...,1) to 1, hence every fpr maps to 0 or 1, and ZTGPi fr
maps to 1. Moreover if T' # T then frf7» maps to 0 so at least one of fr and f7 maps to 0. Hence all
fr are mapped to 0 except one which are mapped to 1. So

T!(M) = Homk_alg< H Rs, M) ={¢s: ¢s(fr)=1if T =S5, and 0 otherwise}scp,.
SeP;

To see which element in Z(M) that corresponds to ¢g we have to compose the map k[X1,...,X,] —
HSePi Rg with ¢g. The first map sends X to

> ofr

TeP;:j¢T

and this in turn is mapped by ¢g to 0 if j € S and to 1 if j ¢ S. Hence ¢g = eg as elements of Z(M) S0
T/(M) = {es}sep, = Ti(M) in this case.

For the general case we may assume that M has only a finite number of orthogonal idempotents, for
if x1,...,2141 € M are orthogonal idempotents and x;11 = 22:1 hjx; then if we multiply with x;,1 we
get xl2+1 =0, i.e., ;41 = 0, hence if there are an infinite number of orthogonal idempotents then M is not

. . ! . R
noetherian. Therefore we can write M = Hj:1 M where each M; contains no non-trivial idempotents.

Since the product is finite we have Spec M = L'Jlgjgl Spec M; (by this we mean open disjoint union, i.e.,
the coproduct in the category of schemes). So by the defining universal property of coproducts,

l l
T;(M) = Hom(U Spec M;, T;) = | [ Hom(Spec M;, T3) = [ [ T:(M;).
j=1

j=1

By the same reasoning, T/(M) = H§:1 T!(M;) so T;(M) = T/(M). (Note that since we know that T
is affine we don’t need to know that the product is finite in this case, for 7] = Spec R so T} (][ M;) =
Homy alg (R, [[ M;) = [[Homuy aig (R, M;) = [[T;(M;) for any product. So if we knew a priori that T;
where affine then the above proof would be shorter.)

Hence we have identified T; as a closed subscheme of L= Spec k[ X1, ..., X,], namely we have
T; = Spec Sl;[)» Rg = USEPi Spec Rg. (2.4)

Let Ts := Spec Rg. We see that Rg ~ k for every S so Ts >~ Spec k, hence T; consists of (?) points.
We have now seen that 7; is affine when L = k™. It follows that this is true also in the general case.
Proposition 2.2.5. Let L be a separable k-algebra and construct T; with respect to L. Then T; is affine.

In fact it is the spectrum of a product of fields.

Proof. Let k*® be a separable closure of k. Since L is separable, L ®j k* ~ (k*)". Hence, by the above,

(T};)g= is the spectrum of (ks)(?) In particular it is affine. From lemma 1.5.5 it follows that T7; is
affine and then that it is the spectrum of a separable algebra. Since we also have that (T;)gs is zero
dimensional it follows that dim7; = 0 (dimension is invariant under base extension from a field to an
algebraic extension.). Hence T; is the spectrum of a product of fields. (Alternatively, if we use that any
scheme whose underlying topological space has finite cardinality and dimension 0 is affine then we don’t
need lemma 1.5.5.) O
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Description of L]

Next let 7: T; — Speck be the structural morphism. From proposition 2.2.5 we know that 7T; is affine,
say T; = Spec R. The Orp,-algebra 7* L is then isomorphic to L ®;, R, hence it is free and we can define

m*L. The dual of the R-module 7*L is LY ®j, R. Since the symmetric algebra commutes with base change
we then have S((7*L)Y) ~ S(LY) ® R. It follows that 7* L isomorphic to L x4 T; as a T;-scheme.

We have a map e: T; — L X T;, given by the identity map T; — T; together with the map T; — L
from the definition of T; (see (2.3)). The map e is a global section of 7*L — T;. It hence corresponds to
a global section e € (7*L)(T;).

Lemma 2.2.6. The global section e € (7*L)(T;) is an idempotent.

Proof. e was defined via the isomorphism (E %1, T;)(T;) ~ L(T;) x T;(T;) and under this identification, the
second coordinate of e is an idempotent by the definition of T} and the first coordinate is an idempotent if
it lies in (Idem L)(T;) C L(T;). But this follows since it factors through Idem L by its definition (2.3). O

Define L) := e(n*L). Then since e* = e, we have that L/ is a free Or,-algebra so the norm map
L, — Of, is defined. Hence we can form (L})* and we will see that (L})* and L, are isomorphic as
schemes over Speck. For this we define a map betwen them: First note that since L, C #*L we have a

map LN; — L. Since (LH* ZALZ this gives a map (L))* — 7L = L x4 T;. Composing this with the
map from the fibre product to L gives the map g: (L})* — L. We will see that ¢ is an isomorphism onto
L; C f

We now describe L} when L = k™. First we identify #*L. Let mg be the restriction of 7 to Ts.
Then 7g is an isomorphism (corresponding to the isomorphism of k-algebras k — Rg) so (n&L)(Ts) ~

L(Speck) = L. Therefore (7*L)(Ts) = (75L)(Ts) = L so it I C P; then

(m*L) (U561T3> =11z

sel

Then to find e it suffices to find its component over Ts, eg € (7*L)(Ts). The canonical map Ts — Tg X L

corresponds to the map Rg ®y k[X1,...,X,] — Rs that maps X; to its image in Rg, namely 0 if i € S

and 1 otherwise. Next Rg ® k[X1,...,X,] is canonically isomorphic to S((75L)(Ts)¥) = S(L") under

X; — fi, where f; maps the i:th basis element of L to 1 and the rest to zero. Hence T; — T; X L

corresponds to the element in LYV that maps f; to 0if i € S and to 1 otherwise. This in turn corresponds

to es € L = (75L)(Ts) with j:th coordinate 0 if j € S and 1 otherwise. Therefore e = (es) € [[gep, L-
Now by definition L, = e(n*L), hence

L;<US€ITS> = H(es - L).

Sel

with Tj-algebra structure given by the map [[gcp, Rs — [[gep,(es - L). To find (L})* we first have to
understand NL;/OTi' This can be done on each connected component, L}|p, is just the k-algebra eg - L.
Then by the same reasoning as when we determined L*, the M-points on (L}|7y)* is (L|rg)* (M) =
fes-m:m=(my,...,my) € M",[[;09m; € M*} = (esM™)*.

L; is isomorphic to (L./T;)*

To prove that the map ¢ defined previously really is an isomorphism we use lemma 1.5.3 which says that
to check that a morphism of schemes is an isomorphism it suffices to check this after an extension of the
base.
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Now since L is separable there exists an extension field K D k such that L ®; K ~ K™. Because of
lemma 1.5.3 we only have to prove that g is an isomorphism over Spec K. We may therefore assume that
L = k™. In this case we have identified explicitly the rational points of (L})* and L; and we now show
that they are isomorphic via g:

Lemma 2.2.7. If L = k™ then g: (L})* — L; is an isomorphism.

Proof. From (2.2) we know the M-points on L; for every k-algebra M. Define a map p: L; — T; by

es - (mi,...,my) € Li(M) +— eg € Ti(M). Since L; = Up~'Tg and (L))* = U(L}|rs)* = UlesL)* it
suffices to show that g|c py«: (esL)* — p~'Ts is an isomorphism for every S. We have already seen
what the M-points on these schemes are, they have both been identified with (esM™)*. It remains to
see that g|(cgry- (M) gives this identification.

Now g|(esr)- (M) first maps es - m to (es,es - m) € (T; x L)(M), then this is mapped to eg - m €
p YHTs)(M) C Li(M). Hence g(M) is a bijection and it follows from Yoneda’s lemma that g is an
isomorphism. O

From this it now follows:

Proposition 2.2.8. For any finite dimensional k-algebra L, we have that L; is isomorphic to (L}/T;)*
as k-schemes via the map g defined above.

Proposition 2.2.9. Let L be a separable k-algebra of dimension n. Then

19 =17 - 3 [(E4/T2)"] ~ 1 € Ko(Schy).

Jj=1

Proof of theorem 2.2.4

Above we were given k and L and we then constructed the k-schemes L and L*. To be able to compute
the class of L* we constructed L; for i = 1,...,n. Moreover we constructed a k-scheme T; and a T;-
algebra L;. We then constructed (L,)*, which we also write as (L}/T;)* to indicate that we construct
it with respect to the T;-algebra structure of L;. We showed that it is isomorphic to L; as a k-scheme.
When performing the induction we will have to repeat the above a number of times. We therefore use
the notation T;(L/k), Li(L/k) and L;(L/k) and we have L;(L/k) ~ (L,(L/k)/T;(L/k))*. To go further

we will need a lemma.

Lemma 2.2.10. Let L be a separable k-algebra. Then T;(L/k) = USpec K, where K, are fields. And
Li(L/k) =[] L, where L, is a K,-algebra. Moreover, (Li(L/k)/T;(L/k))* is isomorphic to U(L,/K,)*

as k-schemes.

Proof. By proposition 2.2.5, T; is a product of fields. It follows that L, is a product of algebras over the
points of T;. The last part was dealt with in proposition 2.1.3. |

This enables us to prove what we want.

Proof, theorem 2.2.4. We use induction over n, the dimension of L. For every field k£ the theorem is
trivially true for n = 1 for then [L*] = [k*] = L. — 1. Suppose that for every field k and every separable
k-algebra L of dimension n’ < n we have

[L*] = ]Ln/ + alL”/—l 4+ 4a, € KO(SChk)

where a, € ArtCly.
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Fix a separable k-algebra L of dimension n. By proposition 2.2.9 we have

29 =17 - 3 [(E4/T2)"] ~ 1 € Ko(Schy).

j=1

And by lemma 2.2.10 (L}/T;)* ~ L'JU(LM/KM)*. Here the dimension of L, ,/K; , is n —i. We postpone
the proof of this to corollary 2.3.6 because we will then be able to see it very easily. But assuming this
result for the moment, the induction hypothesis gives

[(Li,v/Ki,v)*] = Ln_i + aan_i_l + -t ap—; € I{()(SChKv)7 (25)
with a; € ArtClg,, hence by proposition 1.1.6
[(Liw/Kiv)] = [Spec Ki—p] - L™ + a{L" """ ... +al,_, € Ko(Schy,),

with a; € ArtCly. Summation over every (i,v) gives that the formula holds for the k-algebra L. O

A formula for the a;:s
To get more compact formulas we use the following notation.

Definition 2.2.11. Let K be a finite separable k-algebra and L a finite separable K -algebra, so K =
[I, K, where K, are separable extension fields of k and L = [, L., where L, is a separable K,-algebra.
Let

Li(L/K) :=U, Li(L,/K,).
Furthermore, define
Ti(L/K) == U, Ti(Ly/ Ky)
and define L,(L/K) to be the T;(L/K)-algebra which is L;(L,/K,) on T;(L,/K,).
With this notation proposition 2.2.8 and lemma 2.2.10 generalizes to:

Lemma 2.2.12. Let K be a finite separable k-algebra and L a finite separable K-algebra, so K =[], K,
where K, are separable extension fields of k and L = [[, L, where L, is a separable K,-algebra. Then

T;(L/K) = USpec K,, where K, are fields. And Li(L/K) =[] L, where L, is a K,-algebra. Moreover,
Li(L/K) = (L{(L/K)/Ti(L/K))"
as k-schemes.

Proposition 2.2.8 may now be expressed as L;(L/k) ~ (L;(L/k)/TZ(L/k))* In the next step we there-
fore want to compute Ly, (L] (L/k)/T;, (L/k)) for 1 < iy < n—iy. We then construct Ty, (L} (L/k)/T;, (L/k))
and its algebra L] (L} (L/k)/T;,(L/k)) and we use that L;, (L] (L/k)/T;,(L/k)) is isomorphic to

(4 (L, (L /8T (L)) T (L (L) T (E/R)))

For the rest of this section, we fix a field k£ and a separable k-algebra L of dimension n. We now
introduce some notation which allows us to write up a rather compact formula for [L*]: Given a sequence
of positive integers ii,...,iq, construct the algebra L; /T;, = Lj (L/k)/T;,(L/k). Define the algebra
LQQ,il/Tiz,h as L;Q (L;1 /i) Tiy (Lgl/Til) and define inductively L/ i [Tiir,..iy @S

Tr41,-

L;T+1 (L;T,...,il/Tir ----- il)/T%r+1(L;T,...,i1/Ti ----- il)'

With this notation we have the following generalization of proposition 2.2.9.
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Lemma 2.2.13. Let a = (iy,...,41) where Y ._ iy =1i. Then

n—i—1

[(Lo/Ta)] = [T - L7 = Y7 [(L.a/Tja)*] = [Ta] € Ko(Schy).

j=1

Proof. From the definitions of T, and L/,, and from lemma 2.2.10 it follows that T,, = U, Spec K,, where
K, are fields and L/, = HU L, where L, is a K,-algebra, where v is in some finite index set I. It then
follows from lemma 2.2.10 that (L /T,)* is equal to the disjoint union of the (L, /K,)*. Now by corollary
2.3.11, which we will prove later, L/, has rank n — i as a T,,-module, hence L, has dimension n —i as a
K ,-vector space for every v. It follows that

(Lo/Ko)* =17 = 3 (L (Lu/ K/ Ty(L/K))'] — 1 € Ko(Schr, )
j=1
and hence by proposition 1.1.6
(L,/K,)* = [Spec K] - L" ™% — i (L3(Ly/Ky)/Tj(Ly/Ky))*] = [Spec K] € Ko(Schy,). (2.6)
j=1

Since [T,] = 3, [Spec K] € Ko(Schy,) and
(Lo Ty = (5L T) T L Ta)
(U, 5L/ K/ Ty(Lo/ )
U, (LYo KTy (LafK)

) [(L;)Q/Tjﬁa)*] =3, [(L;(LU/KU)/TJ-(LU/KU))*], the result follows when we add together the equa-
tions (2.6) for every v. O

We are now ready to prove the main theorem of this section.
Theorem 2.2.14. With the same notation as above we have
[L*]=L"+aL" ' 4+ +a, 1L+a,

where

forj=1,...,n.
Proof. We evaluate [L*] in n steps, using lemma 2.2.13. In the first step we write
(L/k)]=1L" = [(LY/T0)"] =+ = [(Lyy/Tn—1)"] — 1

so we get the contribution L™ — 1. We then evaluate the remaining terms, using lemma 2.2.13, so in

step two we get a sum consisting of two parts. First, [(Lgml/TiMl)*} shows up with sign (—1)2, for
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2 <is + i1 < n (we always have i5 > 1). This is the terms that we will take care of in step three. The
second part of the sum contributes to our formula. It consists of the terms

(=1)*(=[T3] - L" ™ + [13]) 1<j<n.

Continuing in this way we find that in step r we get a sum consisting of two parts. Firstly, every term of
the form [(Lj  ; /T;,..q)*] with coefficient (—1)", for Y.7_, i, < n. This part is taken care of in step
r+ 1. And secondly we get a contribution to our formula consisting of

(_1)T (_[Erflynwil] 'Ln_j + [Tinlynwil]) r—1<j<n

for every r — 1-tuple (i,_1,...,41) such that Z;;} is = 7. This process ends in step n. _
Collecting terms we now see that if 1 < j <n — 1 then the coefficient in front of L”77 becomes

Jj+1
Z(_l)T—H Z [/117:7‘71#“71.1]'
r=2 [CET Q1)
i1+ tip_1=J
is>1

This equals

The constant coefficient becomes

Y Y Y mal

j=r—1 . (i17~~~;7%7“71): i
i1t tir—1=]
is>1

Since [T,,] = 1 it follows that if 1 < Zg;i is=j<nthenT,_j; , =T so this becomes

_1+Z(—1)’” Z [Ti.....ia)-
r=2

) (7;17~~~;7.;T):
1+ Fie=n
is>1

P PPN A1

Hence formula (2.7) holds also when j = n. O

2.3 The formula for [L*| expressed using the Burnside ring

In the preceding section we only gave explicit descriptions of L; and T; when L is a product of copies of
k. In this section we want to describe them when L is an arbitrary separable k-algebra. The strategy for
this will be to lift them to k° where we know what they look like. Then we have to be able to go back
again and this will be achieved with the help of some Galois theory.

Galois theory

To be able to make explicit computations using the results in the previous section we use the following
formulation of Galois theory.
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Definition 2.3.1. Let k C K be Galois and G := Gal(K/k). Then the category of separable K — G-
algebras is defined to be the category whose objects is separable K -algebras L together with a G-action on
the underlying ring such that K — L is G-equivariant, and whose morphisms are G-equivariant maps of
K-algebras.

Theorem 2.3.2. Fix a field k together with a separable closure k*. Set G := Gal(k®/k). Then we
have an equivalence between the category of finite separable k-algebras and the category of finite separable
k% — G-algebras.

This equivalence takes the k-algebra L to L& k® with G-action c(l®«a) =10 («). Its pseudo-inverse
takes the k* — G-algebra U to UY.

If we have a G-set T' and a k-algebra A then the following lemma gives a criterion for whether T
corresponds to A under the Galois correspondence or theorem 1.1.14.

Lemma 2.3.3. Fiz a field k with absolute Galois group G.

Let A be a separable finite dimensional k-algebra and give A @y k* the structure of a k — G-algebra by
o(z®a) =2 oc(a).

Let T be a G-set and define a k — G-algebra as [],c, ke with G-action

J(ZT oztet) = ZTU(at)eU(t). (2.8)

Then T corresponds to A under the Galois correspondence of theorem 1.1.14, (i.e., Arty[T] = [Spec 4])
if and only if A @y k* and [],c k®e; are isomorphic as k — G-algebras.

Proof. We have that [],. k°e; is isomorphic to Homgets (7', k°) as k — G algebras, the G-action on the
latter being given by (of)(t) = o o f oo 1(t). And with this G-action we get Homgess(7, k%)Y =
Homg (T, k). It follows from theorem 2.3.2 that if A ®j k® ~ [[,cp k®e; then

g
A~ (AR k)Y ~ (H kset> ~ Homg (T, k%),

teT

which means that A corresponds to T'.
On the other hand, suppose that A ~ Homg(T,k*). Then A ®j k* ~ Homgets(T, k%)Y @4 k° as
k — G-algebras, and the latter is isomorphic to Homgets(7, k%) by theorem 2.3.2. O

Computations

We now go back to our problem, we have a separable n-dimensional k-algebra L and we want to describe
T; and L.

Definition 2.3.4. If S is a set then we define P;(S) to be the set of subsets of S of cardinality i. If
S ={1,...,n} then we sometimes (as in the preceding section) write P; or ’Pl-(n).

If S is a G-set for a group G then P;(S) is a G-set because if T C S then ¢gT" C S has the same
cardinality as T for every g € G.

Lemma 2.3.5. Let S be the G-set corresponding to L under the equivalence of theorem 1.1.14, i.e.,
S = Homy(L, k%) so Art;[S] = [Spec L]. Consider P;(S) as a G-set with the action induced from that on
S. Then T; corresponds to P;(S), so

T; ~ Spec Homg (P;(S), k°).

Moreover, L corresponds to the set {(s,T) € S x P;(S): s ¢ T} (with componentwise G-action) and the
T;-algebra structure on L, corresponds to the projection (s,T) — T.
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Proof. Let T; = Spec R;. From (2.4) we know that R; ®p k® ~ (ks)(?) For every T € P;(S), let e/
be the tuple indexed by P;(S) with 1 in position T and zeros elsewhere. Since P;(S) has (?) elements
we have R; @, k% ~ HTePi(S) keln. If we now can prove that G acts on this as a(ZTGPi(S) areln) =
2TePi(S) a(aT)e’a(T), i.e., with action (2.8), then by lemma 2.3.3, R; corresponds to P;(S).

To prove that the G-action on [[¢p, () k€7 is action (2.8) we use that we know the action on L&k,
for S corresponds to L by definition, hence by lemma 2.3.3 we have that L ® k® ~ [] _q k°es with action
(2.8). So if ep := ngT es then o(er) = e,r. We now look at the element e in the R;-algebra 7* L that
we defined previously. Its image in the R; @ k®-algebra n*L®@k® is e® 1, hence o(e®1) = e®o(l) = e®1.
But at the same time, 7L ® k* = (1 ®1)*(L ® k*) as an R; ® k*-algebra and the latter we have already
computed, it becomes [[cp, (g) (L ® k*)err when we identify R; ® k* with [[7.cp, g) k*€e7r. We also know
what e ® 1 is in this algebra,

e®1= Z erel. (2.9)
TeP:(S)

Hence o(e @ 1) = > rep,(s)€oroler). Since o(e ® 1) = e ® 1 we must have > rcp (o) €Ter =

>_Tepi(s) €oro(€T), hence o(ep) = el (7.
Now when we know the G-action on e/, we can also determine which G-set corresponds to 7*L. For

we have
L k° = H ( H kses> e~ H ‘el r (2.10)
(

TeP;(S) \seS s, T)eSXP;(S)
as R; = HTePi(S) k*e/p-algebras, where e, 1 has 1in position (s, 7") and zeros elsewhere. Here Y ,.(> ", o res)el

corresponds to s re; 7 and o(X (X, asres)er) = r (X, o(asr)eqs)elr so o(X(s,1) Qs €S T) =
> (s 0(asr)ey, o Therefore 7L corresponds to S x P;(S) with componentwise G-action. (This can
also be seen more directly, 7*L ~ L ®j, R;, hence corresponds to S x P;(.5).)

Using this together with (2.9) we get

L@y k® = (e®1)(7"L @ k°)

< 3 eTe’T>-TH (Hkses>6/T

TEP;(S) eP;(S) \s€S

= 11 (eTHkS(fs)e/T

TeP;i(S) seS

11 (H kses>egp.

TP (S) \s€S\T

Under the correspondence in (2.10) this becomes

ksegﬁT
(s, T)eSXP;(S)
s¢T

with the same G-action as that in (2.10). Hence L} corresponds to {(s,T) € S x P;(S): s ¢ T}.
Finally, the T; @y, k*-algebra structure on Li @y k* is given by > S rcp, () €7 — Yrep,(s)(Xses\r €s)eT
and this comes from the projection map (s,T) — T. O

Corollary 2.3.6. L} has rank n —i as a T;-module.
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Proof. The G-set {(s,T) € S x P;(S) : s ¢ T} has cardinality (n —7)("), hence by proposition 1.1.15 L]

has dimension (n—i)(") as a k-algebra. Since the dimension of the coordinate ring of T; is ("7) the result
follows.
Exampel 2.3.7. Let k =F, and L =F ;. We then have

[L*] =13 — [L1] — [L2] — 1 € Ko(Schy). (2.11)

Let G := Gal(k/k) and let o be G:s topological generator, the Frobenius automorphism o — af. Then L
corresponds to the G-set S := Homy(L, k) = {1,0,02}, where we have identified o with its restriction to
L.

We have P1(S) = {{1},{c},{0?}} ~ S. Therefore Ty ~ Spec L. Moreover, L' corresponds to
{@A{eh), A {e™}). (0. {1}), (0. {o"}), (67, {1}), (*, {o})}

and this is the union of two sets on which G acts transitive, hence it is isomorphic to SUS as a G-set.
So L ~ L%. Therefore [(L}/T1)*] = (L — 1)? € Ko(Schy) and hence by proposition 1.1.6

[L1] = Resj; (L — 1)) = [Spec L] - (L — 1) € Ko(Schy,)

Next Pa(S) = {{1,0},{0,0%},{1,0%}}. Since G acts transitively on this we have Py(S) ~ S so
T> ~ Spec L. Moreover, L} corresponds to

{0 {1,0}). (1, {0, 0%}), (0. {1, 0 })}
and this is also isomorphic to S so Ly ~ L. Therefore [(L5/T2)*] =L — 1 € Ko(Schr) and hence
[Ls] = Resg (L — 1) = [Spec L] - (L — 1) € Ko(Schy)
Putting this into (2.11) now give that
[L*] = L* — [Spec L] - .? + [Spec L] - L — 1 € Ko (Schy,),
in agreement with example 2.2.35.

We now want to prove a more general version of lemma 2.3.5.

Lemma 2.3.8. Let k be a field and K a separable k-algebra of dimension t. Let L be a separable K-
algebra of rank n. Let G := Gal(k®/k) and let K and L correspond to T respectively S as G-sets. Write
T = Homy (K, k%) = {m,....,7}. The map S — T corresponding to K — L is n : 1. Let S; be the
inverse image of 7;. We use the notation T;(L/K) and L,(L/K) from definition 2.2.11. Then T;(L/K)
corresponds to the G-set

and L;(L/K) corresponds to

{(f,m UL ICHE f¢U}

Proof. Suppose first that K is a field. According to lemma 2.3.5, T;(L/K) corresponds to P; (HomK(L, ks))
as a Gal(k®/K)-set. Hence by proposition 1.1.18 it corresponds to

G X gai(ke /1) Pi (Homg (L, k*))
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as a G-set, with the G-action given in that proposition. Since we assumed that K is a field we may write T’
as {m|k,..., 7|k}, where 7; € G, and this in turn can be identified with a system of coset representatives
of G /Gal(k®/K). We hence want to show that we have an isomorphism of G-sets,

¢: T x Pi(Homg (L, k%)) — | ) Pi(S))

j=1

To construct this, define ¢ as (7;|x,U) — 7;U. (Note that 7; have to be fixed for every j, if we replace
it with 7] such that 7;[x = 7|k we may get another ¢.) First ¢ is well defined because every element in
U fixes K, so every element of 7;U is in S;, the inverse image of 7j|x in S. Hence ¢(7;|x,U) € P;(S;).
It is also G-equivariant, because if o € G is such that o7; = 77/, where 7/ € Gal(k®*/K), then

¢(o (75|, U)) = ¢(r,7'U) = 77'U

and
od(1jlx,U) = o(1;U) = or;U = 7 7'U.

Next ¢ is injective: If ¢(7j|x,U) = ¢(m|k,U’) then they both must be in P;(S;), so I = j. Hence
7;U = 7;U" and since 7; is an isomorphism, U = U’. So ¢ is an injective morphism between two G-sets
of cardinality ¢ - (’Z), hence an isomorphism.

For the general case when K is a separable k-algebra of dimension ¢, note that we can identify T" with

Uv Homk (Kv, ks)

where K =[], K,, by sending f € Homy(K,,,k*) to (a,) — f(aw,) € T. Denote the map S — T by 7.
We have that T;(L/K) = U, Ti(L,/K,). This corresponds to the G-set

t

UU U Pi(r 1) = U Pi(r 1) = U Pi(S;)

T€Homy (K, ,k*) TeT j=1
As for Li(L/K), assume first that K is a field. As a Gal(k®/K)-set, L;(L/K) corresponds to
M :={(f,U) € Homg (L, k%) x Pi(HomK(L, ks)) : fe U},

hence it corresponds to 1" x M as a G-set. Define a map
t
TXMH{(f,U)E USJXPZ(SJ) f¢U}
j=1

by

(Tj|Ka (fa U)) = (Tj © fv TjU)'
As above one shows that this is an isomorphism of G-sets. The case when K is an arbitrary separable
k-algebra is handled in the same way as T;. O

A formula for [L*] in terms of the G-set corresponding to L
We are now ready to give a closed formula for [L*]. To express this we first generalize definition 2.3.4.

Definition 2.3.9. Given a G-set S of cardinality n and a positive integer r. Moreover, let (i1, ..., i)
be an r-tuple of positive integers such that iy + -+ 4+ i, < n. Then P;, . (S) is the G-set of r-tuples
(Spy...,51) where S; is a subset of S of cardinality i; and the S;:s are pairwise disjoint. In particular
Pi(S) has the same meaning as before (up to isomorphism).
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Note that if 43 +---44, = j then P, ;,(S) =~ Pi,....ix.n—;(S) and also that if (#},...,4.) is a permu-
tation of (iy,...,i,) then Pir it (S) ~Pi,....ix(S). In particular, if X is the partition of n corresponding
to (ir,...,01,n —j) then P;_ i n—i(S) = Pr(9).

For the rest of this section, we fix a field £ and a separable k-algebra L of dimension n such that
L corresponds to the G-set S. Recall the notation used at the end of the preceding section: Given a
sequence of positive integers iy,...,i,. Construct the algebra L} /T;, = Lj (L/k)/T;, (L/k). Define the
algebra L} ; /T;, . as L, (L; /T;,)/Ti,(L;, /Ti,) and define inductively L; as

i2,%1 Gpflyeneytl T1T+17~~~711

L’/LT+1 (L’/LT ..... il/Tir ----- il)/nr+1 (L;T ..... il/Tir ----- 'Ll)'

Proposition 2.3.10. Let « = (iy,...,41) be an r-tuple of positive integers such that iy + -+ + i, = i
where 1 <14 <mn. The algebra L /T, in the category of k-algebras corresponds to the G-sets

{(s, (Sry...1 1)) €S X Pal(S): s ¢ U{let}

and Po(S) together with the projection morphism.

Proof. By lemma 2.3.5 the proposition holds for » = 1. Suppose the formula has been proved for
r. We have T; o = Ti oy (L; . i /Ti,,..i) By the induction hypothesis and lemma 2.3.8 this
corresponds to

T‘+1)iT7"')

U 731”1({(5, (ST,...,Sl)) csé¢ UleSt})
(S esS1)EP: .1, (S)

which is isomorphic to

U {({81,...,SiTJrl},Sr,...,Sl) TR ¢ U;let}

and this in turn is equal to P;
And L/

G 1yl yeeeyll

U {(s, (SprevsS1)) s ¢ u;@zlst} <P, ({(s (Spy....51) : s ¢ u’;:lst})

(Sry--sS1)EPiy,..., iy (S)

7‘+17i?")"'77‘.1 (S)
corresponds to the pairs (f,U) in

U {(5:(S041,50,.,81) € S X Piryiria(8) + 5 ¢ US|

which equals

{(s, (Sri1, S S1)) €S X Piyy in(S): 5 ¢ u;;}st}.

Since the projection is n — i : 1 we have the following.
Corollary 2.3.11. L has rank n —i as a T,-module.

We are now ready to give our first closed formula for [L*]. It follows from theorem 2.2.14 and
proposition 2.3.10.
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Theorem 2.3.12. Let L be a k-algebra of dimension n and S a G-set such that Art([S]) = [Spec L].
Then we have
L] =L"+a; - L" '+ +a,1 - L+a, € Ko(Schy)

where a; = Art(p;(S)) and

The universal nature of the formula

Fix a field k with absolute Galois group G. Also, fix a separable k-algebra L of dimension n corresponding
to the G-set S. Define a homomorphism ¢: G — X, as the composition of G — Aut(S) with an
isomorphism Aut(S) — 3,. Let Res?" denote the restriction maps with respect to ¢. Then Resg" is
independent of the chosen isomorphism Aut(S) — %,,.
We have that
Resy" [{1,...,n}] = [S] € B(G)

Also, Res?" ([Pa]) = [Pa(S)]. We therefore use the notation that if p € B(X,) then p(S) := Resg" (p) €
B(G).

This discussion gives the following formulation of theorem 2.3.12.

Theorem 2.3.13. Fiz a positive integer n. There exist elements pgn) € B(X,), i =1,...,n, with the
property that for every field k with absolute Galois group G and every separable k-algebra of dimension n
corresponding to the G-set S,

L] =L"+ay - L" '+ 4 a1 - L+a, € Ko(Schy)

where a; = Artk(pl(-")(S)).
The pgn) :s can be given explicit as

V=3 N (C)P..n] € B(S).

We illustrate with two examples.
Exampel 2.3.14. We have
e
o) == [P+ [PL]
o) == PP+ 2 [P~ [P)
We apply this to example 2.3.7, where L/k = F s /F,. Then G is generated by the Frobenius map F and

we can identify S, the G-set corresponding to L, with {1,F,F?}. As in that ezample we get [P1(S)] =
[P2(S)] = [S]. We also have that [772(31)] = [732(3)], hence [732(31) (S)] = [S]. Moreover,

Pra(8) ={ ({1}, {F}), {F}. {F*}), {F*}.{1})}

O{({1}.{F*}), {F}, {1}), {F?*}.{F})}
~SUS.
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and hence [P1,1,1(S)] = [P1,1(S)] = 2 [S]. Finally P3(S) = {({L,F,F?})} so [P5(S)] = 1. We therefore
have

A7 () =~ 8]

ps)(8) =~ [8]+2-15] = [3]

p§(S)=—1+2:[s]-2-[8] =1
which gives the same formula for [L*] as in example 2.3.7.

Exampel 2.3.15. It follows from theorem 2.3.13 that

A = (P

oS = — [PV + [PL)

p =~ [P+ 2 [PSY] - [P

A0 =~ PO+ 2 [P + I -3+ (PS0. + (P2

Let L/k =T, /F,. Since G is generated by the Frobenius map F we can identify S, the G-set corresponding
to L, with {1,F,F* F*}. We compute the [P,(S)]:s in the same way as in the preceding exzample. For
example,

PSY(S) = {{1.F}, {F, F?}, {F%, F*}, {1,F*} } U{{1,F?}, {F,F*}}.

The first of these sets is isomorphic to S. The second is transitive of cardinality 2 so it corresponds to a
field extension of k of degree 2, i.e., Fp>. Reasoning in this way we find that

[L*] =L* — [SpecF 4] - L? + (2[SpecF,4] — [SpecF2]) - L? — [SpecF ] - L + [SpecF 2] — 1.

If instead L/k = F 2 xF 2 JF, then S = {e1,Fe1} U{ea, F ea} where e and eo are the projection maps.
We then get, for example,

PV(S) = {{e1,Fer}} U{ea, Fea} } Uf{er, ea}, {Fer, Fea} } U{{e1, Fea}, {Fer, ea} ).

This kind of computations show that

[L*] = L* — 2[SpecF 2] - L? + (4[SpecF 2] — 2) - L? — 2[SpecF ] - L + 1.

2.4 [L*] expressed in terms of the A\-ring structure on 5(%,)

In section 1.3.2 we defined a A-ring structure on Burnside rings. Define ¢; := X ([{1,...,n}]) € B(Zy).
In this section we will see that the p;:s that where introduced in theorem 2.3.13 can be described in terms
of this A-structure. Namely we will prove that p; = (—1)%/;. This formula is suggested in the following
way. We can give Ko(Schy) the structure of a A-ring that extend the structure already defined on the
subring h(B(G)). (Recall that h is injective.) See [LLO02| for this construction. Moreover, let Ko(Q; — G)
be the Grothendieck ring of continuous Q;-representations of G. We then have a commutative square of
A-rings
B(G) — Ko(Schy,)

l |

Rg(G) —=Ko(Q: - G)
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where the map Ko(Schy) — Ko(Q; — G) sends the class of X to the class of its [-adic cohomology. By the
classical computation of the cohomology of a torus then, the image of [L*] can be expressed in terms of
the A-structure on Ko(Q; — G). This suggest that a similar formula should hold in K (Schy). And even
though that is not the case for an arbitrary torus, it is true for L*.

The result is the following theorem.

Theorem 2.4.1. Let p(n) be the elements defined in theorem 2.3.13, i.e., the elements in B(¥,,) describing
[L*] € Ko(Schy) for every separable, n-dimensional algebra k — L. Then p(") = (—l)iﬁz(-n) where

6™ = Ni([{1,...,n})).

Proof. We will prove an explicit formula for ¢; € B(%,,), namely the one in theorem 2.4.13. The theorem
then follows when we compare it with the formula for p; obtained in theorem 2.3.12. O

So from now on this section contains no reference to the algebra L that we started with, it is an
independent investigation of B(3,,). We begin by proving a proposition in the representation ring that
will help us prove a theorem in the Burnside ring that we are not able to prove directly.

The representation ring Rg(X,,)

The theorem that we are not able to prove directly in the Burnside ring corresponds to the following in
the representation ring.

Proposition 2.4.2. Let S,, := {1,...,n} and let Q[S,] be the associated permutation representation of
Yn. Given n and i, view ¥, and X; as the permutation groups of S, and S; respectively. View ¥,_; as
the permutation group of {i+1,...,n}. We get a restriction map Ro(XZ;) — Ro(Z; x X,—;) with respect
to the map ¥; X Xp_; — X; which is projection on the first coordinate. We also get an induction map
Ro(Xi X i) — Ro(Zn) given by the inclusion (1,p) — 7p = pr: X; X Xp_; — X,. Pulting these
together we get a map Ro(XZ;) — Ro(X,). We have

IndZr, s, , oResit * *~ (W ([QIS]) ) = X' ([QIS.]]) € Ra(Sn):

Proof. To see what we are doing, identify S,, with {e1,...,e,} with ¥,-action given o(e;) = e,(;. Then
A ([Q[Sn]]) is the class of the Q-vectorspace with basis {ej, A+ Aej, }1<j,<...<j,<n and Z,-action given
by
olej, N Nej) =€qjy N+ A gy,

In particular, in Rg(;) we have that A’([Q[S;]]) is the class of the Q-vectorspace with basis eq A« - - Ae;

and 3;-action given by
T(er A---Nej)=sgn(r) e A+ Ae;.
We have

3 X 3
IndgjX s, _, © Ress

(AN QIS)) = [QEa] @iz, x 5. A QS]]
and we want to define a En—eqmvarlant isomorphism of Q-vectorspaces
©: Q[Za] ®gs; x 5,4 A QS:] = A* Q[Sh).

Let 7 := (") and let o1,...,0, be coset representatives for %, /3; X 3, _;. By proposition 1.1.22, we
may 1den‘r1fy the left hand 31de with a Q-vector space with basis {o; @ e1 A--- A 61‘};:1- For 0 € X,,, let
ooj = opTp where (7,p) € ¥; x ¥,,—;. The X,,-action is then given by

olo;@e1N---Ney) = (opTp) Qer A~ Ne; =sgnT- (0, @er A+ Neg).
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Now define ¢ on this basis by ¢(o; ® e1 A--- Ae;) = €s;1 N\ -+ A egyi. This is surjective for given
1<k <-- <k <n,choose o € ¥, such that o(j) = k; for k = 1,...,i. Let 0 = o;7p. Then
¢(0; @ (sgnT-e1 A+ Ae;)) =ep, A+ Aeg,. Since @ is a surjective map of Q-vector spaces of dimension

(?) it is an isomorphism of vector spaces. Finally, ¢ is ¥,-equivariant for if oo; = o,7p then

op(oj@er A+ Ney) =sgnt - (ox(er A+ Aey))
=g0(0(0j®61/\---/\ei)).

The Burnside ring B(%,)

In what follows we will prove some facts about the A-operations on B(X,). For this we use the map
h: B(X,) — Rg(Z,) defined in 1.1.23. Much of the below could have been done in greater generality,
i.e., for any finite group. However, the general case often follows by restriction from the special case,
since every finite group can be embedded in some 3,,. In any case we are only interested in B(X%,,).

We will use S, to denote the set {1,...,n}. Recall that if 41 +---+14; = n then Piln,?..,ij is the X,,-set
consisting of j-tuples of pairwise disjoint subsets of S,,, where the first subset has cardinality 7; and so on.
When the integer n is clear from the context we just write Piy.....i;- Recall also that if 1 is the partition
of n corresponding to (i, ...,7;), then P;, ;. are isomorphic to P, as a X,-set, hence they define the
same element in B(X,). Also if iy 4+ --- +i; = n’ <n then we sometimes write Py, ;, for Py, i n—n’

One sees that P, is a transitive X,-set. Moreover, if 4 and p’ are two partitions such that p # /'
then P, 22 Py as ¥, -sets.

In what follows, recall that we write - n when g is a partition of n.

Definition 2.4.3. Let Sch,, C B(X,) be the additive subgroup generated by {[P,]}n. Here, Sch is short
for Schur.

The following proposition will show that Sch,, is a ring.
Proposition 2.4.4. Let o = (a,...,a5) and 8= (B1,...,5t). Then | é")] . [Pén)] belongs to Schy,.

Proof. For every s x ¢ integer matrix M = (my;;), define the ¥,,-set
PM = {(Sl, ey SS,Tl, . .,Tt) . |Sz n TJ| = mij}

where S; has cardinality «;, T; has cardinality 5;, S; N S; =0 and T; NT; = 0. (S; and T; are subsets of
{1,...,n}.) We have that P, x Pg = Ups P
Let mje := 22:1 mi; and me; 1= Zf.:l m;;. Mapping the element (S1,...,S5,T1,...,T;) € P to
(Sl \ U;lel n Tj, ey S \ U;les n Tj,
T \ U}lel NT;, ..., T; \ UﬁzlSi NT;,
Sy NTy, S ﬂTz,...,SSﬂTt)
in
Pil_mio>~~~77:s_mso»jl_mol7~~~)jt_mot7m117m12>~~~7mst (2'12)
gives an isomorphism, hence [P,] - [Pg] = > ,,;[Pa] belongs to Schy,. O
Corollary 2.4.5. Sch,, is a subring of B(X,,).

Remark. Sch,, is not a A-ring since it is not closed under the A-operations.

40



We next describe the action of ¢* and A on [{1,...,n}].

Notation 2.4.6. Define sgn) =o' ([{1,...,n}]) € B(Z,) and égn) = A ([{1,...,n}]) € B(S,). Here, if
the superscript n is clear from the context we leave it out.

We will give a formula for 31('") which shows that it lies in Sch,, and then deduce from this that also
fgn) is in Sch,,.

Lemma 2.4.7. To any partition of i, j = (1, , ..., ftj), where g1 = -+ = fla; > fas+1 =+ = Has+as >
Ce > g4l = - = Wy, associate the tuple ap) := (oa,...,q;). Then
s = D0 [Pa)
phi:
() <n

Proof. Identify {1,...,n} with {s1,...,s,}. Then {1,...,n}?/Y; is identified with the set of monomials
{Sil Sfln er Tt ten = 1} = U e1t-ten=i Xn 'Sil "'Szna
e1 ez >en, >0

where the index set on the disjoint union can be identified with the set of p b 4 such that ¢(u) < n. Now
let e; = =€aqy > €ay41 =" =€ar+ay > ' > €n_q,+1 =+ =€, Then

En .Sil e Sfln — En .(Sl e Sa1)61 (5a1+1 e Sa1+a2)eﬂl+1 e (Snfaﬂrl e Sn)E"*QlJrl

~ En({sl, coySon Fo{Sar41s s Sartan fre s {Sn—autls - sn})
Z’Pfgfll?~~~7m7
hence the lemma follows. O

Proposition 2.4.8. Kgn) € Sch,, for every i.

Proof. From the definition of ¢; we have that

i—1
— (=1 = 3 (— 1 s (2.13)
j=0

Since we know that Sch,, is a ring, and that the sg-n):s and fgn) = [’P,(zn)] are in Sch,,, the formula follows
by induction. O

We need some facts about the behavior of the the induction operation. In what follows we view ¥; as
the permutation group of S; and embed it in 3, the permutation group of .S,,. Moreover we view ¥, _;
as the permutation group of {i +1,...,n}.

Proposition 2.4.9. Let uti. Then Indg’:X s oResgz X ([’Pl(f)]) = [Pﬂ")] € B(X,).

Proof. Let R = {o1,...,0,}, where r = (?) be a system of coset representatives for %, / %; x X, ;.
We know that 3, Xy, « Enﬁ??ff) can be identified with the set of pairs (0;,t), where 0; € R and t =
(Th,...,T)) € ’P,(f). From this set we define a map to PP(L") by

(0j,t) — (ajTl,...,Ujﬂ,aj{i—F 1,...,n}).
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This map is surjective for given t' = (17,..., T}, T/ ;) € PP(L"), there is a o € X, such that o{1,..., 1} =
T,...,0{i—w +1,....i} =T/. Let 0; € R be such that 0 = o;7p. Then

(O'j,T({l,...,/Ll},...,{i—ﬂl+1,...,i}))'—>tl.

Since both sets have n!/(u1!- - w!(n —4)!) elements this is a bijection. Finally, the map is G-equivariant,
hence it is an isomorphism. O

Proposition 2.4.10. We have Ind3" OResgz X (EE“) =0 € B(S,).

It is this proposition that forces us to go over to the representation ring, for we haven’t been able to
prove it directly in the Burnside ring. To prove it we need the following theorem.

Theorem 2.4.11. Let h: B(X,) — Ro(Z,) be the A-ring homomorphism defined in 1.1.23. The restric-
tion of h to Sch,, is injective.

Proof. For every A F n let o) € X, be an element in the conjugacy class determined by A and let
Cy,: Ro(XZ,) — Z be the homomorphism from definition 1.1.25, i.e., the map defined by V — xy (o).
(This is independent of the choice of oy.) This gives a homomorphism

RQ(En) - H Y/

AFn

and it suffices to show that the composition of this with the restriction of h to Sch,, is injective, i.e., that

@: Sch, — H Z
AFn

(7] = (IT71) 5o

is injective. To do this, define a total ordering on the set of partitions of n by A > N if Ay = X|,..., \j_1 =
Ay and A; > X} for some j (i.e., lexicographic order). We claim that P{* = @ if A > A" whereas
|PY*| # 0. For the second assertion, choose for example

0,\:(1,...,)\1)()\1+1,...,/\1+)\2)---(n—)\g(>\)+1,...,n).

Then
({15"'7)\1}5{A1+17"'aA1+>\2}7"'7{n_)\€()\)+17"'7n})EP)\

is fixed by o).
For the first assertion, suppose X' < X and ¢t = (T4, ...,T;) € Py, where [ = £(\'). Suppose moreover

that ¢ is fixed by ox. If now Ay > A2 > -+ > Ay then, with the same o, as above, we must have
Tv={L,...;\}....,Ti={n—N+1,...,n} (because \; > \} for every j and if 1 lies in T} then so does
ox(1) = 2, hence also 3,,...,,A1. So T; has cardinality at least A\, and the only \’ that can be that big

is Aj.). But if A and )\ differs in position j it is impossible for T; to fullfill this since it has cardinality
)\;- < Aj. In the general case, when we may have A\; = A1, the above argument works the same only
that we for example can have Ty = {A\1 +1,..., A1 + Ao} and To = {1,..., A1 } if Ay = Ao,

We are now ready to prove that ¢ is injective. Let x = >, ax[P»], where a) € Z, and suppose that
x # 0. Choose the maximal \g such that ay, # 0. Let @, be the Ag:t component of ¢. Then

PXo (‘T) = Zaklpf\ml = aA0|P;(?D| # 0,

AFn

hence p(x) # 0. O
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We are now ready to prove proposition 2.4.10.

Proof, proposition 2.4.10. Since h is a morphism of A-rings that commutes with the induction and re-

striction maps we have that if we write f for Ind o Resg XXt then
hof (€”) =f o h(N([Si]))
= (¥ (1)
=X ([Q[Sx]]) € Ro(Zn).

where the first equality is proposition 1.1.24, the second is lemma 1.3.3 and the last equality is proposition
2.4.2. Since h is injective on Sch,, and h(ﬁl(-")) = A([Q[S4]]) in Rg(E,) we have that f(El(-Z)) =" in
B(3,). O

Now when this proposition is proved we may forget everything about the representation ring; from
now on we work exclusively in the Burnside ring.

As before, let S, ={1,...,n} and Kgn) = X([S,]) € B(Z).
Proposition 2.4.12. There exists integers a,, where p &= i, such that

[E" ZG’H )\n 1

pki

Proof. Since fgi) € Sch; we have fgi) =2 ki G [Pﬂi)} so since the induction map is additive it follows

from proposition 2.4.9 and proposition 2.4.10 that KZ(-") = EHH ay [P,S"n J in Schy,. O

Theorem 2.4.13. Given n, fori=1,...,n we have that

Y Y G B

=1 (i1,...,i¢):

i1+ e =1
ia>1
Proof. For i =1 the formula becomes £§" [731 'm_1) which is true for every n.

Given %, suppose the formula is true for every pair (i’,n) where i’ < i and n is an arbitrary integer
greater than or equal to i’. We want to show that it holds for (i,n) where n is an arbitrary integer greater
than or equal to i.

Assume first that n is much greater than 4. From proposition 2.4.12 we see that there are integers a,

such that
6 =3"a, [P ] (2.14)
pi

Because of our assumption, n — i is much greater than all the entries in 1 so we may define the degree of
[Pﬁ")], where = j and j <4, to be j. Proposition 2.4.12 then tells us that KE") is a linear combination
of elements of degree 1.

On the other hand, by the definition of fl(-") we have

i—1

— (=1 =S (=1 (2.15)

=0
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By induction and the formula for sgn), the right hand side equals

Z[pgg;)]+j<_1y<<_1yz 3 <—1>f[7>£:?,.,ij>-<2[PL’&]) (2.16)

pki pi—j

To evaluate this expression seems to be very complicated, and we haven’t managed to to so. However,
we only have to evaluate it in degree ¢, for we have already seen that él(") is zero in every other degree.

So we next compute the degree ¢ part of (2.16). We see that for every j such that 0 < j < i we have
a product of two sums, one consisting of elements of degree 7 and one consisting of elements of degree
less that of equal to i — j, for if 4 =i — j then [P,(,)] has degree < i — j with equality if and only if
w=(1,1,...,1), in which case a(n) = (i — 7).

Also, if [Pz(t")“] has degree j, i.e., i1+,...,+i; = j, and [Pé’:
equation (2.12) in the proof of proposition 2.4.4,

)

.....

o] has degree m < i — j then by
] [’Péf)al] = [Pz'(:.)..,il,as vvvvv o,] + terms of degree < j +m.

uiej [PSZBL)] contributes to the degree i part of (2.16). Therefore

the only part of (2.16) that contains elements of degree i is

[P§">]+i<—1>j<<—1>j2 > <—1>t[7>53?.’..,n}>-[7’5"3-1

Hence only the degree i — j part of >

and the degree i part of this is

PO Y (P ) (.17)

i5>0
Fix (i},...,i}) such that @) + --- + 4, = i and iy > 0. If ¢ > 1 then [P ] occurs in (2.17)
R
when i3 = 4},...,4, =i, _, and i —j = i},. So it occurs exactly one time and the coefficient is then

(=1)t = —(=1)". If ' = 1 then i}, =i and [731-(”)] occurs one time in (2.17), namely as the first term, the
coefficient being 1 = —(—1)"". Hence (2.17) equals

l ()
-2 X UL
t=1 ‘(ilwnﬂ})i )
i1+t =1
is>0

So (2.15) together with the knowledge that Kgn) is zero in degree different from i give that

i
S VDD DI C W (i
=1 (i1,...,04):
i1+t =1
>0
when n is much greater then i. Now by the proof of proposition 2.4.12 the coefficients in (2.14) are
the same for every n. Since we have determined them for every n big enough it follows that they are

determined for every n, we are through. O
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2.5 An alternative proof of theorem 2.4.1

In this section we give a proof of the equality p{"™ = (—1)i/\(n) that does not depend on the explicit

@ 0

formula for él(") from theorem 2.4.13. We begin with some lemmas.

Lemma 2.5.1. Let L be a separable Fy-algebra of dimension n, corresponding to the G := gal(Fq/Fq) -set
S. Choose an isomorphism Aut(S) — X, and compose it with the homomorphism G — Aut(S) to get
a homomorphism ¢: G — %,,. Let F be the topological generator of G and define o := ¢(F) € ,,. Let
Resg" denote the restriction maps with respect to ¢ for Burnside as well as representation rings. Let C,
and Cy be the maps from the representation rings to Z defined in 1.1.25. Let the map from Ko(Schr,)
to Z be the counting function Cy. Then the following diagram commutes

Zn
Resg

B(%,) —— B(9)
lh b Art

Rg(E.) —— Rg(9) Ko(Schs, )

Proof. From Proposition 1.1.24 we know that the square in the upper left corner of the diagram commutes.
The triangle in the lower left corner commutes by proposition 1.1.27. Finally, for the right triangle, if T
is G-set then xqir)(F) = |TF|. At the same time, if T maps to X in Ko(Schg,) then

| X (Fy)| = [Homg, (SpecFy, X)| = [Homg({e},T)| = |T"|.
O

Lemma 2.5.2. Let M be a transitive n X n permutation matriz. Then the characteristic polynomial of
M equals T™ — 1.

Proof. Since the transitive permutation matrices form a conjugacy class (they correspond to the per-
mutations of cycle type (n)) it suffices to compute the characteristic polynomial for one particular such
matrix, for example

010 0
0 1
0 0 0 1
10 0
Using induction one shows that the characteristic polynomial of this matrix is 7" — 1. O

We are now ready to give the alternative proof of theorem 2.4.1, which is based on counting points
over finite fields. What we need to know is the following: We need to know the existence of the universal
elements pgn) proved in theorem 2.3.13. We do not need the explicit description of them given in that
theorem, however when one has proved the existence it is not such a long step to describe the elements.
For the fgn) we only need to know that they lie in Sch,, which was one of the first things we proved about

them. We also need to know that h is injective on Sch,,.
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Proof of theorem 2.4.1. Fix a positive integer n. We want to prove that p; = (—1)%; € B(%,). Since
they both lie in Sch,, it suffices to show that h(p;) = (—=1)*h(¢;) € Rg(X,) and by proposition 1.1.26
we can prove this by proving that if R is a set of representatives of the conjugacy classes of X, then for
every o € R,

Coh(ps) = (~1)1C, h(Ly).

We do this simultaneously for ¢ = 0,...,n by showing that

n n

D Coh(p) X" = (~1)'Coh(t:) X" € Z[X] (2.18)

i=0 i=0

for every o € R.

From now on, fix a ¢ € R. Let ¢ be an arbitrary prime power, let k = F, and let G := Gal(k/k). As
before, if S is a G-set of cardinality n, then choosing any enumeration of S, the action of G on S gives
amap ¢: G — Aut(S) ~ ¥, which in turn gives our Res;". (Independent of the chosen ¢.) Choose S
such that the topological generator for G, the Frobenius automorphism F, maps to (a permutation in the

same conjugacy class as) o under ¢. Equivalently, let S = L'Jlgjgm T} such that T} is a transitive G-set
of cardinality n;, where o has cycle-type (n1,...,n,,). Such an S always exists for by theorem 1.1.14 it
comes from L = H;nzl K; where K is a degree n; field extension of k, i.e., K; = Fn;.

We begin by computing the right hand side of (2.18) in terms of (ny,...,n.;). Let f be an endomor-
phism of the vector space V of dimension n. From linear algebra (|[McD84| or [Knu73|, page 83) we know
the following expression for the characteristic polynomial of f:

n

det(X - En — f) = Y (=1)" Tr(A" /)X,
i=0

Putting f = F gives

n

det(X - Ep —F) = > (=1)"xni gy (F) X" . (2.19)
=0
Since h(4;(S)) = [A'Q[S]] € Ro(G) we have that Cr h(£;(S)) = xrigs)(F), hence lemma 2.5.1 gives that
the right hand side of (2.19) equals

n

> (=1)'Coh(e) X",

=0
As for the left hand side of (2.19), since S is a union of transitive G-sets T; we have Q[S] = @72, Q[T}]
where Q[T}] is irreducible, hence the matrix for F' is of the form

M, 0
M,

0 My,
where M; is a transitive n; x n; permutation matrix. Therefore by lemma 2.5.2 det(XE, — F) =
[1}2, det(X B, — Mj) = [}, (X" —1). From (2.19) we therefore get

m n

[[x™ —1)=> (-1)Coh(;) X" (2.20)

j=1 i=0
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We next compute the left hand side of (2.18). By the definition of the p;:s we have
(L] =) Art(pi(S))L" " € Ko(Schy).
i=0

Applying C; to this gives

n

IL* (k)| = Y (=1)'Cq Art(pi(S)) - 4" . (2.21)

i=0
By lemma 2.5.1, C, Art(p;(S)) = C5 h(p;), so the right hand side of (2.21) equals

n

> Cohlpi)g" .
=0
On the other hand, since we saw that L = [[* | F

[[;Z,(¢" —1). Hence (2.21) says that

»; we have L*(k) = L™ =[]/, F%, so |L*(k)| =

q"i j=1"q"i

n

[ =1)=>_Conlp)g" ™"

i=0

Since ¢ is an arbitrary prime power it follows that

[[x™ =1)=> Coh(p)x . (2.22)
j=1 i=0
Comparing (2.20) to (2.22) now gives (2.18). O
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Chapter 3

Calculation of an integral

The aim of this chapter is to generalize the computations of some p-adic integrals to computations in the
Grothendieck ring of varieties. For this we first have to define a suitable version of motivic integration.
There are already existing theories for this but we content ourselves with a definition that only includes
as much as we need for the integrals that we are interested in computing.

We must emphasize that many of the definitions in this chapter are not suitable in general.

3.1 Definition of the motivic integral

Fix a field k of characteristic p. Let M}, and J\//\lk be the rings defined in section 1.2. We now define the
measures of certain subsets of W7 . (Here W is the Witt vectors constructed with respect to p and Wy,

is the scalar extension to k& of W.) This measure will take values in M\k
Fix an n > 0 and let Z C W} be a disjoint union of locally closed subschemes. Let m,,: W" — W7,
be the projection map, and let Z,, = m, Z. So

Zm(A) = {la] € (W(A)/ V" W(A))" }aez(a) VA € Alg;.

If Z,, is a constructible subset of W7, for every m and if lim,, oo [Z,,] /L™ exists in M\k then we define

volZ € ./\//\lk to be this limit. We then also say that Z is measurable.

We will be interested in the measure of the following type of subschemes. Let fi, ..., fs be polynomials
in W(k)[X1,...,X,]. Let @ = (a1,...,0,) € N°. Let {ord f; > o;};_; C W} be the functor whose
A-points are

{a e W"(A): fi(a)=0 (mod V*)fori=1,...,s} VA € Alg,.

This is well defined since W (A) is a W (k)-algebra when A is a k-algebra. We will also write, for example,
{ord f1 > a3 Aord fa > as} for {ord f; > a; }2_,.

Proposition 3.1.1. The functor {ord f; > «;}7_; is a closed subscheme of W7}. Moreover, it is mea-
surable.

Proof. Write P := k[X,0,..., Xin,...]"; and let W™ be represented by P, i.e., if a = (a1,...,a,) €
W7 (A) where a; = (a0,...,ain,...) € W(A) for i = 1,...,n, then a is identified with

(Xin — ainN)i<i<n,Nen € Homy(P, A).
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We now want to show that {ord f; > «;};_, is represented by a quotient of P. For i = 1,...,n let
T; = (Xi07 ey XonN, - ) = (XiN)NeN (S W(P) In W(P) we then have, for i7=1...s,

fj(.Il, . ,.In) = (ij(XOO); fjl(X.O,X.Q), . .,ij(X.O, e ,X.N), .. )

where fin(Xeo,...,Xen) = fin(X10,..., Xin,..., Xno,...,Xnn) is an element of P that lies in the
subring Py := k[Xj0,..., X;n|iu,. Now a = (ay,...,a,) € W"(A) is such that f;(a) =0 (mod V1)
lf and only lf fjo(a.o) == fjaj (CL.(), ey a.aj) = 0, i.e., lf (XiN = aiN)lgign,NeN maps fj07 ceey fjaj
to zero. It hence follows that {ord f; > a; + 1};_, is represented by

P

(ija' sy jaj)_?:o-

We next want to show that {ord f; > a; + 1};_; is measurable. We have that W | is represented
by Py. Let Z :={ord f; > a; + 1};_1. If N > m := max{a; + 1,..., a5+ 1} then Zy; is represented
by

PN mel
— = — Ok k[ Xim, ..., Xinliz1,
(fj05-- s fia;)i=0  (fjor- -+ fias)i=0 !

hence [Zn 1] = [Zm] - L=+ D7 € Ko(Schy). It follows that

2ol _ (2] g7

volZ = lim s = on

O

If B; > aj for j =1,...,s then the above proof shows that {ord f; > 3;};_; is a closed subscheme of
{ord f; > a;}5_,. Let f € W(k)[X1,...,X,]. For a € N we define

{ord f = a} :={ord f > a} \ {ord f > a + 1}.
This is an open subscheme of {ord f > «a}, hence a locally closed subscheme of W™,

Proposition 3.1.2. If « € N and f € W(k)[X1,...,X,] then {ord f = a} is measurable. We have
vol{ord f = a} = vol{ord f > a} — vol{ord f > o + 1}.

Proof. Looking back at the preceding proof we see that {ord f > « + 1} is a closed subscheme of
{ord f > a}n and that {ord f = a}ny = {ordf > a}ny \ {ordf > o+ 1}x when N > «a. It then
follows that [{ord f = a}n] = [{ordf > a}n] — [{ordf > a + 1}n] € Ko(Schy) and hence that
vol{ord f = a} = vol{ord f > a} — vol{ord f > a + 1} € M. O
We are now ready to define the type of integrals we are interested in. For f € W (k)[X1,...,X,],
define
|f(X1,. o, Xo)|dXy - dX =) vol{ord f(Xy,..., X,) =i} - L7" € M. (3.1)
" i>0
This sum always converges as the following proposition shows.

Proposition 3.1.8. Let f € W(k)[X1,...,X,]. Then fwn |f(X1, e ,Xn)|dX1 ---dX,, erists in M\k.

Proof. By proposition 1.2.3 it suffices to show that vol(ord f = m)/L™ — 0 as m — oo. And for this it
suffices to show that vol(ord f > m)/L™ — 0 as m — oo for then we also have vol(ord f > m+1)/L™ — 0
so the result follows by proposition 3.1.2. We proceed to prove that vol(ord f > m)/L™ — 0.
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By the proof of proposition 3.1.1 we have that

m _ [{ordf Zmpme] 1
vol(ord f > m)/L"™ = L Gar D T

Since {ord f > m}pyy1 C WP ~ AZ(mH) it has dimension < n(m + 1). It follows that [{ord f >

M}y ] /LD € F=m (A hence it tends to zero as m — oo. O

We conclude this section by defining some notions that we will need when computing integrals of this
kind. To begin with, if f1,..., fs € W(k)[X1,...,X,] then

iif{ord fi >« if i # jord f; > oy + 1}
is a closed subscheme of {ord f; > a;}2_;. Define a locally closed subscheme of W™
{ord fj = a;}i_y = {ord f; > a;}i4 \Uj_{ord fi > oy if i # j,ord f; > o + 1}
Proposition 3.1.4. The scheme {ord f; = a;}3_; is measurable, its volume is

vol{ord f; = a;}5_; =vol{ord f; > a;}5_,

- Zvol{ordfi > if i # jord fj > a; + 1}
j=1
+ Zvol{ordfi >y ifi ¢ {j,1},ord f; > aj + 1,0rd f; > oy + 1}

Jil

(=1)*vol{ord f; > aj +1}5_;.

Proof. By the same argument as in the proof of proposition 3.1.1 we have that the reduction of {ord f; =
@, }5-; modulo V¥ is a closed subscheme of the reduction of {ord f; > a;}5_, modulo V¥ it follows
that vol{ord f; = a;}35_; = vol{ord f; > a;}5_; — Vol(szl{ord fi > a;ifi# jord f; > o + 1}).
Again counting modulo V¥ we see that the intersection of {ord f; > a; ifi # joord f; > a; + 1}
and {ord f; > oy it i # lord f; > oy + 1} is {ord f; > oy if @ ¢ {j,l},ord f; > o + 1,0rd f; > oy + 1},
hence VOl(U;Zl{OI‘dfi > ifi # jordf; > oy +1}) = > iy vol{ord fi > a; if i # j,ord f; > a; +
1} —vol(Uj {ord f; > a if i ¢ {j,1},0ord f; > o +1,0rd f; > oy 4+ 1}). Continuing in this way the result
follows. O

We are now ready to define the most general sets that we will work with. For a (finite of infinite)
subset I C N, m € N and f € W(k)[X1,...,X,], let

Urm(f) == Uian,....am)erford X = a;,ord f = m}i,

(This is a subset of W” but not in general a subscheme). When f is clear from the context we write this
as just Ur .

Proposition 3.1.5. Uy (f) is measurable. We have volUr,m(f) =32,
m}r_,, where the sum to the right is convergent.

..... anyer Volford X; = a;, ord f =
Proof. If a = (a1, ..., ), write Uy = {ord X; = o, ord f = m}?,.

First assume that I is finite. Then (Usm)N = Uaer(Ua.m)n, hence [(Ur.n)n] = > acilUam)nN]-
Dividing by L™V and letting N tend to infinity proves the proposition since U, ,, is measurable by
proposition 3.1.4.
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If I is infinite, then the N-projection still is a finite disjoint union since it can’t see a > N. More
precisely,

(Urm)N] = D [(Uam)n] =D _[(Uam)n]-

aioéN ael
Therefore
 [Urm)n] [(Ua,m)N] n
w101 g, W) gy 5 W 5 o ot =
acl acl
if this sum converges, or equivalently if vol{ord X; = a;,ord f = m}? | — 0 as M := min(aq,...,ap) —

0o. Because of proposition 3.1.4 it suffices to show that vol{ord X; > a;,ord f > m}?_; — 0 and this is
true if we just assume that a; — oo. For by the proof of proposition 3.1.1, if a1 > «; and a3 > m then

vol{ord X; > ay,ord f > m}l; = [({ord X; > ay,ord f > m}l ), |/L"

and the dimension of ({ord X; > «a;,ord f > m}? )4, is less than or equal to ag(n — 1) so [({ord X; >
ai,ord f = mpi ), J/L" € F7 (M) =

We use this to define a more general integral. Let I C N™ and let Uy, (f) have the same meaning as
above. Also, let Uy := U(q, Oén)el{ord X; = «;}" . (This is measurable by the same argument as for
Ur,m.) Define

.....

/ |f(X1,..., Xn)|dXy - dXy = Z VolUp () - L™™ € M.
Ur

m>0

Proposition 3.1.6. Let I C N and f € W(k)[X1,...,X,]. Then fUI |f(X1,..., Xn)|dX1 ... dX, ezists
and we have

/U}f(Xl,...,Xn)}Xm---an

(ar,...,0n

Proof. To prove existence we have to prove that volUy ,,, /L™ — 0 as m — oo. This is done in the same
way as in the proof of proposition 3.1.3. The equality follows from proposition 3.1.5. |

Corollary 3.1.7.

wn (a1yeeey0un ) ENT ford X;=a,; 1,

3.2 The motivic integral of a polynomial in one variable

In this section we compute the integral over W of Q(X) in W (k)[X] in the case when @ is separable
modulo V. We begin by repeating some arguments from the preceding section in this special case.

Let k be a field of characteristic p and let Q = agX?+---4+a; X +ag € W(k)[X]. Let T® := {ord Q >
a} C W be the scheme defined above, i.e., T%(A4) = {a € W(A) : Q(a) =0 (mod V*)} when A is a

—

k-algebra. We want to compute volT* € M.
Let P := k[Xo, X1,...,XnN,...| and set z := (X0, X1,..., Xn,...) € W(P). Since k C P we have
W (k) C W(P) and hence we can compute Q(z) in W(P). We then get

Q(z) = (Qo(Xo0), Q1(Xo0, X1),...,Qn(Xo,..., XN),...) € W(P) (3.2)
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where Qn € k[X,..., Xn]. Therefore T is defined by the set of formulas

0 = Qo(Xo)
0=Q1(Xo, X1)

0=Qa-1(Xo,...,Xa-1).

Hence
k[XOa .- '7XN71]
T5 = Spec for N > «
N (Q07"'7Qa—1)
and
k[ Xo, ..., XN-1]
Ty = Spec for N=1,...,«
N (QO)"'vQNfl)

In the same way as before we now prove that volT% € J\//\lk. If N > a then

KXo, Xno1] _ k[Xo,. . Xaoi]
(QO)' "7@0471) (QO)' "7@0471)
and hence [Tg] = [T x5, Ay %] = [T$] - LN~ € Ko(Schy). Therefore vol T = limy oo [T§]/LY =

[T2]/L* € M.
We are now ready to prove an analogue of the p-adic Newton’s lemma.

Rk k[Xa, .. 'XN—I]

Proposition 3.2.1 (Motivic Newton’s lemma). Assume that we are in the above situation and assume
also that Q is separable modulo V, that is Qo is separable. Let T* := {ordQ > a}. If « is a positive
integer then there is an isomorphism of k-schemes TS — T = Speck[Xo|/Qo(Xo). It follows that

[T9] = [T?] € Ko(Schy) and hence vol T® = [T2] /L € M.
Proof. Let

k[XOa R X’L*l]

(Q07 ) Qi—l)

Then T = Spec R; for i =1, ..., a and we want to prove that R, ~ R;. We do this by proving that the
canonical homomorphism R; — R;41 is an isomorphism for ¢ > 1.

Let z := (Xo, NN 7X1) S WiJrl (k[Xo, ceey Xl]) We let T := (Xo, RPN ,Xifl, O), sor =T+ Vi I‘(Xi),
and then Taylor expand:

Ri:: 221

Q(w—i—Vr ))
Q@) +Q'(&)- V' r(X,) + O(Vir(X:)” € Wit1(Ainr).

Here Q(2) = (Qo, - ..,Qi—1, P), where P is a polynomial in k[Xy, ..., X;_1]. Moreover, since mQ = Qo,
it follows that if Q'(x) = (QF,...,QF) then Q* = Q). Hence Q'(Z) = (Qf,...). Finally by proposition

14.1 (V' r(Xl-))2 = F'V*(r(X;)) =0 € W, (k[X1,...,X;]). Hence if we write explicitly we see that the
right hand side of (3.3) is

(3.3)

(Qoy -, Qi—1, P)+(Qq,...) - (0,...,0,X;) =(Qo,...,Qi—1,P) + (0,,_.70,62610")(1,)
=(Qo,---,Qi—1, P+ QP X,).
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Since the left hand side of (3.3) equals (Qo,...,Q;) we get the identity
Qi(Xo,...,X;) = P(Xo,..., Xi—1) + Qp(Xo)” - X; (3.4)

in k[XQ, ce 7Xi]-

We shall also use the hypothesis that @ is separable modulo V. This means that Qj is invertible in
Ry. Let Q) ! be such that Qb (Xo)Qy *(Xo) = 1 + h(X0)Qo(Xo) in k[X).

We now prove that R; — R,y is injective. Let f(Xo,...,Xi—1) € k[X1,...,X;—1]. We have to prove
that if f =0 € R;; then f =0 € R;. So suppose that f = hgQo + - - - + h;Q; where hj € k[X1,...,X].
By (3.4) this gives

f(Xo... . Xic1) =ho- Qo(Xo)+ -+ hi—1 - Qi—1(Xo, ..., Xiz1)
+ h; - (P(Xo,,Xl_l) +Q6(X0)p1 Xz)

Substituting —P(Xo, ..., X;—1) - Qé)(XQ)_pi for X, then gives

f(Xo..., Xim1) =h-Qo(Xo) +---+hi_y - Qi—1(Xo, ..., Xi—1)
+hi - (P(Xo,..., Xim1) = P(Xo,..., Xim1) + 1" - Qo(Xo))

where the h} and A" are polynomials in k[Xo, ..., X;_1]. Hence f=0¢€ R; and consequently R; — R;i1
is injective.

Finally we prove that R; — R;y1 is surjective. Identifying R; with its image in R, it suffices to
show that X; € R;. Working in R;,1, (3.4) becomes

i

0=P(Xo,.... X;1) + Qp(Xo) - X

Since @ is separable we can write this as

7

P

X; =—P(Xo,...,Xi—1) - Q(Xo)
and the right hand side involves only the variables Xy, ..., X;_1 and hence is in R;. O

We are now going to compute the motivic integral of a polynomial in one variable. Let Q € Z,[X] be
separable modulo p. Using Newton’s lemma one shows that

= x :Q(x) = 1 .
/W(Fq)|Q(X)|”dX—1+H €F,: Q(x) =0 (p)}] (q—|—1 1) (3.5)

where @ is the reduction of @ modulo p and ¢ = p*. For fixed p we are going to prove that this is true
motivically.

Proposition 3.2.2. If Q € W(k)[X] is separable modulo V we have that

—

L
[ 1Qolax =1+ Spee {Xal/(@0Xa)] - (g 1) € M

Proof. By definition we have

/W|Q(X)|dX = > L " vol{ord Q(X) = m}.

m>0
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Since [(ord Q(X) = m),] = [T/ \ T = [T/] — [T ] for n > m > 1 we have

vol{ordQ(X) = m} = lim [T] = [T

n—oo L
B [Tll] . (Ln—m _ Ln—m—l)
L

=[1{] (L — L)

for m > 1. For m = 0 we have vol(ord Q(X) = 0) = lim[W,, \ T}}] /L™ = 1 — [T'}}]/LL. Therefore, with the
help of proposition 1.2.5,

/ |Q(X)|dX =1+ [Tll] . (—L_l + Z L_W(L—m _ L—(m-i—l)))
A%

m>1
=14+ [Tll] . ( Z L72m _ Z ]L2m1>
m>1 m>0
L
— 17, —
=1+ [T7] <L+1 1).
Note also that if @ is irreducible of degree k then F,[Xo]/(Qo) ~ F,+ and so [T}] = [SpecF]. O

3.3 Many variables

The theorems in this section are all well known and rather trivial for ordinary integrals but for motivic
integrals they need a great deal of space to prove. Throughout this section, let k be a field of characteristic

P.
A primitive change of variables formula
Let a;; € W(k) for 1 <4, <n be such that the determinant of the matrix M := (a;;) is in W (k)*.

Proposition 3.3.1. Given f € W(k)[X1,...,X,], define g(X1,...,X,,) :== f((Xl, . ,Xn)M). Then
for every a € N,

—~

vol(ord g(X1, ..., Xp) > ) = vol(ord f(X1,..., X,) > a) € M,
Proof. For every k-algebra A we have a map
{a e W"(A): f(a1,...,an) =0 (mod V¥)} - {a e W"(4): g(ai,...,a,) =0 (mod V)},

given by (ai,...,a,) — (a1,...,a,)M~t. This is a bijection, for it is well defined since g(aM ') =
flaM~=1M) = f(a) = 0, and it has a well defined inverse a — aM. Hence {ordg(Xi,...,X,) > a}
and {ord f(X;,...,X,) > a} are isomorphic as subschemes of W so their restrictions modulo V¥ are
isomorphic for every IV, hence they have the same volume. O

Proposition 3.3.2. We have the following equality:

/ |f(X1,...,Xn)|dX1-~an:/ lg(X1,..., X)|dX1 - dX,.
Wn

n

Proof. From proposition 3.3.1 it follows that vol{ord f = a} = vol{ord g = a}, hence the result. O
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Separation of variables

The main result of this section is theorem 3.3.6 and its consequence theorem 3.3.7. However, to prove
theorem 3.3.6 requires very complicated notation. We therefore just prove it in a special case, namely
proposition 3.3.5.

Lemma 3.3.3. Let P,Q € W(k)[X]. For p,v € N we have
vol{ord P(X) = p AordQ(Y) = v} = vol{ord P(X) = pu} - vol{ord Q(Y) = v} € M.

Proof. Let x = (Xo,...,Xm) € Wyt (k[XO, e ,Xm]). Then there are polynomials P;, Q; € k[Xo, ..., X)
with the property that

P(I) :(Po(Xo), e ,Pm(Xo, N ,Xm))
Q(z) =(Qo(Xo), - -, Qm(Xo, ..., Xm)) € Wy (k[Xo, ..., X))

Let TH" ;= {ord P(X) > p AordQ(Y) > v}. Then TH" is defined by the set of formulas

Pi(XQ,...,Xi):O iZO,...,u—l
QJ(}/O”YJ) =0

Also, let U* := {ord P(X) > p} and V¥ := {ord Q(Y) > v}. Then for n > p,v we have

7=0,...,v—1.

E[Xo,..., Xn-1,Y,..., Y0 1]

THY =Spec
P (POa'"aP,uflaQOa"'lelfl)
KXo, ., Xp1] Yo, .., Yp]
=Spec ——————""— x; Spec ———— "=
(POa"'aP,ufl) (QOv"'anfl)
ZUﬁ Xk V;

and so [TH] = [U] - [VY] € Ko(Schy). From this we get
vol{ord P(X) =p Aord Q(Y) = v}
= Tim o (18] — [T] - [T ] + [T +))

n—oo 27 n

Ul = U [Vl = V]

:lim[ .

R L"
= vol{ord P(X) = p} - vol{ord Q(Y) = v}.
O

Lemma 3.3.4. Let P,Q € W(k)[X]. Then for £ € N,

vol{ord P(X)Q(Y) = ¢} = > vol{ord P(X) = pAordQ(Y) = v}.

ptr=¢

Proof. We are going to prove that

{ord P(X)Q(Y) > ¢} = | {ordP(X) > pAordQ(Y) > v} € W2, (3.6)

prv=¢€
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It then follows that

{ordP(X)Q(Y) = &}
= {ord P(X)Q(Y) = &} \ {ord P(X)Q(Y) = £ + 1}

= U {ord P(X) > pAordQ(Y) > v} )\ U {ord P(X) > pAordQ(Y) > v}
ptr=¢ ptr=£+1

_ Uwzg{ordP(X) — uAordQ(Y) = v).

So the two sides define the same subscheme of W?2. Moreover, the volume of this subscheme equals
> ptw—g Vol{ord P(X) = p Aord Q(Y) = v} because the union is disjoint.

To prove (3.6) we use the same method as in the proof of the preceding lemma: Let z = (Xo, ..., Xpm,...)
and y = (Yo,...,Yim,...) € W(k[Xm, Ym]meN). We then have

P(I) :(Po(Xo), [P ,Pm(Xo, N ,Xm), . )
Q(y) =(Qo(Y0), -, Qm(Yo, ..., Ym),...) € W(k[Xm, Yin]men)
and
P(x)Q(y) =(S0(X0,Y0), - -+, Sm(Xo, -, Xim, Yo, .., Vi), ... ) € W(E[X, Vin]men).

Therefore {ord P(X)Q(Y) > &} is defined by the set of formulas S;(Xo,...,X;,Yy,...,Y;) = 0 for
i=0,...,6 = 1. Also Uyyp—¢{ord P(X) > p AordQ(Y) > v} is defined by P;(Xy,...,X;) = 0 and
Q;Yp,...,Y;)=0fori=0,...,u—land v =0,...,v — 1 for some p,v with 4+ v = & Now if a and
b € W(A) fulfills P;(a) =0 for i =0,...,u—1 and Q;(b) =0 for j =0,...,v — 1, where p+ v = ¢,
then by corollary 1.4.2 we have

P(a)Q(b) =V*(Pu(a),...) - V'(Qu(b),...)

=V&(P,(a)P Q. (b)P",...) € W(A)
hence Sp(a,b) = --- = S¢_1(a,b) = 0. If instead p+ v < ¢ and P,(a) # 0 and Q,(b) # 0 then
Syutv(a,b) # 0 and we have 4+ v < ¢ — 1 so the converse also holds. O

The next proposition follows from these two lemmas.

Proposition 3.3.5. Let P,Q € W (k)[X]. Then for £ €N,

vol{ord P(X)Q(Y) = ¢} = Z vol{ord P(X) = p} - vol{ord Q(Y) = v} (3.7)
ntr=¢

We proceed to give the more general versions of proposition 3.3.5. Let P € W(k)[X4,...,X,,] and
Qe W(k)[Y1,...,Y,]. Let I C N* and J C N™. Define, in the same way as before,

Ur,u(P) := Uger{ord X; = a;,ord P(X1,..., X,) = p}y CW"
Ujs(Q) :=Ugey{ordY; = B;,ordQ(Y1,...,Y,,) = v}, C W™
UIXJ,E(PQ) = U(Q,B)EIXJ{OrdX’L - O[i,OI'd}/j - ﬁjvordP(le v 7X’n.) ' Q(}/lv .. 7Ym) = 5} - Wn+m'

Define Uy, Uy and Ujyxy in the same way but with the restrictions of the orders of P and ) removed.
With this notation we have the following theorem.
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Theorem 3.3.6. For every & € N we have

volUrse(PQ) = Y volUp u(P) - vol Uy, (Q).
pntr=¢

In particular, when I = J we get

volUre(PQ) = Y volUs,u(P) - volUp ,(Q).
ptr=¢

The proof is identical to that of the special case given in proposition 3.3.6 but the notation is much
more complicated. We omit it.

Theorem 3.3.7 (Separation of variables). For P € W(k)[X1,...,X,] and Q € W(k)[Y1,...,Y,] we
have

/ }P(Xl, e Xn)Q(Ya, .. .,Ym)]Xm c-dX,dYy---dY,,
Urxs
:/ |P(X1,...,Xn)}dX1~-~an-/ |Q(Y1,...,Y)|dY1 -+ Y.
Ur U,
Proof. Theorem 3.3.6 gives that

/U [P(X)Q(Y)[dXdY =

= Z VOl(U]XJé (PQ)) . Lig

>0
_Z< Z vol Uy ,(P) 'VOIU‘LV(Q)> L6
£>0 \p+rv=¢
- (Z volUr u(P) - L“) ) (Z volUy,(Q)) 'L”)
pn>0 V>0

= [ ipeojax - [ jQwlay.
Ur Uy

We will need the following.

Lemma 3.3.8 (Ultrametric inequality). If A is a ring, leta and b € W(A) be such thata = V'(ag, a1, .. .)
where ag € A* and b=V"(0,b1,...). Thena—b =V'(ag,a; —by,...).

Proof. Because V is additive we have a — b = Vi((ao, ai,...) —(0,b1,...)) so the lemma follows from
the shape of the polynomials defining addition. O

Proposition 3.3.9. Let Q € W(k)[X1,....X,]. Fiz 1 <i,j <n. Let I C N" be such that o; < «j for
every o = (v, ...,ap) € I. Then

|Q(X1,... ., Xn) - Xy|dXy - dX, = [ |Q(X1,..., X)) (Xi — X;)|dXy - d X
U] UI
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Proof. This follows if we can prove that
vol ULE (Q(Xl, ceey Xn) . Xl) = vol UI»E (Q(Xl, NN ,Xn) . (Xz — XJ)) (38)

for every £ € N.
By theorem 3.3.6 we have

volUr e (Q(X1, ..., Xp) - Xi) = Y volUp,(Q(X1, ..., X)) - volUp . (X;).
ptrv=¢§

Now (a,...,an) is an A-point on Ur,(X;) if and only if it fulfills the conditions for U and a; =
V”(aio,...) where a;0 € A*. By lemma 3.3.8 this is equivalent to that a; — a; = V"(a,...) and
that (a1,...,a,) fulfills the conditions for Uy, hence Us,(X;) = Ur,(X; — X;). Therefore we have
volUy ,(X;) = volUy ,(X; — X;) so (3.8) follows. O

3.4 Reducible polynomials

We are now ready to generalize the p-adic computations from [Sko] to the motivic case.

In [Sko| the author sets out to compute the measure of the set of points (ai,...,a,) € Z; such
that X" + a1 X"~ + --- + a, splits completely over Z,. He starts by making the change of variables
a; = (=1)'o;(b1,...,by,), where the o; are the elementary symmetric polynomials, to get the integral

1
a/zn IT 1bi — bjlydbr ... db,.

r 1<i<j<n

He then gives a recursive way to compute this integral. We are going to show that this recursion also
works on the integral

/ | II (X - Xp)|dxy...dX, € M,
W <ici<n

We have already proved that this integral exists (proposition 3.1.6). The recursive method will allow us
to compute an explicit formula for it for any given n. In particular this will show that it actually is a
rational function in L.

Observe that we have not proved that the functor of polynomials that split completely is motivic. To
do that would require a motivic change of variables formula.

Notation

Define 1
— _'/ AnldX; ... dX, € Mg, ©2Q
n.: WwWn

where A, =[], o, <, (Xi — X;). The reason why we tensor /\//\l]pp with @Q is to make it possible for us
to divide by n!. We could avoid this but the notation would then be even more messy than it already is.

For an [-tuple « of positive integers with sum n, that is « = (n1,...,n;) where ny +--- +n; = n, let
al :==ny!--n!. We will write
Uy :={ord, X;1 =---=ord, Xp,, <---<ord, Xp—p,41 =+ =ord, X,,} C W".

By this we mean

U AordXi =831,
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where I:={(B1,...,B,) EN": f1 = =0, < < Bpnp1 =" =B}

Define
(01w s

Define V" (s,t) in the same way; the same integrand but integrating over W". We then have V" =
V(0,0) and we will also write V. := V.(0, 0).

V(s t) : WldXy . dX,.

Description of the recursion

Partitioning W™ and using that A,, is symmetric together with the change of variables formula, propo-
sition 3.3.2, we see that for every s € N, V"(s,0) = >~ V'(s,0) where the sum is taken over all tuples
of positive integers which sum to n.

On the other hand, using the change of variables V; = X; — X,,, i =1,...,.n—1and Y,, = X,,, it
follows from proposition 3.3.2 that

(HY) (Vi Yoo )|dY ... dY,.

W
By theorem 3.3.7 this equals 2V"~1(1,0) - [(|1|dY; Since the second integral is equal to 1 we find that
vVt =L1vrl(1,0).

Together the above gives
> V= % > V3 (1,0). (3.9)
tuples o with sum n tuples § with sum n—1

If a = (ny,...,n;) withny +---+n; =n, let (a,m) = (ny,...,n;,m). The problem now comes down to
proving the two formulas

Vit (s,t) = Lo (mettmma D2y (s 4 om smo+ £+ m(m+ 1) /2) Vi) (s, 1) (3.10)

(e;m)

and
1 — [,—n(n+1)/2

Viny(s:1) = 1 — L-Gntttn(nt1)/2)

Ve, (3.11)

Using them, (3.9) takes the form Vi = rational function in L, V(ll), . -~7V(::11)- Since V(ll) = 1 this
recursively gives us a formula for V(7), hence, again using (3.10) and (3.11), for V,. Since V,, =3 VI
we are through.

Proofs of (3.10) and (3.11)
To prove (3.10) and (3.11) we need a lemma:

Lemma 3.4.1. Let A € Zy[X1,...,X,] be a form of degree d. For every pair of non-negative integers
m and k we have

vollord A =m AordX; = k,i=1,...,n) =L " vol(ord A =m —dk A ord X; = 0,i=1,...,n).
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Proof. By proposition 3.1.4 the left hand side equals
vollord A > m A ord X; > k)

—Zvol(ordA >mAordX; >k, j#i ANordX; > k+ 1)+
i=1
o+ (=1)"vollordA >m A ord X; > k+1)

— (Vol(ordA >m+1AordX; > k)
—Zvol(ordA >m+1AordX; >k, j#iAordX; >k+1)+

i=1

o+ (=1)"vollordA >m+1 A ord X; > k+ 1))
so it suffices to show that, for k; € {k,k+ 1},
vol(ord A > m A ord X; > k;) = L™ *" vol(ord A > m — dk A ord X; > k; — k).

We do this for the special case k; =k, i = 1,...,n. The general case is similar but the indexing is even
more complicated.
For 1 <i<n,let X; = (Xj0,..., Xin) € W1 (Fp[Xio, ..., Xin]? ;). We then have

A(Xl, .. .,Xn) = (Ao(X.Q), .. .,AN(X.O, - ,X.N))

where Aj(X.O,...,X.j) = Aj(Xlo,...,le,...,Xno,...,an) S ]Fp[XiO;---XiN]?zl fOI‘j = O,...,N.
Let
Fp[ X0, ..., Xin]y

Ao(Xe0),- s Ap—de(Xeo, -+ s Xem—ar))

Tny1 := Spec (

Then

T
vol(ord A > m —dk A ord X; > 0) = A}im %

On the other hand, let 0 be an n-tuple of zeros and set

Fp[Xik, .., Xin|™y
Ao(0), .. A (0,0, Xagy -y Xom))

SNi1 := Spec (

Then s
vollordA >m A ord X; > k) = J\}E)noo M(Niz\;i:l])
Now, let A be an Fp-algebra and let ai,...,a, € W(A). Corollary 1.4.4 says that
A(Vay,...,Va,) = FIVIA(ay, ..., a,).
In Wy (IF,,[XiO, . ,XiN]?:l) we therefore have

AVFEX,... . VEX,) = FUDRyIRA (X X)),
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(We may assume that N is much bigger then m.) This gives the following equalities in F),[X;o, ..., Xin]" -

Ao(0) =0
A1(0,0) =0

Akd—l(ou st 7O7X.07 st 7X.]€d—1—k) = O
(d—1)k

Aka(0,...,0, Xe0, ..., Xeka—1) = (Ao(Xe0))”
pld=1k

An(0,...,0,Xe0, ., Xem—k) = (Am—dr(Xe0s- - - Xem—dk))
So the change of variables X;; — X, ;i gives an isomorphism

FplXik, .- Xin]Ty Fp[Xio, - -, Xin—]fy

—

(AO(O), ey Am(07 vy 0, Xk, - - .,X.m)) (AO(X-O)a o Am—dk(XoO7 o ’X.m_dk))p(dfl)k

and so we get [Sy41] - L™ = [Ty41] and hence

T
vol(ord A > m —dk A ord X; > 0) = lim %
[Sny1] - L™

N TLaND

ok v SN1]
=L Nl—>oo Ln(NJrl)

=L"* vollord A > m A ord X; > k).

Both (3.10) and (3.11) will be consequences of the following:

Corollary 3.4.2. Let s, t and k be non-negative integers and set Vi, = {ord X; = k,i = 1,...,n}. Let
e=e(n,s,t) =ns+t+n(n+1)/2. Then

/ k (1_11X) X1,

Xm...an:I[fek/ |A,|dX; ... dX,,
Vo

Proof. We have

J

(ﬁ X;) X1,

=1

dXy - dX, =Y L¢vol (m(ﬁ Xi)ngAn —EAordX; = k)
=1

§20

= L ¢vol(ord A, = £ — (ns+ t)k A ord X; = k).
£>0

By the lemma this equals

S TLTL T vol(ord A, = € — (ns + )k — 25k A ord X; = 0)
£>0
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Let & =& — (ns+t)k — @k Since ord A, > 0, we have vol(ordA,, = & A ord X; = 0) = 0 when
&’ < 0 so our expression becomes

L (et Ok =R =0k N € ol (ord A, = € A ord X; = 0)
§'>0

so we are through. O
Now (3.11) is immediate.
Proof of (3.11). Using the corollary we get

Vi (s,1) :Z/VE

£20

342 ZL_e(n,s,t)ﬁ / |ALdX ... dX,
€20 Yo

: /
=——— [ |A,ldX;...dX,
1 — L—e(n,s,t) v

and in particular, putting s = ¢ = 0 so that e(n, s,t) =n(n+1)/2,

(ﬁ Xi)stlAn X, ...dX,

—

1

V(n) = 1 — L—n(n+1)/2 /VO|A"|dX1 - A Xy

So (3.11) follows by putting these two equations together. O
Finally we prove (3.10):

Proof of (3.10). Let « be a tuple of positive integers with sum n, so («a,m) is a tuple with sum n + m.

Then
1

n+m .
V(O‘vm)(s’t) ~alm! /U

Now by proposition 3.3.9 we may replace X; — X; with X; for ¢,j such that 1 <7 <n <j <n+4+m. Put
A;n = Hn<i<j§n+m(Xi — XJ> Then

I1 Xl-) Xy A |dXy . d Xy

1<i<n+m

(ex,m)

1 s+m s
n—+m _ i . t /
Vi (s, 1) = W/U ( [] Xl) An( [] Xz) XL, A NAX . dX . (3.12)
(eym) 1 1<i<n n<i<n+m
We write this as
yrtm(s ) = L IldX,...dX 3.13
(cor,m) (S’ ) - alm! Z U(%m) | | 1--- m-+n ( . )

k>0" ord X, =k

s+m s
where the integrand I := (ngign XZ) A, (Hn<i§n+m Xi) X!, AL is the same as in (3.12). We
take care of each term in this sum separately. For every k € N, theorem 3.3.7 gives that

1
alm! /U(a,m) [I|dXy...dXmin
ord X,,=k
1 n s+m . . S t |
“Yord Xp,=k' i=1 S k<X =11 NS0
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We first take care of the second factor in this product. For every k € N we use corollary 3.4.2 in the
following computation:

1 /
m! Jrcix,=1%;1

( XZ-)SanAm‘Xm o dXom

_le/V

HX Xt ‘Xm...de

E=k+1 i=
3.4.2 Z Loetmse [ A, |dX, ... dX
= m 1.-- m
f ol Vo
:m! L—elm.s.t) k“);L e(mst)f/ A |dX, ... dX,
0

ﬁ Xf)XfLAm‘Xm o dXom
i=1

342 L—e(m,s,t)(k'f‘l)i/ (
ml Jo<ix;|=1x;]

_ Lfe(m,s,t)(kJrl)‘/(%) (S, t)

Putting this into equation (3.13) gives

1
n+m m —e(m,s,t) -

[e3
k>0 ord X,,=k

[xea,

i=1

Xy ... an> Lelm stk

We compute the sum in this expression, with e := e(m, s, t).

(45 .

k>0 ord X,, =k

1T Xf*mAn‘Xm . .an>L—e’f

i=1

= Z Zvol <0rd (H Xs+m) n=&NUyNord X,, = k) L—éL—¢k

E>0£>0
= Z > ol (ord (H X;“”) XA, =€+ ek AUy Aord X, = k) L~ (¢ +ek)
E>0£>0 i=1
] Z vol <ord (H X;+m> XEA, =7 A Ua> L~"
7>0 i=1
=V,(s+m,e).

Therefore we finally get

Vi (s,t) = L™V (s, )V (s + m, e(m, 5,1)).

(e;m)
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