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measure of the nth degree polynomials that satisfy 
ertain fa
torization patterns are 
omputed. Firstlythe measure of the polynomials of degree n that split 
ompletely is a rational fun
tion of p. For example,the measure of the 2nd degree polynomials that split 
ompletely is 1
2(1+p) . Se
ondly, the measure of thepolynomials of degree n that are irredu
ible and unrami�ed is also a rational fun
tion of p.Asso
iated to p is a ring s
heme 
alled the Witt ve
tors and whi
h we denote by W, with the propertythat the Fp-rational points on W, W(Fp), are isomorphi
 to Zp. Moreover, if q = pr then W(Fq) isisomorphi
 to the integral 
losure of Zp in the unrami�ed �eld extension of degree r of Qp. (For every rthere is exa
tly one su
h extension in a �xed algebrai
 
losure of Qp.) If we now 
ompute the measureof the n'th degree polynomials with 
oe�
ients in W(Fq) that split 
ompletely we get the same rationalfun
tion as for Zp, but with p repla
ed with q. For example, the measure of the degree 2 polynomialswith 
oe�
ients in W(Fq) that split 
ompletely is 1

2(1+q) .To explain this phenomenon we will de�ne the measure of 
ertain subs
hemes of Wn. This measurewill take its values in the 
ompletion of a lo
alization of the Grothendie
k ring of �nite type s
hemes over
Fp, so that the measure of a subs
heme of Wn 
an be represented by a fra
tion of linear 
ombinations of
Fp-s
hemes. It will have the following property: If the measure of the s
heme X ⊂ Wn is represented by
[X1]/[X2] where X1 and X2 are Fp-s
hemes then the Haar measure of the Fq-rational points of X equalsthe number of Fq-rational points of X1 divided by the number of Fq-rational points of X2. For example,what was said above indi
ates that the measure of the s
heme of degree 2 polynomials with 
oe�
ientsin W(Fp) that splits 
ompletely should be 1

2(1+[AFp ]) .We will de�ne this measure and 
ompute it in the 
ase of polynomials that split 
ompletely. This willbe done in 
hapter 3. We have also tried to 
ompute the measure of the s
heme of irredu
ible unrami�edpolynomials, but so far without su

ess. As a warm-up for that problem we do the 
omputations in
hapter 2 whi
h turns out to be interesting in their own right.The type of measure dis
ussed above is 
alled a motivi
 measure, referring to the fa
t that the Haarmeasures for di�erent W(Fq) 
ould be per
eived as di�erent paintings of the same motive, the measure inthe Grothendie
k ring. Hen
e the name has the same explanation as the name of the 
ategory of motives,whi
h is a 
ategory through whi
h every Weil 
ohomology fa
tors. Here the 
ohomology theories are thepaintings. (This is the explanation given in [Man68℄.) Also, the fa
t that there already is a 
ategoryof motives prevents us from 
alling the elements of our Grothendie
k ring motives. We say that we
ompute motivi
 measures and motivi
 integrals but never that the integral is a motive. This is further
ompli
ated by the fa
t that there are several di�erent theories of motivi
 integration, and in some ofthem the measure takes values in the Grothendie
k ring over the 
ategory of motives.For an overview of motivi
 integration together with further referen
es, see [Loo00℄. The variantwhi
h we use in 
hapter 3 is developed to suit our parti
ular problem.Outline of the thesisIn 
hapter 1 we 
olle
t some of the ba
kground material that is needed in order to understand this thesis,and whi
h we do not 
onsider to be well known. We introdu
e the notions of Grothendie
k rings and
λ-rings and de�ne the parti
ular rings that we are interested in. We also give an introdu
tion to a rings
heme that is 
alled the Witt ve
tors. Even though all the material in this 
hapter is already known westill give proofs of some of the results. O

asionally we just give a referen
e to a proof and sometimes wedo neither.Chapter 2 
ontains the 
omputation of the 
lass of an algebrai
 torus in the Grothendie
k ring ofvarieties over a �eld. We arrive at a 
losed formula expressed in terms of elements of the Burnside ringof the symmetri
 group Σn. We then express these elements in terms of the λ-ring stru
ture on B(Σn),so this 
hapter also 
ontains an investigation of this parti
ular λ-ring.Chapter 3 is our attempt to generalize the above-mentioned Haar measure 
omputations to a 
ompu-tation of a motivi
 measure. 2



Notation and prerequisitesWe use the following standard notations: N = {0, 1, 2, . . .}, Z = ring of integers, Q = �eld of rationalnumbers, R = �eld of real numbers, C = �eld of 
omplex numbers and Fq = �eld with q elements, qa power of a prime. Also, Zp = ring of p-adi
 integers and Qp = �eld of p-adi
 numbers. To denote ageneral �eld we use the letter k.By a ring we will mean a 
ommutative ring with unit.When X is isomorphi
 to Y we write X ≃ Y . If X is de�ned to be Y we write X := Y . Finally
X ⊂ Y means that X is a, not ne
essarily proper, subset of Y .We use Sets, Rings, AlgA and Sch to denote the 
ategories of sets, rings, A-algebras and s
hemesrespe
tively.We assume knowledge of the language of s
hemes as presented in 
hapter II of [Har77℄. In parti
ularif A is a ring, B an A-algebra and X is a s
heme over A, then X(B) is the set of points of X with
oordinates in B, HomA−s
hemes(Spec B, X), whereas XB is the s
heme over B obtained from X by baseextension, X ×A Spec B. We also frequently use the following two fa
ts about s
hemes: An A-s
heme
X is determined by its fun
tor of points X(−) : AlgA → Sets, and a fun
tor F : AlgA → Sets is ana�ne s
heme if and only if it is representable by an A-algebra C, so that F (B) = HomA−alg(C, B) forevery A-algebra B. This also makes it easy to de�ne an a�ne ring s
heme over A, whi
h is just a fun
tor
AlgA → Rings whose 
omposition with the forgetful fun
tor to Sets is representable.We use Gm and Ga to denote the multipli
ative and additive group s
hemes respe
tively. By a toruswe mean a group s
heme that be
omes isomorphi
 to Gm × · · · × Gm after an extension of the base.If A is a ring we use D(f) and V(I) to denote the open respe
tively 
losed subs
hemes of Spec Adetermined by the element f ∈ A respe
tively the ideal I ⊂ A. If A is graded we use D+ and V+ todenote the 
orresponding subs
hemes of ProjA.If R is a ring then R× is the group of invertible elements in R.By Σn we mean the symmetri
 groups, i.e., Σn is the permutation group of {1, . . . , n}.By a partition of n we mean a weakly de
reasing sequen
e of positive integers whi
h sum to n. Wewrite λ ⊢ n to indi
ate that λ is a partition of n.A
knowledgmentI would like to thank my thesis supervisor professor Torsten Ekedahl for his unfailing support.
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Chapter 1Ba
kground materialIn this 
hapter we will bring up de�nitions and theorems that are of repeated use in this thesis.1.1 Grothendie
k ringsLet A be an abelian 
ategory. The Grothendie
k group of A is then de�ned to be the free abelian groupgenerated by {[A] : A ∈ ob(A)}, subje
t to the relations that if 0 → A → B → C → 0 is exa
t then
[B] = [A] + [C]. (It follows in parti
ular that [A] = [B] if A ≃ B.) We denote this group by K0(A).Let C be a non-abelian 
ategory. As above we 
an form the free abelian group generated by {[A] :
A ∈ ob(C)} and then form a quotient of this group. We will sometimes 
all this a Grothendie
k group of
C, in analogy with the 
ase when C is abelian.A mu
h studied example of a Grothendie
k group is K0(ModR) where ModR is the 
ategory of�nitely generated proje
tive modules over the 
ommutative ring R. This 
ategory is in general notabelian but we use the same de�ning relations as if it where. Sin
e every short exa
t sequen
e ofproje
tive modules is split this means equivalently that the de�ning relations of K0(ModR) is [P1] = [P2]if P1 ≃ P2 and [P1 ⊕ P2] = [P1] + [P2]. This group 
an also be given the stru
ture of a ring by de�ning
[P1]·[P2] := [P1⊗RP2]. This produ
t is well de�ned: If P2 ≃ P1⊕P3 then P⊗RP2 ≃ (P⊗RP1)⊕(P⊗RP3).It hen
e follows that [P ] · [P2] = [P ] · [P1] + [P ] · [P3] if [P2] = [P1] + [P3].By a Grothendie
k ring we mean a ring 
onstru
ted in analogy with the above example, i.e., an abeliangroup where the generators are isomorphism 
lasses of obje
ts in some 
ategory. These generators aresubje
t to relations that were given above if the 
ategory is abelian and that we have to de�ne from 
aseto 
ase if the 
ategory is not abelian. The ring also has a multipli
ation that we have to de�ne in ea
hparti
ular 
ase.If R is an abelian group and we want to de�ne a group homomorphism K0(A) → R then we oftendo this by giving a map φ : ob(A) → R. We then have to 
he
k that φ respe
ts the relations. In theabelian 
ase this means that φ(B) = φ(A)+ φ(C) if 0 → A → B → C → 0 is exa
t. Moreover, if we havegiven K0(A) the stru
ture of a ring and R is a ring, then we get a ring homomorphism if φ respe
ts themultipli
ation on the generators.1.1.1 The Grothendie
k ring of s
hemes of �nite type over a �eldFix a �eld k, and let Schk be the 
ategory of s
hemes of �nite type over k. We now 
onstru
t aGrothendie
k ring over this 
ategory. Sin
e Schk is not abelian we have to de�ne the relations that weuse. 4



De�nition 1.1.1. Let k be a �eld. The Grothendie
k ring of s
hemes of �nite type over k, K0(Schk),is the free abelian group generated by symbols [Y ], for Y ∈ Schk, with a multipli
ation given by
[Y ] · [Z] := [Y ×Speck Z]and subje
t to the following relations:

[Y ] = [Z] if Y ≃ Z

[Y ] = [Y \ Z] + [Z] if Z is a 
losed subs
heme of [Y ].This is well de�ned for if Z is a 
losed subs
heme of Y then Z ×k X is a 
losed subs
heme of Y ×k Xwith 
omplement (Y \ Z) ×k X .In K0(Schk) we have that 0 = [∅] and 1 = [Spec k]. As a spe
ial 
ase of the se
ond relation weget [Spec A ⊕ B] = [Spec A] + [Spec B]. Also, every s
heme Y has a unique redu
ed 
losed subs
heme
Yred → Y having the same underlying topologi
al spa
e as Y . From the se
ond relation we see that
[Y ] = [∅] + [Yred] and hen
e [Yred] = [Y ].De�ne L := [A1

k]. (L is for Lefs
hetz). Sin
e An
k = A1

k × · · ·×A1
k we get [An

k ] = Ln. To �nd [Pn
k ] re
allthat Pn−1

k ≃ Projk[X0 . . . , Xn]/(X0) is isomorphi
 to a 
losed subs
heme of Pn
k = Projk[X0 . . . , Xn] withsupport V+(X0). Sin
e D+(X0) ≃ Spec k[X1/X0, . . . , Xn/X0] ≃ An

k we get [Pn
k ] = Ln + [Pn−1

k ] when
n ≥ 1. When n = 0 we get [P0

k] = [Spec k] + [Projk] = 1 + 0 so the formula [Pn
k ] = Ln + Ln−1 + · · · + 1follows by indu
tion.Remark. Perhaps a more 
ommon 
onstru
tion is to use instead the 
ategory of varieties over k, wherevariety here means a redu
ed, separated s
heme of �nite type over k. However, this 
onstru
tion givesan isomorphi
 ring, so we 
ould refer to K0(Schk) as the Grothendie
k ring of varieties over k. (Someauthors even use the term variety to mean a s
heme of �nite type over a �eld, see for example [Liu02℄.)We also remark that if we instead do this 
onstru
tion over the 
ategory of all s
hemes over k then weend up with the zero ring, be
ause if Y is any k-s
heme and Z is an in�nite disjoint union of 
opies of Ythen [Z] = [Z] + [Y ] and hen
e [Y ] = 0. On the other hand, there are many open questions about thestru
ture of K0(Schk). For example, if char(k) 6= 0 then it is not known whether K0(Schk) is a domain.If instead char(k) = 0 then, by [Poo02℄, K0(Schk) is not a domain.We next 
onsider some examples of how the relations work.Exampel 1.1.2. Consider the open subs
heme D(X) ⊂ Spec k[X ] = A1

k. Sin
e V (X) 
an be given thestru
ture of a 
losed subs
heme isomorphi
 to Spec k[X ]/(X) ≃ Spec k we get
[D(X)] = [A1

k] − [V (X)] = L − [Spec k] = L − 1.On the other hand, D(X) ≃ Spec k[X ]X ≃ Spec k[X, 1/X ] ≃ Gm, so [Gm] = L − 1.Exampel 1.1.3. Let k be a �eld of 
hara
teristi
 di�erent from 2 and let CP be an irredu
ible proje
tive
oni
 with a k-rational point. (Every 
oni
 has a k-rational point if k is algebrai
ally 
losed or �nite.) Wethen know that there exists an isomorphism CP ≃ P1
k so [CP ] = L+1. The situation is more 
ompli
atedin the 
ase of an a�ne 
oni
. Consider for example the unit 
ir
le CA := Spec k[X, Y ]/(X2 + Y 2 − 1).We have

L + 1 =
[
Projk[X, Y, Z]/(X2 + Y 2 − Z2)

]

=[V+(Z)] + [D+(Z)]

=
[
Projk[X, Y ]/(X2 + Y 2)

]
+ [CA],where [

Projk[X, Y ]/(X2 + Y 2)
]

= [V+(Z)] + [D+(Z)] = 0 +
[
Spec k[X ]/(X2 + 1)].5



So if −1 is a square in k then [CA] = L + 1 − [Spec k2] = L − 1 whereas if −1 is a non-square then
[CA] = L+1− [SpecK] where K = k(

√
−1). An element of the form [Spec K] where K/k is a �nite �eldextension is an example of what later will be 
alled an artin 
lass.We expand the de�nition of the 
lass of a s
heme in K0(Schk) so that we also 
an talk about the 
lassof a 
onstru
tible subset of a s
heme (i.e., a �nite disjoint union of lo
ally 
losed sets). For the followingproposition, see the introdu
tion to [DL99℄.Proposition 1.1.4. If Y is a s
heme of �nite type over k then the map Y ′ → [Y ′] from the set of
losed subs
hemes of Y extends uniquely to a map Z → [Z] from the set of 
onstru
tible subsets of Y to

K0(Schk), satisfying [Z ∪ Z ′] = [Z] + [Z ′] − [Z ∩ Z ′].So if we are given a 
onstru
tible subset Z of a �nite type s
heme over k then it has a well de�nedimage [Z] ∈ K0(Schk).If k ⊂ K is a �nite �eld extension, then extension and restri
tion of s
alars give rise to maps between
K0(Schk) and K0(SchK).De�nition-Lemma 1.1.5. Let K be a �eld extension of k of �nite degree. De�ne ResK

k : K0(SchK) →
K0(Schk) by the map SchK → K0(Schk) that take the K-s
heme X to the 
lass of X, viewed as a
k-s
heme. We have that ResK

k is additive but not multipli
ative.Also, de�ne SceK
k : K0(Schk) → K0(SchK) by the map Schk → K0(SchK) that take the k-s
heme

X to the 
lass of X ×k Spec K, viewed as a K-s
heme. This is a ring homomorphism. (Sce is short fors
alar extension.)The fa
t that ResK
k fails to be multipli
ative 
an be seen for example if we let k = Fp and K = Fp2 ,for then we have ResK
k

(
1 · [Spec Fp6 ]

)
= [Spec Fp6 ] whereas Fp2 ⊗Fp Fp6 = F2

p6 so
ResK

k (1) · ResK
k

(
[Spec Fp6 ]

)
= [Spec Fp2 ] · [Spec Fp6 ] = [Spec F2

p6 ] = 2 · [Spec Fp6 ].Rather then being multipli
ative, ResK
k has a similar property: If X is k-s
heme and Z is a K-s
heme thenfrom the universal property de�ning �bre produ
ts we get that Z×K(Spec K×kX) ≃ Z×kX as k-s
hemes.It follows that if we apply the restri
tion map to [Z] · [XK ] ∈ K0(SchK) we get [Z] · [X ] ∈ K0(Schk). Wewill use this in the spe
ial 
ase when X = An

k and Z = Spec L where L is a �nite dimensional K-algebra,so we state this as the following proposition.Proposition 1.1.6. If K is a �nite �eld extension of k and L is a �nite dimensional K-algebra, thenfor every n ∈ N we have
ResK

k ([Spec L] · Ln) = [Spec L] · Ln.In parti
ular, ResK
k (1) = [Spec K] and ResK

k (Ln) = [Spec K] · Ln.If we work over a �nite �eld then the 
onstru
tion of K0(Schk) is 
ompatible with point 
ounting, asthe following shows.De�nition-Lemma 1.1.7. For q a prime power, let Cq : K0(SchFq) → Z be the map de�ned by X 7→
|X(Fq)| : ob(SchFq) → Z. Then Cq is a ring homomorphism.Proof. Let T ∈ SchFq be arbitrary. If f : Y → Z is an isomorphism then g 7→ f ◦ g : Y (T ) →
Z(T ) is a bije
tion. Moreover, sin
e Spec Fq is a point, |Hom(Spec Fq, Y )| = |Hom(Spec Fq, Z)| +
|Hom(Spec Fq, Y \ Z)| if Z is a 
losed subs
heme of Y . Hen
e Cq is well de�ned. It is multipli
ativesin
e

(Y ×Fq Z)(T ) →Y (T ) × Z(T )

f 7→(πY ◦ f, πZ ◦ f)is a bije
tion by the universal property that de�nes the �bre produ
t.6



Exampel 1.1.8. In example 1.1.3 we saw that if p is an odd prime and if −1 is a square in Fp, that isif p ≡ 1 (mod 4), then the 
lass of the 
ir
le X2 + Y 2 − 1 equals L − 1 in K0(SchFp). Hen
e for every qthat is a power of p, the number of Fq-points on the 
ir
le is q − 1.If instead p ≡ 3 (mod 4) then the 
lass of the 
ir
le in K0(SchFp) equals L + 1− [Spec Fp2 ]. Hen
e if
q is an odd power of p then the number of Fq-points on the 
ir
le is q + 1 whereas if q is an even powerof p then the number of Fq-points equals q − 1.1.1.2 The Burnside ringLet G be a �nite group. In this se
tion we 
onsider the Grothendie
k ring of �nite G-sets. However, thisring already has a name, namely the Burnside ring of G. For more on the Burnside ring, as well as proofsof the statements below, see [Knu73℄ 
hapter II, 4. There are several ways to generalize the 
onstru
tionof the Burnside ring to 
ertain 
lasses of in�nite groups. We will need to do this when G is pro�nite, i.e.,
G is the inverse limit of a dire
ted system of �nite groups, with the inverse limit topology.Let G be a group. Re
all that a G-set is a set with a G a
tion, and if S and T are G-sets then
f : S → T is G-equivariant if g · f(s) = f(g · s) for every s ∈ S and g ∈ G.De�nition 1.1.9. Let G be a �nite group. De�ne G−Sets to be the 
ategory where an obje
t is a �niteset with a G-a
tion and where a morphisms is a G-equivariant map of su
h sets. We will denote themorphisms between the G-sets S and T by HomG(S, T ).More generally, if G is pro�nite we let G − Sets be the 
ategory of �nite sets with a 
ontinuous
G-a
tion.De�nition 1.1.10. Let G be a �nite group. The Burnside ring of G, whi
h we denote by B(G), is the freeabelian group generated by the symbols [S], for every G-set S, subje
t to the relations [S

�∪T ] = [S] + [T ]and with a multipli
ation given by [S] · [T ] := [S × T ], where G a
ts diagonally on S × T .If G is pro�nite, B(G) is 
onstru
ted in the same way but using the �nite 
ontinuous G-sets.Sin
e every G-set 
an be written as a disjoint union of transitive G-sets we see that the transitivesets generates B(G), and in fa
t it is free on the isomorphism 
lasses of transitive G-sets. Moreover,every �nite transitive G-set is isomorphi
 to G/H where H is a (not ne
essarily normal) subgroup, and
G/H ≃ G/H ′ if and only if H and H ′ are 
onjugate subgroups. So every element of B(G) 
an be writtenuniquely as ∑

H∈R

aH [G/H ]where R is a system of representatives of the set of 
onjuga
y 
lasses of subgroups of G and where aH ∈ Zfor every H .Next, let φ : H → G be a group homomorphism. If S is a G-set we 
an 
onsider it as a H-set byde�ning h · s := φ(h)s. Also, if instead S is a H-set then we 
an 
onstru
t a G-set in the following way.De�nition 1.1.11. Let φ : H → G be a group homomorphism and let S be an H-set. De�ne an equiva-len
e relation on G× S by (g · φ(h), s) ∼ (g, hs) for (g, s) ∈ G× S and h ∈ H. Let G ×H S := G × S/ ∼with a G-a
tion given by
g′ · (g, s) := (g′g, s).We will only use this de�nition in the 
ase 
ase when H is a subgroup of G. In this 
ase, note thatif we 
hoose a set of 
oset representatives of G/H , R = {g1, . . . , gr}, then we 
an represent G ×H S as

R × S with G-a
tion given by g · (gi, s) = (gj, hs), where ggi = gjh for h ∈ H .This gives rise to two maps betwen Burnside rings.7



De�nition-Lemma 1.1.12. Let φ : H → G be a homomorphism of pro�nite groups. Then ResG
H : B(G) →

B(H) is the map indu
ed by restri
ting the G-a
tion on a G-set S to a H-a
tion, i.e., S is 
onsidered asa H-set via h · s := φ(h)s for h ∈ H and s ∈ S. This map is a ring homomorphism.Also, we de�ne the indu
tion map IndG
H : B(H) → B(G) by asso
iating to the H-set S the 
lass of the

G-set G ×H S in B(G). This map is additive but not multipli
ative.1.1.3 The subring of artin 
lasses in K0(Schk)Given a �eld k with absolute Galois group G. In this subse
tion we de�ne a map from the Burnsidering of G (where G is given the pro�nite topology) to K0(Schk). The image of this 
onsists of linear
ombinations of 
lasses of zero dimensional s
hemes. An element in the image will be 
alled an artin
lass.We shall use the notion of a �nite separable algebra:De�nition 1.1.13. A �nite separable algebra over the �eld k is a k-algebra L with the property that if
ks is a separable 
losure of k then L ⊗k ks ≃ ks × · · · × ks.For a list of equivalent 
onditions, see [Wat79℄, page 46. The notion of a separable k-algebra is usedin the following formulation of Galois theory. For a proof see for example lo
.
it., page 48.Theorem 1.1.14. Fix a �eld k together with a separable 
losure ks. Set G := Gal(ks/k). Then we havea 
ontravariant equivalen
e between the 
ategory of �nite separable k-algebras and the 
ategory of �nite
ontinuous G-sets (where the morphisms in the latter 
ategory are G-equivariant maps of sets).This equivalen
e takes the k-algebra L to Homk(L, ks) with G-a
tion given by fσ(l) := σ ◦ f(l). Itspseudo-inverse takes the G-set S to HomG(S, ks), i.e., the G-equivariant maps of sets from S to ks,
onsidered as a ring by pointwise addition and multipli
ation and with a k-algebra stru
ture given by
(α · f)(s) := α · f(s).Proposition 1.1.15. Under the 
orresponden
e in theorem 1.1.14, if L 
orresponds to S then the di-mension of L equals the number of elements in S. Moreover, if also L′ 
orresponds to S′, then L ⊗k L′
orresponds to S ×S′ with diagonal G-a
tion and the algebra L×L′ 
orresponds to S

�∪S′. In parti
ular,separable �eld extensions of k 
orrespond to transitive G-sets.Proof. The �rst statement is true be
ause the equality dimk L = |S| is equivalent to L being separable.(See [Wat79℄). The se
ond statement is true sin
e S ×S′ ≃ Homk(L⊗k L′, ks) follows from the universalproperty de�ning the tensor produ
t in the 
ategory of k-algebras. The third statement follows sin
e ks
ontains no non-trivial idempotents so a homomorphism L×L′ → ks is zero on one of the 
oordinates.De�nition-Lemma 1.1.16. Let Artk : B(G) → K0(Schk) be indu
ed by the map G −Sets → K0(Schk)that takes the G-set S to the 
lass of Spec HomG(S, ks). (If the �eld k is 
lear from the 
ontext then wejust write Art.) Then Artk is a ring homomorphism.Remark. It is also true that Artk is inje
tive, so we 
an think of B(G) as a subring of K0(Schk).De�nition 1.1.17. De�ne an artin 
lass to be an element in the image of Artk. Let ArtClk ⊂ K0(Schk),the subring of artin 
lasses, be the image of B(G) under Artk.We next study how Art behaves with respe
t to restri
tion of s
alars. The following proposition isdue to Grothendie
k but we have not been able to �nd a referen
e so we in
lude a proof for 
ompleteness.Proposition 1.1.18. Fix a �eld k together with a separable 
losure ks and let G := Gal(ks/k). Let Kbe a �nite �eld extension of k su
h that K ⊂ ks. Let L be a �nite separable K-algebra and let S bethe 
orresponding Gal(ks/K)-set. View L as a k-algebra and let S′ be the 
orresponding G-set. Then
S′ ≃ G ×Gal(ks/K)S. 8



Proof. The map
φ : G ×S →S′

(σ, f) 7→σfhas the property that if τ ∈ Gal(ks/K) then φ(στ, f) = στf = φ(σ, τf). Hen
e it gives rise to a map of
G-sets ϕ : G ×Gal(ks/K)S → S′. If φ(σ, f) = φ(τ, g) then τ−1σf = g so sin
e f and g �xes K pointwisewe must have that τ−1σ ∈ Gal(ks/K). It follows that (τ, g) = (τ, τ−1σf) ∼ (ττ−1σ, f) = (σ, f) so ϕ isinje
tive.Let d := [K : k]. Suppose that L has dimension n as a K-algebra, i.e., S has n elements. Then L hasdimension nd as a k-algebra so S′ has nd elements. On the other hand, by Galois theory, |G /Gal(ks/K)| =
[K : k] = d. So by the remark after de�nition 1.1.11, G ×Gal(ks/K)S also has nd elements. Sin
e ϕ isinje
tive it follows that it also is surje
tive, hen
e an isomorphism of G-sets.Proposition 1.1.18 has the following 
onsequen
e.Proposition 1.1.19. Let k be a �eld and ks a separable 
losure. De�ne G := Gal(ks/k) and let K be a�nite �eld extension of k su
h that K ⊂ ks. Then the following diagram 
ommutes:

B
(
Gal(ks/K)

)ArtK //

IndG

Gal(ks/K)

��

K0(SchK)

ResK
k

��
B(G)

Artk // K0(Schk)1.1.4 The representation ringThe �nal Grothendie
k ring that we introdu
e is the representation ring of a pro�nite group. We will notwork so mu
h in this ring; we use it only to prove fa
ts about the Burnside ring, for example proposition2.4.10. For this reason we just de�ne the ring of Q-representation, even though the same 
onstru
tionworks over any �eld. The representation ring is a standard tool in representation theory, see for example[Ser77℄.Let G be a �nite group. A Q-representation of G is a �nitely generated Q[G]-module, or equiva-lently a �nite dimensional Q-ve
tor spa
e with a G-a
tion. A morphism of su
h representations is ahomomorphism of Q[G]-modules, or equivalently a G-equivariant linear map of Q-ve
tor spa
es. The
Q-representations of G form an abelian 
ategory. More generally, if G is pro�nite then we de�ne a Q-representation of G in the same way as above but we also require the G-a
tion to fa
tor through a �nite
ontinuous quotient of G.De�nition 1.1.20. The representation ring of G (over Q) is the Grothendie
k group of the 
ategory of
Q-representations of G with a multipli
ation given by [V1] · [V2] := [V1 ⊗Q V2], the G-a
tion on the tensorprodu
t being given by g · (v1 ⊗ v2) = gv1 ⊗ gv2. We denote this ring with RQ(G).By Mas
hke's theorem, every short exa
t sequen
e of Q-representations splits, hen
e we 
an think ofthe relations just as [V1 ⊕ V2] = [V1] + [V2].As an abelian group, the rational representation ring is free on the isomorphism 
lasses of irredu
ible
Q-representations. Sin
e we have a bije
tion between the set of su
h 
lasses and the 
onjuga
y 
lasses of
y
li
 subgroups of G, the rank of RQ(G) equals the number of 
onjuga
y 
lasses of 
y
li
 subgroups in
G. (See [Ser77℄, 12.4 for this.)In this ring we also get a restri
tion map and an indu
tion map.9



De�nition-Lemma 1.1.21. Let H → G be a group homomorphism. Then ResG
H : RQ(G) → RQ(H) isthe map indu
ed by restri
ting the G-a
tion on the Q-ve
tor spa
e V to a H-a
tion on V . This map is aring homomorphism.Moreover, we de�ne a map IndG

H : Rk(H) → Rk(G) by asso
iating to the Q[H ]-module V the 
lass ofthe Q[G]-module Q[G] ⊗Q[H] V in RQ(G). This map is additive but not multipli
ative.We need to know a little about how the indu
tion map works.Proposition 1.1.22. Let H be a subgroup of G and let R = {g1, . . . , gr} be a system of 
oset represen-tatives for G/H. Then R is a basis for Q[G] 
onsidered as a right Q[H ]-module. Hen
e Q[G] is free ofrank |G/H |.Let V be an H-representation of dimension n. Let B be a Q-basis for V . Then a basis for Q[G]⊗Q[H]Vas a Q-ve
tor spa
e is {gi ⊗ v}gi∈R,v∈B and the G-a
tion is given by g · gi ⊗ v = gj ⊗ hv where ggi = gjhfor h ∈ H.Proof. Let r := |G/H | and let g1, . . . , gr be 
oset representatives. De�ne
ϕ : Q[G] →

r⊕

i=1

Q[H ]on the 
anoni
al basis for Q[G] by mapping g = gih, where h ∈ H , to the tuple with ith 
omponent
h and zeros elsewhere. Sin
e G is the disjoint union of its 
osets this is a bije
tion. It is additive and
Q-linear by de�nition. Finally, if g = gih then

ϕ(gh′) = ϕ
(
gi(hh′)

)
= (0, . . . , hh′, . . . , 0) = (0, . . . , h, . . . , 0) · h′ = ϕ(g)h′for h′ ∈ H , hen
e ϕ is H-equivariant.To be able to use the representation ring to prove fa
ts about the Burnside ring we will need a mapbetween them.De�nition-Lemma 1.1.23. Let G be a pro�nite group. Let S be a �nite 
ontinuous G-set. We 
anasso
iate to S the permutation representation Q[S], i.e., the Q-ve
tor spa
e with basis S and G-a
tion onthe basis elements. This gives rise to a ring homomorphism B(G) → RQ(G) whi
h we denote by h.Proof. If S and T are G-sets then

Q[S
�∪T ] ≃Q[S] ⊕ Q[T ] and

Q[S × T ] ≃Q[S] ⊗Q Q[T ]as Q[G]-modules, hen
e this 
onstru
tion really de�nes a ring homomorphism from B(G) to RQ(G).This map is studied in [Seg71℄, where it is proved that if every element in G has prime power order,then h is surje
tive. It is an isomorphism if and only if G is 
y
li
. Sin
e B(G) has rank equal to thenumber of 
onjuga
y 
lasses of subgroups of G whereas RQ(G) has rank equal to the number of 
onjuga
y
lasses of 
y
li
 subgroups of G, it is in general not inje
tive. We will later prove that the restri
tion of
h to a 
ertain subring of B(Σn) is inje
tive.The map h 
ommutes with the indu
tion and restri
tion maps.Proposition 1.1.24. Let H be a subgroup of G. Then the following diagram 
ommutes.

B(G)
h // RQ(G)

B(H)
h //

IndG
H

OO

RQ(H)

IndG
H

OO

10



Also, if H → G is a group homomorphism then h 
ommutes with the restri
tion maps ResG
H .Proof. We prove the �rst part of the proposition. For every H-set S we have to �nd a G-equivariantisomorphism of Q-ve
tor spa
es

ϕ : Q[G ×H S] → Q[G] ⊗Q[H] Q[S].De�ne a map φ : G×S → Q[G]⊗Q[H] Q[S] as (g, s) 7→ g⊗s. Sin
e φ(gh, s) = φ(g, hs) this fa
tors through
G ×H S and by linear extension we get our map ϕ.Choose a system of 
oset representatives R = {g1, . . . , gr} for G/H . We have seen in 1.1.22 that
Q[G] ⊗Q[H] Q[S] has a basis given by {gi ⊗ s}gi∈R,s∈S and G-a
tion g · (gi ⊗ s) = (gj ⊗ hs), where
ggi = gjh, hen
e ϕ is G-equivariant and surje
tive. Also, we have seen that G ×H S 
an be representedas {(gi, s)}gi∈R,s∈S so the two ve
tor spa
es have the same dimension. Hen
e ϕ is an isomorphism.We next de�ne a map from the representation ring.De�nition-Lemma 1.1.25. Let G be a pro�nite group. If g is an element of G then we have a mapfrom the 
ategory of G-representations to Q that sends the G-representation V to χV (g). This indu
es aring homomorphism Cg : RQ(G) → Q.We have that if g and g′ are 
onjugate then Cg = Cg′ . Let R be a system of representatives of the setof 
onjuga
y 
lasses of G. Sin
e a representation is determined by its 
hara
ter the following propositionis expe
ted.Proposition 1.1.26. With the above notation, the map ∏g∈R Cg : RQ(G) →∏

g∈R Q is inje
tive.We have the following 
ommutation property.Proposition 1.1.27. Let φ : G → H be a group homomorphism and let g ∈ G. The following diagram
ommutes.
RQ(H)

ResH
G //

Cφ(g)
%%JJJJJJJJJJ

RQ(G)

Cg

��
ZProof. Let V be a Q-representation of H and denote it by V ′ when we 
onsider it as a representation of

G via φ. Then g a
ts on V ′ by φ(g) so χV ′(g) = χV (φ(g)), hen
e Cg(ResH
G [V ]) = Cφ(g)([V ]). Sin
e everyelement of RQ(H) is a di�eren
e of 
lasses of H-representations the result follows.1.2 The motivi
 ringIn this se
tion we de�ne the ring in whi
h our motivi
 measure will take its values. It is obtained fromthe Grothendie
k ring of varieties by a pro
ess of lo
alization and 
ompletion. This material togetherwith referen
es 
an be found in [Bli05℄. For basi
 fa
ts about �ltrations and 
ompletions, see [Ser00℄,
hapter II.De�nition 1.2.1. Given a �eld k, let Mk be the lo
alization of K0(Schk) with respe
t to {Ln}n∈N.De�nition 1.2.2. If x ∈ K0(Schk) we say that dimx ≤ n if x 
an be expressed as a linear 
ombinationof 
lasses of s
hemes, ea
h of dimension ≤ n. (By 
onvention, the empty s
heme has dimension −∞.)We de�ne a �ltration of Mk, {Fn(Mk)}n∈Z by letting Fn(Mk) be the subgroup of Mk generated byelements of the form x · L−i with dim x − i ≤ n. Let M̂k be the 
ompletion of Mk with respe
t to this�ltration. 11



So we have homomorphisms
K0(Schk) → Mk → M̂k.It is not known whether any of these maps are inje
tive but we still denote by [Y ] the images in Mk and

M̂k of [Y ] ∈ K0(Schk).The following holds sin
e M̂k is a 
ompletion with respe
t to a �ltration.Proposition 1.2.3. A sequen
e {an}n∈N in M̂k is Cau
hy, hen
e 
onvergent, if and only if an+1−an →
0. In parti
ular, the sum ∑

n∈N an is 
onvergent if and only if an → 0.The following is a 
onsequen
e.Proposition 1.2.4. If {an}n∈N ⊂ M̂k and if ∑n∈N an is 
onvergent then every rearrangement of∑
n∈N an is 
onvergent, and they all 
onverges to the same limit.We will use this result a great deal so we will not refer to it every time. The same holds for its
onsequen
e that if {anm}(n,m)∈N2 ⊂ M̂k then ∑(n,m) anm is well de�ned and if it 
onverges then itequalls ∑n

∑
m anm.Finally we have the following formula:Proposition 1.2.5. In M̂k we have the equality ∑i∈N Lni = (1 − L−n)−1 for every positive integer n.1.3 λ-ringsThe de�nition of a λ-ring is due to Grothendie
k. An introdu
tion to this subje
t is given for examplein the �rst part of [AT69℄ or in [Knu73℄. We de�ne only the part of theory that we need.De�nition 1.3.1. A λ-ring is a 
ommutative ring R with identity together with a set of maps λn : R → R,for ea
h n ∈ N, su
h that for all x, y ∈ R

λ0(x) = 1

λ1(x) = x

λn(x + y) =

n∑

i=0

λi(x)λn−i(y).

(1.1)A morphism of λ-rings is a homomorphism of 
ommutative rings, 
ommuting with the λ-operations.For an indeterminate t, de�ne λt(x) :=
∑

n≥0 λn(x)tn ∈ R[[t]]. The last axiom 
an then be expressedas the equality
λt(x + y) = λt(x)λt(y) (1.2)in R[[t]], so a λ-ring stru
ture on R is the same thing as homomorphism λt from the additive group of Rto the multipli
ative group of R[[t]] full�lling the two �rst axioms of (1.1).Sometimes when de�ning λ-stru
tures it is more 
onvenient to de�ne the λn:s impli
itly. One way isto �rst de�ne fun
tions σn, full�lling the same axioms as the λn:s (so R is a λ-ring also with respe
t tothe σn:s), de�ne σt(x) :=

∑
n≥0 σn(x)tn ∈ R[[t]] and then de�ne the λ-operations by

σt(x)λ−t(x) = 1. (1.3)Proposition 1.3.2. Given a 
olle
tion of maps σn on R full�lling the axioms (1.1). Then (1.3) de�nea unique λ-ring stru
ture on R.Moreover, if f : R → R′ is a ring homomorphism 
ommuting with the σn:s, then it is a morphism of
λ-rings. 12



Proof. First, λ−t(x) exists uniquely sin
e σt(x) has 
onstant 
oe�
ient equal to 1, hen
e is invertible,and inverses are unique when they exist. Moreover, we have that λ0(x) = σ0(x) = 1 and −σ0(x)λ1(x) +
σ1(x)λ0(x) = 0 so that λ1(x) = σ1(x) = x. The third axiom follows from its formulation as (1.2) for wehave

λ−t(x + y) =σt(x + y)−1

=σt(x)−1σt(y)−1

=λ−t(x)λ−t(y),so it follows that λt(x + y) = λt(x)λt(y).For the last part of the proposition, Sin
e f is a homomorphism it indu
es a homomorphism onthe power series rings R[[t]] → R′[[t]], ∑i≥0 ait
i 7→ ∑

i≥0 f(ai)t
i whi
h we also denote by f . Sin
e f
ommutes with σt we then have

σt

(
f(x)

)
· f
(
λ−t(x)

)
=f
(
σt(x)

)
· f
(
λ−t(x)

)

=f
(
σt(x) · λ−t(x)

)

=f(1)

=1 ∈ R′[[t]].Sin
e λ−t

(
f(x)

) is unique with this property it follows that f
(
λ−t(x)

)
= λ−t

(
f(x)

).The aim of this se
tion is to de�ne a λ-ring stru
ture on B(Σn). In se
tion 2.4 we will then prove anexpli
it formula for λi({1, . . . , n}). However, we are not able to prove this formula dire
tly so we have tomove it to the representation ring RQ(Σn) and prove it there instead. So we begin by des
ribing a λ-ringstru
ture on the representation ring. This stru
ture is also one of the best-known and most studied ofall λ-rings.Remark. In the theory of λ-rings a great part 
enters around the 
on
ept of a spe
ial λ-ring, whi
h is a
λ-ring where λn(xy) is a universal polynomial in λi(x) and λi(y) for i ≤ n, and λn(λm(x)) is a universalpolynomial in λi(x) for i ≤ mn. In that theory there is not su
h a symmetry between λ and σ, for R 
anbe spe
ial with respe
t to λ bur not with respe
t to σ. Of the rings we shall en
ounter, the representationring is spe
ial but the Burnside ring is not.1.3.1 The λ-ring stru
ture on the representation ringDe�ne λt : RQ(G) → RQ(G)[[t]] by asso
iating to the G-representation V the power series

∑

n≥0

[∧n V ] · tnwhere ∧n V has the G-a
tion g · v1 ∧ · · · ∧ vn := gv1 ∧ · · · ∧ gvn. Then λt is a well de�ned homomorphismfrom the additive group of RQ(G) to the multipli
ative group of RQ(G)[[t]] be
ause for every n ∈ N wehave an isomorphism
∧n(U ⊕ V )

∼−→
n⊕

i=0

∧i U ⊗Q ∧n−i V,whi
h is G-equivariant. When referring to RQ(G) as a λ-ring we will always use this λ-ring stru
ture.When G is the trivial group we see that RQ(G) is isomorphi
 to Z via V 7→ dimQ V . Under thisisomorphism, the 
orresponding λ-ring stru
ture on Z is λn(m) =
(
m
n

).13



Next we de�ne σt by asso
iating to the G-representation V the power series
∑

n≥0

[Sn(V )] · tn ∈ RQ(G)[[t]],where Sn(V ) is the symmetri
 n:th-power of V as a Q-ve
tor spa
e and with a G-a
tion given by g ·
ve1
1 · · · vej

j := (gv1)
e1 · · · (gvj)

ej , where e1 + · · · + ej = n. This is really the σ 
orresponding to λ that wede�ned previously, for σt(x) ·λ−t(x) = 1 follows for example from an investigation of the Koszul 
omplexgiven in [M
D84℄, 
hapter V.G.1.3.2 The λ-ring stru
ture on the Burnside ringWe are now going to de�ne a λ-ring stru
ture on B(G). This will be used to de�ne elements in B(Σn)that will give us a very 
ompa
t way of writing the formula for [L∗] ∈ K0(Schk) that we will �nd in
hapter 2. It turns out that our λ-stru
ture on B(G) will be rather hard to work with. We will thereforeuse the homomorphism h: B(Σn) → RQ(Σn) (de�nition 1.1.23) whi
h will allow us to move a 
ru
ialpart of the 
omputations in B(Σn) to the 
orresponding 
omputations in RQ(Σn) whi
h will be easier tohandle. For this we will have to prove that h respe
ts the λ-stru
tures.We begin by de�ning the λ-stru
ture on B(G). We do this impli
itly by �rst de�ning σt. De�ne amap that takes the G-set S to the power series
∑

n≥0

[Sn/ Σn] ∈ B(G)[[t]],where Σn a
ts on Sn by permuting the entries. There is an isomorphism of G-sets
(S

�∪T )n/Σn →
�⋃

i+j=n
Si/Σi × T j/ Σj ,so this de�nes a homomorphism from the additive group of B(G) to the multipli
ative group of B(G)[[t]]whi
h is our σt.We then de�ne λt by the formula

σt(x)λ−t(x) = 1for every x ∈ B(G). By proposition 1.3.2 this de�nes a λ-ring stru
ture on B(G).Next we des
ribe a 
onne
tion between B(G) and RQ(G) with the λ-stru
tures we have given them.Lemma 1.3.3. Let G be a �nite group and let h: B(G) → RQ(G) be the map de�ned in 1.1.23. Then his a homomorphism of λ-rings.Proof. To show that h 
ommutes with the λ-operations we begin by showing that it 
ommutes with σifor every i. For this we have to show that if T is a G-set then
Q[T i/ Σi] ≃ Si

(
Q[T ]

)as Q[G]-modules. Let T = {t1, . . . , tj} and identify T i/ Σi with the set of monomials of degree i,
{te1

1 · · · tej

j : e1 + · · · + ej = i}.Then Q[T i/ Σi] is the Q-ve
tor spa
e with this basis and G-a
tion given by
g · te1

1 · · · tej

j = (gt1)
e1 · · · (gtj)

ej .The same holds for Si
(
Q[T ]

). Hen
e h 
ommutes with the σn:s, so it follows from the se
ond part ofproposition 1.3.2 that h is a morphism of λ-rings. 14



Remark. This is not the only possible λ-stru
ture on B(G), for example one 
ould have de�ned λn([S]) =
[Pn(S)], the subsets of S of 
ardinality i. This would almost make h a morphism of λ-rings for then
h
(
λn([S])

) is naturally isomorphi
 to λn
(
h([S])

) as Q-ve
torspa
es. However, this isomorphism is not ingeneral G-equivariant.1.4 The Witt ve
torsIn this se
tion we de�ne a ring s
heme 
alled the Witt ve
tors and denoted by W. This material isessentially in [Ser79℄ pp. 40-44 and in [Dem72℄.1.4.1 De�nitionsFix a prime p. Consider the following sequen
e of polynomials in Z[X0, . . . , Xn, . . . ]:
W0 =X0

W1 =Xp
0 + pX1...

Wn =

n∑

i=0

piXpn−i

i = Xpn

0 + pXpn−1

1 + · · · + pnXn...It is a fa
t (see [Ser79℄ for a proof) that for everyΦ ∈ Z[X, Y ] there exists a unique sequen
e (ϕ0, . . . , ϕn, . . . )of polynomials in Z[X0, . . . , Xn, . . . ; Y0, . . . , Yn, . . . ] su
h that
Wn(ϕ0, . . . , ϕn) = Φ

(
Wn(X0, . . . , Xn), Wn(Y0, . . . , Yn)

)
n ∈ N.Note that ϕn only involves the variables X0, . . . , Xn and Y0, . . . , Yn. If Φ = X + Y we denote theasso
iated ϕn with Sn and we get

S0 =X0 + Y0

S1 =X1 + Y1 +
Xp

0 + Y p
0 − (X0 + Y0)

p

p

S2 =X2 + Y2 +
1

p
(Xp

1 + Y p
1 ) − 1

p

(
X1 + Y1 +

Xp
0 + Y p

0 − (X0 + Y0)
p

p

)p

+
1

p2

(
Xp2

0 + Y p2

0 − (X0 + Y0)
p2)...If instead Φ = XY we set Pn := ϕn and we get

P0 =X0Y0

P1 =X1Y
p
0 + Xp

0Y1 + pX1Y1... 15



We are now ready to de�ne the Witt ve
tors as the fun
tor W : Rings → Rings that takes the ring Ato AN with the ring operations de�ned as follows: Let a = (a0, . . . , an, . . . ) and b = (b0, . . . , bn, . . . ) betwo elements of AN and set
a + b :=

(
S0(a,b), . . . , Sn(a,b), . . .

)

a · b :=
(
P0(a,b), . . . , Pn(a,b), . . .

)
.(Where we view polynomials Q ∈ Z[X0, . . . , Xn, . . . ; Y0, . . . , Yn, . . . ], i.e., Sn and Pn, as fun
tions AN ×

AN → A by de�ning Q(a,b) to be the value of Q when we repla
e Xi by ai and Yi by bi.) To prove that
W(A) is a ring one observes that the map

W∗(A) : W(A) → AN

a 7→
(
W0(a), . . . , Wn(a), . . .

)is a homomorphism. (It a
tually de�nes a morphism of ring s
hemes from W to AN
Z , where the latter isviewed as a ring s
heme using the produ
t ring stru
ture.) If p is invertible in A, W∗(A) is an isomorphism.(That is WZ[1/p] ≃ AN

Z[1/p] as ring s
hemes.) So if p is invertible in A then W(A) is a ring with identityelement (1, 0, 0, . . . ). But if W(A) is a ring and B is any sub- or quotient ring of A then W(B) is aring. Sin
e W(Z[1/p, Xα]) is a ring for any family {Xα} of indeterminates, it follows that W(Z[Xα])is a ring. But if A is an arbitrary ring it is a quotient of some polynomial ring, hen
e W(A) is a ring.(One 
an verify that W(A) is a ring dire
tly from the de�nitions but the proof of the asso
iative and thedistributive laws be
omes very 
ompli
ated.)It 
an be of interest to see the underlying double Hopf-algebra of W. As a fun
tor to Sets it is 
learthat W is represented by Z[Xi]
∞
i=0. We also need two 
omultipli
ations,

∆a, ∆m : Z[Xi]
∞
i=0 → Z[Xi]

∞
i=0 ⊗Z Z[Xi]

∞
i=0,one for addition and one for multipli
ation. If now (a0, a1, . . . ) and (b0, b1, . . . ) in W(A) 
orrespond to

f and g in Hom
(
Z[Xi]

∞
i=0, A

), that is f(Xi) = ai and g(Xi) = bi, then we shall have (f, g)∆a(Xi) =
Si(a0 . . . ai, b0 . . . bi). It is now 
lear hove to 
onstru
t ∆a, given that we know Si for all i ∈ N. We get

∆a(X0) =X0 ⊗ 1 + 1 ⊗ X0

∆a(X1) =X1 ⊗ 1 + 1 ⊗ X1 +
(X0 ⊗ 1)p + (1 ⊗ X0)

p − (X0 ⊗ 1 + 1 ⊗ X0)
p

p...In the same way one 
onstru
ts ∆m from Pi, i ∈ N.We have seen that W is an a�ne ring s
heme, but it is not of �nite type over Spec Z. However weare going to work in a Grothendie
k ring generated by s
hemes of �nite type over Spec Fp. Now the
Sn and Pn that de�ne the ring operations in W(A) only involve variables of index ≤ n. Hen
e we 
ande�ne the Witt ve
tors of length n, Wn, to be the fun
tor that takes the ring A to An, with addition andmultipli
ation de�ned in the same way as for W, that is if a = (a0, . . . , an−1) and b = (b0, . . . , bn−1) ∈ Anthen

a + b :=
(
S0(a,b), . . . , Sn−1(a,b)

)

a · b :=
(
P0(a,b), . . . , Pn−1(a,b)

)
.This s
heme is of �nite type over Spec Z . One has that W1 is the identity fun
tor, that is W1(A) = A.We also have that the ring W(A) is the inverse limit of the rings Wn(A) as n → ∞. We de�ne theproje
tion map πn : W → Wn by

(a0, a1, . . . ) 7→ (a0, . . . , an−1) : W(A) → Wn(A)16



for every ring A.We will be interested in the Fq-rational points on W. This is be
ause W(Fp) = Zp and if q = pnthen W(Fq) is the integral 
losure of Zp in the unique unrami�ed degree n extension of Qp. (In a �xedalgebrai
 
losure of Qp.) See [Ser79℄ for a proof.1.4.2 Operations on WDe�ne V: W → W by V a = (0, a0, . . . , an−1, . . . ). V is short for "Vers
hiebung". It is not a morphismof ring s
hemes but it is additive. To see this we use the same observation as above; it su�
es to proveadditivity for W(A) when p is invertible in A, and in this 
ase W∗(A) is an isomorphism so it su�
es toshow that W∗(A) transforms V to an additive map. But this is true sin
e
Wn(V a) =

n∑

i=1

piapn−i

i−1 = p

n∑

i=1

pi−1ap(n−1)−(i−1)

i−1 = pWn−1(a)so W∗ transforms V(A) to the map AN → AN that sends (w0, w1, . . . ) to (0, pw0, pw1, . . . ) and this is
learly additive. Note that W/ Vn W ≃ Wn. This identi�
ation will be used a lot.Next we de�ne the map r : W1 → W by a 7→ (a, 0, . . . , 0, . . . ). Sin
e
Wn

(
r(a)

)
= (a, ap, . . . , apn

, . . . )we see that W∗ transforms r(A) to the map A → AN that sends w to (w, wp, wp2

, . . . ). This map ismultipli
ative so when p is invertible in A it follows that r(A) is multipli
ative. As above this impliesthat r is multipli
ative.Finally over Fp (where p is the prime that was �xed in the beginning of this se
tion) we de�ne theFrobenius morphism F: WFp → WFp by Fa = (ap
0, . . . , a

p
n, . . . ). It is a morphism of ring s
hemes. Thenext proposition will be very useful to us.Proposition 1.4.1. If A is an Fp-algebra and a,b ∈ W(A) the following formulas hold:

V Fa = FV a = pa

a · Vb = V(Fa · b).Proof. For the �rst formula see [Ser79℄. For the se
ond formula it su�
es to prove this when A is perfe
tso we may assume that b = F c. The �rst formula, the distributive law and the fa
t that F is a ringhomomorphism then give
V(Fa · b) = V(Fa · F c) = V F(a · c) = p(a · c) = a · (pc) = a · V F c = a · V b.Corollary 1.4.2. If A is an Fp-algebra, a,b ∈ W(A) and i, j ∈ N then

Vi a · Vj b = Vi+j
(
Fj a · Fi b

)
.Exampel 1.4.3. Let b := (b0, . . . , bn) ∈ Wn+1(A). We then have

(0, . . . , 0, a) · b = Vn r a · b = Vn(r a · Fn b) = (0, . . . , 0, a · bpn

0 )Corollary 1.4.4. Let ∆ ∈ W(A)[X1, . . . , Xn] be a form of degree d. If a1, . . . ,an ∈ W(A) then
∆(V a1, . . . , V an) = Fd−1 Vd ∆(a1, . . . ,an)17



Proof. Let ∆ = Xd
1 . The formula is true for d = 1. Suppose that it is true for d− 1. Then with the helpof 
orollary 1.4.2,

∆(V a) =(V a)(V a)d−1

=(V a)(Fd−2 Vd−1 ad−1)

=Vd(Fd−1 a · Fd−1 ad−1)

=Fd−1 Vd ∆(a).Next, let d and n be arbitrary and suppose the formula is proved for every Xd1

1 · · ·Xdn−1

n−1 with
d1 + · · · + dn−1 ≤ d. Let ∆ = Xd1

1 · · ·Xdn
n with d1 + · · · + dn = d. Then

∆(V a1, . . . , V an) =(V a1)
d1

n∏

i=2

(V ai)
di

=Fd1−1 Vd1 ad1
1 · Fd−d1−1 Vd−d1

n∏

i=2

adi

i .Sin
e F and V 
ommutes we 
an use 
orollary 1.4.2 on this expression to get
Vd

(
Fd−1 ad1

1 · Fd−1
n∏

i=2

adi

i

)and be
ause F is a homomorphism this equals Fd−1 Vd ∆(a1, . . . ,an).Now, for an arbitrary degree d form, the result follows sin
e V is additive.1.5 Mis
ellaneous results1.5.1 The norm mapDe�nition 1.5.1. Let A → B be an algebra su
h that B is free of rank n as an A-module. If f : B → B isa morphism of A-modules, de�ne det f to be the determinant of the matrix of f in some basis. Sin
e thedeterminant is multipli
ative this de�nition is independent of the 
hoi
e of basis. If x ∈ B, let fx : B → Bbe the map y 7→ xy. De�ne NB/A : B → A as x 7→ det fx.It follows from the de�nition that NB/A is multipli
ative and NB/A(1) = 1. Hen
e if x ∈ B× then
NB/A(x) ∈ A×. On the other hand if NB/A(x) ∈ A×, i.e., if det fx ∈ A×, then by Cramer's rule(whi
h holds over every 
ommutative ring) we have that fx is invertible so there exists y ∈ B su
h that
1 = fx(y) = xy, hen
e x ∈ B×. We therefore have B× = N−1

B/A(A×).1.5.2 Equalizers in the 
ategory of s
hemesDe�nition 1.5.2. If f, g : X → Y are morphisms of s
hemes, de�ne the equalizer Equal(f, g) → X of fand g as the s
heme that represents the fun
tor Equal(f, g)(S) = {x ∈ X(S) : f(x) = g(x)}.To see that this s
heme exists let Z be the �bre produ
t
Z

p //

q

��

X

g

��
X

f // Y18



De�ne Equal(f, g) as the �bre produ
t
Equal(f, g)

s //

��

X

∆

��
Z

(p,q) // X × XBy the universal property of the �bre produ
t, s : Equal(f, g) → X has the properties that fs = gs andif x : S → X is a map of s
hemes su
h that fx = gx then there exists a unique map x′ : S → Equal(f, g)su
h that x = sx′. This implies that Equal(f, g)(S) = {x ∈ X(S) : f(x) = g(x)} for every S.1.5.3 Des
entSometimes one 
an prove that a morphism of s
hemes has some property by extending the s
alars andsee that the property holds for the extension. We 
olle
t here some results of this kind that will be ofuse to us.Lemma 1.5.3. Let f : X → Y be a morphism of A-s
hemes, A a ring. If A → B is faithfully �at and
fB : XB → YB is an isomorphism, then f is an isomorphism.See [Gro71℄, page 213 for this.Lemma 1.5.4. Let A → B be a �at ring homomorphism and let X be a noetherian A-s
heme. Then the
anoni
al homomorphism OX(X) ⊗A B → OXB (XB) is an isomorphism.For a proof of this see [Liu02℄, page 85.Lemma 1.5.5. Let A → B be a faithfully �at ring homomorphism and let X be a noetherian A-s
heme.If XB is a�ne then X is a�ne.Proof. The identity map OX(X) → OX(X) gives a morphism of s
hemes X → SpecOX(X) whi
h is anisomorphism if and only if X is a�ne. By extension of s
alars we get the morphism XB → SpecOX(X)×A

Spec B = Spec(OX(X)⊗A B) = SpecOXB (XB) and sin
e XB is a�ne this is an isomorphism. Hen
e bylemma 1.5.3 the original morphism is an isomorphism.

19



Chapter 2The 
lass of a torus in K0(Schk)Given a �eld k and a separable k-algebra L of dimension n we de�ne an a�ne group s
heme L∗ by letting
L∗(M) = (L⊗k M)× for every k-algebra M . If we extend the base of L∗ to a separable 
losure of k then
L∗ be
omes isomorphi
 to Gn

m as an algebrai
 group, hen
e L∗ is a torus. The obje
tive of this 
hapter isto 
ompute, for an arbitrary separable k-algebra L, the 
lass of L∗ in K0(Schk) in terms of the Lefs
hetz
lass L and artin 
lasses.2.1 De�nitionsDe�nition-Lemma 2.1.1. Let K be a ring and let L be a free K-algebra of �nite rank. We de�ne thea�ne ring s
heme L̃ over K as the fun
tor L̃ : AlgK → Rings given by
L̃(M) = L ⊗K M for every K-algebra Mand if f : M → N is morphism of K-algebras then L̃(f) : L̃(M) → L̃(N) maps l ⊗ m ∈ L ⊗K M to

l ⊗ f(m) ∈ L ⊗k N .Proof. We have to show that this fun
tor really de�nes an a�ne ring s
heme, i.e., that its 
ompositionwith the forgetful fun
tor to Sets is representable. This is true be
ause if M is a K-algebra then we have
anoni
al isomorphims of K-modules
L ⊗K M ≃ L∨∨ ⊗K M ≃ HomK(L∨, M) ≃ HomK−alg(S(L∨), M

)
,hen
e the 
omposition is represented by S(L∨). Therefore L̃ is an a�ne ring s
heme. (This rings
heme stru
ture 
an also be given by 
oalgebra stru
tures ∆a, ∆m : S(L∨) → S(L∨) ⊗ S(L∨) su
h that

HomK−alg(S(L∨), M
)
≃ L ⊗k M as K-algebras. Then ∆a is de�ned by f 7→ 1 ⊗ f + f ⊗ 1 when f ∈ L∨and ∆m is de�ned by the map L∨ → L∨ ⊗ L∨ that is the 
omposition of the dual of the multipli
ation

L ⊗ L → L with the inverse of the 
anoni
al isomorphism L∨ ⊗ L∨ → (L ⊗ L)∨. However, we will notuse this.)The proof shows that as a s
heme, L̃ = Spec S(L∨). Hen
e L̃ is the ve
tor bundle asso
iated to thefree OSpecK-module L.Note in parti
ular that K̃ is the ring s
heme with additive group (Ga)K and multipli
ative group
(Gm)K . Also, if we 
hoose a K-basis of L we get an isomorphism S(L∨) ≃ K[X1, . . . , Xn], where n is therank of L. Hen
e L̃ ≃ An

K as s
hemes.We next de�ne the obje
t that we are interested in.20



De�nition 2.1.2. Let K be a ring and let L be a free K-algebra of �nite rank. With L̃ as above, de�ne
L∗ as the subfun
tor given by L∗(M) = (L ⊗K M)×. We will see that this is an a�ne group s
heme.We now give another 
onstru
tion of L∗, whi
h will be useful to us. It also shows that L∗ really is as
heme. For this we use the general de�nition of the norm map. (A dis
ussion of the norm map 
an befound in se
tion 1.5.1.)Sin
e L is assumed to be free of rank n over K the norm map NL/K : L → K is de�ned. Also, if Mis a K-algebra then L ⊗K M is free of rank n as an M -module so NL⊗KM/M is de�ned. Hen
e we 
ande�ne a map of K-s
hemes ÑL/K : L̃ → K̃ by

ÑL/K(M) := NL⊗KM/M for every k-algebra M .This is fun
torial, if f : M → N is a morphism of K-algebras then
L̃(M)

eNL/K //

eL(f)

��

K̃(M)

eK(f)

��
L̃(N) // K̃(N)
ommutes. In fa
t, NL⊗M/M (l ⊗ m) = NL/K(l) · mn so the upper half of the diagram maps l ⊗ m to

NL/K(l) ·f(mn) whereas the lower half maps it to NL/K(l) ·f(m)n. Therefore ÑL/K really is a morphismof s
hemes. Note however that it is not a morphism of ring s
hemes.We now 
laim that L∗ = Ñ
−1

L/K(Gm) as subfun
tors of L̃. We need a fa
t from se
tion 1.5.1: If S is afree R-algebra of �nite rank then N−1
S/R(R×) = S×. Using this we see that for every K-algebra M ,

Ñ
−1

L/K(Gm)(M) ={x ∈ L̃(M) : ÑL/K(M)(x) ∈ Gm(M)}
={x ∈ L ⊗K M : NL⊗KM/M (x) ∈ M×}
=(L ⊗K M)×

=L∗(M).Therefore L∗ = Ñ
−1

L/K(Gm) as fun
tors. In parti
ular, L∗ is an open a�ne subs
heme of L̃.We will be interested in the 
ase when K is a �eld. However we will also be for
ed to 
onsider the
ase when K is a �nite produ
t of �elds. The following proposition shows that the latter 
ase 
an alwaysbe redu
ed to the former.Proposition 2.1.3. Let K =
∏

v∈I Kv where the Kv:s are �elds and I is �nite. Let L be a free K-algebraof rank n. Then L must be of the form ∏v∈I Lv where, for ea
h v, Lv is a Kv-algebra of dimension n. Forea
h v, 
onstru
t the Kv-ring s
heme L̃v and view this as a K-s
heme. Then as K-s
hemes, L̃ ≃ �∪v L̃v.Moreover, let L∗
v be 
onstru
ted with respe
t to the Kv-algebra stru
ture on Lv. Then L∗ is isomorphi
to �∪v L∗

v as s
hemes over K.Proof. Sin
e S(L∨) ≃ S
(∏

v∈I L∨
v ) ≃∏v∈I S(L∨

v ) as K-algebras we have
L̃ = Spec S(L∨) ≃ Spec

∏

v∈I

S(L∨
v ) ≃ �∪v∈I Spec S(L∨

v ) =
�∪v∈I L̃vas K-s
hemes. 21



To prove that L∗ ≃ �∪(Lv/Kv)
∗ as K-s
hemes we prove that their fun
tors of points are equal. Let Mbe a K-algebra. Then M =

∏
v Mv where Mv is a Kv-algebra (possibly equal to zero). An M -point on

�∪(Lv/Kv)
∗ is a morphism f :

�∪v Spec Mv → �∪(Lv/Kv)
∗ that 
ommutes with the stru
tural morphismsto �∪v Spec Kv. Sin
e the image of Spec Mv under the stru
tural morphism is 
ontained in Spec Kv wemust have f(Spec Mv) ⊂ L∗

v. Therefore f is determined by a set of morphisms {fv : Spec Mv → L∗
v}v∈Iwhere fi is a morphism of Kv-s
hemes. Hen
e we 
an identify f with an element in ∏L∗

v(Mv). The sameis true for an M -point on L∗ for
L∗(M) =

((∏
Lv

)
⊗Q

Kv

(∏
Mv

))×

≃
∏

(Lv ⊗Kv Mv)
× =

∏
L∗

v(Mv).So by Yoneda's lemma, L∗ ≃ �∪L∗
v. (This method 
ould also have been used to prove the �rst part of theproposition, but there we knew the algebra representing L̃ and that gave a shorter proof.)2.2 A re
ursive 
omputation of [L∗]Now that we have de�ned the s
heme that we are interested in we 
an start the 
omputations. Let k bea �eld and let L be a separable k-algebra of dimension n. We are going to show that [L∗] ∈ K0(Schk) isa polynomial in L with 
oe�
ients that are artin 
lasses. We begin with the simplest 
ase.Theorem 2.2.1. If L = kn then [L∗] = (L − 1)n ∈ K0(Schk).Proof. We have L̃(M) = Mn and hen
e L∗(M) = (Mn)× = (M×)n. We therefore have an isomorphism

L∗(M) → Gn
m(M) for every M and this isomorphism is fun
torial in M , hen
e L∗ is isomorphi
 to Gn

mas s
hemes so [L∗] = (L − 1)n ∈ K0(Schk).We next 
onsider a simple example whi
h still will take up some spa
e sin
e we work it out in detail.Exampel 2.2.2. Let K be a separable extension �eld of k of degree 2. We 
an think of K as k[T ]/
(
f(T )

)where f(T ) = T 2 + αT + β is irredu
ible, in parti
ular β 6= 0. If char k 6= 2 we may and will assume that
α = 0.We 
an now des
ribe K̃. We havẽ

K(M) = K ⊗k M ≃ M [T ]/
(
f(T )

)for every k-algebra M . A basis for the M -algebra K̃(M) is {1, t} where t is the 
lass of T modulo f(T ).If m1, m2 ∈ M then (m1 + m2t) · t = −m2β + (m1 − m2α)t, hen
e
N eK(M)/M (m1 + m2t) = m2

1 − m1m2α + m2
2β.So if we identify K̃ with Spec k[X1, X2] then

K∗ = D
(
X2

1 − αX1X2 + βX2
2

)
⊂ K̃,for we have

K∗(M) =
(
M [T ]/

(
f(T )

))×

={m1 + m2t : N eK(M)/M (m1 + m2t) ∈ M×}
={(m1, m2) ∈ M2 : m2

1 − αm1m2 + βm2
2 ∈ M×}

=D
(
X2

1 − αX1X2 + βX2
2

)
(M).22



for every k-algebra M . We now have an expli
it equation des
ribing K∗. To 
ompute [K∗] we �rst
ompute its 
omplement in K̃, X := Spec k[X1, X2]/(X2
1 − αX1X2 + βX2

2 ) ⊂ K̃. With respe
t to X wehave
V
(
X2

)
≃ Spec k[X1]/(X2

1 ) ⊂ X,hen
e [V(X2

)]
= 1. And

D
(
X2

)
≃Spec

k[X1, X2, 1/X2](
X2

1 − αX1X2 + βX2
2

)

=Spec
k[X1, X2, 1/X2](

(X1/X2)2 − αX1/X2 + β
)

≃Spec
k[Y1, Y2, 1/Y2](
Y 2

1 − αY1 + β
) .Now if char k 6= 2 then α = 0 so Y 2

1 −αY1 +β = f(Y1) and this is also true if char k = 2 for then −α = α.Hen
e the above expression equals
Spec k[Y2, 1/Y2] ×k Spec Kso [D(X2

)]
= (L − 1) · [Spec K].We therefore have [X ] = 1 + (L − 1) · [Spec K], hen
e

[K∗] =
[
K̃
]
− [X ] = L2 − [Spec K] · L + [Spec K] − 1.Next we look at an example whi
h suggests what the answer should be in a more 
ompli
ated 
ase.Exampel 2.2.3. Suppose that k = Fq and L = Fq3 . We know that
L ⊗k Fqm =

{
F3

qm if 3 | m

Fq3m if 3 ∤ m.It follows that
L∗(Fqm) =

{
(F×

qm)3 if 3 | m

(Fq3m)× if 3 ∤ m,and therefore
∣∣L∗(Fqm)

∣∣ =

{
(qm − 1)3 if 3 | m

q3m − 1 if 3 ∤ m.Sin
e ∣∣Spec Fq3(Fqm)
∣∣ = 3 if 3 | m and 0 otherwise, we have reason to believe that

[L∗] = L3 − [Spec Fq3 ] · L2 + [Spec Fq3 ] · L − 1.In example 2.3.6 we will see that this formula is true.Our �rst result 
on
erning the general problem will be the following.Theorem 2.2.4. Let L be a separable k-algebra of dimension n. Then there exist artin 
lasses
a1, . . . , an ∈ ArtClk ⊂ K0(Schk) su
h that

[L∗] = Ln + a1Ln−1 + a2Ln−2 + · · · + an ∈ K0(Schk).Moreover, there exists an algorithm for 
omputing the ai:s.23



The rest of this se
tion will be devoted to proving this theorem by des
ribing the algorithm. Thiswill be done in the following way. We �rst des
ribe subs
hemes of L̃, denoted L1, . . . , Ln su
h that
[L∗] = Ln −∑n

i=1[Li]. We are then redu
ed to 
ompute [Li] for every i. For every i we �nd a subs
heme
Ti of Li and an OTi -algebra of dimension less that n su
h that Li ≃ (L′

i/Ti)
∗ as k-s
hemes. We showthat Ti is the spe
trum of a produ
t of �elds, ∏Kv, and that (L′

i/Ti)
∗ ≃ �∪(Lv/Kv)

∗ where Lv is a Kv-algebra of dimension less than n. We are then in the situation we started with, only that the algebras havedimension less then n, for having 
omputed [(Lv/Kv)
∗] ∈ K0(SchKv ) we 
an �nd [(Lv/Kv)

∗] ∈ K0(Schk)with the help of proposition 1.1.6.We will now give the de�nitions of Li, Ti and L′
i. To prove that Li ≃ (L′

i/Ti)
∗ we will 
onstru
t amap between them. It will then su�
e to show that this map is an isomorphism when L = kn. For thisreason we give an expli
it des
ription of Li, Ti and L′

i in this 
ase.Des
ription of LiThe norm map NL/k fa
tors as
L → End(L) → k

x 7→ fx 7→ det fxwhere fx is the map that takes y to xy and det fx is the determinant of the matrix of fx in some basisfor L. Consider the subs
heme of endomorphisms of 
orank i in Ẽnd(L). To be more pre
ise we wantthe M -rational points of this s
heme to be the elements of Ẽnd(L)(M) of 
orank i, i.e., the lo
ally 
losedsubs
heme
V(n − i + 1-minors) \ V(n − i-minors) ⊂ Spec k[Xij ]1≤i,j≤n ≃ Ẽnd(L).Here a j-minor is the determinant of a j × j submatrix of (Xij)1≤i,j≤n.Let Li be the inverse image in L̃ of the subs
heme of endomorphism of 
orank i in Ẽnd(L). Then

L∗ = L0 and L̃ =
�∪0≤i≤n Li, hen
e [L∗] = Ln −∑n

i=1[Li].We next des
ribe Li when L = kn. First we 
hoose the standard basis for L = kn. When we then let
k[X1, . . . , Xn] represent L̃ we see that, under the isomorphism L̃(M) = Mn ≃ Homk-alg(k[X1, . . . , Xn], M),the element (mj)

n
j=1 
orresponds to Xj 7→ mj : k[X1, . . . , Xn] → M . We use this to identify the M -rational points on Li:We have that Xj 7→ mj ∈ L̃(M) is in Li(M) if and only if Xij 7→ δijXi 7→ δijmi is in

(
V(n − i + 1-minors) \ V(n − i-minors))(M),i.e., if it maps all n− i+1-minors to 0 but maps some n− i minor to an invertible number. Now the map

Xij 7→ δijXi maps every minor to zero, ex
ept those 
oming from sub-matri
es on the diagonal. Theymap to ∏j∈S Xj where
S ∈ Pl := the l-subsets of {1, . . . , n}for some l. Hen
e the 
ondition for (Xj 7→ mj) ∈ L̃(M) to lie in Li(M) is that ∏j∈S mj = 0 for every

S ∈ Pn−i+1 and that there exists an S ∈ Pn−i su
h that ∏j∈S mj ∈ M×. This means that there is an
S ∈ Pn−i su
h that mj ∈ M× if j ∈ S. Moreover if j′ /∈ S then mj′

∏
j∈S mj = 0 so mj′ = 0.For S ∈ Pi, let eS be the n-tuple of zeros and ones su
h that

(eS)j =

{
0 j ∈ S

1 j 6∈ S
. (2.1)24



Then the M -points on Li 
an be given as
Li(M) =

�⋃
S∈Pi

(eSMn)×. (2.2)for every k-algebra M .We also give a des
ription of Li as a lo
ally ringed spa
e: Let I := (
∏

j∈S Xj)S∈Pn−i+1 and 
onsiderthe 
losed subs
heme V(I) of L̃, i.e., V(I) = Spec k[X1, . . . , Xn]/I. Let PS :=
∏

j∈S Xj . Then
Li =

⋃

S∈Pn−i

D(PS) ⊂ V(I),where we have identi�ed PS with its image in k[X1, . . . , Xn]/I. So Li is an open subs
heme of V(I),hen
e a lo
ally 
losed subs
heme of L̃.Des
ription of TiFirst we 
onstru
t the subs
heme Idem L̃ = {e ∈ L̃ : e2 = e} ⊂ L̃, by whi
h we mean the s
heme su
hthat for every k-algebra M , (Idem L̃)(M) = {e ∈ L̃(M) : e2 = e}. It is not obvious that this s
hemeexists but we 
an show that it does by using the more general 
onstru
tion of an equalizer. (It is astandard fa
t that equalizers exist in the 
ategory of k-s
hemes, see se
tion 1.5.2 for the de�nition of anequalizer and a 
onstru
tion.) Let x2 be the 
omposition L̃
∆−→ L̃ ×k L̃ → L̃ and let x : L̃ → L̃ be theidentity. Then Idem L̃ = Equal(x, x2).Now we �x an i and de�ne the s
heme of 
onne
ted 
omponents of Li, denoted Ti, as Li ∩ Idem L̃,i.e., the �bre produ
t

Ti
//

��

Li

��
Idem L̃ // L̃

(2.3)It follows that if M is a k-algebra then Ti(M) = {m ∈ Li(M) : m2 = m}.We next des
ribe Ti when L = kn. We have Ti(M) = {m = (m1, . . . , mn) ∈ Li(M) : m2 = m} soif M has no non-trivial idempotents then mj = 0 or 1 for ea
h j, hen
e the above des
ription of Li(M)gives that Ti(M) = {eS}S∈Pi where eS was de�ned in (2.1).Let
RS :=

k[X1, . . . , Xn]

(Xj)j∈S · (Xj − 1)j /∈S
.We 
laim that Ti is represented by ∏S∈Pi

RS . For this, de�ne
T ′

i := Spec
∏

S∈Pi

RS .We have to show that Ti = T ′
i as subs
hemes of L̃, i.e., that Ti(M) = T ′

i (M) for every k-algebra M . Butby the 
onstru
tion of Ti as a �bre produ
t it is a 
losed subs
heme of Li, whi
h in turn is a lo
ally 
losedsubs
heme of L̃. Sin
e L̃ is noetherian it follows that Ti is noetherian. Also T ′
i is noetherian, hen
e toshow that Ti = T ′

i it su�
es to show that Ti(M) = T ′
i (M) for every noetherian k-algebra M .We �rst show that the equality is true if M has no non-trivial idempotents and for this we just have toshow that T ′

i (M) = {eS}S∈Pi sin
e we just noti
ed that this holds for Ti(M). Let fT ∈ ∏S∈Pi
RS havethe entry with index T equal to 1 and zeros in the other entries. An element of Homk-alg(∏S∈Pi
RS , M)25



has to send idempotents to idempotents and (1, . . . , 1) to 1, hen
e every fT maps to 0 or 1, and∑T∈Pi
fTmaps to 1. Moreover if T 6= T ′ then fT fT ′ maps to 0 so at least one of fT and fT ′ maps to 0. Hen
e all

fT are mapped to 0 ex
ept one whi
h are mapped to 1. So
T ′

i (M) = Homk-alg( ∏
S∈Pi

RS , M

)
= {φS : φS(fT ) = 1 if T = S, and 0 otherwise}S∈Pi .To see whi
h element in L̃(M) that 
orresponds to φS we have to 
ompose the map k[X1, . . . , Xn] →∏

S∈Pi
RS with φS . The �rst map sends Xj to

∑

T∈Pi:j /∈T

fTand this in turn is mapped by φS to 0 if j ∈ S and to 1 if j /∈ S. Hen
e φS = eS as elements of L̃(M) so
T ′

i (M) = {eS}S∈Pi = Ti(M) in this 
ase.For the general 
ase we may assume that M has only a �nite number of orthogonal idempotents, forif x1, . . . , xl+1 ∈ M are orthogonal idempotents and xl+1 =
∑l

j=1 hjxj then if we multiply with xl+1 weget x2
l+1 = 0, i.e., xl+1 = 0, hen
e if there are an in�nite number of orthogonal idempotents then M is notnoetherian. Therefore we 
an write M =

∏l
j=1 Mj where ea
h Mj 
ontains no non-trivial idempotents.Sin
e the produ
t is �nite we have Spec M =

�∪1≤j≤l Spec Mj (by this we mean open disjoint union, i.e.,the 
oprodu
t in the 
ategory of s
hemes). So by the de�ning universal property of 
oprodu
ts,
Ti(M) = Hom(

�∪ Spec Mj , Ti) =

l∏

j=1

Hom(Spec Mj, Ti) =

l∏

j=1

Ti(Mj).By the same reasoning, T ′
i (M) =

∏l
j=1 T ′

i (Mj) so Ti(M) = T ′
i (M). (Note that sin
e we know that T ′

iis a�ne we don't need to know that the produ
t is �nite in this 
ase, for T ′
i = Spec R so T ′

i (
∏

Mj) =
Homk-alg(R,

∏
Mj) =

∏
Homk-alg(R, Mj) =

∏
T ′

i (Mj) for any produ
t. So if we knew a priori that Tiwhere a�ne then the above proof would be shorter.)Hen
e we have identi�ed Ti as a 
losed subs
heme of L̃ = Spec k[X1, . . . , Xn], namely we have
Ti = Spec

∏

S∈Pi

RS =

�⋃
S∈Pi

Spec RS . (2.4)Let TS := Spec RS . We see that RS ≃ k for every S so TS ≃ Spec k, hen
e Ti 
onsists of (ni) points.We have now seen that Ti is a�ne when L = kn. It follows that this is true also in the general 
ase.Proposition 2.2.5. Let L be a separable k-algebra and 
onstru
t Ti with respe
t to L. Then Ti is a�ne.In fa
t it is the spe
trum of a produ
t of �elds.Proof. Let ks be a separable 
losure of k. Sin
e L is separable, L ⊗k ks ≃ (ks)n. Hen
e, by the above,
(Ti)ks is the spe
trum of (ks)

(
n
i

). In parti
ular it is a�ne. From lemma 1.5.5 it follows that Ti isa�ne and then that it is the spe
trum of a separable algebra. Sin
e we also have that (Ti)ks is zerodimensional it follows that dimTi = 0 (dimension is invariant under base extension from a �eld to analgebrai
 extension.). Hen
e Ti is the spe
trum of a produ
t of �elds. (Alternatively, if we use that anys
heme whose underlying topologi
al spa
e has �nite 
ardinality and dimension 0 is a�ne then we don'tneed lemma 1.5.5.) 26



Des
ription of L′

iNext let π : Ti → Spec k be the stru
tural morphism. From proposition 2.2.5 we know that Ti is a�ne,say Ti = Spec R. The OTi -algebra π∗L is then isomorphi
 to L ⊗k R, hen
e it is free and we 
an de�ne
π̃∗L. The dual of the R-module π∗L is L∨⊗k R. Sin
e the symmetri
 algebra 
ommutes with base 
hangewe then have S

(
(π∗L)∨

)
≃ S(L∨) ⊗k R. It follows that π̃∗L isomorphi
 to L̃ ×k Ti as a Ti-s
heme.We have a map e : Ti → L̃ ×k Ti, given by the identity map Ti → Ti together with the map Ti → L̃from the de�nition of Ti (see (2.3)). The map e is a global se
tion of π̃∗L → Ti. It hen
e 
orresponds toa global se
tion e ∈ (π∗L)(Ti).Lemma 2.2.6. The global se
tion e ∈ (π∗L)(Ti) is an idempotent.Proof. e was de�ned via the isomorphism (L̃×k Ti

)
(Ti) ≃ L̃(Ti)×Ti(Ti) and under this identi�
ation, these
ond 
oordinate of e is an idempotent by the de�nition of Ti and the �rst 
oordinate is an idempotent ifit lies in (Idem L̃)(Ti) ⊂ L̃(Ti). But this follows sin
e it fa
tors through Idem L̃ by its de�nition (2.3).De�ne L′

i := e(π∗L). Then sin
e e2 = e, we have that L′
i is a free OTi -algebra so the norm map

L′
i → OTi is de�ned. Hen
e we 
an form (L′

i)
∗ and we will see that (L′

i)
∗ and Li are isomorphi
 ass
hemes over Spec k. For this we de�ne a map betwen them: First note that sin
e L′

i ⊂ π∗L we have amap L̃′
i → π̃∗L. Sin
e (L′

i)
∗ ⊂ L̃′

i this gives a map (L′
i)

∗ → π̃∗L = L̃ ×k Ti. Composing this with themap from the �bre produ
t to L̃ gives the map g : (L′
i)

∗ → L̃. We will see that g is an isomorphism onto
Li ⊂ L̃.We now des
ribe L′

i when L = kn. First we identify π∗L. Let πS be the restri
tion of π to TS .Then πS is an isomorphism (
orresponding to the isomorphism of k-algebras k → RS) so (π∗
SL)(TS) ≃

L(Spec k) = L. Therefore (π∗L)(TS) = (π∗
SL)(TS) = L so if I ⊂ Pi then

(π∗L)

(
�⋃

S∈I
TS

)
=
∏

S∈I

L.Then to �nd e it su�
es to �nd its 
omponent over TS , eS ∈ (π∗L)(TS). The 
anoni
al map TS → TS × L̃
orresponds to the map RS ⊗k k[X1, . . . , Xn] → RS that maps Xi to its image in RS , namely 0 if i ∈ Sand 1 otherwise. Next RS ⊗k k[X1, . . . , Xn] is 
anoni
ally isomorphi
 to S
(
(π∗

SL)(TS)∨
)

= S(L∨) under
Xi 7→ fi, where fi maps the i:th basis element of L to 1 and the rest to zero. Hen
e Ti → Ti × L̃
orresponds to the element in L∨∨ that maps fi to 0 if i ∈ S and to 1 otherwise. This in turn 
orrespondsto eS ∈ L = (π∗

SL)(TS) with j:th 
oordinate 0 if j ∈ S and 1 otherwise. Therefore e = (eS) ∈ ∏S∈Pi
L.Now by de�nition L′

i = e(π∗L), hen
e
L′

i

(
�⋃

S∈I
TS

)
=
∏

S∈I

(eS · L).with Ti-algebra stru
ture given by the map ∏S∈Pi
RS → ∏

S∈Pi
(eS · L). To �nd (L′

i)
∗ we �rst have tounderstand NL′

i/OTi
. This 
an be done on ea
h 
onne
ted 
omponent, L′

i|TS is just the k-algebra eS · L.Then by the same reasoning as when we determined L∗, the M -points on (L′
i|TS )∗ is (L′

i|TS )∗(M) =
{eS ·m : m = (m1, . . . , mn) ∈ Mn,

∏
j /∈S mj ∈ M×} = (eSMn)×.

Li is isomorphi
 to (L′

i
/Ti)

∗To prove that the map g de�ned previously really is an isomorphism we use lemma 1.5.3 whi
h says thatto 
he
k that a morphism of s
hemes is an isomorphism it su�
es to 
he
k this after an extension of thebase. 27



Now sin
e L is separable there exists an extension �eld K ⊃ k su
h that L ⊗k K ≃ Kn. Be
ause oflemma 1.5.3 we only have to prove that g is an isomorphism over Spec K. We may therefore assume that
L = kn. In this 
ase we have identi�ed expli
itly the rational points of (L′

i)
∗ and Li and we now showthat they are isomorphi
 via g:Lemma 2.2.7. If L = kn then g : (L′

i)
∗ → Li is an isomorphism.Proof. From (2.2) we know the M -points on Li for every k-algebra M . De�ne a map ρ : Li → Ti by

eS · (m1, . . . , mn) ∈ Li(M) 7→ eS ∈ Ti(M). Sin
e Li =
�∪ ρ−1TS and (L′

i)
∗ =

�∪(L′
i|TS )∗ =

�∪(eSL)∗ itsu�
es to show that g|(eSL)∗ : (eSL)∗ → ρ−1TS is an isomorphism for every S. We have already seenwhat the M -points on these s
hemes are, they have both been identi�ed with (eSMn)×. It remains tosee that g|(eSL)∗(M) gives this identi�
ation.Now g|(eSL)∗(M) �rst maps eS · m to (eS , eS · m) ∈ (Ti × L̃)(M), then this is mapped to eS · m ∈
ρ−1(TS)(M) ⊂ Li(M). Hen
e g(M) is a bije
tion and it follows from Yoneda's lemma that g is anisomorphism.From this it now follows:Proposition 2.2.8. For any �nite dimensional k-algebra L, we have that Li is isomorphi
 to (L′

i/Ti)
∗as k-s
hemes via the map g de�ned above.Proposition 2.2.9. Let L be a separable k-algebra of dimension n. Then

[L∗] = Ln −
n−1∑

j=1

[
(L′

i/Ti)
∗
]
− 1 ∈ K0(Schk).Proof of theorem 2.2.4Above we were given k and L and we then 
onstru
ted the k-s
hemes L̃ and L∗. To be able to 
omputethe 
lass of L∗ we 
onstru
ted Li for i = 1, . . . , n. Moreover we 
onstru
ted a k-s
heme Ti and a Ti-algebra L′

i. We then 
onstru
ted (L′
i)

∗, whi
h we also write as (L′
i/Ti)

∗ to indi
ate that we 
onstru
tit with respe
t to the Ti-algebra stru
ture of L′
i. We showed that it is isomorphi
 to Li as a k-s
heme.When performing the indu
tion we will have to repeat the above a number of times. We therefore usethe notation Ti(L/k), L′

i(L/k) and Li(L/k) and we have Li(L/k) ≃ (L′
i(L/k)/Ti(L/k))∗. To go furtherwe will need a lemma.Lemma 2.2.10. Let L be a separable k-algebra. Then Ti(L/k) =

�∪Spec Kv where Kv are �elds. And
L′

i(L/k) =
∏

Lv where Lv is a Kv-algebra. Moreover, (L′
i(L/k)/Ti(L/k))∗ is isomorphi
 to �∪(Lv/Kv)

∗as k-s
hemes.Proof. By proposition 2.2.5, Ti is a produ
t of �elds. It follows that L′
i is a produ
t of algebras over thepoints of Ti. The last part was dealt with in proposition 2.1.3.This enables us to prove what we want.Proof, theorem 2.2.4. We use indu
tion over n, the dimension of L. For every �eld k the theorem istrivially true for n = 1 for then [L∗] = [k∗] = L − 1. Suppose that for every �eld k and every separable

k-algebra L of dimension n′ < n we have
[L∗] = Ln′

+ a1Ln′−1 + · · · + an′ ∈ K0(Schk).where as ∈ ArtClk. 28



Fix a separable k-algebra L of dimension n. By proposition 2.2.9 we have
[L∗] = Ln −

n−1∑

j=1

[
(L′

i/Ti)
∗
]
− 1 ∈ K0(Schk).And by lemma 2.2.10 (L′

i/Ti)
∗ ≃ �∪v(Li,v/Ki,v)

∗. Here the dimension of Li,v/Ki,v is n− i. We postponethe proof of this to 
orollary 2.3.6 be
ause we will then be able to see it very easily. But assuming thisresult for the moment, the indu
tion hypothesis gives
[(Li,v/Ki,v)

∗] = Ln−i + a1Ln−i−1 + · · · + an−i ∈ K0(SchKv), (2.5)with aj ∈ ArtClKv , hen
e by proposition 1.1.6
[(Li,v/Ki,v)

∗] = [Spec Ki−v] · Ln−i + a′
1Ln−i−1 + · · · + a′

n−i ∈ K0(Schk),with a′
j ∈ ArtClk. Summation over every (i, v) gives that the formula holds for the k-algebra L.A formula for the ai:sTo get more 
ompa
t formulas we use the following notation.De�nition 2.2.11. Let K be a �nite separable k-algebra and L a �nite separable K-algebra, so K =∏

v Kv where Kv are separable extension �elds of k and L =
∏

v Lv where Lv is a separable Kv-algebra.Let
Li(L/K) :=

�∪v Li(Lv/Kv).Furthermore, de�ne
Ti(L/K) :=

�∪v Ti(Lv/Kv)and de�ne L′
i(L/K) to be the Ti(L/K)-algebra whi
h is L′

i(Lv/Kv) on Ti(Lv/Kv).With this notation proposition 2.2.8 and lemma 2.2.10 generalizes to:Lemma 2.2.12. Let K be a �nite separable k-algebra and L a �nite separable K-algebra, so K =
∏

v Kvwhere Kv are separable extension �elds of k and L =
∏

v Lv where Lv is a separable Kv-algebra. Then
Ti(L/K) =

�∪Spec Kv where Kv are �elds. And L′
i(L/K) =

∏
Lv where Lv is a Kv-algebra. Moreover,

Li(L/K) ≃
(
L′

i(L/K)/Ti(L/K)
)∗as k-s
hemes.Proposition 2.2.8 may now be expressed as Li(L/k) ≃

(
L′

i(L/k)/Ti(L/k)
)∗. In the next step we there-fore want to 
ompute Li2

(
L′

i1
(L/k)/Ti1(L/k)

) for 1 ≤ i2 ≤ n−i1. We then 
onstru
t Ti2

(
L′

i1
(L/k)/Ti1(L/k)

)and its algebra L′
i2

(
L′

i1(L/k)/Ti1(L/k)
) and we use that Li2

(
L′

i1(L/k)/Ti1(L/k)
) is isomorphi
 to

(
L′

i2

(
L′

i1(L/k)/Ti1(L/k)
)
/Ti2

(
L′

i1(L/k)/Ti1(L/k)
))∗

.For the rest of this se
tion, we �x a �eld k and a separable k-algebra L of dimension n. We nowintrodu
e some notation whi
h allows us to write up a rather 
ompa
t formula for [L∗]: Given a sequen
eof positive integers i1, . . . , iq, 
onstru
t the algebra L′
i1/Ti1 = L′

i1(L/k)/Ti1(L/k). De�ne the algebra
L′

i2,i1
/Ti2,i1 as L′

i2
(L′

i1
/Ti1)/Ti2(L

′
i1

/Ti1) and de�ne indu
tively L′
ir+1,...,i1

/Tir+1,...,i1 as
L′

ir+1
(L′

ir ,...,i1/Tir,...,i1)/Tir+1(L
′
ir,...,i1/Tir,...,i1).With this notation we have the following generalization of proposition 2.2.9.29



Lemma 2.2.13. Let α = (ir, . . . , i1) where ∑r
s=1 is = i. Then

[
(L′

α/Tα)∗
]

= [Tα] · Ln−i −
n−i−1∑

j=1

[
(L′

j,α/Tj,α)∗
]
− [Tα] ∈ K0(Schk).Proof. From the de�nitions of Tα and L′

α, and from lemma 2.2.10 it follows that Tα =
�∪v Spec Kv where

Kv are �elds and L′
α =

∏
v Lv where Lv is a Kv-algebra, where v is in some �nite index set I. It thenfollows from lemma 2.2.10 that (L′

α/Tα)∗ is equal to the disjoint union of the (Lv/Kv)
∗. Now by 
orollary2.3.11, whi
h we will prove later, L′

α has rank n − i as a Tα-module, hen
e Lv has dimension n − i as a
Kv-ve
tor spa
e for every v. It follows that

(Lv/Kv)
∗ = Ln−i −

n−i−1∑

j=1

[(L′
j(Lv/Kv)/Tj(Lv/Kv))

∗] − 1 ∈ K0(SchKv)and hen
e by proposition 1.1.6
(Lv/Kv)

∗ = [Spec Kv] · Ln−i −
n−i−1∑

j=1

[(L′
j(Lv/Kv)/Tj(Lv/Kv))

∗] − [Spec Kv] ∈ K0(Schk). (2.6)Sin
e [Tα] =
∑

v[Spec Kv] ∈ K0(Schk) and
(L′

j,α/Tj,α)∗ =
(
L′

j(L
′
α/Tα)/Tj(L

′
α/Tα)

)∗

=
( �⋃

v
L′

j(Lv/Kv)/Tj(Lv/Kv)
)∗

=

�⋃
v

(
L′

j(Lv/Kv)/Tj(Lv/Kv)
)∗

,so [(L′
j,α/Tj,α)∗

]
=
∑

v

[(
L′

j(Lv/Kv)/Tj(Lv/Kv)
)∗], the result follows when we add together the equa-tions (2.6) for every v.We are now ready to prove the main theorem of this se
tion.Theorem 2.2.14. With the same notation as above we have

[L∗] = Ln + a1Ln−1 + · · · + an−1L + anwhere
aj =

j∑

r=1

(−1)r
∑

(i1,...,ir):
i1+···+ir=j

is≥1

[Tir ,...,i1 ]for j = 1, . . . , n.Proof. We evaluate [L∗] in n steps, using lemma 2.2.13. In the �rst step we write
[(L/k)∗] = Ln − [(L′

1/T1)
∗] − · · · − [(L′

n−1/Tn−1)
∗] − 1so we get the 
ontribution Ln − 1. We then evaluate the remaining terms, using lemma 2.2.13, so instep two we get a sum 
onsisting of two parts. First, [(L′

i2,i1/Ti2,i1)
∗
] shows up with sign (−1)2, for30



2 ≤ i2 + i1 < n (we always have is ≥ 1). This is the terms that we will take 
are of in step three. These
ond part of the sum 
ontributes to our formula. It 
onsists of the terms
(−1)2

(
−[Tj] · Ln−j + [Tj ]

)
1 ≤ j < n.Continuing in this way we �nd that in step r we get a sum 
onsisting of two parts. Firstly, every term ofthe form [

(L′
ir ,...,i1

/Tir,...,i1)
∗
] with 
oe�
ient (−1)r, for ∑r

s=1 is < n. This part is taken 
are of in step
r + 1. And se
ondly we get a 
ontribution to our formula 
onsisting of

(−1)r
(
−[Tir−1,...,i1 ] · Ln−j + [Tir−1,...,i1 ]

)
r − 1 ≤ j < nfor every r − 1-tuple (ir−1, . . . , i1) su
h that ∑r−1

s=1 is = j. This pro
ess ends in step n.Colle
ting terms we now see that if 1 ≤ j ≤ n − 1 then the 
oe�
ient in front of Ln−j be
omes
j+1∑

r=2

(−1)r+1
∑

(i1,...,ir−1):
i1+···+ir−1=j

is≥1

[Tir−1,...,i1 ].This equals
j∑

r=1

(−1)r
∑

(i1,...,ir):
i1+···+ir=j

is≥1

[Tir,...,i1 ]. (2.7)The 
onstant 
oe�
ient be
omes
−1 +

n∑

r=2

(−1)r
n−1∑

j=r−1

∑

(i1,...,ir−1):
i1+···+ir−1=j

is≥1

[Tir−1,...,i1 ].Sin
e [Tn] = 1 it follows that if 1 ≤∑r−1
s=1 is = j < n then Tn−j,ir−1,...,i1 = Tir−1,...,i1 so this be
omes

−1 +

n∑

r=2

(−1)r
∑

(i1,...,ir):
i1+···+ir=n

is≥1

[Tir,...,i1 ].Hen
e formula (2.7) holds also when j = n.2.3 The formula for [L∗] expressed using the Burnside ringIn the pre
eding se
tion we only gave expli
it des
riptions of Li and Ti when L is a produ
t of 
opies of
k. In this se
tion we want to des
ribe them when L is an arbitrary separable k-algebra. The strategy forthis will be to lift them to ks where we know what they look like. Then we have to be able to go ba
kagain and this will be a
hieved with the help of some Galois theory.Galois theoryTo be able to make expli
it 
omputations using the results in the previous se
tion we use the followingformulation of Galois theory. 31



De�nition 2.3.1. Let k ⊂ K be Galois and G := Gal(K/k). Then the 
ategory of separable K − G-algebras is de�ned to be the 
ategory whose obje
ts is separable K-algebras L together with a G-a
tion onthe underlying ring su
h that K → L is G-equivariant, and whose morphisms are G-equivariant maps of
K-algebras.Theorem 2.3.2. Fix a �eld k together with a separable 
losure ks. Set G := Gal(ks/k). Then wehave an equivalen
e between the 
ategory of �nite separable k-algebras and the 
ategory of �nite separable
ks − G-algebras.This equivalen
e takes the k-algebra L to L⊗k ks with G-a
tion σ(l⊗α) := l⊗σ(α). Its pseudo-inversetakes the ks − G-algebra U to UG.If we have a G-set T and a k-algebra A then the following lemma gives a 
riterion for whether T
orresponds to A under the Galois 
orresponden
e or theorem 1.1.14.Lemma 2.3.3. Fix a �eld k with absolute Galois group G.Let A be a separable �nite dimensional k-algebra and give A⊗k ks the stru
ture of a k −G-algebra by
σ(x ⊗ α) := x ⊗ σ(α).Let T be a G-set and de�ne a k − G-algebra as ∏t∈T kset with G-a
tion

σ
(∑

t∈T

αtet

)
:=
∑

t∈T

σ(αt)eσ(t). (2.8)Then T 
orresponds to A under the Galois 
orresponden
e of theorem 1.1.14, (i.e., Artk[T ] = [Spec A])if and only if A ⊗k ks and ∏t∈T kset are isomorphi
 as k − G-algebras.Proof. We have that ∏t∈T kset is isomorphi
 to HomSets(T, ks) as k − G algebras, the G-a
tion on thelatter being given by (σf)(t) = σ ◦ f ◦ σ−1(t). And with this G-a
tion we get HomSets(T, ks)G =
HomG(T, ks). It follows from theorem 2.3.2 that if A ⊗k ks ≃∏t∈T kset then

A ≃ (A ⊗k ks)G ≃
(
∏

t∈T

kset

)G

≃ HomG(T, ks),whi
h means that A 
orresponds to T .On the other hand, suppose that A ≃ HomG(T, ks). Then A ⊗k ks ≃ HomSets(T, ks)G ⊗k ks as
k − G-algebras, and the latter is isomorphi
 to HomSets(T, ks) by theorem 2.3.2.ComputationsWe now go ba
k to our problem, we have a separable n-dimensional k-algebra L and we want to des
ribe
Ti and L′

i.De�nition 2.3.4. If S is a set then we de�ne Pi(S) to be the set of subsets of S of 
ardinality i. If
S = {1, . . . , n} then we sometimes (as in the pre
eding se
tion) write Pi or P(n)

i .If S is a G-set for a group G then Pi(S) is a G-set be
ause if T ⊂ S then gT ⊂ S has the same
ardinality as T for every g ∈ G.Lemma 2.3.5. Let S be the G-set 
orresponding to L under the equivalen
e of theorem 1.1.14, i.e.,
S = Homk(L, ks) so Artk[S] = [Spec L]. Consider Pi(S) as a G-set with the a
tion indu
ed from that on
S. Then Ti 
orresponds to Pi(S), so

Ti ≃ Spec HomG(Pi(S), ks).Moreover, L′
i 
orresponds to the set {(s, T ) ∈ S ×Pi(S) : s /∈ T } (with 
omponentwise G-a
tion) and the

Ti-algebra stru
ture on L′
i 
orresponds to the proje
tion (s, T ) 7→ T .32



Proof. Let Ti = Spec Ri. From (2.4) we know that Ri ⊗k ks ≃ (ks)

(
n
i

). For every T ∈ Pi(S), let e′Tbe the tuple indexed by Pi(S) with 1 in position T and zeros elsewhere. Sin
e Pi(S) has (ni) elementswe have Ri ⊗k ks ≃ ∏
T∈Pi(S) kse′T . If we now 
an prove that G a
ts on this as σ(

∑
T∈Pi(S) αT e′T ) =∑

T∈Pi(S) σ(αT )e′σ(T ), i.e., with a
tion (2.8), then by lemma 2.3.3, Ri 
orresponds to Pi(S).To prove that the G-a
tion on∏T∈Pi(S) kse′T is a
tion (2.8) we use that we know the a
tion on L⊗kks,for S 
orresponds to L by de�nition, hen
e by lemma 2.3.3 we have that L⊗ ks ≃∏s∈S kses with a
tion(2.8). So if eT :=
∑

s/∈T es then σ(eT ) = eσT . We now look at the element e in the Ri-algebra π∗L thatwe de�ned previously. Its image in the Ri⊗ks-algebra π∗L⊗ks is e⊗1, hen
e σ(e⊗1) = e⊗σ(1) = e⊗1.But at the same time, π∗L⊗k ks = (π⊗1)∗(L⊗k ks) as an Ri ⊗ks-algebra and the latter we have already
omputed, it be
omes ∏T∈Pi(S)(L⊗ ks)e′T when we identify Ri ⊗ ks with ∏T∈Pi(S) kse′T . We also knowwhat e ⊗ 1 is in this algebra,
e ⊗ 1 =

∑

T∈Pi(S)

eT e′T . (2.9)Hen
e σ(e ⊗ 1) =
∑

T∈Pi(S) eσT σ(e′T ). Sin
e σ(e ⊗ 1) = e ⊗ 1 we must have ∑T∈Pi(S) eT e′T =∑
T∈Pi(S) eσT σ(e′T ), hen
e σ(e′T ) = e′σ(T ).Now when we know the G-a
tion on e′T we 
an also determine whi
h G-set 
orresponds to π∗L. Forwe have

π∗L ⊗k ks =
∏

T∈Pi(S)

(
∏

s∈S

kses

)
e′T ≃

∏

(s,T )∈S×Pi(S)

kse′s,T (2.10)asRi =
∏

T∈Pi(S) kse′T -algebras, where es,T has 1 in position (s, T ) and zeros elsewhere. Here∑T (
∑

s αs,T es)e
′
T
orresponds to∑(s,T ) αs,T e′s,T and σ

(∑
T (
∑

s αs,T es)e
′
T

)
=
∑

T (
∑

s σ(αs,T )eσs)e
′
σT so σ(

∑
(s,T ) αs,T e′s,T ) =∑

(s,T ) σ(αs,T )e′σs,σT . Therefore π∗L 
orresponds to S × Pi(S) with 
omponentwise G-a
tion. (This 
analso be seen more dire
tly, π∗L ≃ L ⊗k Ri, hen
e 
orresponds to S × Pi(S).)Using this together with (2.9) we get
L′

i ⊗k ks = (e ⊗ 1)(π∗L ⊗k ks)

=

(
∑

T∈Pi(S)

eT e′T

)
·
∏

T∈Pi(S)

(
∏

s∈S

kses

)
e′T

=
∏

T∈Pi(S)

(
eT

∏

s∈S

kses

)
e′T

=
∏

T∈Pi(S)

(
∏

s∈S\T

kses

)
e′T .Under the 
orresponden
e in (2.10) this be
omes

∏

(s,T )∈S×Pi(S)
s/∈T

kse′s,Twith the same G-a
tion as that in (2.10). Hen
e L′
i 
orresponds to {(s, T ) ∈ S × Pi(S) : s /∈ T }.Finally, the Ti⊗kks-algebra stru
ture on L′

i⊗kks is given by∑T∈Pi(S) e′T 7→∑
T∈Pi(S)(

∑
s∈S\T es)e

′
Tand this 
omes from the proje
tion map (s, T ) 7→ T .Corollary 2.3.6. L′

i has rank n − i as a Ti-module.33



Proof. The G-set {(s, T ) ∈ S × Pi(S) : s /∈ T } has 
ardinality (n − i)
(
n
i

), hen
e by proposition 1.1.15 L′
ihas dimension (n− i)

(
n
i

) as a k-algebra. Sin
e the dimension of the 
oordinate ring of Ti is (ni) the resultfollows.Exampel 2.3.7. Let k = Fq and L = Fq3 . We then have
[L∗] = L3 − [L1] − [L2] − 1 ∈ K0(Schk). (2.11)Let G := Gal(k/k) and let σ be G:s topologi
al generator, the Frobenius automorphism α 7→ αq. Then L
orresponds to the G-set S := Homk(L, k) = {1, σ, σ2}, where we have identi�ed σ with its restri
tion to

L. We have P1(S) = {{1}, {σ}, {σ2}} ≃ S. Therefore T1 ≃ Spec L. Moreover, L′
1 
orresponds to

{
(1, {σ}), (1, {σ2}), (σ, {1}), (σ, {σ2}), (σ2, {1}), (σ2, {σ})

}and this is the union of two sets on whi
h G a
ts transitive, hen
e it is isomorphi
 to S
�∪S as a G-set.So L′

1 ≃ L2. Therefore [(L′
1/T1)

∗] = (L − 1)2 ∈ K0(SchL) and hen
e by proposition 1.1.6
[L1] = ResL

k

(
(L − 1)2

)
= [Spec L] · (L − 1)2 ∈ K0(Schk)Next P2(S) = {{1, σ}, {σ, σ2}, {1, σ2}}. Sin
e G a
ts transitively on this we have P2(S) ≃ S so

T2 ≃ Spec L. Moreover, L′
2 
orresponds to

{
(σ2, {1, σ}), (1, {σ, σ2}), (σ, {1, σ2})

}and this is also isomorphi
 to S so L′
2 ≃ L. Therefore [(L′

2/T2)
∗] = L − 1 ∈ K0(SchL) and hen
e

[L2] = ResL
k (L − 1) = [Spec L] · (L − 1) ∈ K0(Schk)Putting this into (2.11) now give that

[L∗] = L3 − [Spec L] · L2 + [Spec L] · L − 1 ∈ K0(Schk),in agreement with example 2.2.3.We now want to prove a more general version of lemma 2.3.5.Lemma 2.3.8. Let k be a �eld and K a separable k-algebra of dimension t. Let L be a separable K-algebra of rank n. Let G := Gal(ks/k) and let K and L 
orrespond to T respe
tively S as G-sets. Write
T = Homk(K, ks) = {τ1, . . . , τt}. The map S → T 
orresponding to K → L is n : 1. Let Sj be theinverse image of τj . We use the notation Ti(L/K) and L′

i(L/K) from de�nition 2.2.11. Then Ti(L/K)
orresponds to the G-set
t⋃

j=1

Pi(Sj)and L′
i(L/K) 
orresponds to {

(f, U) ∈
t⋃

j=1

Sj × Pi(Sj) : f /∈ U

}Proof. Suppose �rst thatK is a �eld. A

ording to lemma 2.3.5, Ti(L/K) 
orresponds to Pi

(
HomK(L, ks)

)as a Gal(ks/K)-set. Hen
e by proposition 1.1.18 it 
orresponds to
G ×Gal(ks/K)Pi

(
HomK(L, ks)

)34



as a G-set, with the G-a
tion given in that proposition. Sin
e we assumed that K is a �eld we may write Tas {τ1|K , . . . , τt|K}, where τj ∈ G, and this in turn 
an be identi�ed with a system of 
oset representativesof G /Gal(ks/K). We hen
e want to show that we have an isomorphism of G-sets,
φ : T × Pi

(
HomK(L, ks)

)
→

t⋃

j=1

Pi(Sj)To 
onstru
t this, de�ne φ as (τj |K , U) 7→ τjU . (Note that τj have to be �xed for every j, if we repla
eit with τ ′
j su
h that τj |K = τ ′

j |K we may get another φ.) First φ is well de�ned be
ause every element in
U �xes K, so every element of τjU is in Sj , the inverse image of τj |K in S. Hen
e φ(τj |K , U) ∈ Pi(Sj).It is also G-equivariant, be
ause if σ ∈ G is su
h that στj = τlτ

′, where τ ′ ∈ Gal(ks/K), then
φ
(
σ(τj |K , U)

)
= φ(τl, τ

′U) = τlτ
′Uand

σφ(τj |K , U) = σ(τjU) = στjU = τlτ
′U.Next φ is inje
tive: If φ(τj |K , U) = φ(τl|K , U ′) then they both must be in Pi(Sj), so l = j. Hen
e

τjU = τjU
′ and sin
e τj is an isomorphism, U = U ′. So φ is an inje
tive morphism between two G-setsof 
ardinality t ·

(
n
i

), hen
e an isomorphism.For the general 
ase when K is a separable k-algebra of dimension t, note that we 
an identify T with
�⋃

v
Homk(Kv, k

s)where K =
∏

v Kv, by sending f ∈ Homk(Kv0 , k
s) to (αv) 7→ f(αv0) ∈ T . Denote the map S → T by π.We have that Ti(L/K) =

�∪v Ti(Lv/Kv). This 
orresponds to the G-set
�⋃

v

⋃

τ∈Homk(Kv ,ks)

Pi(π
−1τ) =

⋃

τ∈T

Pi(π
−1τ) =

t⋃

j=1

Pi(Sj)As for L′
i(L/K), assume �rst that K is a �eld. As a Gal(ks/K)-set, L′

i(L/K) 
orresponds to
M := {(f, U) ∈ HomK(L, ks) × Pi

(
HomK(L, ks)

)
: f /∈ U},hen
e it 
orresponds to T × M as a G-set. De�ne a map

T × M →
{

(f, U) ∈
t⋃

j=1

Sj × Pi(Sj) : f /∈ U

}by (
τj |K , (f, U)

)
7→ (τj ◦ f, τjU).As above one shows that this is an isomorphism of G-sets. The 
ase when K is an arbitrary separable

k-algebra is handled in the same way as Ti.A formula for [L∗] in terms of the G-set 
orresponding to LWe are now ready to give a 
losed formula for [L∗]. To express this we �rst generalize de�nition 2.3.4.De�nition 2.3.9. Given a G-set S of 
ardinality n and a positive integer r. Moreover, let (i1, . . . , ir)be an r-tuple of positive integers su
h that i1 + · · · + ir ≤ n. Then Pir,...,i1(S) is the G-set of r-tuples
(Sr, . . . , S1) where Sj is a subset of S of 
ardinality ij and the Sj :s are pairwise disjoint. In parti
ular
Pi(S) has the same meaning as before (up to isomorphism).35



Note that if i1 + · · ·+ ir = j then Pir ,...,i1(S) ≃ Pir ,...,i1,n−j(S) and also that if (i′1, . . . , i
′
r) is a permu-tation of (i1, . . . , ir) then Pi′r ,...,i′1

(S) ≃ Pir ,...,i1(S). In parti
ular, if λ is the partition of n 
orrespondingto (ir, . . . , i1, n − j) then Pir,...,i1,n−j(S) ≃ Pλ(S).For the rest of this se
tion, we �x a �eld k and a separable k-algebra L of dimension n su
h that
L 
orresponds to the G-set S. Re
all the notation used at the end of the pre
eding se
tion: Given asequen
e of positive integers i1, . . . , iq. Constru
t the algebra L′

i1
/Ti1 = L′

i1
(L/k)/Ti1(L/k). De�ne thealgebra L′

i2,i1
/Ti2,i1 as L′

i2
(L′

i1
/Ti1)/Ti2(L

′
i1

/Ti1) and de�ne indu
tively L′
ir+1,...,i1

/Tir+1,...,i1 as
L′

ir+1
(L′

ir ,...,i1/Tir,...,i1)/Tir+1(L
′
ir,...,i1/Tir,...,i1).Proposition 2.3.10. Let α = (ir, . . . , i1) be an r-tuple of positive integers su
h that i1 + · · · + ir = iwhere 1 ≤ i ≤ n. The algebra L′

α/Tα in the 
ategory of k-algebras 
orresponds to the G-sets
{(

s, (Sr, . . . , S1)
)
∈ S × Pα(S) : s /∈ ∪r

t=1St

}and Pα(S) together with the proje
tion morphism.Proof. By lemma 2.3.5 the proposition holds for r = 1. Suppose the formula has been proved for
r. We have Tir+1,ir ,...,i1 = Tir+1(L

′
ir ,...,i1/Tir,...,i1). By the indu
tion hypothesis and lemma 2.3.8 this
orresponds to ⋃

(Sr,...,S1)∈Pir,...,i1(S)

Pir+1

({(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

})whi
h is isomorphi
 to
⋃

(Sr ,...,S1)∈Pir,...,i1 (S)

{(
{s1, . . . , sir+1}, Sr, . . . , S1

)
: sit /∈ ∪r

t=1St

}and this in turn is equal to Pir+1,ir ,...,i1(S).And L′
ir+1,ir ,...,i1


orresponds to the pairs (f, U) in
⋃

(Sr,...,S1)∈Pir,...,i1 (S)

{(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

}
× Pir+1

({(
s, (Sr, . . . , S1)

)
: s /∈ ∪r

t=1St

})su
h that f /∈ U . This is isomorphi
 to
⋃

(Sr,...,S1)∈Pir,...,i1 (S)

{(
s, (Sr+1, Sr, . . . , S1)

)
∈ S × Pir+1,ir,...,i1(S) : s /∈ ∪r+1

t=1St

}whi
h equals {(
s, (Sr+1, Sr, . . . , S1)

)
∈ S × Pir+1,...,i1(S) : s /∈ ∪r+1

t=1St

}
.Sin
e the proje
tion is n − i : 1 we have the following.Corollary 2.3.11. L′

α has rank n − i as a Tα-module.We are now ready to give our �rst 
losed formula for [L∗]. It follows from theorem 2.2.14 andproposition 2.3.10. 36



Theorem 2.3.12. Let L be a k-algebra of dimension n and S a G-set su
h that Art
(
[S]
)

= [Spec L].Then we have
[L∗] = Ln + a1 · Ln−1 + · · · + an−1 · L + an ∈ K0(Schk)where ai = Artk(ρi(S)) and

ρi(S) =

i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is≥1

(−1)t[Pit,...,i1(S)] ∈ B(G).The universal nature of the formulaFix a �eld k with absolute Galois group G. Also, �x a separable k-algebra L of dimension n 
orrespondingto the G-set S. De�ne a homomorphism φ : G → Σn as the 
omposition of G → Aut(S) with anisomorphism Aut(S) → Σn. Let ResΣn

G denote the restri
tion maps with respe
t to φ. Then ResΣn

G isindependent of the 
hosen isomorphism Aut(S) → Σn.We have that
ResΣn

G

[
{1, . . . , n}

]
= [S] ∈ B(G).Also, ResΣn

G

(
[Pα]

)
= [Pα(S)]. We therefore use the notation that if ρ ∈ B(Σn) then ρ(S) := ResΣn

G (ρ) ∈
B(G).This dis
ussion gives the following formulation of theorem 2.3.12.Theorem 2.3.13. Fix a positive integer n. There exist elements ρ

(n)
i ∈ B(Σn), i = 1, . . . , n, with theproperty that for every �eld k with absolute Galois group G and every separable k-algebra of dimension n
orresponding to the G-set S,

[L∗] = Ln + a1 · Ln−1 + · · · + an−1 · L + an ∈ K0(Schk)where ai = Artk(ρ
(n)
i (S)).The ρ

(n)
i :s 
an be given expli
it as

ρ
(n)
i =

i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is≥1

(−1)t[Pit,...,i1 ] ∈ B(Σn).We illustrate with two examples.Exampel 2.3.14. We have
ρ
(3)
1 = − [P(3)

1 ]

ρ
(3)
2 = − [P(3)

2 ] + [P(3)
1,1 ]

ρ
(3)
3 = − [P(3)

3 ] + 2 · [P(3)
2,1 ] − [P(3)

1,1,1].We apply this to example 2.3.7, where L/k = Fq3/Fq. Then G is generated by the Frobenius map F andwe 
an identify S, the G-set 
orresponding to L, with {1, F, F2}. As in that example we get [P1(S)] =

[P2(S)] = [S]. We also have that [P(3)
2,1 ] = [P(3)

2 ], hen
e [P(3)
2,1 (S)] = [S]. Moreover,

P1,1(S) =
{
({1}, {F}), ({F}, {F2}), ({F2}, {1})

}

�∪
{
({1}, {F2}), ({F}, {1}), ({F2}, {F})

}

≃S
�∪S. 37



and hen
e [P1,1,1(S)] = [P1,1(S)] = 2 · [S]. Finally P3(S) =
{
({1, F, F2})

} so [P3(S)] = 1. We thereforehave
ρ
(3)
1 (S) = − [S]

ρ
(3)
2 (S) = − [S] + 2 · [S] = [S]

ρ
(3)
3 (S) = − 1 + 2 · [S] − 2 · [S] = −1whi
h gives the same formula for [L∗] as in example 2.3.7.Exampel 2.3.15. It follows from theorem 2.3.13 that

ρ
(4)
1 = − [P(4)

1 ]

ρ
(4)
2 = − [P(4)

2 ] + [P(4)
1,1 ]

ρ
(4)
3 = − [P(4)

3 ] + 2 · [P(4)
2,1 ] − [P(4)

1,1,1]

ρ
(4)
4 = − [P(4)

4 ] + 2 · [P(4)
3,1 ] + [P(4)

2,2 ] − 3 · [P(4)
2,1,1] + [P(4)

1,1,1,1].Let L/k = Fq4/Fq. Sin
e G is generated by the Frobenius map F we 
an identify S, the G-set 
orrespondingto L, with {1, F, F2, F3}. We 
ompute the [Pµ(S)]:s in the same way as in the pre
eding example. Forexample,
P(4)

2 (S) =
{
{1, F}, {F, F2}, {F2, F3}, {1, F3}

} �∪
{
{1, F2}, {F, F3}

}
.The �rst of these sets is isomorphi
 to S. The se
ond is transitive of 
ardinality 2 so it 
orresponds to a�eld extension of k of degree 2, i.e., Fq2 . Reasoning in this way we �nd that

[L∗] = L4 − [Spec Fq4 ] · L3 +
(
2[SpecFq4 ] − [Spec Fq2 ]

)
· L2 − [Spec Fq4 ] · L + [Spec Fq2 ] − 1.If instead L/k = Fq2 ×Fq2/Fq then S = {e1, F e1}

�∪{e2, F e2} where e1 and e2 are the proje
tion maps.We then get, for example,
P(4)

2 (S) =
{
{e1, F e1}

} �∪
{
{e2, F e2}

} �∪
{
{e1, e2}, {F e1, F e2}

} �∪
{
{e1, F e2}, {F e1, e2}

}
.This kind of 
omputations show that

[L∗] = L4 − 2[Spec Fq2 ] · L3 +
(
4[Spec Fq2 ] − 2

)
· L2 − 2[Spec Fq2 ] · L + 1.2.4 [L∗] expressed in terms of the λ-ring stru
ture on B(Σn)In se
tion 1.3.2 we de�ned a λ-ring stru
ture on Burnside rings. De�ne ℓi := λi

(
[{1, . . . , n}]

)
∈ B(Σn).In this se
tion we will see that the ρi:s that where introdu
ed in theorem 2.3.13 
an be des
ribed in termsof this λ-stru
ture. Namely we will prove that ρi = (−1)iℓi. This formula is suggested in the followingway. We 
an give K0(Schk) the stru
ture of a λ-ring that extend the stru
ture already de�ned on thesubring h

(
B(G)

). (Re
all that h is inje
tive.) See [LL02℄ for this 
onstru
tion. Moreover, let K0(Ql −G)be the Grothendie
k ring of 
ontinuous Ql-representations of G. We then have a 
ommutative square of
λ-rings

B(G) //

��

K0(Schk)

��
RQ(G) // K0(Ql − G)38



where the map K0(Schk) → K0(Ql −G) sends the 
lass of X to the 
lass of its l-adi
 
ohomology. By the
lassi
al 
omputation of the 
ohomology of a torus then, the image of [L∗] 
an be expressed in terms ofthe λ-stru
ture on K0(Ql − G). This suggest that a similar formula should hold in K0(Schk). And eventhough that is not the 
ase for an arbitrary torus, it is true for L∗.The result is the following theorem.Theorem 2.4.1. Let ρ
(n)
i be the elements de�ned in theorem 2.3.13, i.e., the elements in B(Σn) des
ribing

[L∗] ∈ K0(Schk) for every separable, n-dimensional algebra k → L. Then ρ
(n)
i = (−1)iℓ

(n)
i where

ℓ
(n)
i = λi([{1, . . . , n}]).Proof. We will prove an expli
it formula for ℓi ∈ B(Σn), namely the one in theorem 2.4.13. The theoremthen follows when we 
ompare it with the formula for ρi obtained in theorem 2.3.12.So from now on this se
tion 
ontains no referen
e to the algebra L that we started with, it is anindependent investigation of B(Σn). We begin by proving a proposition in the representation ring thatwill help us prove a theorem in the Burnside ring that we are not able to prove dire
tly.The representation ring RQ(Σn)The theorem that we are not able to prove dire
tly in the Burnside ring 
orresponds to the following inthe representation ring.Proposition 2.4.2. Let Sn := {1, . . . , n} and let Q[Sn] be the asso
iated permutation representation of

Σn. Given n and i, view Σn and Σi as the permutation groups of Sn and Si respe
tively. View Σn−i asthe permutation group of {i + 1, . . . , n}. We get a restri
tion map RQ(Σi) → RQ(Σi ×Σn−i) with respe
tto the map Σi ×Σn−i → Σi whi
h is proje
tion on the �rst 
oordinate. We also get an indu
tion map
RQ(Σi ×Σn−i) → RQ(Σn) given by the in
lusion (τ, ρ) 7→ τρ = ρτ : Σi ×Σn−i → Σn. Putting thesetogether we get a map RQ(Σi) → RQ(Σn). We have

IndΣn

Σi ×Σn−i
◦Res

Σi ×Σn−i

Σi

(
λi
([

Q[Si]
]))

≃ λi
([

Q[Sn]
])

∈ RQ(Σn).Proof. To see what we are doing, identify Sn with {e1, . . . , en} with Σn-a
tion given σ(ei) = eσ(i). Then
λi
([

Q[Sn]
]) is the 
lass of the Q-ve
torspa
e with basis {ej1 ∧ · · · ∧ eji}1≤j1<···<ji≤n and Σn-a
tion givenby

σ(ej1 ∧ · · · ∧ eji) = eσj1 ∧ · · · ∧ eσji .In parti
ular, in RQ(Σi) we have that λi
([

Q[Si]
]) is the 
lass of the Q-ve
torspa
e with basis e1∧· · ·∧eiand Σi-a
tion given by

τ(e1 ∧ · · · ∧ ei) = sgn(τ) · e1 ∧ · · · ∧ ei.We have
IndΣn

Σi ×Σn−i
◦Res

Σi ×Σn−i

Σi

([
∧i Q[Si]

])
=
[
Q[Σn] ⊗Q[Σi ×Σn−i] ∧i Q[Si]

]and we want to de�ne a Σn-equivariant isomorphism of Q-ve
torspa
es
ϕ : Q[Σn] ⊗Q[Σi ×Σn−i] ∧i Q[Si] → ∧i Q[Sn].Let r :=

(
n
i

) and let σ1, . . . , σr be 
oset representatives for Σn / Σi ×Σn−i. By proposition 1.1.22, wemay identify the left hand side with a Q-ve
tor spa
e with basis {σj ⊗ e1 ∧ · · · ∧ ei}r
j=1. For σ ∈ Σn, let

σσj = σkτρ where (τ, ρ) ∈ Σi ×Σn−i. The Σn-a
tion is then given by
σ(σj ⊗ e1 ∧ · · · ∧ ei) = (σkτρ) ⊗ e1 ∧ · · · ∧ ei = sgn τ · (σk ⊗ e1 ∧ · · · ∧ ei).39



Now de�ne ϕ on this basis by ϕ(σj ⊗ e1 ∧ · · · ∧ ei) := eσj1 ∧ · · · ∧ eσji. This is surje
tive for given
1 ≤ k1 < · · · < ki ≤ n, 
hoose σ ∈ Σn su
h that σ(j) = kj for k = 1, . . . , i. Let σ = σjτρ. Then
ϕ
(
σj ⊗ (sgn τ · e1 ∧ · · · ∧ ei)

)
= ek1 ∧ · · · ∧ eki . Sin
e ϕ is a surje
tive map of Q-ve
tor spa
es of dimension(

n
i

) it is an isomorphism of ve
tor spa
es. Finally, ϕ is Σn-equivariant for if σσj = σkτρ then
σϕ(σj ⊗ e1 ∧ · · · ∧ ei) = sgn τ · (σk(e1 ∧ · · · ∧ ei))

=ϕ
(
σ(σj ⊗ e1 ∧ · · · ∧ ei)

)
.The Burnside ring B(Σn)In what follows we will prove some fa
ts about the λ-operations on B(Σn). For this we use the map

h: B(Σn) → RQ(Σn) de�ned in 1.1.23. Mu
h of the below 
ould have been done in greater generality,i.e., for any �nite group. However, the general 
ase often follows by restri
tion from the spe
ial 
ase,sin
e every �nite group 
an be embedded in some Σn. In any 
ase we are only interested in B(Σn).We will use Sn to denote the set {1, . . . , n}. Re
all that if i1 + · · ·+ ij = n then P(n)
i1,...,ij

is the Σn-set
onsisting of j-tuples of pairwise disjoint subsets of Sn, where the �rst subset has 
ardinality i1 and so on.When the integer n is 
lear from the 
ontext we just write Pi1,...,ij . Re
all also that if µ is the partitionof n 
orresponding to (i1, . . . , ij), then Pi1,...,ij are isomorphi
 to Pµ as a Σn-set, hen
e they de�ne thesame element in B(Σn). Also if i1 + · · · + ij = n′ < n then we sometimes write Pi1,...,ij for Pi1,...,ij ,n−n′ .One sees that Pµ is a transitive Σn-set. Moreover, if µ and µ′ are two partitions su
h that µ 6= µ′then Pµ 6≃ Pµ′ as Σn-sets.In what follows, re
all that we write µ ⊢ n when µ is a partition of n.De�nition 2.4.3. Let Schn ⊂ B(Σn) be the additive subgroup generated by {[Pµ]}µ⊢n. Here, Sch is shortfor S
hur.The following proposition will show that Schn is a ring.Proposition 2.4.4. Let α = (α1, . . . , αs) and β = (β1, . . . , βt). Then [P(n)
α ] · [P(n)

β ] belongs to Schn.Proof. For every s × t integer matrix M = (mij), de�ne the Σn-set
PM := {(S1, . . . , Ss, T1, . . . , Tt) : |Si ∩ Tj| = mij}where Si has 
ardinality αi, Ti has 
ardinality βi, Si ∩ Sj = ∅ and Ti ∩ Tj = ∅. (Si and Ti are subsets of

{1, . . . , n}.) We have that Pα × Pβ =
�∪M PM .Let mi• :=

∑t
j=1 mij and m•j :=

∑t
i=1 mij . Mapping the element (S1, . . . , Ss, T1, . . . , Tt) ∈ PM to

(
S1 \ ∪t

j=1S1 ∩ Tj , . . . , Ss \ ∪t
j=1Ss ∩ Tj ,

T1 \ ∪1
i=1S1 ∩ Ti, . . . , Tt \ ∪t

i=1Si ∩ Tt,

S1 ∩ T1, S1 ∩ T2, . . . , Ss ∩ Tt

)in
Pi1−mi•,...,is−ms•,j1−m•1,...,jt−m•t,m11,m12,...,mst (2.12)gives an isomorphism, hen
e [Pα] · [Pβ ] =

∑
M [PM ] belongs to Schn.Corollary 2.4.5. Schn is a subring of B(Σn).Remark. Schn is not a λ-ring sin
e it is not 
losed under the λ-operations.40



We next des
ribe the a
tion of σi and λi on [{1, . . . , n}].Notation 2.4.6. De�ne s
(n)
i := σi

(
[{1, . . . , n}]

)
∈ B(Σn) and ℓ

(n)
i := λi

(
[{1, . . . , n}]

)
∈ B(Σn). Here, ifthe supers
ript n is 
lear from the 
ontext we leave it out.We will give a formula for s

(n)
i whi
h shows that it lies in Schn and then dedu
e from this that also

ℓ
(n)
i is in Schn.Lemma 2.4.7. To any partition of i, µ = (µ1, , . . . , µj), where µ1 = · · · = µα1 > µα1+1 = · · · = µα1+α2 >
· · · > µj−αl+1 = · · · = µj , asso
iate the tuple α(µ) := (α1, . . . , αl). Then

s
(n)
i =

∑

µ⊢i:
ℓ(µ)≤n

[P(n)
α(µ)].Proof. Identify {1, . . . , n} with {s1, . . . , sn}. Then {1, . . . , n}i/ Σi is identi�ed with the set of monomials

{se1
1 · · · sen

n : e1 + · · · + en = 1} =

�⋃
e1+···+en=i

e1≥e2···≥en≥0

Σn ·se1
1 · · · sen

n ,where the index set on the disjoint union 
an be identi�ed with the set of µ ⊢ i su
h that ℓ(µ) ≤ n. Nowlet e1 = · · · = eα1 > eα1+1 = · · · = eα1+α2 > · · · > en−αl+1 = · · · = en Then
Σn ·se1

1 · · · sen
n =Σn ·(s1 · · · sα1)

e1(sα1+1 · · · sα1+α2)
eα1+1 · · · (sn−αl+1 · · · sn)en−αl+1

≃Σn

(
{s1, . . . , sα1}, {sα1+1, . . . , sα1+α2}, . . . , {sn−αl+1, . . . , sn}

)

≃P(n)
α1,...,αl

,hen
e the lemma follows.Proposition 2.4.8. ℓ
(n)
i ∈ Schn for every i.Proof. From the de�nition of ℓi we have that

−(−1)iℓ
(n)
i =

i−1∑

j=0

(−1)jℓ
(n)
j s

(n)
i−j . (2.13)Sin
e we know that Schn is a ring, and that the s

(n)
j :s and ℓ

(n)
1 = [P(n)

n ] are in Schn, the formula followsby indu
tion.We need some fa
ts about the behavior of the the indu
tion operation. In what follows we view Σi asthe permutation group of Si and embed it in Σn, the permutation group of Sn. Moreover we view Σn−ias the permutation group of {i + 1, . . . , n}.Proposition 2.4.9. Let µ ⊢ i. Then IndΣn

Σi ×Σn−i
◦Res

Σi ×Σn−i

Σi

(
[P(i)

µ ]
)

= [P(n)
µ ] ∈ B(Σn).Proof. Let R = {σ1, . . . , σr}, where r =

(
n
i

), be a system of 
oset representatives for Σn / Σi ×Σn−i.We know that Σn ×Σi ×Σn−iP(i)
µ 
an be identi�ed with the set of pairs (σj , t), where σj ∈ R and t =

(T1, . . . , Tl) ∈ P(i)
µ . From this set we de�ne a map to P(n)

µ by
(σj , t) 7→

(
σjT1, . . . , σjTl, σj{i + 1, . . . , n}

)
.41



This map is surje
tive for given t′ = (T ′
1, . . . , T

′
l , T

′
l+1) ∈ P(n)

µ , there is a σ ∈ Σn su
h that σ{1, . . . , µ1} =
T ′

1, . . . , σ{i − µl + 1, . . . , i} = T ′
l . Let σj ∈ R be su
h that σ = σjτρ. Then

(
σj , τ({1, . . . , µ1}, . . . , {i − µl + 1, . . . , i})

)
7→ t′.Sin
e both sets have n!/(µ1! · · ·µl!(n− i)!) elements this is a bije
tion. Finally, the map is G-equivariant,hen
e it is an isomorphism.Proposition 2.4.10. We have IndΣn

Σi
◦Res

Σi ×Σn−i

Σi

(
ℓ
(i)
i

)
= ℓ

(n)
i ∈ B(Σn).It is this proposition that for
es us to go over to the representation ring, for we haven't been able toprove it dire
tly in the Burnside ring. To prove it we need the following theorem.Theorem 2.4.11. Let h: B(Σn) → RQ(Σn) be the λ-ring homomorphism de�ned in 1.1.23. The restri
-tion of h to Schn is inje
tive.Proof. For every λ ⊢ n let σλ ∈ Σn be an element in the 
onjuga
y 
lass determined by λ and let

Cσλ
: RQ(Σn) → Z be the homomorphism from de�nition 1.1.25, i.e., the map de�ned by V 7→ χV (σλ).(This is independent of the 
hoi
e of σλ.) This gives a homomorphism

RQ(Σn) →
∏

λ⊢n

Zand it su�
es to show that the 
omposition of this with the restri
tion of h to Schn is inje
tive, i.e., that
ϕ : Schn →

∏

λ⊢n

Z

[T ] 7→
(
|T σλ |

)
λ⊢nis inje
tive. To do this, de�ne a total ordering on the set of partitions of n by λ > λ′ if λ1 = λ′

1, . . . , λj−1 =
λ′

j−1 and λj > λ′
j for some j (i.e., lexi
ographi
 order). We 
laim that Pσλ

λ′ = ∅ if λ > λ′ whereas
|Pσλ

λ | 6= 0. For the se
ond assertion, 
hoose for example
σλ = (1, . . . , λ1)(λ1 + 1, . . . , λ1 + λ2) · · · (n − λℓ(λ) + 1, . . . , n).Then (

{1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . . , {n− λℓ(λ) + 1, . . . , n}
)
∈ Pλis �xed by σλ.For the �rst assertion, suppose λ′ < λ and t = (T1, . . . , Tl) ∈ Pλ′ , where l = ℓ(λ′). Suppose moreoverthat t is �xed by σλ. If now λ1 > λ2 > · · · > λℓ(λ) then, with the same σλ as above, we must have

T1 = {1, . . . , λ1}, . . . , Tl = {n−λl +1, . . . , n} (be
ause λj ≥ λ′
j for every j and if 1 lies in Tj then so does

σλ(1) = 2, hen
e also 3, , . . . , , λ1. So Tj has 
ardinality at least λ1 and the only λ′
j that 
an be that bigis λ′

1.). But if λ and λ′ di�ers in position j it is impossible for Tj to full�ll this sin
e it has 
ardinality
λ′

j < λj . In the general 
ase, when we may have λj = λj+1, the above argument works the same onlythat we for example 
an have T1 = {λ1 + 1, . . . , λ1 + λ2} and T2 = {1, . . . , λ1} if λ1 = λ2.We are now ready to prove that ϕ is inje
tive. Let x =
∑

λ⊢n aλ[Pλ], where aλ ∈ Z, and suppose that
x 6= 0. Choose the maximal λ0 su
h that aλ0 6= 0. Let ϕλ0 be the λ0:t 
omponent of ϕ. Then

ϕλ0 (x) =
∑

λ⊢n

aλ|Pσλ0

λ | = aλ0 |P
σλ0

λ0
| 6= 0,hen
e ϕ(x) 6= 0. 42



We are now ready to prove proposition 2.4.10.Proof, proposition 2.4.10. Sin
e h is a morphism of λ-rings that 
ommutes with the indu
tion and re-stri
tion maps we have that if we write f for IndΣn

Σi
◦Res

Σi ×Σn−i

Σi
then

h ◦f
(
ℓ
(i)
i

)
=f ◦ h

(
λi([Si])

)

=f
(
λi
(
[Q[Si]]

))

=λi
(
[Q[Sn]]

)
∈ RQ(Σn).where the �rst equality is proposition 1.1.24, the se
ond is lemma 1.3.3 and the last equality is proposition2.4.2. Sin
e h is inje
tive on Schn and h

(
ℓ
(n)
i

)
= λi

(
[Q[Sn]]

) in RQ(Σn) we have that f
(
ℓ
(i)
i

)
= ℓ

(n)
i in

B(Σn).Now when this proposition is proved we may forget everything about the representation ring; fromnow on we work ex
lusively in the Burnside ring.As before, let Sn = {1, . . . , n} and ℓ
(n)
i := λi([Sn]) ∈ B(Σn).Proposition 2.4.12. There exists integers aµ, where µ ⊢ i, su
h that

ℓ
(n)
i =

∑

µ⊢i

aµ

[
P(n)

λ,n−i

]
.Proof. Sin
e ℓ

(i)
i ∈ Schi we have ℓ

(i)
i =

∑
µ⊢i aµ

[
P(i)

µ

] so sin
e the indu
tion map is additive it followsfrom proposition 2.4.9 and proposition 2.4.10 that ℓ
(n)
i =

∑
µ⊢i aµ

[
P(n)

µ,n−i

] in Schn.Theorem 2.4.13. Given n, for i = 1, . . . , n we have that
ℓ
(n)
i = (−1)i

i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is≥1

(−1)t
[
P(n)

it,...,i1

]
∈ B(Σn).Proof. For i = 1 the formula be
omes ℓ

(n)
1 = [P(n)

1,n−1] whi
h is true for every n.Given i, suppose the formula is true for every pair (i′, n) where i′ < i and n is an arbitrary integergreater than or equal to i′. We want to show that it holds for (i, n) where n is an arbitrary integer greaterthan or equal to i.Assume �rst that n is mu
h greater than i. From proposition 2.4.12 we see that there are integers aµsu
h that
ℓ
(n)
i =

∑

µ⊢i

aµ

[
P(n)

µ,n−i

]
. (2.14)Be
ause of our assumption, n− i is mu
h greater than all the entries in µ so we may de�ne the degree of[

P(n)
µ

], where µ ⊢ j and j ≤ i, to be j. Proposition 2.4.12 then tells us that ℓ
(n)
i is a linear 
ombinationof elements of degree i.On the other hand, by the de�nition of ℓ

(n)
i we have

−(−1)iℓ
(n)
i =

i−1∑

j=0

(−1)jℓ
(n)
j s

(n)
i−j . (2.15)43



By indu
tion and the formula for s
(n)
j , the right hand side equals

∑

µ⊢i

[P(n)
α(µ)] +

i−1∑

j=1

(−1)j

(
(−1)j

j∑

t=1

∑

(i1,...,it):
i1+···+it=j

is≥1

(−1)t
[
P(n)

it,...,i1

]
)

·
(
∑

µ⊢i−j

[P(n)
α(µ)]

) (2.16)To evaluate this expression seems to be very 
ompli
ated, and we haven't managed to to so. However,we only have to evaluate it in degree i, for we have already seen that ℓ
(n)
i is zero in every other degree.So we next 
ompute the degree i part of (2.16). We see that for every j su
h that 0 ≤ j < i we havea produ
t of two sums, one 
onsisting of elements of degree j and one 
onsisting of elements of degreeless that of equal to i − j, for if µ ⊢ i − j then [Pα(µ)] has degree ≤ i − j with equality if and only if

µ = (1, 1, . . . , 1), in whi
h 
ase α(µ) = (i − j).Also, if [P(n)
it,...,i1

] has degree j, i.e., i1+, . . . , +it = j, and [P(n)
αs,...,α1 ] has degree m ≤ i − j then byequation (2.12) in the proof of proposition 2.4.4,

[P(n)
it,...,i1

] · [P(n)
αs,...,α1

] = [P(n)
it,...,i1,αs,...,α1

] + terms of degree < j + m.Hen
e only the degree i − j part of ∑µ⊢i−j [P
(n)
α(µ)] 
ontributes to the degree i part of (2.16). Thereforethe only part of (2.16) that 
ontains elements of degree i is

[P(n)
i ] +

i−1∑

j=1

(−1)j

(
(−1)j

j∑

t=1

∑

(i1,...,it):
i1+···+it=j

is≥1

(−1)t
[
P(n)

it,...,i1

]
)

· [P(n)
i−j ]and the degree i part of this is

[P(n)
i ] +

i−1∑

j=1

j∑

t=1

∑

(i1,...,it):
i1+···+it=j

is>0

(−1)t[P(n)
i1,...,it,i−j ]. (2.17)Fix (i′1, . . . , i

′
t′) su
h that i′1 + · · · + i′t′ = i and is > 0. If t′ > 1 then [P(n)

i′1,...,i′
t′
] o

urs in (2.17)when i1 = i′1, . . . , it = i′t′−1 and i − j = i′t′ . So it o

urs exa
tly one time and the 
oe�
ient is then

(−1)t = −(−1)t′ . If t′ = 1 then i′1 = i and [P(n)
i ] o

urs one time in (2.17), namely as the �rst term, the
oe�
ient being 1 = −(−1)t′ . Hen
e (2.17) equals

−
i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is>0

(−1)t[P(n)
i1,...,it

].So (2.15) together with the knowledge that ℓ
(n)
i is zero in degree di�erent from i give that

ℓ
(n)
i = (−1)i

i∑

t=1

∑

(i1,...,it):
i1+···+it=i

is>0

(−1)t[P(n)
i1,...,it

]when n is mu
h greater then i. Now by the proof of proposition 2.4.12 the 
oe�
ients in (2.14) arethe same for every n. Sin
e we have determined them for every n big enough it follows that they aredetermined for every n, we are through. 44



2.5 An alternative proof of theorem 2.4.1In this se
tion we give a proof of the equality ρ
(n)
i = (−1)iλ

(n)
i that does not depend on the expli
itformula for ℓ

(n)
i from theorem 2.4.13. We begin with some lemmas.Lemma 2.5.1. Let L be a separable Fq-algebra of dimension n, 
orresponding to the G := Gal

(
Fq/Fq

)-set
S. Choose an isomorphism Aut(S) → Σn and 
ompose it with the homomorphism G → Aut(S) to geta homomorphism φ : G → Σn. Let F be the topologi
al generator of G and de�ne σ := φ(F) ∈ Σn. Let
ResΣn

G denote the restri
tion maps with respe
t to φ for Burnside as well as representation rings. Let Cσand CF be the maps from the representation rings to Z de�ned in 1.1.25. Let the map from K0(SchFq)to Z be the 
ounting fun
tion Cq. Then the following diagram 
ommutes
B(Σn)

ResΣn
G //

h

��

B(G)

h

��

Art

%%KKKKKKKKKK

RQ(Σn)
ResΣn

G //

Cσ

%%J
JJJJ

JJJJ
J

RQ(G)

CF

��

K0(SchFq)

Cq

xxrrrrrrrrrrr

ZProof. From Proposition 1.1.24 we know that the square in the upper left 
orner of the diagram 
ommutes.The triangle in the lower left 
orner 
ommutes by proposition 1.1.27. Finally, for the right triangle, if Tis G-set then χQ[T ](F) = |T F|. At the same time, if T maps to X in K0(SchFq) then
|X(Fq)| = |HomFq(Spec Fq, X)| = |HomG({•}, T )| = |T F|.Lemma 2.5.2. Let M be a transitive n × n permutation matrix. Then the 
hara
teristi
 polynomial of

M equals T n − 1.Proof. Sin
e the transitive permutation matri
es form a 
onjuga
y 
lass (they 
orrespond to the per-mutations of 
y
le type (n)) it su�
es to 
ompute the 
hara
teristi
 polynomial for one parti
ular su
hmatrix, for example 


0 1 0 0
0 1 . . .

0 0 0 1
1 0 0


Using indu
tion one shows that the 
hara
teristi
 polynomial of this matrix is T n − 1.We are now ready to give the alternative proof of theorem 2.4.1, whi
h is based on 
ounting pointsover �nite �elds. What we need to know is the following: We need to know the existen
e of the universalelements ρ

(n)
i proved in theorem 2.3.13. We do not need the expli
it des
ription of them given in thattheorem, however when one has proved the existen
e it is not su
h a long step to des
ribe the elements.For the ℓ

(n)
i we only need to know that they lie in Schn whi
h was one of the �rst things we proved aboutthem. We also need to know that h is inje
tive on Schn.45



Proof of theorem 2.4.1. Fix a positive integer n. We want to prove that ρi = (−1)iℓi ∈ B(Σn). Sin
ethey both lie in Schn it su�
es to show that h(ρi) = (−1)i h(ℓi) ∈ RQ(Σn) and by proposition 1.1.26we 
an prove this by proving that if R is a set of representatives of the 
onjuga
y 
lasses of Σn then forevery σ ∈ R,
Cσ h(ρi) = (−1)iCσ h(ℓi).We do this simultaneously for i = 0, . . . , n by showing that

n∑

i=0

Cσ h(ρi)X
n−i =

n∑

i=0

(−1)iCσ h(ℓi)X
n−i ∈ Z[X ] (2.18)for every σ ∈ R.From now on, �x a σ ∈ R. Let q be an arbitrary prime power, let k = Fq and let G := Gal(k/k). Asbefore, if S is a G-set of 
ardinality n, then 
hoosing any enumeration of S, the a
tion of G on S givesa map φ : G → Aut(S) ≃ Σn whi
h in turn gives our ResΣn

G . (Independent of the 
hosen φ.) Choose Ssu
h that the topologi
al generator for G, the Frobenius automorphism F, maps to (a permutation in thesame 
onjuga
y 
lass as) σ under φ. Equivalently, let S =
�∪1≤j≤m Tj su
h that Tj is a transitive G-setof 
ardinality nj , where σ has 
y
le-type (n1, . . . , nm). Su
h an S always exists for by theorem 1.1.14 it
omes from L =

∏m
j=1 Kj where Kj is a degree nj �eld extension of k, i.e., Kj = Fqnj .We begin by 
omputing the right hand side of (2.18) in terms of (n1, . . . , nm). Let f be an endomor-phism of the ve
tor spa
e V of dimension n. From linear algebra ([M
D84℄ or [Knu73℄, page 83) we knowthe following expression for the 
hara
teristi
 polynomial of f :

det(X · En − f) =

n∑

i=0

(−1)i Tr(∧i f)Xn−i.Putting f = F gives
det(X · En − F) =

n∑

i=0

(−1)iχ∧i Q[S](F)Xn−i. (2.19)Sin
e h(ℓi(S)) =
[
∧i Q[S]

]
∈ RQ(G) we have that CF h(ℓi(S)) = χ∧i Q[S](F), hen
e lemma 2.5.1 gives thatthe right hand side of (2.19) equals

n∑

i=0

(−1)iCσ h(ℓi)X
n−i.As for the left hand side of (2.19), sin
e S is a union of transitive G-sets Tj we have Q[S] = ⊕m

j=1Q[Tj]where Q[Tj] is irredu
ible, hen
e the matrix for F is of the form



M1 0
M2 . . .0 Mm


where Mj is a transitive nj × nj permutation matrix. Therefore by lemma 2.5.2 det(XEn − F ) =∏m

j=1 det(XEnj − Mj) =
∏m

j=1(X
nj − 1). From (2.19) we therefore get

m∏

j=1

(Xnj − 1) =

n∑

i=0

(−1)iCσ h(ℓi)X
n−i. (2.20)46



We next 
ompute the left hand side of (2.18). By the de�nition of the ρi:s we have
[L∗] =

n∑

i=0

Art
(
ρi(S)

)
Ln−i ∈ K0(Schk).Applying Cq to this gives

|L∗(k)| =
n∑

i=0

(−1)iCq Art(ρi(S)) · qn−i. (2.21)By lemma 2.5.1, Cq Art(ρi(S)) = Cσ h(ρi), so the right hand side of (2.21) equals
n∑

i=0

Cσ h(ρi)q
n−i.On the other hand, sin
e we saw that L =

∏m
j=1 Fqnj we have L∗(k) = L× =

∏m
j=1 F×

qnj so |L∗(k)| =∏m
j=1(q

nj − 1). Hen
e (2.21) says that
m∏

j=1

(qnj − 1) =

n∑

i=0

Cσ h(ρi)q
n−i.Sin
e q is an arbitrary prime power it follows that

m∏

j=1

(Xnj − 1) =

n∑

i=0

Cσ h(ρi)X
n−i. (2.22)Comparing (2.20) to (2.22) now gives (2.18).
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Chapter 3Cal
ulation of an integralThe aim of this 
hapter is to generalize the 
omputations of some p-adi
 integrals to 
omputations in theGrothendie
k ring of varieties. For this we �rst have to de�ne a suitable version of motivi
 integration.There are already existing theories for this but we 
ontent ourselves with a de�nition that only in
ludesas mu
h as we need for the integrals that we are interested in 
omputing.We must emphasize that many of the de�nitions in this 
hapter are not suitable in general.3.1 De�nition of the motivi
 integralFix a �eld k of 
hara
teristi
 p. Let Mk and M̂k be the rings de�ned in se
tion 1.2. We now de�ne themeasures of 
ertain subsets of Wn
k . (Here W is the Witt ve
tors 
onstru
ted with respe
t to p and Wkis the s
alar extension to k of W.) This measure will take values in M̂k.Fix an n > 0 and let Z ⊂ Wn

k be a disjoint union of lo
ally 
losed subs
hemes. Let πm : Wn → Wn
mbe the proje
tion map, and let Zm = πmZ. So

Zm(A) = {[a] ∈ (W(A)/ Vm W(A))n}a∈Z(A) ∀A ∈ Algk.If Zm is a 
onstru
tible subset of Wn
N for every m and if limm→∞[Zm]/Lnm exists in M̂k then we de�ne

volZ ∈ M̂k to be this limit. We then also say that Z is measurable.We will be interested in the measure of the following type of subs
hemes. Let f1, . . . , fs be polynomialsin W(k)[X1, . . . , Xn]. Let α = (α1, . . . , αs) ∈ Ns. Let {ordfi ≥ αi}s
i=1 ⊂ Wn

k be the fun
tor whose
A-points are

{a ∈ Wn(A) : fi(a) ≡ 0 (mod Vαi) for i = 1, . . . , s} ∀A ∈ Algk.This is well de�ned sin
e W(A) is a W(k)-algebra when A is a k-algebra. We will also write, for example,
{ord f1 ≥ α1 ∧ ord f2 ≥ α2} for {ord fi ≥ αi}2

i=1.Proposition 3.1.1. The fun
tor {ordfi ≥ αi}s
i=1 is a 
losed subs
heme of Wn

k . Moreover, it is mea-surable.Proof. Write P := k[Xi0, . . . , XiN , . . . ]ni=1 and let Wn be represented by P , i.e., if a = (a1, . . . , an) ∈
Wn(A) where ai = (ai0, . . . , aiN , . . . ) ∈ W(A) for i = 1, . . . , n, then a is identi�ed with

(XiN 7→ aiN )1≤i≤n,N∈N ∈ Homk(P, A).48



We now want to show that {ordfi ≥ αi}s
i=1 is represented by a quotient of P . For i = 1, . . . , n let

xi := (Xi0, . . . , XiN , . . . ) = (XiN )N∈N ∈ W(P ). In W(P ) we then have, for j = 1, . . . , s,
fj(x1, . . . , xn) = (fj0(X•0), fj1(X•0, X•2), . . . , fjN (X•0, . . . , X•N), . . . )where fjN (X•0, . . . , X•N ) := fjN (X10, . . . , X1N , . . . , Xn0, . . . , XnN ) is an element of P that lies in thesubring PN := k[Xi0, . . . , XiN ]ni=1. Now a = (a1, . . . , an) ∈ Wn(A) is su
h that fj(a) ≡ 0 (mod Vαj+1)if and only if fj0(a•0) = · · · = fjαj (a•0, . . . , a•αj ) = 0, i.e., if (XiN 7→ aiN )1≤i≤n,N∈N maps fj0, . . . , fjαjto zero. It hen
e follows that {ord fi ≥ αi + 1}s

i=1 is represented by
P

(fj0, . . . , fjαj )
s
j=0

.We next want to show that {ord fi ≥ αi + 1}s
i=1 is measurable. We have that Wn

N+1 is representedby PN . Let Z := {ordfi ≥ αi + 1}s
i=1. If N > m := max{α1 + 1, . . . , αs + 1} then ZN+1 is representedby

PN

(fj0, . . . , fjαj )
s
j=0

≃ Pm−1

(fj0, . . . , fjαj )
s
j=0

⊗k k[Xim, . . . , XiN ]ni=1,hen
e [ZN+1] = [Zm] · L(N−m+1)n ∈ K0(Schk). It follows that
volZ = lim

N→∞

[ZN+1]

L(N+1)n
=

[Zm]

Lmn
∈ M̂k.If βj ≥ αj for j = 1, . . . , s then the above proof shows that {ordfi ≥ βi}s

i=1 is a 
losed subs
heme of
{ord fi ≥ αi}s

i=1. Let f ∈ W(k)[X1, . . . , Xn]. For α ∈ N we de�ne
{ordf = α} := {ord f ≥ α} \ {ord f ≥ α + 1}.This is an open subs
heme of {ordf ≥ α}, hen
e a lo
ally 
losed subs
heme of Wn.Proposition 3.1.2. If α ∈ N and f ∈ W(k)[X1, . . . , Xn] then {ordf = α} is measurable. We have

vol{ord f = α} = vol{ordf ≥ α} − vol{ord f ≥ α + 1}.Proof. Looking ba
k at the pre
eding proof we see that {ordf ≥ α + 1}N is a 
losed subs
heme of
{ord f ≥ α}N and that {ord f = α}N = {ordf ≥ α}N \ {ord f ≥ α + 1}N when N > α. It thenfollows that [{ord f = α}N ] = [{ord f ≥ α}N ] − [{ord f ≥ α + 1}N ] ∈ K0(Schk) and hen
e that
vol{ord f = α} = vol{ordf ≥ α} − vol{ord f ≥ α + 1} ∈ M̂k.We are now ready to de�ne the type of integrals we are interested in. For f ∈ W(k)[X1, . . . , Xn],de�ne ∫

Wn

∣∣f(X1, . . . , Xn)
∣∣dX1 · · ·dXn :=

∑

i≥0

vol{ord f(X1, . . . , Xn) = i} · L−i ∈ M̂k. (3.1)This sum always 
onverges as the following proposition shows.Proposition 3.1.3. Let f ∈ W(k)[X1, . . . , Xn]. Then ∫
Wn

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn exists in M̂k.Proof. By proposition 1.2.3 it su�
es to show that vol(ord f = m)/Lm → 0 as m → ∞. And for this itsu�
es to show that vol(ord f ≥ m)/Lm → 0 as m → ∞ for then we also have vol(ord f ≥ m+1)/Lm → 0so the result follows by proposition 3.1.2. We pro
eed to prove that vol(ord f ≥ m)/Lm → 0.49



By the proof of proposition 3.1.1 we have that
vol(ord f ≥ m)/Lm =

[{ordf ≥ m}m+1]

L(m+1)n
· 1

Lm
.Sin
e {ord f ≥ m}m+1 ⊂ Wn

m+1 ≃ An(m+1)
k it has dimension ≤ n(m + 1). It follows that [{ordf ≥

m}m+1]/L(m+1)n+m ∈ F−m(Mk), hen
e it tends to zero as m → ∞.We 
on
lude this se
tion by de�ning some notions that we will need when 
omputing integrals of thiskind. To begin with, if f1, . . . , fs ∈ W(k)[X1, . . . , Xn] then
∪s

j=1{ordfi ≥ αi if i 6= j, ord fj ≥ αj + 1}is a 
losed subs
heme of {ord fj ≥ αj}s
j=1. De�ne a lo
ally 
losed subs
heme of Wn

{ord fj = αj}s
j=1 := {ord fj ≥ αj}s

j=1 \ ∪s
j=1{ord fi ≥ αi if i 6= j, ord fj ≥ αj + 1}Proposition 3.1.4. The s
heme {ordfj = αj}s

j=1 is measurable, its volume is
vol{ordfj = αj}s

j=1 = vol{ordfj ≥ αj}s
j=1

−
s∑

j=1

vol{ord fi ≥ αi if i 6= j, ord fj ≥ αj + 1}

+
∑

j,l

vol{ord fi ≥ αi if i /∈ {j, l}, ordfj ≥ αj + 1, ordfl ≥ αl + 1}...
(−1)s vol{ordfj ≥ αj + 1}s

j=1.Proof. By the same argument as in the proof of proposition 3.1.1 we have that the redu
tion of {ordfj =

αj}s
j=1 modulo VN is a 
losed subs
heme of the redu
tion of {ordfj ≥ αj}s

j=1 modulo VN , it followsthat vol{ord fj = αj}s
j=1 = vol{ord fj ≥ αj}s

j=1 − vol
(
∪s

j=1{ordfi ≥ αi if i 6= j, ord fj ≥ αj + 1}
).Again 
ounting modulo VN we see that the interse
tion of {ordfi ≥ αi if i 6= j, ord fj ≥ αj + 1}and {ord fi ≥ αi if i 6= l, ordfj ≥ αl + 1} is {ordfi ≥ αi if i /∈ {j, l}, ordfj ≥ αj + 1, ord fl ≥ αl + 1},hen
e vol

(
∪s

j=1{ordfi ≥ αi if i 6= j, ord fj ≥ αj + 1}
)

=
∑s

j=1 vol{ord fi ≥ αi if i 6= j, ord fj ≥ αj +

1}− vol
(
∪j,l{ordfi ≥ αi if i /∈ {j, l}, ordfj ≥ αj + 1, ordfl ≥ αl + 1}

). Continuing in this way the resultfollows.We are now ready to de�ne the most general sets that we will work with. For a (�nite of in�nite)subset I ⊂ Nn, m ∈ N and f ∈ W(k)[X1, . . . , Xn], let
UI,m(f) := ∪(α1,...,αn)∈I{ordXi = αi, ord f = m}n

i=1(This is a subset of Wn but not in general a subs
heme). When f is 
lear from the 
ontext we write thisas just UI,m.Proposition 3.1.5. UI,m(f) is measurable. We have volUI,m(f) =
∑

(α1,...,αn)∈I vol{ordXi = αi, ord f =

m}n
i=1, where the sum to the right is 
onvergent.Proof. If α = (α1, . . . , αn), write Uα,m := {ordXi = αi, ord f = m}n

i=1.First assume that I is �nite. Then (UI,m)N =
�∪α∈I(Uα,m)N , hen
e [(UI,m)N ] =

∑
α∈I [(Uα,m)N ].Dividing by LnN and letting N tend to in�nity proves the proposition sin
e Uα,m is measurable byproposition 3.1.4. 50



If I is in�nite, then the N -proje
tion still is a �nite disjoint union sin
e it 
an't see α > N . Morepre
isely,
[(UI,m)N ] =

∑

α:
αi≤N

[(Uα,m)N ] =
∑

α∈I

[(Uα,m)N ].Therefore
volUI,m = lim

N→∞

[(UI,m)N ]

LnN
= lim

N→∞

∑

α∈I

[(Uα,m)N ]

LnN
=
∑

α∈I

vol{ordXi = αi, ord f = m}n
i=1if this sum 
onverges, or equivalently if vol{ordXi = αi, ord f = m}n

i=1 → 0 as M := min(α1, . . . , αn) →
∞. Be
ause of proposition 3.1.4 it su�
es to show that vol{ordXi ≥ αi, ord f ≥ m}n

i=1 → 0 and this istrue if we just assume that α1 → ∞. For by the proof of proposition 3.1.1, if α1 ≥ αi and α1 ≥ m then
vol{ordXi ≥ αi, ord f ≥ m}n

i=1 = [({ordXi ≥ αi, ord f ≥ m}n
i=1)α1 ]/Lnα1and the dimension of ({ordXi ≥ αi, ord f ≥ m}n

i=1)α1 is less than or equal to α1(n − 1) so [({ordXi ≥
αi, ord f ≥ m}n

i=1)α1 ]/Lnα1 ∈ F−α1(Mk).We use this to de�ne a more general integral. Let I ⊂ Nn and let UI,m(f) have the same meaning asabove. Also, let UI := ∪(α1,...,αn)∈I{ordXi = αi}n
i=1. (This is measurable by the same argument as for

UI,m.) De�ne ∫

UI

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn :=

∑

m≥0

volUI,m(f) · L−m ∈ M̂k.Proposition 3.1.6. Let I ⊂ Nn and f ∈ W(k)[X1, . . . , Xn]. Then ∫
UI

∣∣f(X1, . . . , Xn)
∣∣dX1 . . . dXn existsand we have

∫

UI

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn =

∑

(α1,...,αn)∈I

∫

{ord Xi=αi}n
i=1

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXnProof. To prove existen
e we have to prove that volUI,m/Lm → 0 as m → ∞. This is done in the sameway as in the proof of proposition 3.1.3. The equality follows from proposition 3.1.5.Corollary 3.1.7.

∫

Wn

∣∣f(X1, . . . , Xn)
∣∣dX1 · · ·dXn =

∑

(α1,...,αn)∈Nn

∫

{ord Xi=αi}n
i=1

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn3.2 The motivi
 integral of a polynomial in one variableIn this se
tion we 
ompute the integral over W of Q(X) in W(k)[X ] in the 
ase when Q is separablemodulo V. We begin by repeating some arguments from the pre
eding se
tion in this spe
ial 
ase.Let k be a �eld of 
hara
teristi
 p and let Q = adX

d + · · ·+a1X +a0 ∈ W(k)[X ]. Let T α := {ordQ ≥
α} ⊂ W be the s
heme de�ned above, i.e., T α(A) = {a ∈ W(A) : Q(a) ≡ 0 (mod V α)} when A is a
k-algebra. We want to 
ompute volT α ∈ M̂k.Let P := k[X0, X1, . . . , XN , . . . ] and set x := (X0, X1, . . . , XN , . . . ) ∈ W(P ). Sin
e k ⊂ P we have
W(k) ⊂ W(P ) and hen
e we 
an 
ompute Q(x) in W(P ). We then get

Q(x) =
(
Q0(X0), Q1(X0, X1), . . . , QN(X0, . . . , XN ), . . .

)
∈ W(P ) (3.2)51



where QN ∈ k[X0, . . . , XN ]. Therefore T α is de�ned by the set of formulas
0 = Q0(X0)

0 = Q1(X0, X1)...
0 = Qα−1(X0, . . . , Xα−1).Hen
e

T α
N = Spec

k[X0, . . . , XN−1]

(Q0, . . . , Qα−1)
for N ≥ αand

T α
N = Spec

k[X0, . . . , XN−1]

(Q0, . . . , QN−1)
for N = 1, . . . , α.In the same way as before we now prove that volT α ∈ M̂k. If N > α then

k[X0, . . . , XN−1]

(Q0, . . . , Qα−1)
≃ k[X0, . . . , Xα−1]

(Q0, . . . , Qα−1)
⊗k k[Xα, . . .XN−1]and hen
e [T α

N ] = [T α
α ×k AN−α

k ] = [T α
α ] · LN−α ∈ K0(Schk). Therefore volT α = limN→∞[T α

N ]/LN =

[T α
α ]/Lα ∈ M̂k.We are now ready to prove an analogue of the p-adi
 Newton's lemma.Proposition 3.2.1 (Motivi
 Newton's lemma). Assume that we are in the above situation and assumealso that Q is separable modulo V, that is Q0 is separable. Let T α := {ordQ ≥ α}. If α is a positiveinteger then there is an isomorphism of k-s
hemes T α

α → T α
1 = Spec k[X0]/Q0(X0). It follows that

[T α
α ] = [T α

1 ] ∈ K0(Schk) and hen
e volT α = [T α
1 ]/Lα ∈ M̂k.Proof. Let

Ri :=
k[X0, . . . , Xi−1]

(Q0, . . . , Qi−1)
i ≥ 1.Then T α

i = Spec Ri for i = 1, . . . , α and we want to prove that Rα ≃ R1. We do this by proving that the
anoni
al homomorphism Ri → Ri+1 is an isomorphism for i ≥ 1.Let x := (X0, . . . , Xi) ∈ Wi+1

(
k[X0, . . . , Xi]

). We let x̃ := (X0, . . . , Xi−1, 0), so x = x̃ + Vi r(Xi),and then Taylor expand:
Q(x) =Q

(
x̃ + Vi r(Xi)

)

=Q(x̃) + Q′(x̃) · Vi r(Xi) + O
(
Vi r(Xi)

)2 ∈ Wi+1(Ai+1).
(3.3)Here Q(x̃) = (Q0, . . . , Qi−1, P ), where P is a polynomial in k[X0, . . . , Xi−1]. Moreover, sin
e π1Q = Q0,it follows that if Q′(x) = (Q∗

0, . . . , Q
∗
i ) then Q∗ = Q′

0. Hen
e Q′(x̃) = (Q′
0, . . . ). Finally by proposition1.4.1 (Vi r(Xi)

)2
= F i V2i

(
r(Xi)

)
= 0 ∈ Wi

(
k[X1, . . . , Xi]

). Hen
e if we write expli
itly we see that theright hand side of (3.3) is
(Q0, . . . , Qi−1, P ) + (Q′

0, . . . ) · (0, . . . , 0, Xi) =(Q0, . . . , Qi−1, P ) + (0, . . . , 0, Q′pi

0 Xi)

=(Q0, . . . , Qi−1, P + Q′pi

0 Xi).52



Sin
e the left hand side of (3.3) equals (Q0, . . . , Qi) we get the identity
Qi(X0, . . . , Xi) = P (X0, . . . , Xi−1) + Q′

0(X0)
pi · Xi (3.4)in k[X0, . . . , Xi].We shall also use the hypothesis that Q is separable modulo V. This means that Q′

0 is invertible in
R1. Let Q′−1

0 be su
h that Q′
0(X0)Q

′−1
0 (X0) = 1 + h(X0)Q0(X0) in k[X0].We now prove that Ri → Ri+1 is inje
tive. Let f(X0, . . . , Xi−1) ∈ k[X1, . . . , Xi−1]. We have to provethat if f = 0 ∈ Ri+1 then f = 0 ∈ Ri. So suppose that f = h0Q0 + · · · + hiQi where hj ∈ k[X1, . . . , Xi].By (3.4) this gives

f(X0 . . . , Xi−1) = h0 · Q0(X0) + · · · + hi−1 · Qi−1(X0, . . . , Xi−1)

+ hi ·
(
P (X0, . . . , Xi−1) + Q′

0(X0)
pi · Xi

)
.Substituting −P (X0, . . . , Xi−1) · Q′

0(X0)
−pi for Xi then gives

f(X0 . . . , Xi−1) = h∗
0 · Q0(X0) + · · · + h∗

i−1 · Qi−1(X0, . . . , Xi−1)

+ h∗
i ·
(
P (X0, . . . , Xi−1) − P (X0, . . . , Xi−1) + h∗ · Q0(X0)

)where the h∗
j and h∗ are polynomials in k[X0, . . . , Xi−1]. Hen
e f = 0 ∈ Ri and 
onsequently Ri → Ri+1is inje
tive.Finally we prove that Ri → Ri+1 is surje
tive. Identifying Ri with its image in Ri+1 it su�
es toshow that Xi ∈ Ri. Working in Ri+1, (3.4) be
omes

0 = P (X0, . . . , Xi−1) + Q′
0(X0)

pi

· Xi.Sin
e Q0 is separable we 
an write this as
Xi = −P (X0, . . . , Xi−1) · Q′

0(X0)
−pi

.and the right hand side involves only the variables X0, . . . , Xi−1 and hen
e is in Ri.We are now going to 
ompute the motivi
 integral of a polynomial in one variable. Let Q ∈ Zp[X ] beseparable modulo p. Using Newton's lemma one shows that
∫

W(Fq)

|Q(X)|pdX = 1 +
∣∣{x ∈ Fq : Q(x) ≡ 0 (p)}

∣∣ ·
(

q

q + 1
− 1

) (3.5)where Q is the redu
tion of Q modulo p and q = pk. For �xed p we are going to prove that this is truemotivi
ally.Proposition 3.2.2. If Q ∈ W(k)[X ] is separable modulo V we have that
∫

W

|Q(X)|dX = 1 + [Spec k[X0]/(Q0(X0))] ·
(

L
L + 1

− 1

)
∈ M̂k.Proof. By de�nition we have

∫

W

|Q(X)|dX =
∑

m≥0

L−m vol{ordQ(X) = m}.53



Sin
e [(ordQ(X) = m)n] = [T m
n \ T m+1

n ] = [T m
n ] − [T m+1

n ] for n > m ≥ 1 we have
vol{ordQ(X) = m} = lim

n→∞

[T m
n ] − [T m+1

n ]

Ln

=
[T 1

1 ] · (Ln−m − Ln−m−1)

Ln

=[T 1
1 ] · (L−m − L−(m+1))for m ≥ 1. For m = 0 we have vol(ordQ(X) = 0) = lim[Wn \ T 1

n ]/Ln = 1 − [T 1
1 ]/L. Therefore, with thehelp of proposition 1.2.5,

∫

W

|Q(X)|dX =1 + [T 1
1 ] ·

(
−L−1 +

∑

m≥1

L−m(L−m − L−(m+1))

)

=1 + [T 1
1 ] ·

(
∑

m≥1

L−2m −
∑

m≥0

L−2m−1

)

=1 + [T 1
1 ] ·

(
L

L + 1
− 1

)
.Note also that if Q is irredu
ible of degree k then Fp[X0]/(Q0) ≃ Fpk and so [T 1

1 ] = [Spec Fpk ].3.3 Many variablesThe theorems in this se
tion are all well known and rather trivial for ordinary integrals but for motivi
integrals they need a great deal of spa
e to prove. Throughout this se
tion, let k be a �eld of 
hara
teristi

p.A primitive 
hange of variables formulaLet aij ∈ W(k) for 1 ≤ i, j ≤ n be su
h that the determinant of the matrix M := (aij) is in W(k)×.Proposition 3.3.1. Given f ∈ W(k)[X1, . . . , Xn], de�ne g(X1, . . . , Xn) := f

(
(X1, . . . , Xn)M

). Thenfor every α ∈ N,
vol(ord g(X1, . . . , Xn) ≥ α) = vol(ord f(X1, . . . , Xn) ≥ α) ∈ M̂kProof. For every k-algebra A we have a map

{a ∈ Wn(A) : f(a1, . . . , an) ≡ 0 (mod Vα)} → {a ∈ Wn(A) : g(a1, . . . , an) ≡ 0 (mod Vα)},given by (a1, . . . , an) 7→ (a1, . . . , an)M−1. This is a bije
tion, for it is well de�ned sin
e g(aM−1) =
f(aM−1M) = f(a) = 0, and it has a well de�ned inverse a 7→ aM . Hen
e {ordg(X1, . . . , Xn) ≥ α}and {ord f(X1, . . . , Xn) ≥ α} are isomorphi
 as subs
hemes of Wn so their restri
tions modulo VN areisomorphi
 for every N , hen
e they have the same volume.Proposition 3.3.2. We have the following equality:

∫

Wn

∣∣f(X1, . . . , Xn)
∣∣dX1 · · · dXn =

∫

Wn

|g(X1, . . . , Xn)|dX1 · · ·dXn.Proof. From proposition 3.3.1 it follows that vol{ordf = α} = vol{ord g = α}, hen
e the result.54



Separation of variablesThe main result of this se
tion is theorem 3.3.6 and its 
onsequen
e theorem 3.3.7. However, to provetheorem 3.3.6 requires very 
ompli
ated notation. We therefore just prove it in a spe
ial 
ase, namelyproposition 3.3.5.Lemma 3.3.3. Let P, Q ∈ W(k)[X ]. For µ, ν ∈ N we have
vol
{
ordP (X) = µ ∧ ordQ(Y ) = ν

}
= vol

{
ordP (X) = µ

}
· vol

{
ordQ(Y ) = ν

}
∈ M̂k.Proof. Let x = (X0, . . . , Xm) ∈ Wm+1

(
k[X0, . . . , Xm]

). Then there are polynomials Pi, Qi ∈ k[X0, . . . , Xm]with the property that
P (x) =

(
P0(X0), . . . , Pm(X0, . . . , Xm)

)

Q(x) =
(
Q0(X0), . . . , Qm(X0, . . . , Xm)

)
∈ Wm+1

(
k[X0, . . . , Xm]

)Let T µ,ν := {ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν}. Then T µ,ν is de�ned by the set of formulas
Pi(X0, . . . , Xi) =0 i = 0, . . . , µ − 1

Qj(Y0, . . . , Yj) =0 j = 0, . . . , ν − 1.Also, let Uµ := {ordP (X) ≥ µ} and V ν := {ordQ(Y ) ≥ ν}. Then for n ≥ µ, ν we have
T µ,ν

n =Spec
k[X0, . . . , Xn−1, Y0, . . . , Yn−1]

(P0, . . . , Pµ−1, Q0, . . . , Qν−1)

=Spec
k[X0, . . . , Xn−1]

(P0, . . . , Pµ−1)
×k Spec

k[Y0, . . . , Yn−1]

(Q0, . . . , Qν−1)

=Uµ
n ×k V ν

nand so [T µ,ν
n ] = [Uµ

n ] · [V ν
n ] ∈ K0(Schk). From this we get

vol
{
ordP (X) =µ ∧ ordQ(Y ) = ν

}

= lim
n→∞

1

L2n

(
[T µ,ν

n ] − [T µ+1,ν
n ] − [T µ,ν+1

n ] + [T µ+1,ν+1
n ]

)

= lim
n→∞

[Uµ
n ] − [Uµ+1

n ]

Ln
· [V ν

n ] − [V ν+1
n ]

Ln

= vol
{
ordP (X) = µ

}
· vol

{
ordQ(Y ) = ν

}
.Lemma 3.3.4. Let P, Q ∈ W(k)[X ]. Then for ξ ∈ N,

vol
{
ordP (X)Q(Y ) = ξ

}
=

∑

µ+ν=ξ

vol
{
ordP (X) = µ ∧ ordQ(Y ) = ν

}
.Proof. We are going to prove that

{ordP (X)Q(Y ) ≥ ξ} =
⋃

µ+ν=ξ

{ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν} ⊂ W2. (3.6)
55



It then follows that
{ordP (X)Q(Y ) = ξ}

= {ordP (X)Q(Y ) ≥ ξ} \ {ordP (X)Q(Y ) ≥ ξ + 1}
=

⋃

µ+ν=ξ

{ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν} \
⋃

µ+ν=ξ+1

{ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν}

=
�⋃

µ+ν=ξ
{ordP (X) = µ ∧ ordQ(Y ) = ν}.So the two sides de�ne the same subs
heme of W2. Moreover, the volume of this subs
heme equals∑

µ+ν=ξ vol{ordP (X) = µ ∧ ordQ(Y ) = ν} be
ause the union is disjoint.To prove (3.6) we use the same method as in the proof of the pre
eding lemma: Let x = (X0, . . . , Xm, . . . )and y = (Y0, . . . , Ym, . . . ) ∈ W
(
k[Xm, Ym]m∈N

). We then have
P (x) =

(
P0(X0), . . . , Pm(X0, . . . , Xm), . . .

)

Q(y) =
(
Q0(Y0), . . . , Qm(Y0, . . . , Ym), . . .

)
∈ W

(
k[Xm, Ym]m∈N

)and
P (x)Q(y) =

(
S0(X0, Y0), . . . , Sm(X0, . . . , Xm, Y0, . . . , Ym), . . .

)
∈ W

(
k[Xm, Ym]m∈N

)
.Therefore {ordP (X)Q(Y ) ≥ ξ} is de�ned by the set of formulas Si(X0, . . . , Xi, Y0, . . . , Yi) = 0 for

i = 0, . . . , ξ − 1. Also ∪µ+ν=ξ{ordP (X) ≥ µ ∧ ordQ(Y ) ≥ ν} is de�ned by Pi(X1, . . . , Xi) = 0 and
Qj(Y0, . . . , Yj) = 0 for i = 0, . . . , µ − 1 and ν = 0, . . . , ν − 1 for some µ, ν with µ + ν = ξ. Now if a and
b ∈ W(A) ful�lls Pi(a) = 0 for i = 0, . . . , µ − 1 and Qj(b) = 0 for j = 0, . . . , ν − 1, where µ + ν = ξ,then by 
orollary 1.4.2 we have

P (a)Q(b) = Vµ(Pµ(a), . . . ) · Vν(Qν(b), . . . )

= Vξ(Pµ(a)pν

Qν(b)pµ

, . . . ) ∈ W(A)hen
e S0(a,b) = · · · = Sξ−1(a,b) = 0. If instead µ + ν < ξ and Pµ(a) 6= 0 and Qν(b) 6= 0 then
Sµ+ν(a,b) 6= 0 and we have µ + ν ≤ ξ − 1 so the 
onverse also holds.The next proposition follows from these two lemmas.Proposition 3.3.5. Let P, Q ∈ W(k)[X ]. Then for ξ ∈ N,

vol{ordP (X)Q(Y ) = ξ} =
∑

µ+ν=ξ

vol
{
ordP (X) = µ

}
· vol

{
ordQ(Y ) = ν

} (3.7)We pro
eed to give the more general versions of proposition 3.3.5. Let P ∈ W(k)[X1, . . . , Xn] and
Q ∈ W(k)[Y1, . . . , Ym]. Let I ⊂ Nn and J ⊂ Nm. De�ne, in the same way as before,

UI,µ(P ) := ∪α∈I{ordXi = αi, ordP (X1, . . . , Xn) = µ}n
i=1 ⊂ Wn

UJ,ν(Q) := ∪β∈J{ordYi = βi, ordQ(Y1, . . . , Ym) = ν}m
i=1 ⊂ Wm

UI×J,ξ(PQ) := ∪(α,β)∈I×J{ordXi = αi, ordYj = βj , ordP (X1, . . . , Xn) · Q(Y1, . . . , Ym) = ξ} ⊂ Wn+m.De�ne UI , UJ and UI×J in the same way but with the restri
tions of the orders of P and Q removed.With this notation we have the following theorem. 56



Theorem 3.3.6. For every ξ ∈ N we have
volUI×J,ξ(PQ) =

∑

µ+ν=ξ

volUI,µ(P ) · volUJ,ν(Q).In parti
ular, when I = J we get
volUI,ξ(PQ) =

∑

µ+ν=ξ

volUI,µ(P ) · volUI,ν(Q).The proof is identi
al to that of the spe
ial 
ase given in proposition 3.3.6 but the notation is mu
hmore 
ompli
ated. We omit it.Theorem 3.3.7 (Separation of variables). For P ∈ W(k)[X1, . . . , Xn] and Q ∈ W(k)[Y1, . . . , Ym] wehave
∫

UI×J

∣∣P (X1, . . . , Xn)Q(Y1, . . . , Ym)
∣∣dX1 · · ·dXndY1 · · ·dYm

=

∫

UI

∣∣P (X1, . . . , Xn)
∣∣dX1 · · · dXn ·

∫

UJ

∣∣Q(Y1, . . . , Ym)
∣∣dY1 · · ·Ym.Proof. Theorem 3.3.6 gives that

∫

UI×J

|P (X)Q(Y )|dXdY =

=
∑

ξ≥0

vol
(
UI×J,ξ(PQ)

)
· L−ξ

=
∑

ξ≥0

(
∑

µ+ν=ξ

volUI,µ(P ) · volUJ,ν(Q)

)
· L−ξ

=

(
∑

µ≥0

volUI,µ(P ) · L−µ

)
·
(
∑

ν≥0

volUJ,ν(Q)) · L−ν

)

=

∫

UI

|P (X)|dX ·
∫

UJ

|Q(Y )|dY.We will need the following.Lemma 3.3.8 (Ultrametri
 inequality). If A is a ring, let a and b ∈ W(A) be su
h that a = Vi(a0, a1, . . . )where a0 ∈ A× and b = Vi(0, b1, . . . ). Then a− b = Vi(a0, a1 − b1, . . . ).Proof. Be
ause V is additive we have a − b = Vi
(
(a0, a1, . . . ) − (0, b1, . . . )

) so the lemma follows fromthe shape of the polynomials de�ning addition.Proposition 3.3.9. Let Q ∈ W(k)[X1, . . . , Xn]. Fix 1 ≤ i, j ≤ n. Let I ⊂ Nn be su
h that αi < αj forevery α = (α1, . . . , αn) ∈ I. Then
∫

UI

∣∣Q(X1, . . . , Xn) · Xi

∣∣dX1 · · · dXn =

∫

UI

∣∣Q(X1, . . . , Xn) · (Xi − Xj)
∣∣dX1 · · · dXn.57



Proof. This follows if we 
an prove that
volUI,ξ

(
Q(X1, . . . , Xn) · Xi

)
= volUI,ξ

(
Q(X1, . . . , Xn) · (Xi − Xj)

) (3.8)for every ξ ∈ N.By theorem 3.3.6 we have
volUI,ξ

(
Q(X1, . . . , Xn) · Xi

)
=

∑

µ+ν=ξ

volUI,µ

(
Q(X1, . . . , Xn)

)
· volUI,ν(Xi).Now (a1, . . . , an) is an A-point on UI,ν(Xi) if and only if it ful�lls the 
onditions for UI and ai =

Vν(ai0, . . . ) where ai0 ∈ A×. By lemma 3.3.8 this is equivalent to that ai − aj = Vν(ai0, . . . ) andthat (a1, . . . , an) ful�lls the 
onditions for UI , hen
e UI,ν(Xi) = UI,ν(Xi − Xj). Therefore we have
volUI,ν(Xi) = volUI,ν(Xi − Xj) so (3.8) follows.3.4 Redu
ible polynomialsWe are now ready to generalize the p-adi
 
omputations from [Sko℄ to the motivi
 
ase.In [Sko℄ the author sets out to 
ompute the measure of the set of points (a1, . . . , an) ∈ Zn

p su
hthat Xn + a1X
n−1 + · · · + an splits 
ompletely over Zp. He starts by making the 
hange of variables

ai = (−1)iσi(b1, . . . , bn), where the σi are the elementary symmetri
 polynomials, to get the integral
1

n!

∫

Zn
p

∏

1≤i<j≤n

|bi − bj |pdb1 . . . dbn.He then gives a re
ursive way to 
ompute this integral. We are going to show that this re
ursion alsoworks on the integral ∫

Wn

∣∣ ∏

1≤i<j≤n

(Xi − Xj)
∣∣dX1 . . . dXn ∈ M̂Fp .We have already proved that this integral exists (proposition 3.1.6). The re
ursive method will allow usto 
ompute an expli
it formula for it for any given n. In parti
ular this will show that it a
tually is arational fun
tion in L.Observe that we have not proved that the fun
tor of polynomials that split 
ompletely is motivi
. Todo that would require a motivi
 
hange of variables formula.NotationDe�ne

V n :=
1

n!

∫

Wn

|∆n|dX1 . . . dXn ∈ M̂Fp ⊗Z Qwhere ∆n :=
∏

1≤i<j≤n(Xi − Xj). The reason why we tensor M̂Fp with Q is to make it possible for usto divide by n!. We 
ould avoid this but the notation would then be even more messy than it already is.For an l-tuple α of positive integers with sum n, that is α = (n1, . . . , nl) where n1 + · · · + nl = n, let
α! := n1! · · ·nl!. We will write

Uα := {ordp X1 = · · · = ordp Xn1 < · · · < ordp Xn−nl+1 = · · · = ordp Xn} ⊂ Wn.By this we mean ⋃

(β1,...,βn)∈I

{ordXi = βi}n
i=158



where I := {(β1, . . . , βn) ∈ Nn : β1 = · · · = βn1 < · · · < βn−nl+1 = · · · = βn}.De�ne
V n

α (s, t) :=
1

α!

∫

Uα

∣∣∣∣
( n∏

i=1

Xi

)s

Xt
n∆n

∣∣∣∣dX1 . . . dXn.De�ne V n(s, t) in the same way; the same integrand but integrating over Wn. We then have V n =
V n(0, 0) and we will also write V n

α := V n
α (0, 0).Des
ription of the re
ursionPartitioning Wn and using that ∆n is symmetri
 together with the 
hange of variables formula, propo-sition 3.3.2, we see that for every s ∈ N, V n(s, 0) =

∑
α V n

α (s, 0) where the sum is taken over all tuplesof positive integers whi
h sum to n.On the other hand, using the 
hange of variables Yi = Xi − Xn, i = 1, . . . , n − 1 and Yn = Xn, itfollows from proposition 3.3.2 that
V n =

1

n!

∫

Wn

∣∣∣∣
(n−1∏

i=1

Yi

)
∆n−1(Y1, . . . , Yn−1)

∣∣∣∣dY1 . . . dYn.By theorem 3.3.7 this equals 1
nV n−1(1, 0) ·

∫
W

∣∣1
∣∣dYn Sin
e the se
ond integral is equal to 1 we �nd that

V n = 1
nV n−1(1, 0).Together the above gives

∑tuples α with sum n

V n
α =

1

n

∑tuples β with sum n−1

V n−1
β (1, 0). (3.9)If α = (n1, . . . , nl) with n1 + · · ·+ nl = n, let (α, m) = (n1, . . . , nl, m). The problem now 
omes down toproving the two formulas

V n+m
(α,m)(s, t) = L−(ms+t+m(m+1)/2)V n

α (s + m, sm + t + m(m + 1)/2)V m
(m)(s, t) (3.10)and

V n
(n)(s, t) =

1 − L−n(n+1)/2

1 − L−(sn+t+n(n+1)/2)
V n

(n). (3.11)Using them, (3.9) takes the form V n
(n) = rational fun
tion in L, V 1

(1), . . . , V
n−1
(n−1). Sin
e V 1

(1) = 1 thisre
ursively gives us a formula for V n
(n), hen
e, again using (3.10) and (3.11), for Vα. Sin
e Vn =

∑
α V n

αwe are through.Proofs of (3.10) and (3.11)To prove (3.10) and (3.11) we need a lemma:Lemma 3.4.1. Let ∆ ∈ Zp[X1, . . . , Xn] be a form of degree d. For every pair of non-negative integers
m and k we have

vol(ord∆ = m ∧ ordXi = k, i = 1, . . . , n) = L−kn vol(ord ∆ = m − dk ∧ ordXi = 0, i = 1, . . . , n).
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Proof. By proposition 3.1.4 the left hand side equals
vol(ord∆ ≥ m ∧ ordXi ≥ k)

−
n∑

i=1

vol(ord∆ ≥ m ∧ ordXj ≥ k, j 6= i ∧ ordXi ≥ k + 1)+

· · · + (−1)n vol(ord ∆ ≥ m ∧ ordXi ≥ k + 1)

−
(
vol(ord∆ ≥ m + 1 ∧ ordXi ≥ k)

−
n∑

i=1

vol(ord∆ ≥ m + 1 ∧ ordXj ≥ k, j 6= i ∧ ordXi ≥ k + 1)+

· · · + (−1)n vol(ord∆ ≥ m + 1 ∧ ordXi ≥ k + 1)
)so it su�
es to show that, for ki ∈ {k, k + 1},

vol(ord ∆ ≥ m ∧ ordXi ≥ ki) = L−kn vol(ord ∆ ≥ m − dk ∧ ordXi ≥ ki − k).We do this for the spe
ial 
ase ki = k, i = 1, . . . , n. The general 
ase is similar but the indexing is evenmore 
ompli
ated.For 1 ≤ i ≤ n, let Xi = (Xi0, . . . , XiN ) ∈ WN+1

(
Fp[Xi0, . . . , XiN ]ni=1

). We then have
∆(X1, . . . , Xn) =

(
∆0(X•0), . . . , ∆N (X•0, . . . , X•N)

)where ∆j(X•0, . . . , X•j) := ∆j(X10, . . . , X1j , . . . , Xn0, . . . , Xnj) ∈ Fp[Xi0, . . . XiN ]ni=1 for j = 0, . . . , N .Let
TN+1 := Spec

Fp[Xi0, . . . , XiN ]ni=1(
∆0(X•0), . . . , ∆m−dk(X•0, . . . , X•m−dk)

) .Then
vol(ord∆ ≥ m − dk ∧ ordXi ≥ 0) = lim

N→∞

[TN+1]

Ln(N+1)
.On the other hand, let 0 be an n-tuple of zeros and set

SN+1 := Spec
Fp[Xik, . . . , XiN ]ni=1(

∆0(0), . . . , ∆m(0, . . . ,0, X•k, . . . , X•m)
) .Then

vol(ord∆ ≥ m ∧ ordXi ≥ k) = lim
N→∞

[SN+1]

Ln(N+1)
.Now, let A be an Fp-algebra and let a1, . . . ,an ∈ W(A). Corollary 1.4.4 says that

∆(V a1, . . . , V an) = F d−1V d∆(a1, . . . ,an).In WN+1

(
Fp[Xi0, . . . , XiN ]ni=1

) we therefore have
∆(V kX1, . . . , V

kXn) = F (d−1)kV dk∆(X1, . . . , Xn).

60



(We may assume that N is mu
h bigger thenm.) This gives the following equalities in Fp[Xi0, . . . , XiN ]ni=1:
∆0(0) = 0

∆1(0,0) = 0...
∆kd−1(0, . . . ,0, X•0, . . . , X•kd−1−k) = 0

∆kd(0, . . . ,0, X•0, . . . , X•kd−k) =
(
∆0(X•0)

)p(d−1)k...
∆m(0, . . . ,0, X•0, . . . , X•m−k) =

(
∆m−dk(X•0, . . . , X•m−dk)

)p(d−1)kSo the 
hange of variables Xij 7→ Xi,j−k gives an isomorphism
Fp[Xik, . . . , XiN ]ni=1(

∆0(0), . . . , ∆m(0, . . . ,0, X•k, . . . , X•m)
) → Fp[Xi0, . . . , Xi,N−k]ni=1(

∆0(X•0), . . . , ∆m−dk(X•0, . . . , X•m−dk)
)p(d−1)kand so we get [SN+1] · Lnk = [TN+1] and hen
e

vol(ord∆ ≥ m − dk ∧ ordXi ≥ 0) = lim
N→∞

[TN+1]

Ln(N+1)

= lim
N→∞

[SN+1] · Lnk

Ln(N+1)

=Lnk lim
N→∞

[SN+1]

Ln(N+1)

=Lnk vol(ord∆ ≥ m ∧ ordXi ≥ k).Both (3.10) and (3.11) will be 
onsequen
es of the following:Corollary 3.4.2. Let s, t and k be non-negative integers and set Vk = {ordXi = k, i = 1, . . . , n}. Let
e = e(n, s, t) = ns + t + n(n + 1)/2. Then

∫

Vk

∣∣∣∣
( n∏

i=1

Xi

)s

Xt
n∆n

∣∣∣∣dX1 . . . dXn = L−ek

∫

V0

|∆n|dX1 . . . dXnProof. We have
∫

Vk

∣∣∣∣
( n∏

i=1

Xi

)s

Xt
n∆n

∣∣∣∣dX1 · · · dXn =
∑

ξ≥0

L−ξ vol

(
ord
( n∏

i=1

Xi

)s

Xt
n∆n = ξ ∧ ordXi = k

)

=
∑

ξ≥0

L−ξ vol(ord∆n = ξ − (ns + t)k ∧ ordXi = k).By the lemma this equals
∑

ξ≥0

L−ξL−kn vol
(
ord∆n = ξ − (ns + t)k − n(n−1)

2 k ∧ ordXi = 0
)61



Let ξ′ = ξ − (ns + t)k − n(n−1)
2 k. Sin
e ord∆n ≥ 0, we have vol(ord∆n = ξ′ ∧ ordXi = 0) = 0 when

ξ′ < 0 so our expression be
omes
L−(ns+t)k− n(n−1)

2 kL−nk
∑

ξ′≥0

L−ξ′

vol(ord ∆n = ξ′ ∧ ordXi = 0)so we are through.Now (3.11) is immediate.Proof of (3.11). Using the 
orollary we get
V n

(n)(s, t) =
∑

ξ≥0

∫

Vξ

∣∣∣∣
( n∏

i=1

Xi

)s

Xt
n∆n

∣∣∣∣dX1 . . . dXn

3.4.2
=
∑

ξ≥0

L−e(n,s,t)ξ

∫

V0

|∆n|dX1 . . . dXn

=
1

1 − L−e(n,s,t)

∫

V0

|∆n|dX1 . . . dXnand in parti
ular, putting s = t = 0 so that e(n, s, t) = n(n + 1)/2,
V n

(n) =
1

1 − L−n(n+1)/2

∫

V0

|∆n|dX1 . . . dXn.So (3.11) follows by putting these two equations together.Finally we prove (3.10):Proof of (3.10). Let α be a tuple of positive integers with sum n, so (α, m) is a tuple with sum n + m.Then
V n+m

(α,m)(s, t) =
1

α!m!

∫

U(α,m)

∣∣∣∣
( ∏

1≤i≤n+m

Xi

)s

Xt
n+m∆n+m

∣∣∣∣dX1 . . . dXn+mNow by proposition 3.3.9 we may repla
e Xi −Xj with Xi for i, j su
h that 1 ≤ i ≤ n < j ≤ n + m. Put
∆′

m =
∏

n<i<j≤n+m(Xi − Xj). Then
V n+m

(α,m)(s, t) =
1

α!m!

∫

U(α,m)

∣∣∣∣
( ∏

1≤i≤n

Xi

)s+m

∆n

( ∏

n<i≤n+m

Xi

)s

Xt
n+m∆′

m

∣∣∣∣dX1 . . . dXm+n. (3.12)We write this as
V n+m

(α,m)(s, t) =
1

α!m!

∑

k≥0

∫
U(α,m)

ord Xn=k

|I|dX1 . . . dXm+n (3.13)where the integrand I :=
(∏

1≤i≤n Xi

)s+m

∆n

(∏
n<i≤n+m Xi

)s

Xt
n+m∆′

m is the same as in (3.12). Wetake 
are of ea
h term in this sum separately. For every k ∈ N, theorem 3.3.7 gives that
1

α!m!

∫
U(α,m)

ord Xn=k

|I|dX1 . . . dXm+n

=

(
1

α!

∫

Uα
ord Xn=k

∣∣∣∣
( n∏

i=1

Xi

)s+m

∆n

∣∣∣∣dX1 . . . dXm

)
·
(

1

m!

∫

k<|Xi|=|Xj |

∣∣∣∣
( n+m∏

i=n+1

Xi

)s

Xt
n+m∆′

m

∣∣∣∣dXn+1 . . . dXn+m

)
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We �rst take 
are of the se
ond fa
tor in this produ
t. For every k ∈ N we use 
orollary 3.4.2 in thefollowing 
omputation:
1

m!

∫

k<|Xi|=|Xj|

∣∣∣∣
( m∏

i=1

Xi

)s

Xt
m∆m

∣∣∣∣dX1 . . . dXm

=
1

m!

∞∑

ξ=k+1

∫

Vξ

∣∣∣∣
( m∏

i=1

Xi

)s

Xt
m∆m

∣∣∣∣dX1 . . . dXm

3.4.2
=

1

m!

∞∑

ξ=k+1

L−e(m,s,t)ξ

∫

V0

|∆m|dX1 . . . dXm

=
1

m!
L−e(m,s,t)(k+1)

∞∑

ξ=0

L−e(m,s,t)ξ

∫

V0

|∆m|dX1 . . . dXm

3.4.2
= L−e(m,s,t)(k+1) 1

m!

∫

0≤|Xi|=|Xj |

∣∣∣∣
( m∏

i=1

Xs
i

)
Xt

n∆m

∣∣∣∣dX1 . . . dXm

= L−e(m,s,t)(k+1)V m
(m)(s, t).Putting this into equation (3.13) gives

V n+m
(α,m)(s, t) = V m

(m)(s, t)L
−e(m,s,t)

∑

k≥0

(
1

α!

∫

Uα
ord Xn=k

∣∣∣∣
n∏

i=1

Xs+m
i ∆n

∣∣∣∣dX1 . . . dXn

)
L−e(m,s,t)k.We 
ompute the sum in this expression, with e := e(m, s, t).

∑

k≥0

(
1

α!

∫

Uα
ord Xn=k

∣∣∣∣
n∏

i=1

Xs+m
i ∆n

∣∣∣∣dX1 . . . dXn

)
L−ek

=
1

α!

∑

k≥0

∑

ξ≥0

vol

(
ord

( n∏

i=1

Xs+m
i

)
∆n = ξ ∧ Uα ∧ ordXn = k

)
L−ξL−ek

=
1

α!

∑

k≥0

∑

ξ≥0

vol

(
ord

( n∏

i=1

Xs+m
i

)
Xe

n∆n = ξ + ek ∧ Uα ∧ ordXn = k

)
L−(ξ+ek)

=
1

α!

∑

τ≥0

vol

(
ord

( n∏

i=1

Xs+m
i

)
Xe

n∆n = τ ∧ Uα

)
L−τ

=Vα(s + m, e).Therefore we �nally get
V n+m

(α,m)(s, t) = L−eV m
(m)(s, t)V

n
α

(
s + m, e(m, s, t)

)
.
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