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Let I be a monomial ideal in a polynomial ring A = k[x1, · · · , xn] over
a field k of characteristic 0 and m be the graded maximal ideal of A. An
explicit geometric description of the structure of the module TA/k(I) of k-
derivations of A preserving I is given, building on [1]. If ∇A denotes the
A-algebra generated by the operators x1∂x1

, ..., xn∂xn , we note that any ∇A-
submodule of A, which is the same as a monomial ideal, is cyclic. We show
that TA/k(I) preserves the integral closure of a monomial ideal and also,
in the two variables case, that it preserves the multiplier ideals of I. Let
∆A(I) denote the A-algebra generated by TA/k(I). We study the problem
of finding minimal sets of monomial generators of the ∆A(I)-module I, and
determine the canonical cyclic generators of I. If I is m-primary and satisfies
a certain condition, we prove l∆A(I)(A/I l) = dimk(A/I l).
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On the Module of Derivations Preserving a Monomial Ideal

Yohannes Tadesse

1 Introduction

Differential operators are fundamental tools in many areas of mathematics.
Unfortunately, their use in commutative algebra has often been ineffective
due to the difficulty of computing rings of differential operators in general.
Different attempts have been made remedy this situation [1,4,5,9,10,16,17,
19]. In this thesis we will take one small step in the study of such applications
to monomial ideal theory.

Throughout this thesis k denotes a field of characteristic 0 and A is the
polynomial ring k[x1, . . . , xn]. The ring DA of differential operators on A,
the Weyl Algebra, is

DA = ∪∞
l=0Dl

A,

where D0
A

= A and for l ≥ 1,

Dl
A = {δ ∈ Endk(A) | [δ,D0

A] ∈ Dl−1
A

}

where for δ1, δ2 ∈ DA, [δ1, δ2] = δ1δ2 − δ2δ1 is the commutator. The set of
all k-linear derivations on A is

TA/k = {δ ∈ Endk(A) | δ(ab) = aδ(b) + bδ(a); ∀a, b ∈ A}.

This is clearly an A-submodule of DA which moreover is a Lie algebra. For
an ideal I of A, the module of I-preserving k-derivations is

TA/k(I) = {δ ∈ TA/k | δ(I) ⊆ I}.

This is also a Lie algebra. The subalgebra of DA generated by A and TA/k(I)
is denoted by ∆A/k(I). This is a subalgebra of the idealizer DA(I) = {δ ∈
DA | δ(I) ⊆ I} of I. Put ∇xj

= xj∂xj
and let ∇A ⊂ DA be the A-subalgebra

generated by the ∇xj
, j = 1, ..., n.

We can now outline the content of this thesis. In section 2 we recall some gen-
eralities concerning the rings DA and ∆A/k(I). In Section 3, we consider the
module of derivations preserving a monomial ideal I of A. The main result of
P. Brumatti and A. Simis [1] is a precise description of TA/k(I). It states that
a derivation δ =

∑n
j=1 fj∂xj

of A preserves I if and only if fj ∈ [I : [I : xj]]
for all j = 1, ..., n. We refine their result by describing the ideals [I : [I : xj]]
in a geometric way as follows. Let Hj be the coordinate hyperplane xj = 0
in the real space Rn and ej = (0, ..., 0, 1, 0, ..., 0) be the standard basis ele-
ment of Rn. Let I be a monomial ideal of A having {Xα1 , ...,Xαt} as its
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1 Introduction

unique minimal set of monomial generators where we write Xαi for a mono-
mial xai1

1 ...xain
n , i = 1, ..., t, and put exp(I) = {α ∈ Zn

≥0 | Xα ∈ I}. Then we
prove:

(1) If Hj ∩ exp(I) = ∅, then [I : [I : xj ]] = (xj), for j = 1, ..., n.

(2) If Hj ∩ exp(I) 6= ∅, then [I : [I : xj]] = (xj) + Ixj
, where j = 1, ..., n

and

Ixj
:=

t
⋂

i=1

(Xαi−aijej) ∩ ({Xαl−aljej : alj < aij}t
l=1)

Xαi−aijej
.

(3)

TA/k(I) = (∇x1
, ...,∇xn) +

∑

Ixj
∂xj

where the sum runs through all j = 1, ..., n for which Hj ∩ exp(I) 6= ∅.

Note that Hj ∩ exp(I) = ∅ if and only if I = xjI
′ for some monomial ideal

I ′. This description of TA/k(I) is basic to all our results.

For a (monomial) ideal I in A, Ī denotes the integral closure and Ĩ the
Ratliff-Rush closure of I. For a rational number r > 0 let I(r · I) denotes
the multiplier ideal of I (see section 4 for the precise definitions). In section
4 we prove the following inclusions for monomial ideals:

(1) TA/k(I) ⊆ TA/k(I l) for all l ∈ Z>0 where equality holds if I = [I l :

I l−1],

(2) TA/k(I) ⊆ TA/k(Ĩ),

(3) TA/k(I) ⊆ TA/k(Ī),

(4) TA/k(I) ⊆ TA/k(I(r · I)).

Here the inclusions in (1) and (2) are elementary and the argument applies
to any ideal, while (3) can be proven using the blow-up of I [10], moreover,
a proof of (4) is indicated in [loc. cit]. Here a simple and direct proof of (3)
is given for monomial ideals. The inclusion (4) is proved in the two vari-
able case A = k[x, y]. The proof, which is based on Howald’s description of
I(r · I) in [6], is perhaps the most technical part of the thesis.

Section 5 deals with differential reductions of a monomial ideal I, that is
an ideal J contained in I such that ∆A(I) · J = I. Alternatively, we are
looking for generators of I as ∆A/k(I)-module. We are in particular inter-
ested in minimal differential reductions, i.e. a minimal set of generators.
We note that monomial ideals, which are the same as ∇A-modules, are
always cyclic; this is surely known, but we have included a proof for the

6



2 On the Ring of Differential Operators

lack of suitable reference. A procedure for computing the unique minimal
monomial differential reduction of I is given. Assume that J is the minimal
monomial differential reduction of I generated by the unique set of mono-
mials {Xα1 , ...,Xαt}. Following from the result in section 3, we prove that
any minimal differential reduction of I is a principal ideal generated by a
polynomial of the form,

f(X) =

t
∑

i=1

kiX
αi where k1, ..., kt ∈ k \ {0}.

Note that any cyclic generator f of the ∆A(I)-module I will have at least t
non-zero monomial terms.

Denote the graded maximal ideal of A by m. Section 6 deals with the
length of the ∆A(I)-module A/I l where I is an m-primary monomial ideal.
It is easy to see that

l∆A(I)(A/I l) ≤ dimk(A/I l).

We prove that equality holds if xi /∈ Ixj
for all i, j = 1, ..., n. Moreover, if

I = m
d for an integer d > 0, then

l∆A(m)(A/I l) = dl,

hence in this case we do not get equality.

2 On the Ring of Differential Operators

Definitions and properties stated in this section can be found in e.g. [9,12].

2.1 Definition and Properties of DA

Let k be a commutative domain containing the field Q of rational numbers
and A be a commutative k-algebra of finite type. Every element a ∈ A
defines a k-linear endomorphism φa : A → A by φa(x) = ax. For any
δ ∈ Endk(A), we write aδ and δa for φaδ and δφa respectively. The ring DA

of differential operators on A is defined by

DA = ∪∞
l=0Dl

A,

where D0
A = A and for l ≥ 1, define

Dl
A = {δ ∈ Endk(A) | [δ,D0

A] ∈ Dl−1
A }

where for δ1, δ2 ∈ DA, [δ1, δ2] = δ1δ2 − δ2δ1 is the usual commutator. This
definition gives the structure of a filtered ring, since

Dl
A ⊆ Dl+1

A , and Dl
ADr

A ⊆ Dl+r
A for all l, r ≥ 0.

7



2 On the Ring of Differential Operators

The order of an element δ ∈ DA is the least non-negative integer l such that
δ ∈ Dl

A. Clearly DA is an A-module with the action defined in a natural
way. The set of all k-linear derivations on A is defined by

TA/k = {δ ∈ Endk(A) | δ(ab) = aδ(b) + bδ(a); ∀a, b ∈ A}.

This too is an A-submodule of DA, for if δ ∈ TA/k and a ∈ A, then [δ, a] =
δ(a). It is also a Lie-algebra with the Lie bracket as the above commutator.

For an ideal I of A, the set of I-preserving k-derivations is

TA/k(I) = {δ ∈ TA/k | δ(I) ⊆ I}.

This is a submodule of TA/k and we have I · TA/k ⊆ TA/k(I). The idealizer
of I is the subalgebra DA(I) = {δ ∈ DA | δ(I) ⊆ I} ⊆ DA. The subalgebra
of DA generated by A and TA/k(I) is denoted by ∆A(I). The filtration of
DA induces a filtration on ∆A(I) and DA(I):

∆l
A(I) = Dl

A ∩ ∆A(I) ⊆ Dl
A(I) = Dl

A ∩ DA(I) ⊆ Dl
A.

2.2 The Ring of Differential Operators on A = k[x1, ..., xn]

In this sub-section we recall few properties of terms defined above when
A = A = k[x1, ..., xn]. Then DA is the Weyl Algebra, that is the free
associative algebra

k < x1, x2, ..., xn, ∂x1
, ..., ∂xn >

modulo the relations xixj−xjxi = ∂xi
∂xj

−∂xj
∂xi

= 0 and ∂xi
xj−xj∂xi

= δij

where δij is the Kronecker delta and we write ∂xj
in place of ∂

∂xj
. For

α = (a1, a2, ..., an) ∈ Zn
≥0, denote the differential operator ∂a1

∂x
a1
1

∂a2

∂x
a2
2

... ∂an

∂xan
n

simply by ∂α. The non-commutative k-algebra DA has the k-basis

{Xα∂β | β, α ∈ Zn
≥0}.

It follows that DA is provided with a Zn
≥0-grading, where the degree of an

operator Xβ∂α is β − α. It also follows that TA/k
∼= ⊕n

j=1A∂xj
is a free

A-submodule and that the k-algebra DA is generated by A and TA/k.
If I is an ideal and B = A/I, then we have an isomorphism

TB/k
∼= TA/k(I)/I · TA/k,

see e.g. [1, 17]. The idealizer DA(I) is the largest subalgebra of DA con-
taining I · DA as a two sided ideal, and we have an isomorphism DB

∼=
DA(I)/I · DA, see e.g. [16, Theorem 1.6].

Let I = (Xα1 , ...,Xαt) be a monomial ideal. In [19], the following asser-
tions are proven:
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3 The Module of Derivations Preserving a Monomial Ideal

(1) ∩t
i=1DA(XαiA) is Noetherian,

(2) DA(I) and DA/I are right Noetherian,

(3) DA(I) is left Noetherian if and only if I is principal.

If I is a squarefree monomial ideal, then the structure of DA(I) and DA/I

are given in [5, 18] as

DA(I) =
⊕

α

[I : [I : Xα]]∂α and DA/I =
⊕

α

[I : [I : Xα]]

I
∂α

with examples showing that these descriptions need not hold if I is not a
squarefree. Note also that ∆A(I) is a finitely generated algebra but DA(I)
is far from being finitely generated, [18, Example 4.3]. This is a reason to
study ∆A(I)-modules instead of DA(I)-modules.

Lemma 2.1. If I is a monomial ideal, then ∇A ⊆ ∆A(I) and equality holds
if
√

I = (x1x2 · · · xn).

Proof. Clearly ∇xi
∈ ∆A(I). Assume that

√
I = (x1x2 · xn) and Xα∂β ∈

∆A(I) where α = (a1, ..., an) and β = (b1, ..., bn). It suffices to show that
α − β ∈ Zn

≥0. Assume that there exists j such that aj − bj < 0. Let Xθ

be a monomial where θ = (c1, ..., cn), cj > 0 is the minimum exponent of

xj such that Xθ ∈ I. Then Xα∂β(x
bj−aj−1
j Xθ) = k0

Xα+θ−β−ej

x
aj−bj
j

/∈ I, for

some k0 ∈ k, since the exponent of xj in this monomial is cj − 1. Hence
∇A ⊆ ∆A(I) ⊆ ∇A.

3 The Module of Derivations Preserving a Mono-

mial Ideal

Let I be a monomial ideal in A. We frequently use the fact that there exists
a unique minimal set of monomials {Xα1 ,Xα2 , ...,Xαt} generating I. To
make our work easier we denote Xαi = xai1

1 xai2

2 ...xain
n for each i = 1, ..., t.

We alternatively denote a monomial by either Xβ or xb1
1 xb2

2 ...xbn
n and the

total degree of Xβ = xb1
1 xb2

2 ...xbn
n by |β| = b1 + b2 + ... + bn. To every

monomial ideal I, the set

(3.1) exp(I) = {β | Xβ ∈ I } ⊆ Zn
≥0.

associates the set of multi-degrees of monomials which belong I with points
in Zn

≥0. Note that each monomial term of a polynomial f ∈ I is a product of
some Xαi , (i = 1, ..., t) and some other monomial term, hence a polynomial
belongs to I if and only if each of its monomial terms belongs to I.

For any j = 1, ..., n, we denote the coordinate hyperplane of Rn by
Hj = {(x1, x2, ..., xn) ∈ Rn

≥0 | xj = 0} and {e1, ..., en} is the standard basis

9



3 The Module of Derivations Preserving a Monomial Ideal

of the real vector space Rn. For a monomial Xβ we define supp(Xβ) =
{xj | xj divides Xβ}. The following lemma suggests that for a monomial
ideal I, to study the module structure and certain properties of TA/k(I),

it suffices to work with derivations of the form Xβj∂xj
for some monomial

Xβj ∈ A and j = 1, ..., n. It is a precise formulation of a part of [1, Theorem
2.2.1].

Lemma 3.1. Let I be a monomial ideal, for j = 1, ..., n define polynomials
fj =

∑

θj∈Ωj
kθj

Xθj ∈ A, where kθj
6= 0, as a sum of distinct monomial

terms. Then a derivation δ =
∑n

j=1 fj∂xj
∈ TA/k(I) if and only if Xθj∂xj

∈
TA/k(I) for all j = 1, ..., n and for all multi-degrees θj ∈ Ωj.

Proof. The converse is easy to see. Assume δ =
∑n

j=1 fj∂xj
∈ TA/k(I).

Then for any g ∈ I, we have δ(g) =
∑n

j=1 fj∂xj
(g) ∈ I. In particular for

any monomial Xα ∈ I one has
∑n

j=1 fj∂xj
(Xα) ∈ I. Now assume that there

exists θj ∈ Ωj and a monomial Xα ∈ I such that Xθj∂xj
(Xα) /∈ I. Then

write

δ(Xα) =

n
∑

j=1

∑

θ′j∈Ω′
j

kθ′j
Xθ′j

Xα

xj
+

n
∑

j=1

∑

θ′′j ∈Ω′′
j

kθ′′j
Xθ′′j

Xα

xj
∈ I.

Here Xα

xj
is defined to be 0 when ∂xj

(Xα) = 0. In the first double-sum we

have collected all monomial terms which belong to I and in the second we
have all monomial terms which may not belong to I. Since Xθ′j Xα

xj
∈ I we

have Xθ′j∂xj
(Xα) ∈ I for all θ′j ∈ Ω′

j. Since also the second double-sum
belongs to I but by assumption none of its monomial terms belongs to I, it
follows that

n
∑

j=1

∑

θ′′j ∈Ω′′
j

kθ′′j
Xθ′′j

Xα

xj
= 0.

Since for each j = 1, ..., n, Xα

xj
is a fixed monomial multiplying different

monomial terms of fj, the above equation implies

n
∑

j=1

∑

θ′′j ∈Ω′′
j

kθ′′j

Xθ′′j

xj
= 0.

This equation holds if and only if xj ∈ supp(Xθ′′j ). Hence Xθ′′j ∂xj
(Xα) =

Xθ′′j −ej∇xj
(Xα) ∈ I for all θ′′j ∈ Ω′′

j resulting in a contradiction.

The following proposition is another version of a result due to P. Bru-
matti and A. Simis [1, Theorem 2.2.1]. It gives us a more geometric structure
of [I : [I : xj]]. In particular, if Hj ∩ exp(I) 6= ∅, then the ideal Ixj

(6= 0)
has an important role in studying modules over ∆A(I) in the remaining
sections of the thesis. Note that Hj ∩ exp(I) = ∅ if and only if I = xjI

′

where I ′ = [I : xj ].
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3 The Module of Derivations Preserving a Monomial Ideal

Proposition 3.2. Let I ⊆ A be a monomial ideal.

(1) If Hj ∩ exp(I) = ∅, then [I : [I : xj]] = (xj), for j = 1, ..., n.

(2) If Hj ∩ exp(I) 6= ∅, then [I : [I : xj ]] = (xj) + Ixj
, where j = 1, ..., n

and

(3.2) Ixj
=

t
⋂

i=1

(Xαi−aijej ) ∩ ({Xαl−aljej : alj < aij}t
l=1)

Xαi−aijej
.

(3)

TA/k(I) = (∇x1
, ...,∇xn) +

∑

Ixj
∂xj

and the sum runs through all j = 1, ..., n for which Hj ∩ exp(I) 6= ∅.

Before proving the proposition, we note that if Hj ∩ exp(I) = ∅, then
Ixj

= (0), and if Hj ∩ exp(I) 6= ∅, then the generators of the ideal Ixj
are

monomials in the polynomial ring k[x1, ..., x̂j , ..., xn]. This is because of the
following: In the former case, consider a point β = (b1, ..., bn) ∈ exp(I)
such that bj ≤ aij for all i = 1, ..., t. Now for any monomial 0 6= Xθ ∈ A
with xj /∈ supp(Xθ) we have Xθ∂xj

(Xβ) = bjX
β+θ−ej /∈ I, implying that

the k-derivation Xθ∂xj
/∈ TA/k(I). In the later case, it could be seen from

the definition of Ixj
that for any monomial generator Xβ of Ixj

, one has
xj /∈ supp(Xβ).

Proof. (1): Note that [I : xj] = (Xα1−ej ,Xα2−ej , ...,Xαt−ej). Since Hj ∩
exp(I) = ∅, each of Xαi−ej ∈ A are monomials i = 1, ..., t; and xj[I :
xj] ⊆ I ⇒ (xj) ⊆ [I : [I : xj ]]. To show that equality holds, consider
β = (b1, ..., bn) ∈ exp(I) such that bj ≤ aij for all i = 1, ..., t. Then β −
ej ∈ exp(I : xj)\ exp(I). Therefore, for any monomial 0 6= Xθ ∈ A with
xj /∈ supp(Xθ) (i.e. xθ /∈ (xj)), one has Xθxβ /∈ I, for otherwise it will
contradict the minimality of aj. Thus, Xβ /∈ [I : [I : xj ]].
(2): Clearly (xj) ⊆ [I : [I : xj ]]. By construction of Ixj

a monomial Xθ ∈ Ixj

if and only if θ + β − ej ∈ exp(I) for all Xβ ∈ I with xj ∈ supp(Xβ) and
this is equivalent to θ ∈ exp([I : [I : xj]]), hence (xj) + Ixj

⊆ [I : [I : xj ]].
Conversely, If Xθ ∈ [I : [I : xj ]] where xj ∈ supp(Xθ), then Xθ ∈ (xj) and
if xj /∈ supp(Xθ), then by definition θ ∈ exp([I : [I : xj]]) if and only if
θ + β − ej ∈ exp(I) for all Xβ ∈ I implying that Xθ ∈ Ixj

.
(3): Assume that Xβ∂xj

∈ TA/k(I). If xj ∈ supp(Xβ), then Xβ∂xj
∈

(∇x1
, ...,∇xn). And if xj /∈ supp(Xβ), then XβXαi′−ej ∈ I for every i′ =

1, ..., t. In particular, there exists an i ∈ {1, 2, ..., t} having the property that
aij is the maximum of all alj ’s, l = 1, ..., t, such that aij > alj and that

XβXαi−ej = Xθl · Xαl for some monomial Xθl . Thus Xβ = X
αl−aljej

Xαi−aijej
Xθl′

for some monomial Xθl′ . On the other hand assume that Xβ ∈ (xj) + Ixj
is

a monomial. If xj ∈ supp(Xβ), then obviously Xβ∂xj
∈ TA/k(I). Suppose

11



3 The Module of Derivations Preserving a Monomial Ideal

otherwise, then Xβ ∈ Ixj
which implies Xβ = Xαl′−al′jej · Xθl′ for every

l′ = 1, ..., t, and for some monomial Xθl′ . Now for a monomial generator
Xαi of I, if xj /∈ supp(Xαi), then Xβ∂xj

(Xαi) = 0 ∈ I; and if xj ∈ Xαj ,
then choose the maximum l such that aij > alj . Finally Xβ∂xj

(Xαi) =

XβXαi−ej = Xαl−aljejXαi−ejXθl′ = Xαl · Xαi−(alj+1)ej · Xθl′ ∈ I.

It is interesting to see the structure of TA/k(I) in the two variables case.

Assume that I = (xa1yb1, xa2yb2 , ..., xatybt) ⊆ A = k[x, y] is a monomial
ideal, with ai < ai+1 and bi > bi+1 for each i = 1, 2, ..., t − 1. Then define
the width w(I)x and w(I)y of I in the direction of x and y respectively by

w(I)x = max{ai+1 − ai}t
i=1 and w(I)y = max{bi − bi+1}t−1

i=1.

It is easy to see from (3.2) and the remark which follows that Ix = (yw(I)y),
when Hx ∩ exp(I) 6= ∅. Similarly Iy = (xw(I)x) when Hy ∩ exp(I) 6= ∅. This
gives the following corollary.

Corollary 3.3. Assume that A = k[x, y]. Consider a monomial ideal I =
(xa1yb1 , xa2yb2 , ..., xatybt) ⊆ A, with ai < ai+1 and bi > bi+1 for each i =
1, 2, ..., t.

(1) If
√

I = (xy), then TA/k(I) = (∇x,∇y).

(2) If I is (x)-primary, then TA/k(I) = (∇x,∇y, y
w(I)y∂x).

(3) If I is (y)-primary, then TA/k(I) = (∇x,∇y, x
w(I)x∂y).

(4) If I is (x, y)- primary , then TA/k(I) = (∇x,∇y, y
w(I)y∂x, xw(I)x∂y).
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t(a1, b1) XXXXXXXz
xw(I)x∂y

t

t

(ai, bi)
A

A
AAK

yw(I)y∂x

t

t

(at, bt)

At this point we give some guideline how to compute TA/k(I), where I =
(Xα1 , ...,Xαt), Xαi = xai1

1 xai2

2 · · · xain
n for i = 1, ..., t. Since for any monomial

Xβ ∈ I we have ∇xj
(Xβ) = xj∂xj

(Xβ) = k0X
β if xj ∈ supp(Xβ) and 0

otherwise, we get (xj). The ”non-trivial” set of derivations (i.e. the ones
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3 The Module of Derivations Preserving a Monomial Ideal

whose coefficients are in Ixj
), however, occur if there exists xj /∈ supp(Xαi)

for some i = 1, ..., t. Let xj be such a variable. Induce the ordering of
the integers 0 = a1j ≤ a2j ≤ ... ≤ atj into ”ordering of the set {Xαi}t

i=1”
of monomials as Xα1 ≺ Xα2 ≺ · · · ≺ Xαt . Take Xαi with aij > 0, and
look for all monomials Xβ, with xj /∈ supp(Xβ) such that Xβ∂xj

(Xαi) =
Xβ+αi−ej ∈ I. This is equivalent to collecting all Z-linearly independent
vectors β on the hyperplane plane xj = aij −1 with initial point αi − ej and
terminal point at the boundary of exp(({Xαl | aij > alj}t

l=1))∩(xj = aij−1).

Example 3.4. Consider the ideal I = (x4, x2y3, xy4z, z2) ∈ A = Q[x, y, z].
Then all Ix, Iy, Iz 6= (0) since x /∈ supp(z2) and y, z /∈ supp(x3). We
compute Iz and leave Ix and Iy to the reader. Consider the ordering
x4 ≺ x2y3 ≺ xy4z ≺ z2. Since ∂z annihilates the first two monomials,
there is nothing to be done. On the plane z = 1 − 1 = 0, (1, 0, 0) is
the only vector we need which is associated with xy4z; and on the plane
z = 2 − 1 = 1, (1, 4, 0), (2, 3, 0), (4, 0, 0) are the vectors associated with
z2. Thus Iz = (x) ∩ (xy4, x2y3, x4) = (xy4, x2y3, x4). Then TA/Q(I) =
(∇x,∇y,∇z) + [(z) ∩ (z2, yz) ∩ (z2, y3z)]∂x + [(x2, z2) ∩ (x, z)]∂y + [(x) ∩
(x4, xy4, x2y3)]∂z = (∇x,∇y,∇z)+(y3z, z2)∂x+(x2, z2)∂y+(x4, xy4, x2y3)∂z.

Example 3.5. Consider I = (y8, x2y6, x5y4, x7y2, x8y, x12) ⊆ Q[x, y]. Then
w(I)x = 4, w(I)y = 2 and TA/k(I) = (∇x,∇y) + (y2)∂x + (x4)∂y.

Proposition 3.6. A proper ideal I of A is a ∇A-submodule if and only if
it is a monomial ideal. Moreover, I is a cyclic ∇A-module.

Consider the finite dimensional commutative Lie-algebra G generated by
the ∇xj

. The fact that monomial ideals in A are the same as ∇A-submodules
is due to the fact that A is a semi-simple G-module. The argument below
shows that all the monomial terms of a polynomial in I also belong to I.

Proof. Clearly, any monomial ideal is a ∇A-module. Now assume that I is
a proper ∇A-submodule of A.

Claim 1. We show that any polynomial f ∈ I does not contain a
constant term. Suppose that f =

∑l
i=1 kθi

Xθi + c1 ∈ I for some non-zero
c1 ∈ k, kθi

6= 0 and θi = (bi1, ..., bin), i = 1, ..., l. First we prove by induction
on l that every monomial term of f could be written as Xθi = δi(f) for some
δi ∈ ∇A.

Since each monomial term in f has different multi-degree, the rank of
the matrix

(

b11 b12 ... b1n

b21 b22 ... b2n

)

is 2 implying that there exists r < s = 1, ..., n such that Ars = b1rb2s −
b2rb1s 6= 0. Assume that b1r, b1s 6= 0 for otherwise since one of them, say b1r

is non-zero, we have ∇xs(f) ∈ I. Hence by induction assumption, Xθi =

13



4 Preservation of Associated Ideals

δi∇xs(f) for some δi ∈ ∇A for all i = 2, ..., l.
Now acting ∇xr and ∇xs on f we obtain,

(3.3) ∇xr(f) =

l
∑

i=1

kθi
birX

θi and ∇xs(f) =

l
∑

i=1

kθi
bisX

θi .

Solving the above two equations simultaneously to eliminate xθ1 gives:

(3.4) [b1s∇xr − b1r∇xs](f) =

l
∑

i=2,

kθi
(b1sbir − b1rbis)X

θi ∈ I.

By induction assumption we obtain Xθi = δi(f) for some δi ∈ ∇A, i =
2, ..., l. Putting

δ1 =
1

kθ1

[b1s∇xr − b1r∇xs − (
l

∑

i=2

kθi
(b1sbir − b1rbis)δi)] ∈ ∇A

one obtains, Xθ1 = δ1(f). Hence c1 = f − ∑l
i=1 kθi′

δi(f) ∈ I ⇒ I = A.
This contradicts the assumption that I is a proper ideal of A.

Claim 2. We prove that I is a monomial ideal. Now assume that I is
generated by a minimal set {f1, ..., ft} of polynomials with fi =

∑

αi∈Ωi
kαi

Xαi ,
kαi

6= 0 is an expression of each polynomial fi as a k-linear combination of
distinct monomials in a unique way. Let I ′ be the monomial ideal generated
by the set {Xα | α ∈ ∪t

i=1Ωi}. It suffices to show that I = I ′. From the
discussion above, one have I ′ ⊆ I. Conversely,

αi ∈ Ωi ⇒ Xαi ∈ I ′ for all αi ∈ Ωi ⇒ fi ∈ I ′ ⇒ I ⊆ I ′.

Hence I = I ′ and I is a monomial ideal.
Finally assume Xβ1 , ...,Xβr is the unique minimal set of generators of

I and consider the polynomial f(X) =
∑r

i=1 Xβi ∈ I. Then there exists
δi ∈ ∇A such that Xβi = δ(f) ⇒ ∇A(f) = I. This completes the proof.

4 Preservation of Associated Ideals

Let I be any ideal of a commutative Noetherian k-algebra A. Then I is a
∆A(I)-submodule of A. It is natural to ask if certain natural operations on
I results in new ∆A(I)-modules. We will investigate this question in the
case of monomial ideals, in relation to Ratliff-Rush closure, integral closure
and the formation of multiplier ideals.
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4 Preservation of Associated Ideals

4.1 Ratliff-Rush Closure of an Ideal

Let A be a commutative Noetherian ring and I be an ideal of A. There
exist ideals Ĩ which are maximal with respect to the property that Ĩ l = I l

for large l. Ratliff and Rush proved [13, Theorem 2.1], that if I is a regular
ideal (i.e. it contains a non-zero divisor), then there exists a unique largest
such ideal. It can be expressed as

Ĩ = ∪∞
l=1[I

l+1 : I l] = [IL+1 : IL] for L >> 0.

When I is not regular, the result fails [14]. If I is an m-primary ideal of a
local ring (A,m, k), then the ideal Ĩ can also be characterized as the unique
largest ideal containing I having the same Hilbert polynomial as I. The
ideal Ĩ is the Ratliff-Rush closure of I. If I is a regular ideal such that
I = Ĩ, then I is a Ratliff-Rush closed ideal. Results about these ideals can
be found in [3, 13,14,20].

Proposition 4.1. Let A be a commutative k-algebra of finite type and I be
an ideal of A.

(1) TA/k(I) ⊆ TA/k(I
l) for any integer l > 0. Moreover, Equality holds if

I = [I l : I l−1].

(2) TA/k(I) ⊆ TA/k(Ĩ).

Proof. (1) The first part is clear. To prove the second part, if δ ∈ TA/k(I
l)

then for every a ∈ I, we have δ(al) = lal−1δ(a) ∈ I l hence δ(a) ∈ [I l :
I l−1] = I. (2) Consider δ ∈ TA/k(I) and a ∈ A such that aIL ⊆ IL+1 for

L >> 0, then ab ∈ IL+1 for some b ∈ IL and by (1) δ(ab) ∈ IL+1, hence
bδ(a) = δ(ab) − aδ(b) ∈ IL+1.

If I is a monomial ideal of A = k[x, y] and l > 0 is an integer, it is not
obvious how w(I l)x and w(I l)y depend on l.

Corollary 4.2. If I ⊆ k[x, y] is a monomial ideal, then w(I)x ≥ w(I l)x and
w(I)y ≥ w(I l)y and equality holds when I = [I l : I l−1].

Proof. This follows from Proposition 4.1 (1) and Corollary 3.3.

4.2 Integral Closure of an Ideal

Given a commutative Noetherian ring A and an ideal I of A. An element
x ∈ A is said to be integral over I if x satisfies the equation

(4.1) xd + a1x
d−1 + ... + ad−1x + ad = 0 where ai ∈ Ii and i = 0, 1, ..., d.

The set of all elements in A which are integral over I, denoted by Ī, is the
integral closure of I. Moreover, I is integrally closed if Ī = I. The following
lemma is Proposition 2.1.2 in [21].
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4 Preservation of Associated Ideals

Lemma 4.3. Let I be a monomial ideal in A. Then Ī is also a monomial
ideal. More precisely, a monomial Xβ is in Ī if and only if (Xβ)l ∈ I l for
some integer l > 0.

Proof. For the proof that Ī is monomial ideal, see [loc.cit]. We prove only
the second statement.Consider the equation of integral dependence (Xβ)d +
f1(X

β)d−1 + f2(X
β)d−2 + ... + fd = 0, where the fi’s are polynomials in Ii.

Since each Ii is a monomial ideal, considering the multi-degree deg((Xβ)d),
we obtain an equation

(Xβ)d + k1X
θ1(Xβ)d−1 + ... + kdX

θd = 0

for some monomial Xθi ∈ Ii, i = 1, ..., d and some k1, ..., kd ∈ k. Some
coefficient kl must be different from 0, thus (Xβ)d = k0klX

θd−l(Xβ)l with
Xθd−l ∈ Id−l and k0 ∈ k, so (Xβ)l ∈ I l. Conversely, xl − (Xβ)l = 0 gives us
the equation of the integral dependence of Xβ.

If I is a monomial ideal, the Newton Polytope of I denoted conv(I)
consists of all points in Rn belonging to the convex hull of exp(I) [2,7,8,21,
22].

In general it is difficult to use the integral dependence (4.1) to prove that
TA/k(I) ⊆ TA/k(Ī). In [10] the inclusion is proved using the blow-up of I.
Hence

(4.2) TA/k(I) ⊆ TA/k(Ĩ) ⊆ TA/k(Ī) ⊆ TA/k(
√

I)

where the last inclusion was first noted in [15]. We prove these inclusions
for monomial ideals in a direct and elementary way.

Proposition 4.4. The inclusions in (4.2) hold for monomial ideals.

Proof. The first inclusion follows from Proposition 4.1. To prove the second,
consider a monomial ideal J such that I ⊆ J ⊆ Ī. Let δ = Xβj∂xj

∈
TA/k(J), and Xθ ∈ Ī = J̄ be a monomial with xj ∈ supp(Xθ). Then

(Xθ)l ∈ J l for some l > 0. By Proposition 4.1,

δ ∈ TA/k(J l) ⇒ δ((Xθ)l) = l(Xθ)l−1δ(Xθ) ∈ J l.

Clearly δ((Xθ)l) is a monomial. We have

Xβj∂xj
[l(Xθ)l−1Xβj∂xj

(Xθ)] = δ[l(Xθ)l−1δ(Xθ)]

= l(l − 1)(Xθ)l−2(δ(Xθ))2 + l(Xθ)l−1δ2(Xθ)

which is a monomial in J l split into the sum of two monomials of the same
multi-degree. It follows that l(l − 1)(Xθ)l−2(δ(Xθ))2 ∈ J l. Similarly,

δ[l(l−1)(Xθ)l−2(δ(Xθ))2] = l(l−1)(l−2)(Xθ)l−3(δ(Xθ)3)+2l(l−1)δ(Xθ)δ2(Xθ)
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4 Preservation of Associated Ideals

is a monomial in J l, hence l(l − 1)(l − 2)(Xθ)l−3(δ(Xθ))3 ∈ J l. Continuing
this computation, we get l!(δ(Xθ))l ∈ J l ⇒ (δ(Xθ))l ∈ J l. Hence δ(Xθ) ∈
J̄ = Ī, as required. To prove the last inclusion, assume that δ = Xβj∂xj

∈
TA/k(Ī), and Xθ ∈

√
I be any monomial with xj ∈ supp(Xθ). Then (Xθ)l ∈

I ⊆ Ī for some l > 0 we have δ((Xθ)l) ∈ Ī. A similar computation as above

shows that (δ(Xθ))l ∈ Ī. Hence δ(Xθ) ∈
√

Ī =
√

I.

Remark 4.5. The inclusions in (4.2) can be strict. For TA/k(I) ( TA/k(Ĩ)

see [10]. For TA/k(Ĩ) ( TA/k(Ī), consider the ideal I = (y8, x3y5, x7y, x8) ⊆
Q[x, y]. Then Ĩ = I + (x6y2) (see [20]), and Ī = (x, y)8. Thus y∂x, x∂y ∈
TA/k(Ī) \ TA/k(Ĩ). For the ideal I = (x2, y4) ⊆ Q[x, y], we have

√
I =

(x, y) and Ī = (x2, xy2, y4). Then y∂x, x∂y ∈ TA/k(
√

I) \ TA/k(Ī). This
last inclusion fails if Char(A) = p > 0. Indeed, if I = Ī = (xpyp), then√

I = (xy) and ∂x, ∂y ∈ TA/k(Ī) \ TA/k(
√

I).

Remark 4.6. Assume that Chark = p > 0. The second and the third
inclusions in (4.2) hold if the generators of I satisfy the following conditions:

1. I is generated by monomials whose exponents are not divisible by p,

2. for Ī = (Xα1 ,Xα2 , ...,Xαt ), and li = min{l ∈ Z>0 | (Xαi)li ∈ I li},
(1 ≤ i ≤ t), then li! is not divisible by p.

Let I be a monomial ideal and J = Ĩ or J = Ī. The following example
shows that TA/k(I) = TA/k(J) does not imply I = J .

Example 4.7. Consider an ideal I = (x2y12, x4y10, x7y7, x9y5) ⊆ A =
Q[x, y]. Then Ĩ = (x2y12, x4y10, x6y9, x7y7, x9y5), Ī = x2y5(x, y)7,

√
I =

(xy) and I ⊂ Ĩ ⊂ Ī ⊂
√

I . By Corollary 3.3 TA/Q(I) = TA/Q(Ĩ) =

TA/Q(Ī) = TA/Q(
√

I) = (∇x,∇y).

4.3 Multiplier Ideals of a Monomial Ideal

Given a smooth complex variety X and an ideal I of the structure sheaf OX ,
one can attach to I a collection of multiplier ideals I(r · I) depending on
a rational parameter r > 0. These ideals and the vanishing theorems they
satisfy have found interesting applications in recent years. For a formal
definition and properties of multiplier ideals, see [11]. Although multiplier
ideals enjoy excellent formal properties, they are hard to compute in general.
An important exception is for the case of a monomial ideal, whose multiplier
ideals are described by a simple combinatorial formula by Howald [6].

Consider the standard topology on Rn. Given a set of lattice points P ⊆
Zn
≥0 ⊆ Rn

≥0, Int(P ) denote the interior of P with respect to this topology,
and for any rational number r > 0 define

r · P = {rα | α ∈ P}.
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4 Preservation of Associated Ideals

Given a monomial ideal I, we regard the Newton polytope conv(I) as a
subset of the real vector space Rn.

Theorem 4.8. (Howald [6]) Let I be a monomial ideal, and let conv(I)
be its Newton Polytope. Then I(r · I) is a monomial ideal containing the
following set of monomials:

{Xα | α + (1, 1, ..., 1) ∈ Int(r · conv(I) ∩ Zn
≥0)}.

Example 4.9. The figure below shows the graphical description of I =
(y6, x2y3, x5y, x8) and I(r · I) = (y8, xy7, x2y5, x3y4, x5y3, x6y2, x8y, x10),
where r = 31

18 .
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Proposition 4.10. If I ⊆ A = k[x, y] is a monomial ideal and r ≥ 0 is a
rational number, then TA/k(I) ⊆ TA/k(I(r · I)).

Proof. If
√

I = (xy), then by Corollary 3.3 TA/k(I) = A∇x + A∇y, so
the assertion easily follows from the fact that I(r · I) is a monomial ideal.
Assume that

√
I = (x, y). By Corollary 3.3 it suffices to prove

(4.3) w(I)x ≥ w(I(r · I))x and w(I)y ≥ w(I(r · I))y.

Since conv(I) = conv(Ī) implies I(r · I) = I(r · Ī), one can assume that I
is integrally closed. Let P0(a0, b0), P1(a1, b1), ..., Pt(at, bt), Pt+1(at+1, bt+1) ∈
Z2
≥0 where 0 = a0 < a1 < ... < at < at+1 and b0 > b2 > ... > bt >

bt+1 = 0 be coordinates of vertices of conv(I). For each i = 1, ..., t + 1,
let Pi be the convex region in R2

≥0 bounded by the lines x ≥ ai, y ≥ bi+1

and y ≥ mi(x − ai) + bi, where mi =
bi+1−bi

ai+1−ai
< 0 (see the figure below).

This definition gives us t convex subsets Pi of conv(I) corresponding to the
different segments PiPi+1. Let IPi

be a monomial ideal generated by

{xayb | (a, b) ∈ Pi ∩ Z2
≥0}.
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4 Preservation of Associated Ideals
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By definition exp(IPi
) = conv(IPi

) ∩ Z2
≥0 = Pi ∩ Z2

≥0, consequently IPi
is

integrally closed. Moreover, one can easily see that

(a, b) ∈ conv(I) ⇐⇒ a ≥ ai, b ≥ bi+1 and b ≥ mi(a − ai) + bi

for some i = 0, ..., t. Thus conv(I) = ∪t
i=0conv(IPi

) = ∪t
i=0Pi, and since I

is integrally closed, it follows that I =
∑t

i=0 IPi
. By the definition of IPi

, it
is easy to see that

w(I)x = max{w(IPi
)x}t

i=0 and

w(I)y = max{w(IPi
)y}t

i=0.
(4.4)

The set
r · conv(I) = {(ra, rb) | (a, b) ∈ conv(I)}

is an open convex region having boundary vertices (ra0, rb0), ..., (rat+1, rbt+1),
where for each i = 0, ..., t, the segments containing the pair [(ai, bi), (ai+1, bi+1)]
and [(rai, rbi), (rai+1, rbi+1)], respectively, are parallel with slope mi. By a
similar agrement as above, one has r · conv(I) = ∪t

i=0r · conv(IPi
), and since

I(r · I) is integrally closed, I(r · I) =
∑t

i=1 I(r · IPi
). Again it is clear that

w(I(r · I))x = max{w(I(r · IPi
))x}t

i=0 and

w(I(r · I))y = max{w(I(r · IPi
))y}t

i=0.
(4.5)

Because of (4.4) and (4.5) it follows that (4.3) holds if we prove

w(IPi
)x ≥ w(I(r · IPi

))x and w(IPi
)y ≥ w(I(r · IPi

))y

for all i = 0, ..., t. Therefore the proof will be complete with the lemma
below.
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4 Preservation of Associated Ideals

Lemma 4.11. Let (c, d), (e, f) ∈ Z2
≥0 such that c < e, d > f , m = f−d

e−c < 0,

P ⊆ R2
≥0 be a convex region bounded by the lines x ≥ c, y ≥ f and y ≥

m(x − c) + d, and IP ⊆ k[x, y] be a monomial ideal generated by the set

{xpyq | (p, q) ∈ P ∩ Z2
≥0}.

Then
w(IP )x ≥ w(I(r · IP))x and w(IP )y ≥ w(I(r · IP)y).

Proof. Let {xc1yd1 , ..., xcsyds} where c = c1 < ... < cs = e and d = d1 >
d2 > ... > ds = f be the unique minimal set of generators of IP . Since IP is
integrally closed, either ci+1−ci = 1 or di−di+1 = 1 [21]. Moreover, for each
i = 1, ..., t one has 0 ≤ di−(m(ci−c)+c) < 1. Let P = (c, d) and Q = (e, f)
and the equation of the line joining them is y = m(x − c) + d(see the figure
below). Let P ′ and Q′ be the points with coordinates (rc, rd) and (re, rf)
respectively and the equation of the line joining them is y = m(x− rc)+ rd.
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Let r · Io
P be the monomial ideal generated by the set

{xpyq | (p, q) ∈ Int(r · conv (IP )) ∩ Z2
≥0}.

According to Theorem 4.8, xp−1yq−1 belongs to I(r · I) if and only if xpyq

belongs to r · Io
P , and xpyq belongs to the minimal set of generators of r · Io

P

if and only if

(4.6) 0 < q − (m(p − rc) + rd) ≤ 1.

Hence

(4.7) w(I(r · I))x = w(r · Io
P)x and w(I(r · I))y = w(r · Io

P)y;

therefore it suffices to prove

w(IP )x ≥ w(r · Io
P)x and w(IP )y ≥ w(r · Io

P)y.
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4 Preservation of Associated Ideals

The proof of these inequalities is divided into three cases depending on the
slope m. It is clear from the definitions of slope and the ideal IP that

w(IP )x =

{

1
|m| if 1

m ∈ Z

⌊ 1
|m|⌋ + 1 if 1

m /∈ Z

w(IP )y =

{

|m| if m ∈ Z

⌊|m|⌋ + 1 if m /∈ Z

(4.8)

Case 1: m < −1. We show that w(IP )x = w(r · Io
P)x = 1. It is evident

that w(IP )x = 1. Assume on the contrary that w(r · Io
P)x > 1. Let xpiyqi

and xpi+1yqi+1 be monomials in the minimal set of generators of r · Io
P such

that w(r · Io
P)x = pi+1 − pi. Then

pi+1 − pi > 1 ⇒ pi = pi+1 − Lx − 1

for some Lx ∈ Z>0. First we show that qi−qi+1 = 1. If we assume otherwise,
we will show that the lattice point (pi+1 − 1, qi − 1) belongs to exp(r · Io

P),
contradicting the assumption w(r·Io

P )x = pi+1−pi (see the left figure below).

x

y

x

y

(pi, qi)
q

q

(pi+1, qi+1)

q r · Io
P

(pi, qi)

(pi+1, qi+1)

q

q

q

r · Io
P

J
J

J
J
JJ

Q
Q

Q
Q

QQ

To see this, by (4.6)

0 <qi − (m(pi − rc) + rd)

= qi − (m(pi+1 − Lx − 1 − rc) + rd)

= qi − (m(pi+1 − 1) − rc) + rd) + mLx

= (qi − 1) − (m(pi+1 − 1 − rc) + rd) + mLx + 1

⇐⇒ 0 < −(mLx + 1) < (qi − 1) − (m(pi+1 − 1 − rc) + rd),

where the first inequality in the last line follows since m < −1. Hence
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5 Differential Reduction

(pi+1 − 1, qi − 1) belongs to exp(r · Io
P). Next again by (4.6),

0 < qi − (m(pi − rc) + rd)

= qi+1 + 1 − (m(pi+1 − 1 − Lx − rc) + rd)

= qi+1 − (m(pi+1 − rc) + rd) + (m + mLx + 1)

⇐⇒ − (m + mLx + 1) < qi+1 − (m(pi+1 − rc) + rd).

Since m+mLx+1 < −1, this contradicts (4.6) (see the right diagram above).
Therefore Lx = 0 and w(r · Io

P)x = pi+1 − pi = 1.

To show w(r · Io
P)y ≤ w(IP )y: Suppose, on the contrary, that w(r · Io

P)y >
w(IP )y. Let xpjyqj , xpj+1yqj+1 be monomials in the minimal set of genera-
tors of r · Io

P such that w(r · Io
P)y = qj − qj+1 = w(IP)y +Ly for some integer

Ly > 0. By (4.6) we have qj − (m(pj − rc) + rd) < 1 and by (4.8) we have
1 ≤ m + w(IP )y + Ly. Combining these inequalities we obtain

qj − (m(pj − rc)+ rd) < m + w(IP )y + Ly ⇒ qj+1 − (m(pj+1 − rc) + rd) < 0

which results in a contradiction, since (pj+1, qj+1) ∈ exp(r · Io
P). Therefore,

Ly = 0, and hence w(r · Io
P)y ≤ w(IP )y.

Case 2: m = −1. One can easily prove that w(IP )x = w(IP)y = w(r ·
Io
P)x = w(r · Io

P)y = 1. Clearly we have c+ d = e+ f , thus the minimal gen-
erating set of IP contains elements of the form xcyd, xc+1yd−1, ..., xc+vyd−v,
where e = c + v, f = d − v, v ∈ Z>0, and they all belong to the line PQ.
The result follows from the fact that the lines PQ and P ′Q′ are parallel.

Case 3: −1 < m < 0. This follows by symmetry from case 1.

5 Differential Reduction

An ideal I of a k-algebra A can be considered as a ∆A(I)-module. By Propo-
sition 3.6, any ∇A-submodule I of a A is a monomial ideal. Moreover, I is
a cyclic ∇A-module. In this section we construct a principal ideal J = (f)
of A such that J ⊆ I and ∆A(I) · J = I.

If J ⊆ I are ideals of a k-algebra A, then ∆1
A(I) · J is an ideal of A ly-

ing between J and I. Similarly, ∆l
A(I) · J ⊆ ∆l+1

A (I) · J ⊆ I. Thus we have
the following increasing sequence of ideals of A:

(5.1) ∆0
A(I) · J ⊆ ∆1

A(I) · J ⊆ ∆2
A(I) · J ⊆ · · · ⊆ ∆l

A(I) · J ⊆ · · · ⊆ I.

By the Noetherian property, there exists an integer L ≥ 0 such that ∆L
A(I) ·

J = ∆A(I) · J .
If J ⊆ I be ideals of A, then J is a differential reduction of I if ∆A(I)·J =

I. A differential reduction of I is called a minimal differential reduction if
it is minimal with respect to inclusion.
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5 Differential Reduction

If a differential reduction is generated by monomials, then it is monomial
differential reduction. A minimal monomial differential reduction of I is a
monomial ideal which is minimal among the monomial differential reductions
of I.

Lemma 5.1. If J ⊆ I ⊆ A are monomial ideals, then so is ∆A(I) · J .

Proof. By induction it suffices to prove that ∆1
A

(I) · J is a monomial ideal.
By Proposition 3.2 we have TA/k(I) =

∑n
j=1((xj)+ Ixj

)∂xj
, where Ixj

= (0)
if Hxj

∩ exp(I) = ∅. Assume that Ω = {i1, ..., ir} ⊆ {1, ..., n} such that
Hxij

∩ exp(I) 6= ∅ for all j = 1, ..., r. Then TA/k(I) · J =
∑n

j=1((xj) +

Ixj
)∂xj

(J) = J +
∑

ij∈Ω xij∂xij
(J) +

∑

ij∈Ω(Ixj
)∂xj

(J). We can see that
each of the ideals in the summand are monomial.

Remark 5.2. If I is a monomial ideal, then TA/k(I) · I = I since ∇xj
∈

TA(I) for all j = 1, ..., n. Moreover, if
√

I = (x1x2 · · · xn), then I is the only
monomial differential reduction of itself (Lem. 2.1).

Lemma 5.3. A monomial ideal I = (Xα1 , ...,Xαt ) in A has a proper mono-
mial differential reduction if there exists a derivation δ = Xβ∂xj

, where
Xβ ∈ Ixj

for some j = 1, ..., n and i1, i2 = 1, ..., t with i1 6= i2, such that
XβXαi1 = xjX

αi2 .

Proof. If XβXαi1 = xjX
αi2 , then δ(Xαi1 ) = k0X

αi2 for some ko ∈ k.
The ideal J = ({Xα1 , ...,Xαt} \ {Xαi2}) is a proper monomial differential
reduction of I.

Proposition 5.4. A monomial ideal in A has a unique minimal monomial
differential reduction.

Proof. Let I = (Xα1 , ...,Xαt ) ⊆ A be a monomial ideal. If
√

I = (X), then
I is the only monomial differential reduction of itself (c.f Remark 5.2). If
there is no derivation δ = Xβ∂xj

where Xβ ∈ Ixj
and i1, i2 = 1, ..., t with

i1 6= i2, such that XβXαi1 = xjX
αi2 , then we assert that I is a minimal

monomial differential reduction of itself. Supposing otherwise, we first define
the monomial ideal J1 = ({Xα1 , ...,Xαt} \ {Xαi2 }). By Lemma 5.3, J1 ⊆ I
is a monomial differential reduction. By induction define a monomial ideal
Jl+1 generated by all monomials of Jl except those monomial generators
Xβ2 of Jl such that Xβ∂xj

(Xβ1) = Xβ2 for some monomial Xβ ∈ Ixj
and

some monomial generator Xβ1 of Jl. This gives a decreasing sequence

· · · ⊆ Jl+1 ⊆ Jl ⊆ · · · ⊆ J1 ⊆ I.

This sequence terminates after a finite number of steps since I is gener-
ated by a finite number of monomials. Now consider the monomial ideal
J = ∩∞

l=1Jl = Jlo for some lo having the unique minimal set of gener-
ators Xβ1 , ...,Xβr . For any j = 1, ..., n by construction of J one has
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5 Differential Reduction

XθX
βi′

1 6= xjX
βi′

2 for each Xθ ∈ Ixj
and i′1 6= i′2 = 1, ..., r implying that

if J ′ = ({Xβ1 , ...,Xβr} \ {Xβi′}) then Xβi′ /∈ ∆A(I) · J ′ ⊆ ∆A(I) · J = I
for all i′ = 1, ..., r. Hence J is a minimal monomial differential reduction.
Uniqueness follows from the construction.

Example 5.5. Consider the monomial ideal I = (y7, xy6, x2y4, x5y3, x8y2,
x10y, x12) ⊆ Q[x, y]. Then TQ[x,y]/Q(I) = (x, y2)∂x,+(x3, y)∂y (see the dia-
gram below ).
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Since y2(x2y4) = x(xy5), x3(x2y4) = y(x5y3) and x3(x5y3) = y(x8y2); the
minimal monomial differential reduction of I is J = (y7, x2y4, x10y, x12).

Proposition 5.6. Let I be a monomial ideal in a A, and J be the unique
minimal monomial differential reduction of I having monomial generators
Xα1 , ...,Xαt . Then for k1, ..., kt ∈ k \ {0} the polynomial

f(X) =

t
∑

i=1

kiX
αi

is a cyclic generator of the ∆A(I)-module I. Moreover such polynomials are
the cyclic generators with the fewest possible non-zero monomial terms.

Proof. By Proposition 3.6, for each i = 1, ..., t there exists δi ∈ ∇A ⊆ ∆A(I)
such that Xαi = δi(f). Thus I ⊆ ∆A(I)(f) ⊆ I. Minimality of the number
of terms in f follows from the minimality of the generators {Xα1 , ...,Xαt}
of J .

Example 5.7. Consider the monomial ideal I = (y7, x2y5, x5y4, x7y2, x8).
Then TA/k(I) = (x, y2)∂x + (y, x3)∂y and J = (y7, x2y5, x8) is the minimal
monomial differential reduction of I. Moreover, if f = x8 + x2y5 + y7, then
∆A(I)(f) = I, since x8 = 1

320(5∇2
x−2∇x∇y)(f), y7 = −1

98 (5∇x∇y−2∇2
y)(f),

and x2y5 = (1
2∇x − 8

320 (5∇2
x − 2∇x∇y))(f).

Proposition 5.8. Let m denote the graded maximal ideal and put I = m
d

for an integer d > 0. Then any monomial ideal J = (Xα1 , ...,Xαt) in A

with |α1| = ... = |αt| = d is a differential reduction of I. Moreover, every
principal ideal generated by a monomial Xα, where |α| = d, is a minimal
differential reduction of I.
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6 Length of the ∆A(I)-Module A/I l+1

Proof. By Proposition 3.2, we have TA/k(I) = ⊕n
j=1m∂xj

. For any i, j =
1, ..., n and l = 1, ..., t, if xj ∈ supp(Xαl), then xi∂xj

(Xαl) is a monomial of
total degree d. Thus ∆1

A
(I) · J is an ideal generated by monomials of total

degree d. By induction, ∆A(I)·J ⊆ m
d. Conversely, if Xβ = xb1

1 xb2
2 · · · xbn

n /∈
I with b1 + b2 + ... + bn = d, then bj − alj 6= 0 for some j = 1, ..., n and any
l = 1, ..., t. Now fix such an l = 1, ..., t and define δi by

(5.2) δi =

{

x
|bi−ali|
i if bi − ali > 0
∂|bi−ali|

∂|bi−ali|xi
if bi − ali < 0.

i = 1, ..., n.

Without loss of generality, assume that δ1, ..., δi′ ∈ A, and δi′+1, ..., δn ∈
k[∂x1

, ..., ∂xn ], otherwise permute them so that the first set of operators
are monomials and the last are differential operators. Since |β| = d, the
total degree of the monomial δ1...δi′ is the same as the order of δi′+1...δn

and if Xα ∈ I, the total degree of δ1...δn(Xα) = |α| ≥ d implying that
δ = δ1...δn ∈ ∆A(I), and δ(Xαl) = k0X

β for some k0 ∈ k. This concludes
the proof.

Let J be a monomial ideal and I be either J̄ or J̃ . It is known that
∆A(I) ·J ⊆ I. One might ask when equality holds. The following examples
show that this is not always the case.

Example 5.9. Let I ⊆ Q[x1, ..., xn] be a monomial ideal. If exp(I) ∩
(∪n

i=1Hi) = ∅, then I = ∆l
Q[x1...,xn](Ī) · I for all l ≥ 1. Consequently, if

I 6= Ī then ∆Q[x1,...,xn](Ī) · I 6= Ī . We also have a similar result for an
(x, y)-primary ideal I. Consider I = (y7, x4y2, x6y, x8) ⊆ Q[x, y]. Then Ī =
(y7, xy6, x2y5, x3y4, x4y2, x6y, x8) and TA/Q(Ī) = (x, y2)∂x + (x2, y)∂y. Here
the sequence (5.1) terminates to ∆2

Q[x,y](Ī)·I = (y7, x2y6, x3y4, x4y2, x6y, x8) 6=
Ī. Thus ∆A(Ī) · I ( Ī.

Example 5.10. Consider I = (y8, x3y5, x7y, x8) ⊆ Q[x, y]. Then Ĩ = I +
(x6y2) and ∆l

Q[x,y](Ĩ) · I = I + (x4y4) for all l ≥ 1. We can see that x6y2 ∈
Ĩ\∆l

Q[x,y](Ĩ) ·I for all l. Note in this case that Ī = (x, y)8 and ∆Q[x,y](Ī) ·I =

Ī.

6 Length of the ∆A(I)-Module A/I l+1

In this section m denotes the graded maximal ideal of A. We study the
length of ∆A(I)-modules A/I l+1, where l > 0 is an integer and I an m-
primary monomial ideal.

Proposition 6.1. Let I be a monomial m-primary ideal.

(1) If I = m
d where d ≥ 1 is an integer, then l∆A(m)(I

l/I l+1) = d for any
l ≥ 0.
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6 Length of the ∆A(I)-Module A/I l+1

(2) If xi /∈ Ixj
for all i, j = 1, ..., n, then l∆A(I)(I

l/I l+1) = dimk(I l/I l+1)
for each integer l ≥ 0.

Remark 6.2. The condition xi /∈ Ixj
for all i, j = 1, ..., n in the proposition

implies that all degree-zero elements of ∆A(I) belong to ∇A. To see this,
let δ = Xα∂β ∈ ∆A(I), Xθ ∈ I and k0 ∈ k. Then

δ(Xθ) = k0X
θ ⇐⇒ α + θ − β = θ ⇐⇒ α − β = 0.

We need two lemmas for the proof of Proposition 6.1.

Lemma 6.3. Let I be a monomial ideal in A. Then for any integer l ≥ 0,
a ∆A(I)-submodule of I l/I l+1 has the form J/I l+1 where J is a monomial
ideal of A such that J ⊆ I l+1.

Proof. Since A ⊆ ∆A(I), it is clear that J is an ideal of A containing I l+1.
Now assume that f =

∑

α kαXα ∈ J ⊆ I l. Then Xα ∈ I l ⊆ I for all α and
thus Xα∂α ∈ ∆A(I). Now let α1 be a multi-degree of terms of f such that
|α1| is maximum total degree among the monomials that appear in f . Then
Xα1 = k0X

α1∂α1(f) ∈ J , for some k0 ∈ k. Now consider f(X) − Xα1 ∈ J
and apply the same procedure. We eventually obtain all the monomials of
f and consequently have the result.

Lemma 6.4. Let I be an m-primary monomial ideal and l ≥ 0 be an integer.

(1) There exists a monomial Xα ∈ I l\I l+1 such that xjX
α ∈ I l+1 for

every j = 1, ..., n.

(2) For every monomial Xα satisfying the condition in (1) and a δ ∈
∆A(I), either δ(Xα) ∈ I l+1 or xjδ(X

α) ∈ I l+1 for all j = 1, ..., n.

Proof. (1): Clearly there exists the smallest integer d > 0 such that m
d(I l/I l+1) =

0. Then the monomial representatives of m
d−1(I l/I l+1) in I l gives the re-

quired monomial Xα. (2): Let δ = Xβi∂xi
∈ TA/k(I) where Xβi ∈ (xi)+Ixi

.

If δ(Xα) ∈ I l+1, there is nothing to prove. Assume that δ(Xα) /∈ I l+1. For
any j = 1, ..., n

xjδ(X
α) = δ(xjX

α) − δ(xj)X
α = δ(xjX

α) − k0X
βiXα∂xi

(xj).

By Proposition 4.1 (1) we have δ(xjX
α) ∈ I l+1, and since supp(Xβi) 6= ∅,

by the assumption on Xα in (1), one has k0X
βiXα∂xl

(xj) ∈ I l+1. Hence
xjδ(X

α) ∈ I l+1.

Note that l∆A(I)(I
l/I l+1) ≤ dimk(I l/I l+1) where equality holds if ev-

ery composition factor of the module I l/I l+1 is a one-dimensional k-vector
space. The following example shows that we can obtain strict inequality if
the condition in (1) of Proposition 6.1 is not satisfied.
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6 Length of the ∆A(I)-Module A/I l+1

Example 6.5. Consider I = (x5, z4, yz3, z2y2, y3z, y4) in A = Q[x, y, z].
Clearly I 6= m

d for any d ≥ 1. Now ∆A(I) is generated by A and TA/Q(I) =
[(x) + (y, z)4]∂x + [x5, y, z]∂y + [x5, y, z]∂z . Then J1 = ∆A(I)(x4z7) + I2 =
(x4z7, x4yz6, x4y2z5, x4y3z4) + I2. Hence dimQ(J1/I

2) = 4. On the other
hand, y∂z(J1\I2) = z∂y(J1\I2) = J1\I2, that is J1/I

2 is a simple ∆A(I)-
submodule of I/I2.

Proof of Proposition 6.1. (1): By Proposition 5.8, for any r = 0, 1, ..., d,
if a proper ∆A(I)-module Jr containing I l+1 contains a monomial Xα with
|α| = dl + r, then all monomials with total degree dl + r also belong to Jr.
By Lemma 6.3, each Jr is a monomial ideal. Thus a composition series of
I l/I l+1 will be:

Jd/I
l+1 ⊆ Jd−1/I

l+1 ⊆ Jd−2/I
l+1 ⊆ · · · ⊆ J1/I

l+1 ⊆ J0/I
l+1

where Jr = ({Xα | |α| = dl + r}) for r = 0, 1..., d.
(2): Let Ω1 be the set of all monomials in I l \ I l+1 satisfying the condition
in (1) of Lemma 6.4. By Remark 6.2 and the condition in (2) of Lemma 6.4,
there exists a monomial Xα1 ∈ Ω1 such that ∆A(I) · (Xα1) = (Xα1) + I l+1.
Define J1 = (Xα1) + I l+1. Then J1/I

l+1 = kXα1( mod I l+1) is a simple
∆A(I)-submodule. Let Ω2 be the set of all monomials in I l\J1 satisfying the
condition in (1) of Lemma 6.4. Similarly there exists a monomial Xα2 ∈ Ω2

such that ∆A(I) · (Xα2) = (Xα2) + J1. Define J2 = (Xα1 ,Xα2) + I l+1.
Then J2/J1 = kXα2( mod J1) is a simple ∆A(I)-submodule. Continuing
this construction gives a composition series of I l/I l+1. This gives a bijec-
tion between the set of k-linearly independent monomials in I l \ I l+1 and
the number of steps in a composition series of the module I l/I l+1. Hence
l∆A(I)(I

l/I l+1) = dimk(I l/I l+1). �

We have a more general condition on I in two variables to get the max-
imal possible length.

Proposition 6.6. Let I be an m-primary monomial ideal of A = k[x, y]
such that I 6= m

d for every integer d ≥ 1. Then

l∆A(I)(I
l/I l+1) = dimk(I l/I l+1).

Proof. Let I = (xa0yb0 , xa1yb1 , ..., xatybt) where 0 = a0 < a1 < ... < at and
b0 > b1 > ... > bt = 0. Given Id 6= m for all d ∈ Z≥0 we have w(I)x > 1 or
w(I)y > 1; say w(I)x > 1.

Let d1 ≥ 0 be the smallest integer such that xc1yd1 ∈ I l \ I l+1 satisfies
(1) of Lemma 6.4 and yw(I)y∂x(xc1yd1) ∈ I l+1. The existence of such an
integer follows from Lemma 6.4 (2). Define

J1 = ∆A(I) · (xc1yd1) + I l+1 = (xc1yd1) + I l+1.
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By construction, J1/I
l+1 = kxc1yd1( mod I l+1) is simple since it is a one-

dimensional k-vector space. Let d2 ≥ 0 be the smallest integer such that
xc2yd2 ∈ I l\J1 satisfies Lemma 6.4 (1) and yw(I)y∂x(xc2yd2) ∈ J1. Then

J2 = ∆A(I) · (xc2yd2) + J2 = (xc1yd1 , xc2yd2) + I l+1

is a ∆A(I)-submodule of I l/I l+1 and J2/J1 = kxc2yd2( mod J1) is one-
dimensional k-vector space. This construction terminates since dimk(I l/I l+1)
< ∞. Moreover, each k-linearly independent monomial in I l\I l+1 corre-
sponds to a ∆A(I)-submodule of I l/I l+1 which occurs in a composition
series of I l/I l+1.

A Question: It is easy to see that for an m-primary monomial ideal I
one has

l∆A(I)(A/I l) =

l
∑

i=1

l∆A(I)(I
i−1/Ii).

Recall that lA(A/I l) is a polynomial in l for l ≫ 0 (the Hilbert Polynomial).
One may ask if the function l 7→ l∆A(I)(A/I l) is a polynomial in l for l ≫ 0.
This clearly is true if I satisfies the condition in Proposition 6.1, but in
general we only have

dl ≤ l∆A(I)(A/I l) ≤ dimk(A/I l),

where d is the minimum total degree of a monomial generator in I.
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