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Higher derivations and their invariant varieties

Martin Hamrin

Abstract

This paper concerns the existence of invariant hypersurfaces for higher

derivations on varieties over fields of positive characteristic. The classical

results about generic non-integrabilty of vector fields due to Jouanolou,

Bernstein-Lunts and others fail in positive characteristic, motivating the

study of analogous questions for higher derivations. We prove generic

non-integrability results for higher derivations on smooth rings, on P
n

and more generally for higher derivations with poles along a divisor on

a smooth variety. In the case of iterative higher derivations, we prove a

non-integrability result on rings and an integrability result on P
n. Along

the way, we prove a Jouanolou-type dichotomy for foliations in positive

characteristic.

1



2



Contents

1 Introduction 5

1.1 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . 6

2 Higher derivations on rings 6

3 Higher derivations on schemes 8

3.1 Higher derivations as sheaf homomorphisms or differential operators 8
3.2 Higher derivations as morphisms of formal schemes . . . . . . . . 9
3.3 Divided differentials . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Higher derivations with poles along a divisor . . . . . . . . . . . 11

4 Extensions 14

5 Parameter spaces 16

6 Invariant varieties 17

6.1 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Higher derivations . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Iterative higher derivations . . . . . . . . . . . . . . . . . . . . . 21

3



4



1 Introduction

The main aim of this paper is to study generic solvability of higher differential
equations. In characteristic 0, there is a large body of theory on differential
equations in the context of algebraic geometry. One kind of result is the non-
existence of algebraic solutions to generic differential equations, proved in var-
ious forms by Jouanolou [7], Bernstein and Lunts [1],[9], Coutinho and Pereira
[2] and others. The immediate analogue of this fact, that a vector field does not
have integral hypersurfaces, is very false in positive characteristic. In fact, work
by Pereira [14] implies that a generic vector field always has reduced integral
hypersurfaces. This can be seen as an indication that a vector field is not a good
notion of differential equation in positive characteristic. Thus, in this paper we
investigate integrability properties of higher derivations, and prove a general
result on the non-existence of integral hypersurfaces for higher derivations. To
do this in greater generality, we define higher derivations on schemes. Various
forms of such a notion has occured in the literature, but we do not know of
a complete reference. We also define and study higher derivations with poles
along a divisor, and construct parameter spaces for higher derivations. Along
the way, we prove a quite general Jouanolou-type theorem for foliations in pos-
itive characteristic.

Over complex affine spaces, the question whether a generic differential equa-
tion has an algebraic solution was solved by Jounaolou. He proved by calculation
on a cleverly choosen concrete equation that it does not have any algebraic solu-
tion, thus proving non-emptiness of the open set of non-solvable equations. The
equation used has solutions over fields of positive characteristic. Later, Bern-
stein and Luntz gave a different proof as a part of their proof that a generic
D-module of a certain kind is non-holonomic. A key idea in their proof is to
prove that a sufficiently generic equation cannot have any integral curves with
worse singularities than nodal. This is achived by the Poincare-Dulac theorem
on local forms of vector fields. Correctly stated, namely, that any vector field is
locally equivalent to one with only resonant terms, the Poincare-Dulac theorem
is true in positive characteristic. The problem in positive characteristic is that
there are canonically resonant terms, namely the p-th powers, which means that
generic vector fields cannot be locally linearized, meaning that the Bernstein-
Luntz proof will not go through in positive characteristic.

This reflects the fact that the situation is entirely different in positive character-
istic. Pereira [14] proves that a derivation D on affine space over a field of pos-
itive characteristic almost always has a reduced integral hypersurface, namely,
the reduced components of a certain determinant (set-theoretically cutting out

the locus of dependence of the derivations Dpi

). Hence much more differential
equations are non-trivially solvable in positive characteristic. This can be seen
as an indication that the notion of a vector field is not the natural, or at least
not the only natural, notion of a differential equation in positive characteristic.
This is our main motivation for the results in this paper, investigating generic
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integrability properties of higher derivations.

1.1 Acknowledgments

Section 2 is a reminder of basic definitions about higher derivations on rings.
The material in 3.1 is presumably known, but we have not seen it written down,
the material in section 3.2 occurs in scattered form in the literature, section
3.3 follows [16] very closely. The material in section 3.4 is original. In section
4, the extension theorem for rings is due to Matsumura, whereas the extension
theorems for schemes are original. Section 5 is original. In section 6, Theorem
43 is well-known. Theorem 44 extends results due to Kim, Pereira and others.
Propositions 47 and 48 are probably known but we have not found a reference.
Section 6.2 is original, as well as the theorems in section 6.3
This report is a slightly revised version of [4].

The author is indepted to Rickard Bögvad for suggesting the problem of
studing invariant varieties for higher derivations, for his continous advice and
for suggesting numerous improvements, and to Torsten Ekedahl for suggesting
the proof of Theorem 61.

1.2 Notation and conventions

All rings and algebras in this paper are commutative, including algebras over
sheaves. By a variety we mean an integral, noetherian, separated scheme of
finite type over a field. N denotes the set {0, 1, 2, ...} and N

+ denotes the set
{1, 2, 3, ...}. spf R[[t]] denotes the formal spectrum with respect to the ideal
(t), and for rings R,S with maximal ideals m,n respectively R⊗̂S denotes the
formal tensor product limR/mk⊗S/nk. If X is a variety TX denotes its tangent
sheaf.

2 Higher derivations on rings

Let k ⊆ R be commutative rings. A higher (or Hasse-Schmidt) derivation of
length n on R is a sequence of k-linear maps

D : (δ0, δ1, ..., δn)

δi : R → R

such that:

1. δ0 is a k-algebra homomorphism,

2. δm(xy) =
∑

i+j=m δi(x)δj(y)

A higher derivation D of length n can also be seen as a k-algebra homomorphism

eD : R → R[[t]]
tn+1

eD(x) =
∑

δi(x)ti
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Conversely, any k-algebra homomorphism R → R[[t]]
tn+1 such that the composition

with the map taking t to 0 is a k-algebra homomorphism gives rise to a higher
derivation by letting δn(x) be the coefficient of the n:th power term of the
image of x. An infinite sequence (δ0, δ1, ..., δn, ...) satisfying the same relations
as above corresponds to a ring homomorphism R → R[[t]] and is called a higher
derivation of infinite length. When δ0 = idR we say the derivation is normal.
Denote by Dern

k (R), with n possibly infinite, the set of normal higher derivations
over k of length n on R. We may also define higher derivations taking values
in an arbitrary k-algebra A in the same maner. We denote the set of such
derivations by Dern

k (R,A). Note that with this notation Dern
k (A,A) is not

equal to Dern
k (R).

Example 1. Let k be a field of characteristic 0, R a k-algebra and D a k-
derivation on R. Then ( 1

n!D
n)n∈N is a higher derivation.

Example 2. Let k = Z

pZ
. On Z[x1, .., xn] we have operators dn = 1

n!
∂n

∂xn
i
. If f

is a representative in Z[x1, ..., xn] for an element [f ] ∈ k[x1, ..., xn] we can define
dn[f ] as [dnf ], which induces operators dn on k[x1, ..., xn], forming a higher
derivation. Note that the operators dn are differential operators which are not
in the subring generated by derivations.

The following proposition gives rise to a third characterisation of higher
derivations:

Proposition 3. Let D = (di)i∈ω be a normal higher derivation on a ring R.
Then di is a differential operator (in the sense of Grothendieck) on R of order
at most i.

Proof: We show the claim by induction. The case i = 0 is clear. For a ∈ R
we have

[di, a](x) = di(ax) − adi(x)

=
i

∑

j=0

dj(x)di−j(a) − adi(x)

=

i−1
∑

j=0

dj(x)di−j(a)

= (

i−1
∑

j=0

di−j(a)dj)(x)

The operator in the last term is by the induction hypothesis a differential oper-
ator of order at most i− 1, so di is a differential operator of order at most i. �

Hence a normal higher derivation can also be defined as a sequence of dif-
ferential operators satisfying Leibniz rule.
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Definition 4. A higher derivation is said to be iterative if di ◦ dj =
(

i+j
i

)

di+j

for all i, j.

In particular, if (di) is an iterative higher derivation on a field of char k = p,
i + j = p and i, j 6= 0, then di ◦ dj = 0 but the iterativity condition imposes no
restrictions on dp. In terms of the exponential map eD : R → R[[t]], iterativity
can be expressed as follows:

R //

��

R[[s]]

��
R[[s + t]] // R[[s, t]]

(2.1)

where the map R → R[[s+ t]] is given by r →
∑

i di(r)(s+ t)i, the map R[[s]] →
R[[s, t]] is given by

∑

i ris
i →

∑

i

∑

j dj(ri)s
itj , and the map R[[s+t]] → R[[s, t]]

is the inclusion.

3 Higher derivations on schemes

3.1 Higher derivations as sheaf homomorphisms or differ-

ential operators

The definitions of higher derivations on rings generalize readily to schemes;

Definition 5. Let f : X → B be schemes, and let A be an OX -algebra. A
derivation of length n on X relative to B into A is a sequence of homomorphisms
of sheaves of abelian groups di : OX → A satisfying:

1. The composition

OB
f♯

→ f⋆OX
f⋆di
→ f⋆A

is zero.

2. For any open set U ⊆ X and x, y ∈ OU the identity dn(xy) =
∑

i+j=n di(x)dj(y)
holds.

If U ⊂ B and V ⊂ f−1(U) are affine, say U = spec k and V = spec R,
we get ring homomorphisms di : R → A(V ). By taking sections over U the
composition

k → R → A(V )

is zero, so a sequence of endomorphisms of sheaves is a higher derivation iff it
is locally a higher derivation in the sense of rings.

As in the case of rings, we say that a higher derivation is normal if its
initial term is the identity morphism. The endomorphisms of a normal higher
derivation are differential operators on a scheme as well:

Proposition 6. Let (di) be a normal higher derivation. Then di is a differential
operator of order at most i.
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Proof: An endomorphism is a differential operator iff it is a differential op-
erator locally, and the latter is true by proposition 3. �

3.2 Higher derivations as morphisms of formal schemes

If X = spec R is an affine algebraic variety, the homomorphism R → R[[t]]
corresponds to a map:

specR[[t]] → spec R = X

If spec k → X is a point in X, we have a corresponding homomorphosm R → k,
which can be extended to a homomorphism R[[t]] → k[[t]] by letting t → t
and extending linearly. Composing we get a homomorphism R → k[[t]], which
corresponds to a map spec k[[t]] → X. This is an embedding of the formal affine
line into X. Furthermore, if the derivation is normal the base point will be the
point R → k we started with. A normal higher derivation can thus be seen as
a field of formal curves, or as a section to the arc space of X (see [16]).

In the case of a normal iterative higher derivation, the diagram 2.1 gives
a diagram of affine formal schemes. Since R[[t]] = R ⊗ k[[t]] and k[[s, t]] =
k[[s]]⊗̂k[[t]] we have:

spec R specR × spf k[[t]]oo

spec R × spf k[[s + t]]

OO

spec R × spf k[[s]] × spf k[[t]]oo

OO

which together with the normality condition (implies that the identity act triv-
ially) means that we have an action of the formal additive group on specR.

3.3 Divided differentials

In this section we construct sheaves whose algebra duals are the higher deriva-
tions, following Vojtas presentation in [16]

Let s : k → R be commutative rings and let A = R[x(n)]x∈R,n∈N+ , i.e the

polynomial ring in the variables x(n) for all x ∈ R and n ∈ N. Define the
following subsets of A:

I1 = {x(m)}x∈im s,m∈N+

I2 = {(x + y)(m) − x(n) − y(m)}x,y∈R,m∈N+

I3 = {(xy)(m) −
∑

i+j=m

x(i)y(j)}x,y∈R,m∈N+

In = {x(m)}x∈R,m>n

Let I be the ideal generated by the elements in the sets I1, I2, I3, In and let:

HSn
R/k =

A

I
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Now the following is evident:

Proposition 7. The sequence of maps di : R → HSn
R/k defined by di(x) = x(i)

where x(0) = x is a higher derivation, and any higher derivation D from R to A
for a k-algebra A will factor through it. Furthermore, if A = R and D = (si)i

is normal there is R-algebra homomorphism φ : HSn
R → R such that si = di ◦φ.

Corollary 8. Homk−alg(HSm
R/k, A) ∼= Derm(R,A)

Corollary 9. HomR−alg(HSm
R/k, A) ∼= Derm(R)

To use the divided differentials to construct sheaves of higher derivations on
schemes we need to know how they behave under localization:

Proposition 10. Let S be a multiplicativly closed set in R. Then HSn
S−1R/k =

S−1HSR/k

Proof: See [Vojta].

Proposition 11. Let S be a multiplicatively closed set in k. If the morphism
k → R factors through S−1k then HSn

R/S−1k = HSn
R/k.

Proof: The two rings are generated by the same elements, and the relations
in the sets I2 and I3 are the same. The only difference comes from the relations
in the set I1. Since for a, b ∈ k we have

0 = a(n) = (
a

b
b)(n) =

∑

(
a

b
)(i)b(j)

we can inductively conclude that (a
b )(k) = 0 for all a, b ∈ k and r > 0 in HSn

R/k

as well. �

This makes it possible to patch together the HS-algebras of the local rings of
a scheme X over Y to form the HS-sheaf, which will be a sheaf of OX -algebras.

Proposition 12. For a scheme f : X → Y there is a sheaf of OX-algebras
(and hence f−1OY -algebras) HSX/Y such that for any affine subscheme spec k
of Y and any spec R ⊆ f−1(spec k) we have HSX/Y (spec R) = HSR/k

Proof: For affine sets U ⊆ X and V ⊆ Y such that U ⊆ f−1(V ) there is a
natural candidate for HSm

X/Y (U), namely the set HSm
R/S with V = spec R and

U = spec S. It follows from proposition 10 that it suffices to define HSm
X/Y on

any affine open, so we only need to prove that this definition is independent of
the affine base chosen. Hence assume that we have two sets V, V ′ ⊆ Y such
that U ⊆ f−1(V ), f−1(V ′). Then U ⊆ f−1(V ∩V ′), so we may assume V ′ ⊆ V .
If V ′ = spec R′, R′ will be a localization of R in some set S. But then by
proposition 11 HSm

S/R = HSm
S/R′ .

Corollary 13. Let X be scheme over a field k. Then

Dern

X
(U) = HomOU−alg(HSn

X(U),OX(U))

is sheaf of sets on X.
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We use this as the definition of the sheaf of higher derivations. Note that,
as in the ring case, we consider only normal derivations. Summing up, we have:

Proposition 14. Let X be a scheme over k. The following data are equivalent:

1. D ∈ Γ(X,Der∞X ), a global section of the sheaf of higher derivations.

2. A morphism of formal schemes eD : spf k[[t]] × X → X such that the
composition with the natural map X → spf k[[t]] × X is the identity.

3. A sequence of sheaf homomorphisms di : OX → OX satisfying the Leibniz
rule with δ0 the identity.

4. A sequence of differential operators (δi)i∈N with δ0 = id, satisfying the
Leibniz rule.

Proof:(Sketch) The equivalence of (3) and (4) is proposition 6. Given a global
section D of the sheaf of higher derivations as in (1), i.e a homomorphism of
sheaves of algebras HS∞(X) → OX the composition with the canonical mor-
phisms di : OX → HS∞(X) are easily verified to be endomorphisms satisfying
the Leibniz rule using the relations of HS∞(X). Conversely, proposition 7 yields
a morphism HS∞ → OX for any such sequence of endomorphisms. Thus the
data of (1) is equivalent to the data of (3). Finally, the data of (2) yields ring
homomorphisms OX(U) → k[[t]]⊗̂OX(U) = OX(U)[[t]] for any open set, thus
yielding ring homomorphisms di : OX(U) → OX(U) which by construction glue
to sheaf homomorphisms as in (3). �

3.4 Higher derivations with poles along a divisor

As was seen in the prevoius chapter, a higher derivation can be seen as a sequence
of differential operators satisfying the generalized Leibniz rule. We shall use
this characterization to define a notion of higher derivations with poles along a
divisor.

Let X be a scheme and L a line bundle on X. Given a commutative OX -
algebra A we have natural maps

A⊗ L⊗i ⊗A⊗ L⊗j → A⊗L⊗(i+j)

defined on generators by (a ⊗ l1) ⊗ (a′ ⊗ l2) = aa′ ⊗ l1 ⊗ l2 with l1 ∈ L⊗i and
l2 ∈ L⊗j .

Now we can define what it means so satisfy Leibniz rule:

Definition 15. Let X be a scheme and L a line bundle. The sheaf Dern
X ⊗

L of higher derivations with poles along L is the subsheaf of the product
sheaf (of sets) ΠDiff i(X,L⊗i) consisting of sequences of sections (si) with
si ∈ Diff i(OX ,Li), such that for any sections si, i = 0, ..., n, open set U , and
x, y ∈ OX(U) the Leibniz rule sn(U)(xy) =

∑

si(x)sj(y) is satisfied.
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Now assume L is very ample. Then (see [5])

X = proj
⊕

k≥0

Γ(X,Lk) (3.1)

Let S(Γ(X,L)) denote the symmetric algebra on the vector space Γ(X,L).
The morphism S(Γ(X,L)) →

⊕

k≥ Γ(X,Lk) yields a projective embedding of
X. Since L is invertible we can find a section s ∈ L generating L on some open
U . Then on U we have L = sOX and Lk = skOX . Let Us be the set where s
does not vanish. Then on Us we have by equation 3.1 that:

⊕

k≥0

Γ(X,Lk)

sk
= OUs

(Us)

inducing a filtration on OUs
(Us). The isomorphism Diff i(OX ,L) |Us

→ Diff i(OUs
,OUs

)
given by d → 1

si d can be composed with the restriction map yielding maps

θk : Diff i(OX ,Lk) → Diff i(OUs
,OUs

)

Proposition 16. The union of the images of the maps θk cover Diff i(OUs
,OUs

).

Proof:
Let I∆ be the sheaf of ideals corresponding to the diagonal i X and I∆′ the
sheaf of ideals corresponding to the diagonal in U . Since Diff i(OX ,Lk) =
Hom(OX×OX

Ii+1

∆

,Lk) we can consider a differential operator d from OX to Li as a

morphism

d :
OX ×OX

Ii+1
∆

→ Lk

and a differential operator d′ on OU as a morphism

d′ :
OU ×OU

Ii+1
∆

→ OU

.
We have a diagram:

OX×OX

Ii+1

∆

ρ

��

d // Lk

ρ

��
j∗

OU×OU

Ii+1

∆′ d′

// j∗OU

and need to prove that any d′ lifts to a d as above. Now d′ induces a morphism
OX⊗OX

I∆
→ OU by composition with the restriction map ρ. By the preceding

lemma we have a filtration of j∗OU = ∪im θk into submodules, which are co-
herent since they are images of coherent modules. Since OX×OX

Ii+1

∆

is a coherent

OX -module, its image in j∗OU is coherent. Thus we can cover X be finitely
many open affines on which the image is generated by finitely many sections,
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hence the image is contained in a finite part of the filtration. Taking the max-
imal of these parts over the finite set of open affines we see that the image is
contained in one of the modules in the filtration. Hence there is an integer k
such that the image is contained in 1

sk L, which means it lifts to a morphism

d :
OX ⊗OX

I∆
→ Lk

which was to be proved. �

Definition 17. Let L be an invertible sheaf on a scheme X, s a section of L
and U the complement of the zero set of S. For a differential operator D on U
we say that D has degree i with respect to L if i is the least integer such that
D lies in the image of θi as defined above.

Now, if U ⊆ A
n is an affine variety we can use the standard embedding

A
n → P

n, which is unique up to a projective automorphism, to define the
projective closure X of U in P

n. Then X is a projective variety with U as
an open subset which is the zero set of the pullback L of OPn(1) along the
embedding of X in P

n, meaning it is a very ample divisor.

Definition 18. 1 Let U ⊆ A
n be an embedded affine variety, and D a differential

operator on U . Then we say D has degree i with respect to the embedding if it
has degree i in the sense of definition 17 with respect to the pullback of OPn(1)
on its projective closure.

Definition 19. A higher derivation (di) on an embedded affine variety U ⊆ A
n

is bounded if the degree of di is bounded by i. It is of finite growth if there is a
k ∈ N such that the degree of di is bounded by ki

Lemma 20. If U ⊆ A
n is an embedded affine variety, the set of higher deriva-

tions of growth factor k is the set of bounded derivations for some embedding
U ⊆ A

m.

Proof: A derivation is of growth k iff it’s i:th component is in the image of
the restriction morphism from Diff i(X,Lik), where L is the sheaf corresponding
to the complement of U in its projective closure X. The projective embedding
associated with Lk and a hyperplane extending the complement of A

n in P
n

yields Lk as the pullback of O(1). �

Due to the preceeding lemma, when looking at an affine variety, we shall
always consider the set of bounded higher derivations with respect to some
embedding.

1It would be as natural to define the degree of a differential operator as the least i such

that DVk ⊆ Vk+i, where Vk is the filtration of OU induced by L. It can be shown that this

notion of degree is equivalent to the one we give.
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Example 21. A higher derivation of finite length trivially has growth factor 0.
If δ is a derivation δ =

∑

Pi
∂

∂xi
on the polynomial ring k[x1, ..., xn] over a field

in characteristic 0 with the Pi:s polynomial of degree k, the growth factor of δi

i!
is k

Example 22. The higher derivation on A
1 ⊆ P

1 corresponding to the homo-
morphism k[x] → k[x][[t]] taking x to

∑

n xn!tn has infinite growth factor.

Proposition 23. Let X be scheme, L a line bundle and U an open set on
which L is trivial. Then the image of the restriction morphism Der∞X ⊗ L →
Der∞(U) consists of the bounded higher derivations with respect to L. By taking
succesively higher powers of L we get a filtration of the set of higher derivations
on U which may not be exhaustive.

Proof: By the definitions and example 22. �

Corollary 24. Let U ⊆ A
n ⊆ P

n be an affine variety. Then the restriction of
the sheaf of higher derivation with poles along OPn(1) to A

n is isomorphic to
the subsheaf of Der∞(U) consisting of derivations bounded w.r.t OPn(1).

4 Extensions

A natural question is whether any higher derivation of finite length n can be
extended to a higher derivation of length n + 1. For smooth rings, the answer
is affirmative:

Proposition 25. If R is smooth over a ring k, then any higher derivation of
R over k of finite length can be extended to one of infinite length.

Proof: This amounts to completing the following diagram

R //

��

R[[t]]
tn

k //

OO

R[[t]]
tn+1

OO

which can be done by the smoothness of R since the ideal (tn) is nilpotent in
R[[t]]
tn+1 . �

Furthermore, fibres of the truncation map have a nice structure:

Lemma 26. Let D = (di) and D′ = (d′i) be two higher derivations of length n
such that di = d′i for i < n. Then dn − d′n is a derivation.

14



Proof:

(dn − d′n)(xy) =
∑

i+j=n

[

di(x)dj(y) − di(x)d′j(y)
]

= xdn(y) + ydn(x) − xd′n(y) + yd′
n(x)

= x(dn − d′n)(y) + y(dn − d′n)(x)

�

The converse of this lemma is also true:

Lemma 27. Let D = (di)
n
0 be a higher derivation and δ a derivation. Then

the sequence (di, dn + δ)n−1
0 is a higher derivation.

Proof: Clearly it suffices to check Leibniz rule for dn + δ. We have:

(dn + δ)(xy) = dn(xy) + δ(xy) (4.1)

=

n
∑

i=0

di(x)dj(y) + xδx + yδy (4.2)

= xδy + xdn(y) +
n−1
∑

i=1

di(x)dn−i(y) + yδx + ydnx (4.3)

�

Thus the fibre of the truncation map is a principal homogeneous space under
the derivations.

Now let X be a scheme smooth over a field k. There are natural truncation
maps tn : Dern+1

X/k → Dern
X/k. The two previous lemmas hold over any open set

contained in the preimage of an open set in Y ; however the existence of a higher
derivation of length n + 1 over a given derivation of length n on an open set U
is not guaranteed unless U is affine , so the fibre of the truncation map on an
open set U is either a principal homogeneous space of the derivations over U ,
or empty. Put in other words (see [12]):

Proposition 28. Let X be a scheme smooth over a field k and let L be a line
bundle. Then t−1

n (Dern
X/k ⊗ L) is a torsor under DerX/k ⊗ Ln.

Now let Ui be a covering of X with open affines, and let D be a derivation
with poles along L of length n. Then there are derivations Di defined on Ui

of length n + 1 extending D. On each intersection Ui ∩ Uj the morphism δij

defined as the difference between the n + 1:st terms of Di and Dj is an element
of TX ⊗Ln+1, which defines a Cech 1-cocycle of the sheaf TX ⊗Ln+1. Clearly, if
this cocycle is zero, D can be globally extended to a derivation of length n + 1.
Thus we have:

Proposition 29. Let X be smooth over a field k and L a line bundle on X
such that H1(X,TX ⊗Ln) = 0 for n ≥ 0. Then any higher derivation with poles
along L extends to an infinite one.
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Example 30. Since the tangent bundle on projective space over a field is ample,
the higher derivations Dern

Pn on projective space always extend to infinite ones.

5 Parameter spaces

From now on we assume all schemes to be over a field, and whenever we say
smooth or proper we mean smooth and proper over this field.

To speak about a generic higher derivation on X we want a parameter space
for the set of global higher derivation possibly with poles. Since Diff i

X is co-
herent, H0(X,Diff i

X ⊗ L) is finite-dimensional for any ample L. Consider the
product of vector spaces

SX,n,L = H0(X,Diff 0
X(OX ,L)) × · · · × H0(X,Diff n

X(OX ,Ln))

as an algebraic variety parametrizing the set of sequences of differential opera-
tors into the line bundles L⊗i.

Proposition 31. The set of higher derivations of length n with poles along L
is a closed subset Hdern

X,L of S.

Proof: For each pair x, y ∈ OX(U) the Leibniz rule imposes a closed condi-
tion on Sn,L, and the set Hdern

X,L of higher derivations with poles along L is the
set of points in Sn,L satisfying these conditions for all U and all x, y ∈ OX(U).
Since this is an intersection of closed sets, it is a closed set. Thus the set of
higher derivations is a closed subset of SX,n,L. �

We shall write DerX,L for Hder1
X,L, i.e, the space of derivations. This is simply

the vector space Γ(X,Der(OX ,L)) considered as affine space.

Proposition 32. Assume X is a smooth scheme, L a line bundle such that
H1(X,TX ⊗ Ln) = 0 for 0 ≤ n ≤ n Then Hdern

X,L is irreducible.

Proof: First we note that since the fibers of the truncation map

Hdern+1

X,L → Hdern
X,L

are principal homogeneous spaces under the group of derivations with poles
along L, which is a vector group and hence irreducible the fibres are irreducible
as well. Next we have by prop 29 that the condition H1(X,TX ⊗ Lk) = 0 im-
plies that all higher derivations of length k − 1 with poles along L extend. We
can now prove irreducibility by induction on the length n of the derivations.
The case n = 0 is clear. Assume Hderk

L is irreducible. If two different fibers
in Hderk+1

L would lie in different irreducible components, their projections on
Hdern

L must be disjoint and closed. But this space was irreducible, which yields
a contradiction. �

Corollary 33. Let U ⊆ A
n be an embedded affine variety. Then for any n ≥ 0

the space of bounded higher derivations of length n is irreducible.

16



The set of higher derivations of infinite length can be seen as the limit of the
spaces of derivations of finite length. Since the truncation maps are affine with
the topology given above, this will actually be a scheme. However, we will not
go further into this because our main purpose with parameter spaces is to define
genericity, and for infinite derivations this can be defined in terms of genericity
of their finite truncations.

We can now make the following definition:

Definition 34. A set of higher derivations of length n with poles along L is
generic if it contains an open, nonempty subset of Hdern

L. A set of derivations
of infinite length is generic if all its sets of trunctions are.

We would also like to have a relative version of genericity in terms of what
derivations occur as differences of extensions. By the calculation in the proof of
26, if two global higher derivations with poles along L agree up to order n − 1,
the difference between the top terms will be in H0(X,DerX(OX ,Ln). In fact,
we have:

Lemma 35. Let D ∈ Hdern
L. Then the maps ti : Hdern

L → Dern
L mapping D′

to the difference of the i:th order terms of D and D′ are morphisms of algebraic
varieties.

Proof: Evident, for example by choosing a basis for each
H0(X,Diff i

X ⊗ L⊗i). �

Definition 36. An extension sequence is a sequence

G = (Gn), Gn ⊆ PH0(X,DerX(OX ,Ln))

of constructible subsets of the sets of derivations with poles along L.

Definition 37. A set S of higher derivations is G-generic if S contains an open,
nonempty subset of t−1

i (Gi) for each i.

6 Invariant varieties

We shall restrict attention to algebraic varieties, by which we mean an integral,
noetherian, separated scheme of finite type over an algebraically closed field.

6.1 Derivations

Definition 38. Let R be a k-algebra and D a k-derivation on R. We say that
an ideal I in invariant under D if DI ⊆ I. We say that an element f ∈ R is
invariant if f 6∈ K and D(f) ⊆ (f), i.e if there is an element λ ∈ R such that
Df = λf . If X is an algebraic variety and D a vector field on X we say that
a subvariety H is invariant under D if D ∈ TH . Equivalently we can say that
for every open affine, the ideal defining H in that open set should be invariant
under the restriction of D.
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Definition 39. Let R be a k-algebra and D a k-derivation. We say D is
completely integrable if there is an element r ∈ R\(k ∪ Rp) such that Dr = 0.
If X is an algebraic variety defined over k we say that a k-derivation D is
completely integrable if there is a reduced non-constant section s ∈ OX such
that Ds = 0.

Definition 40. Let X be an algebraic variety and F a subsheaf of the tangent
sheaf TX . If H is a subvariety of X we say H is invariant under F if its sheaf
of ideals is invariant under all elements of F . We say F is completely integrable
if the subsheaf annF of OX of elements killed by the elements of F properly
extends Op

X

The next proposition says that complete integrability implies that there are
plenty of invariant subvarieties.

Proposition 41. Let D be a vector field on an algebraic variety X. If D is
completely integrable, there is a surjective, non-trivial morphism X → B whose
fibers are invariant.

Proof: It is easy to verify that the set of sections killed by D is a subsheaf
annD of rings of OX . The morphism f : spec annD → X corresponds on open
affine subsets U = spec R to the inclusion morphism of the ring of constants
into R. If V ⊆ spec annD is affine, and U = specR extends f−1(V ), the fiber
over a point p ∈ V is simply Rp, and Drp = pDr + rDp = pDr ∈ Rp, so fibers
are invariant. �

Note that in the characteristic zero case the morphism in the proposition
above cannot be finite (because the ring of constants is algebraically closed
in R), thus inducing a fibration of X into integral subvarieties. In positive
characteristic, this is not true, and the morphism above may well be finite and
is then inseparable.

In the case of a subsheaf of the tangent sheaf, we have by the above argument:

Proposition 42. Let F be a completely integrable subsheaf of the tangent sheaf
then there is a surjective, non-trivial morphism whose fibers are invariant under
F

The following is a well-known result from the theory of foliations in positive
characteristic:

Theorem 43. (Ekedahl) Let X be an algebraic variety over a field k of char-
acteristic p > 0 with dimX = n ≥ 2 and let F be a p-closed, involutive subsheaf
of the tangent sheaf, with rank r < n. Then F is completely integrable. (Much
more is true. If we say F is saturated if TX

F
is torsion-free, there is a one-to-one

correspondence between the set of saturated, p-closed involutive subsheaves and
normal varieties between X and Xp)
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Proof: See [13] or [3]. �

In [8], Kim proves a positive characteristic version of Jouanolou’s theorem on
integrability of Pfaffian equations using the Cartier operator, and in [14] Pereira
proves a similiar result for vector fields on affine space over a positive charac-
teristic field. The following proposition generalizes both results to foliations of
arbitrary rank on an arbitrary smooth variety.

Theorem 44. Let X be a smooth algebraic variety over a field k of characteris-
tic p > 0. Let F be a subsheaf of the tangent sheaf. Then F is either completely
integrable or has only finitely many integral hypersurfaces.

Proof: Assume H is an integral hypersurface. This means that if H is given
locally by an equation f = 0 and D is a section of F we have Df = λf for some
polynomial λ. Thus it is clear that H is also an integral hypersurface of Dps

for any integer s. If D,D′ are sections of F and Df = λf , D′f = λ′f on some
open affine, then

(DD′ − D′D)(f) = DD′f − D′Df

= Dλ′f − D′λf

= fDλ′ + λ′Df − fD′λ − λD′f

= (Dλ′ + λ′λ + D′λ − λλ′)f

= (Dλ′ + D′λ)f

so any hypersurface invariant under F is also invariant under the commutator
of two sections of F . Thus we may assume that F is involutive and p-closed.

Since the tangent bundle of H has rank n − 1 we see that F cannot have
full rank at the points of H, so H is contained in the support of TX/F . If
this support is the whole of X, F has rank less than n, and is then completely
integrable by the previous theorem. Otherwise, the support is a proper closed
subset, and so has only finitely many irreducible components. �

Pereira [14] has shown a partial converse to the above, namely:

Proposition 45. Let D be a vector field on A
n
k with k a field of positive charac-

teristic. Choose coordinates x1, ..., xn on A
n
k and let DepD be the determinant

of the vectors Dpi

in Derk[x1, ..., xn] = k[x̄] ∂
∂x1

⊕ · · · ⊕ k[x̄] ∂
∂xn

. If DepD is
reduced, its factors are invariant hypersurfaces.

Proof: See [14] �

We shall use the following notion:

Definition 46. If M is a constructible set of derivations, we say that a hyper-
surface is generically M -stable if it is stable under all derivations in an open
non-empty set of M .
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We need a slight variant of the theorem that there are no reduced der-stable
ideals in a smooth ring:

Proposition 47. Let X be a non-singular affine variety over a field k. Then
there is no hypersurface invariant under all derivations in an open subset of the
derivations of bounded degree.

Proof: Since X is non-singular there is an etale covering A
n
k → X for some

n. An open subset S in the space of derivations of degree less than d will lift to
an open subset S′ of the derivations on A

n
k , since derivations lift uniquely along

etale morpisms. If H is a hypersurface in X invariant under all derivations in
S, i.e D ∈ TH for all D ∈ S then the preimage of H will be invariant under all
derivations in S′. Hence it suffices to prove the assertion for affine space. Here,
the set of derivation of degree less than d are given by an n-tuple (f1, .., fn) of
polynomials of degree at most d. For any hypersurface H and any non-singular
point p on H the condition that D′ =

∑

Pi
∂

∂xi
be tangent to H at p is a closed

condition. Since H is non-singular at p there is a tangent v at p not in the
tangent space of H at p, so the vector field with constant value v is not tangent
to H. Thus the condition is non-empty. Since a reduced hypersurface cannot
be singular at all points, there are no common hypersurfaces for a generic set
of derivations. �

Proposition 48. For n ≥ 2 there is no projective hypersurface invariant under
a generic set of vector fields on projective space.

Proof: By a similiar argument, or use the fact that the vector fields with
constant coeffients on some affine chart extend.

6.2 Higher derivations

Given a higher n-derivation d1, ..dn on an algebraic variety X we say that a
subvariety Y is invariant if its ideal is stable under all the maps dn.

Theorem 49. Let X be a proper algebraic variety, L an invertible sheaf, and
G an extension sequence. If for some d, there are no generically Gd-stable
hypersurfaces and then a G-generic global higher derivation with poles along L
of length n has no integral hypersurfaces.

Proof: If Γ(X,Dern ⊗L) = ∅ there is nothing to prove, so we assume there
is a global section. If the conclusion was false, there would be a set of higher
derivations S such that all elements in S have integral hypersurfaces and the in-
tersection of S and the preimages t−1

i (Gi) all contain an open subset of t−1
i (Gi).

Pick an arbitrary D ∈ S. The initial term d0 of D is a derivation so by Theorem
44 there are only finitely many hypersurfaces, say H1, ..,Hk possibly invariant
under D. Let U be an open subset of t−1

d (Gd) contained in the intersection
S ∩ t−1

d (Gd). Any element of U must have some of the Hi:s as invariant hyper-
surfaces, so if Ui is the set of elements with Hi as an invariant hypersurface,
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U = ∪Ui. Since Ui closed in U , we must have Ui = U for some i. But then every
element of ti(U) is a difference between two operators with Hi as an invariant
hypersurface, so every derivation in ti(U) has Hi as an invariant hypersurface.
Since ti is one-to-one, its image is open, so there is an open subset of Gd in
which all elements have Hi as an invariant hypersurface, making Hi generically
Gd-stable contrary to the assumption.

Corollary 50. Let U ⊆ A
n be an embedded affine variety. Then for any n ∈ N

a generic element in the set of bounded higher derivations of length n has no
invariant hypersurfaces.

Proof: X can be embedded in projective space P
n such that the higher

derivations of bounded degree correspond to higher derivations with poles along
powers of OPn(m).

Corollary 51. A generic global higher derivation on P
n has no invariant hy-

persurface

Proof: Let L be trivial and use the fact that derivations with constant
coeffients have no common integral hypersurface.

Corollary 52. If X is and L a line bundles such that that there are no hy-
persurfaces stable under H0(X, TX ⊗L), then a generic global higher derivation
with poles along L has no invariant hypersurface.

Proof: Set Gi = TX ⊗ L⊗i in the theorem.

Corollary 53. Let X be an algebraic variety over a field k and L an ample
divisor on X. Then for some k and all n, a generic global derivation with poles
along Lk has no invariant hypersurfaces.

Proof: Pick n such that Ln is very ample. Then the ordinary derivations
with poles along Ln correspond to derivations on a smooth affine variety of
degree bounded by n with respect to the projective embedding associated with
L. Picking L suffienctly large, we can make this bound arbitrarily large. On a
smooth affine variety there are no hypersurfaces generically invariant under all
derivations of sufficiently high degree.

6.3 Iterative higher derivations

A higher derivation is said to be iterative if Di ◦Dj =
(

i+j
i

)

Di+j . It follows that

Di◦D1 =
(

i+1
1

)

Di+1, and hence that Di is determined by its predecessors unless

p divides i. Also, since Dp−1
i = cDip−i for some c, we have Dp

i = cDip−i ◦Di =
c
(

ip
i

)

Dip = 0
Let D = (D1, ...) be a higher derivation on R. Then annD1 is a subring of

R, which is also annihilated by Di for i < p. The restriction of Dp to annD1 is a
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derivation, since Dp(fg) =
∑

i+j=p Di(f)Dj(g) = fDp(g) + gDp(f). Similarly,

Dpk+1

is a derivation on annDpk

, which implies that:

Dpk

fpk+1

= Dpk

(fpk

)p = pDpk

(fpk

)p−1 = 0

by the Leibniz rule.

Lemma 54. Let D be a derivation on a ring R, inducing a derivation D̄ on
Q(R). Then Q(annD) ⊆ annD̄.

Proof: Assume Da = Db = 0. Then D(a/b) = (bDa − aDb)/b2 = 0.

Proposition 55. Let k be a field with char k = p, R a ring over k, D a
derivation on R and let annD = {f ∈ R | Df = 0}. Denote by Q(S) the
fraction field of S. Then [Q(annD) : Q(R)] = p.

Proof: Using the fact that a differential equation

n
∑

i=1

aiD
i

has at most n solutions linearly independent over the constant field. which is
proved using the Wronskian criterion for linear dependence; namely elements
x1, ..xn are linearly dependent over the constant field of D if the determinant

∣

∣

∣

∣

∣

∣

∣

∣

x1 ... xn

Dx1 ... Dxn

... ...
Dnxn ... Dnxn

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (6.1)

2 and the fact that R is the set of solutions of the differential equation Dpx = 0
over annD, we have that [Q(annD) : Q(R)] ≤ p.2

For any finite-dimensional ring R, [Q(Rp) : Q(R)] = pdimR. The theorem
above therefore implies that a if dimR ≥ 2, Rp is a proper subring of annDp.
Thus we have proved:

Theorem 56. Any iterative higher derivation of finite length on a ring R with
dimR ≥ 2 has a non-trivial constant of integration.

To study fields of constants for infinite iterative derivations, we need a the-
orem due to Zerla:

Theorem 57. Let K/k be fields with K finitely generated over k and k count-
able. Then k is a field of constants of an iterative higher derivation on K iff k
is algebraically closed in K and K is separable over k

Proof: See [17]

Theorem 58. Let R be a ring finitely generated over a countable field k such
that the fraction field of R is separable over k. Then a generic infinite higher
derivation on R over k has no non-trivial constant of integration.
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Proof: We need only prove non-emptiness of the set of higher derivation
without constants of integration. Any higher derivation on R extends uniquely
to a higher derivation on K = Q(R), the fraction field of R. By assumption K
is finitely generated and separable over k and k is countable, so by proposition
57 there is a higher derivations D such that k is the field of constants of D, i.e,
D has no non-trivial constants of integration. �

According to section 3.2 an infinite iterative higher derivation on a scheme
X over a ring k can be seen as an action of the formal additive group spfk[[t]]
on X. We shall use this viewpoint to prove that an iterative higher derivation
on projective space over a field always has invariant varieties. We need a few
lemmas on automorphisms on P

n.

Lemma 59. Let F be a commutative formal algebraic group, G an algebraic
group and φ : F → G a morphism of formal groups. Then ¯im φ is a commutative
algebraic subgroup of G.

Proof: Both closedness and commutative are local so we may assume F and
G to be affine. Then F = spfR and G = spec S, and we have multiplication
morphisms µR : R → R⊗̂R and µS : S → S ⊗ S. We have a commutative
diagram

S
φ //

µS

��

R

µR

��
S ⊗ S

φ⊗̂φ // R⊗̂R

inducing a diagram:

S
φ //

µS

��

S/ ker φ

µ̂R

��

// R

µR

��
S ⊗ S // S/ ker φ ⊗ S/ ker φ // R⊗̂R

Now it is easily verified that µ̂R defines a commutative algebraic group on
spec R/ ker φ into which F embeds. Furthermore it is clear that it is the small-
est such algebraic group, hence is is the Zariski closure of the image of φ. �

Lemma 60. Any commutative algebraic subgroup G of PGLn has an invariant
flag.

Proof: Say PGLn acts on P(V ). Then G lifts to a commutative subgroup
G′ of GLn, acting on V . If all elements in G′ act by scalar multiplication, G is
trivial and we are done. Otherwise, there is an element g ∈ G′ with a proper
eigenspace V ′. For any v ∈ V ′ and g′ ∈ G′ we have gg′v = g′gv = λg′v for some
constant λ, so g′v is an eigenvector and thus g′v ∈ V ′, so V ′ is G′-invariant.
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Repeating the argument yields a complete flag of invariant subspaces. �

Theorem 61. Any iterative derivation on projective space has an invariant
variety.

Proof: An iterative derivation can be seen as an action of the formal affine
group on P

n, and an variety is invariant under the derivation iff it is invari-
ant under this action. Thus we have a morphism of formal groups spf k[[t]] →
PGL(Pn). By the previous lemmas, the image of this group is commutative and
thus has an invariant flag. �
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