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THEORY OF POLYNOMIALS IN F-SPACES

ABOUBAKR BAYOUMI

Abstract.  Theory of polynomials plalys fundamental roles in
most branches of Mathematical Sciences and their applications.
In this paper we build up a new theory of polynomials in spaces
which are not necessarily locally convex, and give some of their
applications .

1. Introduction and Notation

During our work towards more foundations of Complex Analysis in
non locally convex spaces we found ourself in a great need to a theory
of polynomials between F-spaces, that is, without convexity condition
(cf. references). For theory of polynomials in Banach spaces several
mathematicians have worked with it, see for example[17 — 25].

Multilinear maps play a fundamental role in our study of polynomials
and other topics like Diceerential maps and Holomorphy. In [15] we
present the basic facts about multilinear maps of p-Banach spaces and
give conditions for a multilinear map to be continuous. We have also
introduced the p-Banach space of all continuous multilinear maps (0 <
p <1). By a p-Banach space we mean a complete p-normed space. A
vector space with a p-norm is called a p-normed space.

Our approach in this paper for the study of polynomials is the mul-
tilinear mappings between spaces which are not necessarily locally con-
vex. Continuous polynomial mappings with respect to the given topolo-
gies on non locally convex spaces play a fundamental role in the study of
Complex and Functional Analysis. For example polynomials are used
to approximate all holomorphic mappings.They represent the simplest
holomorphic functions. We degne a homogenous polynomial on a p-
normed space as the restriction of a symmetric multilinear map to be
the diagonal one. In this paper we give several necessary and su(Ecient
conditions for a polynomial to be continuous (Sections 2,3 ).

A generalized universal constant appears relating the continuous m-
homogeneous polynomials and the corresponding symmetric m-linear
maps between locally bounded spaces (Section 3 ). For normed spaces

it is due to Nachbin [26]. Further we have paid attention to study the
1
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Banach-Steinhaus theorem for polynomials between locally bounded
F-spaces (Section 4).

1.1. Symmetric Multilinear Maps. In this section we study the
space of symmetric multilinear maps between Locally bounded Spaces.
A locally bounded space is degned by a p-norrm (1 > p > 0), (see [?]),
and it is called a p-normed space.

A p-norm on a vector space F over K is a mapping ||.|| from E to
R, satisfying

(i) ||z|| =0 if and only if z=0

(i) |[[Az|| = |AP||z]|, for every M€K, x € E

i) Il +9l] < |Jall + lpll, for every o,y € B.

Let now F; be p;normed spaces, (1 >p; >0),(1<1i<m).

If the p;-normed spaces Fi,---,F,, are equal to a p- normed space
E, we denote,

L("E;F) = L(Ey, - Epn: F).

the space of continuous maps between the product FE™ and F.
An m-linear map A: E™ — F is called symmetric if

A(:L‘la e 75L‘m) - A(xd(l)a e 7x0(m))7
for any permutation o of (1,---,m).

Let L,(™E; F) denote the vector space of all algebraic symmetric
m-linear maps of FE ™ into F, and let

L("E;F)=L(ME,F)N Lys("E, F).
Then it is easy to check that L ("™FE;F) is a closed subspace of
L(™FE;F) and hence Lg(™FE;F) is a p-Banach space if F is a
p-Banach space.
For m = 0 we write LO(E,F) = LS(OE,F) = F, and for simplicity,
when F' =K we write

L(™E) = L(™E;K), Ly(™E) = L("E.K).

For each m- linear map A: E™ — F we degne A, : E™ — F by
1
(1) As<x17"' 7xm) = %ZA('TUU)’“. 7xa(m))

where the summation is over the m! permutation o of (1,---,m).
Hence A, is a symmetric m-linear map, and it is called the sym-
metrization of A.
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If Ae Ly("E,F), then it is clear that A = A,. We note that the
map A — A is a continuous map of L(™FE,F) onto Lgs(™E;F) since

[As] < [IA]-

1.2. Multilinear Formula. Let A € Ly(Ey, -+, Ey F), 0 <n <
m, and (x1,---,x,) € By X -+ X E,.

We degne A(:El,- .- ,:En) by the following formulas :
() I n=m, Alxy, - ,x,) = Az, , Tpm)-
2) I n<m, Alxy, - ,x,): Epy1 X+ X Ep — F
is a mapping degned by

(anrla o 7xm> - A(Ila C o Tpy Ty, 7xm)-

That is, A(xy,---,2,) is an (m—n)-linear map of FE, 1 X - X E,
into F.\When A€ Ly("E,F) and z =27 =+ = x,, we write
(2) Az" = Az, -+ | x).

We degne, for convenience Axz° = a. This shows that

Az" € L,(""E; F) alln, 0 <n <m.

Lot A€ Ly("E,F), 0< k<m, 21, 0p € F and ny, - .y €
N with ni+---+np=n<m. Then we degne

ni ng __
Axl c Ty _A('rlu"'7x17 4 PR 1 P xku"'7xk)

where i appears n; times, Ty appears N times, and so on.
Lemma 1.1. (Multinomial Formula) If A€ L,("E,F), then

n!

3) A($1+"'+9€k)nzz

where the summation is over all k-tuples (nl,--- ,nk) satisfying mq +
P + nk = nNn.

_— nl .« .. nk
' 'Axl x),
Nyt N

Proof. The procedure is obvious for n =0 and n = 1. We shall prove the
lemma by induction. Assuming the formula is valid for a certain n>1,
one can readily establish it for n + 1. Note that if A € La("+1E; F)

then one can write

A(xl +...+ajk)n+1 :A(l'l +...+l‘k)n(x1 +...+:L'k)1
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where in this case ny+ ...+ ny=n+1in (3). B

As a special case of Lemma 2.1, when kK =2, we have the following
familiar Binomial Formula

3

n _
(4) Az +y)" = 1 AzbynF,
k=0
1.3. Polynomials. Let [, F' be vector spaces over the same geld K.
A mapping P : E — F is said to be an m-homogeneous polynomial
or a homogeneous polynomial of degree m if there exists an Mm-linear

map A:E™ — F such that
(5) P(z) = Az™

for all x € F.

For m =1, an m-homogeneous polynomial is simply a linear map
of F/ into F. If P:FE — F is an m-homogeneous polynomial, then
P(rz) =r"P(x) for any r €K.

We shall denote by P,("™FE;F) the vector space of all m- homoge-
neous polynomials of £ into F. (The index ain P,(™FE;F)is to indi-
cate that the m- homogeneous polynomials in this space are not neces-
sarily continuous). For convenience, we agree to write F = P,(°F, F).

1.4. Polarization Formula. The following theorem provides us with
an interesting formula. It relates M- homogeneous polynomials and
symmetric m-linear maps.

Theorem 1.2. (Polarization Formula)

Let E£ and F be pnormed and g-normed spaces, and A :
E™ — F be a symmetric m- linear map. Then

1
(6) A(xla U ,.Tm) = mlom Z €1, 7€mA(€1x1 + o+ 6mxm)m
where the summation is taken for all ¢; € {—1,+1},i=1,--- m.

Proof. By the multinomial formula, we have

A(Gll'l + -+ Gml'm)m = Z 77/'7
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Multiply both sides by Z €1 €m, we get

e;==+1
Z €1 enAlerxry + oo + €pxy)™
e, ==+1
— | 1 ni+l  nm+l g1 nm
= m! Z — Z et e Ax L
J— TNyt My - ot

1<i<m

Clearly 261111+1 - -Eszrl =0if n;, =0 for some 1 <7< m. Since
Zei::l:l €2---€2 =2™, we get the desired result;

1
ie. o Z €1 enAlery + -+ €)= Alzy, ..y 20,). B
1%cm

The following theorem shows the unique correspondence between the

classes Po("E,F) and Los("E, F).

Theorem 1.3. If P € P,(™E,F), then there exists a unique sym-
metric m-linear map A € L,s("™F,F) such that

P(z) = Az™
for all z € E.

Proof. Since P € P(™E;F), by degnition, P(z) = Ax™ for some A €
L,(ME,F). Then the symmetrization Ay of A satisges

P(z) = Agx™.

The uniqueness of such a symmetric Mm-linear map is a consequence of
the polarization formula. H

We have just seen that there is a unique correspondence between the
m- homogeneous polynomial P and the symmetric m-linear map A, so
to emphasize this we write

P=A.

The following theorem is self-evident.
Theorem 1.4. The mapping
A€ L("E,F)— Aec P,("E,F)

is a vector space isomorphism.
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Example 1.1. Let EF =K and A:E™ — F be any m-linear map
of the form

AA, - Am) = a1+ Ay, a€F,

where aAj--- A, denotes (A1,---Ay)a. Therefore, an m-homogeneous
polynomial P :K — F'is of the form

P(x)=a)\", a€F.

In this way, if F =K, we get the classical m-homogeneous polyno-
mial of K into K. This example motivates and justiges our degnition
of m-homogeneous polynomial. A

A mapping P : E — F is called a polynomial if there exists m
and Py € P,(*E,F), k=0,1,---,m such that

The addition of this is pointwise, and if P, # 0 we say that P is
a polynomial of degree m.

The vector space of all polynomials from E to I with respect to
pointwise vector operation will be denoted by P,(F,F).

We have the following result as extension to the classical one for
normed spaces, ( see [1],Ch.3).

Theorem 1.5. Let P : E — I be a non-zero polynomial of degree
m between locally bounded F-spaces E,F. Then the representation

(7) P=P+P+ -+ Py
is unique.

Proof. It su(Eces to show that 1

P=Py+P+---+P,=0 implies FPy=---=P,=0.

Note that if P(x) =0 for = € F, then we have for any 7 € K

P(rz) = Py(x) +rPy(z) -+ r"Py(z) =0.

Dividing through by =™ if r # 0 and making 7 — 00, we obtain
P, =0. By induction we then get Pp=PFP,=---P,_;=0. &
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1.5. Continuous Polynomials. Let us denote by P(™E,F), the
vector space of all continuous Mm-homogeneous polynomials from a p-
normed space F to a ¢-normed space [’ with respect to all pointwise
vector operations. We write F' = P(°E, F') .

It is clear that if P € P(™E;F), then

sup { || P(2)||/[|=]|™%; @ # 0, ||| < 1}
= sup {[|P(2)[; [lz] <1}
= mf{M > 0; [|P(2)] < Mz|"""}.
Let ||P|| be the common value of these equalities.. Then |P| is
a ¢gnorm on P(ME F) if F is a g-normed space. This ¢g-norm will

be considered throughout the paper.
It is easy to see that

8) 1P )| < (|2 [l
(see [1]).
As a criterion for the continuity of an m-homogeneous polynomial

we present the following theorem between p-normed F and g-normed

space ' (1 > p,q>0)

Theorem 1.6. For P € P,("E;F), let A € L. (™E;F) be such
that P = A. The following statements are equivalent.

(a) A€ L,("E;F).

(b) P € P("E; F).

(¢) P is continuous at the origin.

(d) There exists a constant M >0 such that
9) 1P ()| < M|/

Proof. The implications (a) = (b) = (c) =(d) are evident. I

We claim that (d) = (a): If [|[P(z)|| <M for |[jz|| <1, it follows
from the polarization formula that

[AGy, - )| < M/m!

for ||z;]| <%, i=1,---,m, and hence A€ L,("E;F). B
m
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2. Generalized Martin’s Theorem

The following theorem extends Martin’s theorem to locally bounded
F-spaces.

Theorem 2.1. (Generalized Martin’s theorem) For a p-normed
space [/ and a ¢- normed space F', the mapping

Ae L,("E;F)— Ae P("E;F)

is a vector space isomorphism and a homeomorphism of the grst onto
the second space. Moreover,

mma/

m!

N p N
(10) [Al < Al < Al

Proof. The assertion is trivially true for m = 0,1. So we assume that
m > 1. It is clear that the mapping is a vector space isomorphism, and
it remains to show that the inequality (10) holds.

We have [|A[| < [|A]| since [A] < |lA[l[|z]™/.
We use the polarization formula to get the other inequality

1 R
[A@s o) < —on Y Al + - + e
1 R
< o D ANl + - e )07
1 R
mq/p
< —m 2 AN+ )

1 A m
< Azl + -+ llzwll) ar

since we have 2" terms in the above summation. Hence if ||z;|| < 1, i =
1,---,m, we obtain

mma/p

(11) 1] < 1]

m)!
[ |

Corollary 2.2. If F'is a ¢-Banach space, then P(™FE;F)is a ¢-
Banach space.
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2.1. The Generalized Nachbin’s Universal Constant m:j,/p
The map A € L("E;F) — A € P(™E,F) considered above is

. . . . mq/
not in general an isometry. We also notice that the coe(Ecient mmq' <

in the above theorem depends only on m, p and ¢ and not on the
p-normed space [ and the ¢-normed space F. Therefore we can
consider m™¥/P/m! as a universal constant relating the continuous
m-homogeneous polynomials and the corresponding symmetric m- lin-
ear maps. Of course this constant turns out to be equal to mm/m! if
E and F are p-normed spaces.

The following example shows that we cannot replace the constant
m™4/P /m! by a smaller one

Example 2.1. Consider the F-space FE =1 (1 > p > 0) of all
sequences T = () of numbers 1z, € K such that [[z]] =) 7 |z,/|" <
00. For m>0,let A: E™ — K be the m-linear map degned by

1 m\ __ 1,2 m.
Az, -+ a™) = xyay - ;s
i.e. the product of the diagonal of
1 1.1 1
x — (x17x27.'.7xm".')7
2 2 2 2
4 - (x17'r27"'7xm7"'>7
m m m m
x — (x17x27'.'7xm7'.')'

Then A is continuous. The symmetrization A, of A is now given
by

1 o
As<x17 e ’xm) = T le(l) . l’gn(m)
m:

where the summation is over all permutations o of {1,2,--- ,m}.
We claim that | Al = % In fact
1 m 1 a(1) o(m) 1 111/p m|1/p
[As(z®, - 2™)| < %Z(lﬁ [ lam™ 1) < sl Pl
g
Hence |[|Asll < % But
1
As<€17' ,€m> = ﬁ

where €' = (0,---0,1,0,--). Therefore
12) 1A = 1/m!
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Let Ay(z) = Ay(x,---,2). Then A, € P("E;K) and
Afx) =x1 -y

where x = (xl, RIS ) Since the geometric mean of positive num-
bers is always less than or equal to the arithmetic mean, we have

. 1
FAN = a7 o] < (a4 o o [7)™
Thus ||A,|| < 1/m™?. I we take
T = (1/m1/p’... ’1/m1/p’0...)7

where l/ml/p appears in the grst m terms of ¥, we obtain

1

mm/P ’

(13) | As(2)]| =

This shows that ||1218|| = m,and hence,

mm

/v
1A

m:

14s]| =
where ¢ =1 here A.

Remark 2.1. If I/ is a real Hilbert space and F' is a Banach space
then the mapping A € Ly("E,F) — A€ P("E,F) becomes an isom-
etry. If p =1 then the universal constant will equal % and the result

is due to Nachbin [26].Also for LP(u),1 < p, it is due to Sarantopouls
[28].
We generalize the polarization formula for the sake of using it in the

next section.

2.2. Generalized Polarization Formula. For locally bounded spaces

E F,and f:FE — F, let

(14)
1
gpm(f) = m!2mZel"'Gmf(61x1+"'+€mxm) y L1y, 3 Tm cF
where the summation is over all ¢, = 1lor -1, k=1,--- m.

If Ay,: EF — F is a symmetric k-linear map and P = Ak, then

Ap(x1, - ,x) if k=m
0 e ={
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We shall call ¢,,(f) the polarization of f with respect to
1, ,Tm,m. We have shown the formula for the case kK =m in Section
1. If k <m, a straightforward computation shows that ¢,,(P;) =0
(see the proof of Theorem 1.2 )

3. The Space P(E,F)

We are now concerned with continuous polynomials from a p-normed
space F into a g-normed space F. Let P(E, F') denotes the vector space
of all continuous polynomials from FE into F.

The following theorem provides some criteria for the continuity of a
polynomial P.

Theorem 3.1. Let P:FE — F be a polynomial of degree m from
a pnormed space F into a g-normed space F' such that

P=Py+P + - +P,

Then the following are equivalent :

(a) Py, Py, -+, P, are continuous.
(b) P is continuous.

(¢) P is continuous at the origin.
(d) P is bounded on the unit ball.

Proof. The implications (a) =(b) = (c) = (d) are trivial.
It remains to show (d) = (a). This will be shown by induction. We
use the general polarization formula above. We note that

Cm(P) = 0, (FP0) + - + 05 (Pr) = 0, (Prm)

or
(pm(P) - Am($1a e 7xm)7

where A,, = P,,. Since P is bounded on the unit, we have |P(x)] <
M on the unit ball ||z| <1, for some M > 0. Now

1
lAm (@1, - zm)l = llom (P < —SlIP(ez1 + - + emm )|

Hence if ||x1||1/p + -4 ||:Em||1/p < 1, then

[An(ar, - )l < o
which shows that A,, is continuous and hence P, = Am is continuous.
As P — P, is also bounded on the unit ball, repeating the same
argument as above, we can show that P,,_1 is continuous. Inductively,
therefore we conclude that Fy, P;,---PF,, are continuous. W
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4. Banach-Steinhaus Theorem for Polynomials

The following theorem extends Banach-Steinhaus type theorem to
homogeneous polynomials between locally bounded F-spaces which are
not necessarily locally convex.

Theorem 4.1. TLet FE be a p-Banach space, F' be a ¢- normed space
and (P,) be a sequence in P(™E;F). If P is the pointwise limit
of the sequence (P,), then P € P(™E;F).

~

Proof. Let A, € Ly;(™FE,F) be such that A, = P, where P, €
P(™E; F). The polarization formula, (Section 4 ) implies that
limAn(xl, cee ,l‘m) exists at each point (:El, s ,:Em) of E™. Let

A=1limA,.

Then A€ L,("E,F).
We claim that A € Ly(™E,F). Since
L(ME,F)~ L(E,L("'E; F)),

see [15],if we consider (A,) as a sequence in L(E;L(™'E;F)), by
the Banach-Steinhaus theorem for linear mappings, we obtain A €
L((E: L("E, F)).
Hence A € Ly("E,F) as A, € L(™E,F) for each n. Now we
have
P(z) = limP,(z) =limA,(z) =lim A,(z,--- ,z)
= Az, - ,z) = Az).
That is, P = A. This completes the proof. I
Corollary 4.2. Let E and F be as in the above theorem and (P,)
be a sequence in P(F;F), whose elements of degree k. That is,
Pn:Pn0+Pn1++Pnka Pnk#oa n=12.

If P, is the pointwise limit of the sequence (P,;) for each (1< i < k),
then P =3¢ P € P(E;F), and of degree k.

Proof. By assumption all elements of (P,) have the same degree k.
P, is the sum of gnite homogeneous polynomials:

Pn:Pn0+Pn1++Pnka Pnk?éoa n:1727

where for each n, P, are m-homogenous polynomials, (1 < m < k).
Hence by the above theorem each P,,, tends to a continuous polynomial
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P,,. Consequently, by Theorem 3.1(b), the sums (P,) will tend to the
sum P € P(E,F) R

Acknowledgment: The author would like to thank the referee for
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