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On the essential spectrum of a class of
singular matrix differential operators. II
Weyl’s limit circles for Hain-Lust
operator whenever quasiregularity
conditions are not satisfied

Pavel Kurasov, Igor Lelyavin, and Serguei Naboko

ABSTRACT. The essential spectrum of the singular matrix differen-
tial operator of mixed order determined by the following operator
matrix

o)L @) LD
_Bx) d m(x)
r dx z2

is studied. Investigation of the essential spectrum of the corre-
sponding self-adjoint operator is continued but now without assum-
ing that the quasiregularity conditions are satisfied. New condi-
tions that guarantee that the operator is semibounded from below
are derived. It is proven that the essential spectrum of any self-
adjoint operator associated with the matrix differential operator

pT
conditions are not satisfied.

is given by range (m”_fg) in the case where the quasiregularity

1. Introduction

Matrix differential operators of mixed order attracted a lot of at-
tention recently due to their interesting and unexpected spectral prop-
erties. Investigating problem related to magnetohydrodynamics it has
been discovered that such operators may have so-called singularity es-
sential spectrum - the essential spectrum connected entirely with the
singular point of the operator [4, 10, 11, 12, 14, 19, 27|. Mathemat-
ically rigorous studies of matrix differential operators of mixed order
have been carried out in [2, 3, 7, 8, 9, 13, 18, 21, 22, 23, 29]. In
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2 PAVEL KURASOV, IGOR LELYAVIN, AND SERGUEI NABOKO

order to investigate the phenomenon of singularity essential spectrum
it was suggested in [17](see this article for a detailed description of re-
cent developments in this area) to study the following matrix ordinary
differential operator

) - ) L g gy LI
_Bla) d m(z)
x dzx 7’

in the Hilbert space H = Ly[0,1] & L»[0,1]. This operator is singu-
lar if the function  is not equal to zero or the function m does not
have second order zero at the origin. It is natural to use the following
assumptions on the coefficients

(2) p:q, B, m € C?[0,1],
and that the density function p is positive definite
(3) p(x) > po > 0.

Singular matrix differential operators with coefficients of mixed order
appear in different problems related to applications in physics and en-
gineering, in particular in magnetohydrodynamics. It appeared that
these operators have interesting structure of the spectrum and there-
fore attracted attention of specialists in spectral theory. The operators
appearing in realistic problems are rather complicated and their spec-
tral analysis leads to tedious calculations which make it difficult to
study the interplay between the matrix coefficients. It appears to us
that the operator (1) is the simplest matrix differential operator pos-
sessing the following spectral property: its essential spectrum can not
be obtained as a limit as € — 0" of the essential spectrum of the same
differential operator restricted to the interval [e, 1]. Note that the differ-
ential order of the coefficients and the orders of the singularities cancel
in the formal determinant of the operator L: the differential order of
the product of the diagonal coefficients is 2+ 0 and of the antidiagonal
is 1 + 1. Similar for the orders of the singularities 0 +2 =1 + 1. This
property allows the unusual interplay between the matrix coefficients.

It has been proven that the essential spectrum of the correspond-
ing operator L is bounded if and only if the following quasiregularity
conditions are satisfied

pm—ﬁ2|z:0 = 0,

(4)
% (pm - BQ) |:c:0 = 0.
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It appears that under these conditions the essential spectrum consists
of two parts: regularity and singularity spectra. The first part of the
essential spectrum is determined by the behavior of the coefficients in
the whole interval z € [0, 1] and is given by

(5) R <M> .

px?

This spectrum can be obtained by considering the sequence of regular
matrix differential operators on the intervals (e,1] as € — 0. The sec-
ond part of the essential spectrum is called the singularity spectrum
is determined by the limits of the coefficients at the origin, i.e. exclu-
sively by the singularity. This spectrum cannot be obtained as a limit
described above. The singularity spectrum is equal to

(6)

o o ]
20) 7 p(0)
A+ 00 m

pm—p>
mx?

where |y = lim,_, ( ) . A similar operator has been studied later

in [18] under quasiregularity conditions as well.

In the current article we study the case where the essential spectrum
of the matrix differential operator is not necessarily bounded, but the
operator is just semibounded from below. This assumption is natural
in numerous physical applications.

The differential expression L does not determine the self-adjoint
operator in H uniquely and therefore on the first step it is natural to
associate with L a certain minimal operator L,;,. Since the end point
x = 1 is regular for the matrix differential operator we decided to define
Lin on the set of functions from C§°(0, 1] & C§°(0, 1] satisfying certain
symmetric boundary condition at the end point x = 1. Consider the
transformed derivative

(7) wy (z) = —p(z)ui (z) +

Then any symmetric boundary condition at the regular point x = 1
can be written as [29, 17]

(8) ’U]U(l) = hlul(l), h,l eRU {OO}
So the minimal operator L is defined by (1) on the domain
(9)  Dom (L) = {U € C§°(0,1] ® C5°(0,1], wy(1) = hyuy(1)}.

Note that the domain includes infinitely many times differentiable func-
tions vanishing in a neighborhood of the origin. In what follows we are

us ().

B(z)
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going to keep the same notation for the closure of the operator L, in
H.

In the current article we concentrate our attention to the case where
the quasiregularity conditions are not satisfied. It is proven in the
following section that the differential operator is semibounded from
below if and only if conditions (10-12) are satisfied. These condition
include quasiregularity conditions as a special case. Then the Friedrichs
extension of the minimal operator is described. Finally it is proven that
the essential spectrum of any self-adjoint operator associated with (1)
is given just by (5) in the case where conditions (10-12) are satisfied but
the quasiregularity conditions not. Thus the following striking fact is
proven: the singularity essential spectrum (6) for the matrix differential
operator is present only if the quasiregularity conditions are satisfied,
provided that the the operator is singular and semibounded. Under the
same assumptions it is proven that the singularity spectrum appears
if and only if the Hain-Liist operator is in the limit point case at the
singular point following Weyl’s classification.

2. Semiboundedness

It has been proven in [17] that the essential spectrum of any self-
adjoint operator associated with the differential expression (1) is bounded
if and only if the quasiregularity conditions (4) are satisfied.

PROPOSITION 1. ([17], Lemma 3.1) Under the assumptions (2) and
(8) on the coefficients p, B,m, and q the quasiregularity conditions are
fulfilled if and only if the essential spectrum of at least one (and hence
any) self-adjoint extension of Ly, is bounded.

Therefore if the quasiregularity conditions are not satisfied, every
self-adjoint operators associated with (1) has an unbounded essential
spectrum. It is natural to examine the questions under which condi-
tions this essential spectrum is semibounded from below. It is more or
less clear that the deficiency indices of the minimal operator are finite
(This fact will be proven mathematically rigorously later.) Therefore
just the same conditions on the coefficients guarantee that both the
minimal operator and any its self-adjoint extension are semibounded
from below.

LEMMA 1. The operator Ly, s semibounded from below if and only
if one of the following three conditions is satisfied

(10) pm — ﬁQ‘mzo > 0,
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d

(1) pm = a0 =0, —— (p(z)m(z) = B*(2))],_, > 0,

(12) pm — 132‘;5:0 =0, % (p(z)m(z) — B*(z)) ‘m:O =0.!

PrRoOOF. We are going to prove sufficiency and necessity of these
conditions separately.
Sufficiency It is enough to show that the quadratic form associated
with the minimal operator L,,;, is semibounded from below under con-
ditions (10-12), i.e. that the following inequality holds

(13) (LinU,U) > C | U |13

with a certain real constant C.
Let U € C§°(0,1]@C§°(0, 1] and satisfy the boundary condition (8)
at x = 1, then the quadratic form can be calculated using integration
by parts
(14)
(LU, UY = {(pul,u}) + wy(0)ui (0) + {qui, us) — 2R(Zus, ut) + (Zug, us)

=l o I s (O + ( 2z, uz) + {qur, ).
Note that we used the fact that the support of U does not contain the
origin and the function U satisfies symmetric boundary condition (8)
at x = 1. The second term in (14) vanishes in the special case h; = oo
(Dirichlet boundary condition at x = 1). Let us show that under
conditions (10-12) the quadratic form is semibounded from below.

We are going to prove first that the sum of the first two terms is
bounded from below with respect to | U ||*> . This proof is trivial if
hy > 0 (both terms are nonnegative) and h; = oo (the second term is
absent and the first term is non-negative).

Consider the case h; < 0. Let us prove that |u;(1)|? is infinitesimally
bounded with respect to || v} ||z,a/2,1) and || U ||1,(1/2,1) (inequality
(15) below). We consider the following obvious estimate

\MUWS2/\M@%@WPHM@W

INote that this condition (12) just coincides with the quasiregularity condi-
tion, which guarantees boundedness (from above and from below) of the essential
spectrum.
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and integrate it over the interval [1/2, 1]

1 pl 1
slur(D)]? < 2/ / |u1(t)u’1(t)|dtdx+/ \uy ()| ?dz
1/2J1/2 1/2

1 4
< 5 (M By +2 s B ) + s By

This inequality implies that

4
(15) (P el B + (5 +2) 1 B

On the other hand the first term in (14) (which is clearly positive) can

be estimated from below using triangle inequality and the fact that the

following function is uniformly bounded % < Cy for z € [1/2,1]
p(z)x

| ﬁwU(ﬂi) ||%2(1/2,1)

| /ot sy — Nl e |
po || vy ||%2(1/2,1) G| U2

In the case h; < 0 choosing € = |Z—‘;‘ we conclude that the sum of

the first two terms in (14) is semibounded from below with respect to
the norm in H.
The third term <”m_’3 U, u2> in (14) is uniformly bounded if the

z2p

| \/L,;wU(l") ||%2(0,1)
(16)

AVAR VARV,

quasiregularity condition (12) is satisfied. If one of the conditions (10)
or (11) is satisfied, then the function ’”Z;fz is positive in a certain
neighborhood of the origin, say [0, 7], so that the scalar product can
be decomposed into the sum of two integrals, one positive and one
uniformly bounded in the norm of H:

m — 2 T m — 2 1 m — 2
(P ) = [T P i+ [P,
z2p o % B

The last term (qui,u;) is bounded as well, since the function ¢ is
uniformly bounded.

We have proven that under conditions (10), (11), or (12) the qua-
dratic form of the minimal operator is semibounded from below.
Necessity Suppose that (10-12) are not satisfied, i.e. parameters of
the operator satisfy one of the following two conditions:

(17) pm — ﬁ2‘z:0 <0,
d
(18) pm—= |,y =0, — (pm—=p%)|,, < 0.
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If one of these conditions is satisfied, then the function pm — /2% is
negative in a certain interval (0,¢) C (0,1). It may be equal to zero
at the origin, but the order of the zero cannot be higher than 1. It
follows, that there exists a certain positive number Cy > 0 such that
the following inequality holds

2
(19) pm — B* < —Copr = M < —@,

x2p x
for all z € (0,¢). Using this fact we are going to construct a sequence
of functions U* € Dom (L) C H with the following properties:
1. || U* || is uniformly bounded;
2. (LminU*, U*) tends to —oco as k — oo.

The last term in (14) is uniformly bounded, since ¢ is a bounded
function, and therefore does not affect the divergence of (LU*, U*) to
—o00. In addition the sequence we are going to construct will have the
following property

(20) wyr = 0 & (uh) = fp((a;)) uk.

The second component of U* can be chosen equal to

ok sin(lnz —Ine), z € (ee 2™ ¢),
27 0, otherwise.

Then in order to satisfy (20) we choose the first component equal to

koo [T BE) g
uj(z) = i muQ(t)dt.

It is clear that the functions u% are uniformly bounded and therefore

|| u% || are uniformly bounded as well. Due to oscillation properties of
uk the functions u} are uniformly bounded as well. This implies that
both |[uf(1)? and || u¥ || are uniformly bounded. We conclude that the
sequence || U* || is uniformly bounded. The corresponding quadratic
form (LU*, U*) given by (14) tends to —oo, since the first term in (14)
vanishes, the second and fourth terms are uniformly bounded and the
third term due to (19) can be estimated as

m — 2 1
<,0p75u2’u2> < —C2<5U126,U129>

_ g, /6 sin?(lnz — Ine) dz ~\, 0,

e—2mk X

and therefore tends to —oo. The sequence constructed satisfies con-
ditions 1 and 2, but it does not belong to the domain of L, since
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the functions are not infinitely many times differentiable at the points
x = ee~ 2™ €. To get infinitely differentiable functions one can smooth
U* out without changing drastically the norm and the value of the

quadratic form. O

Thus we have proven that the matrix differential operator L is semi-
bounded from below if only if conditions (10-12) are satisfied. The
assumption that the operator is semibounded is standard in studied of
different physical problems.

3. Deficiency indices of the minimal operator

The following theorem has already been proven in [17]. We decided
to reformulate it in order to adjust it to the notations used in the
current article.?

PROPOSITION 2. (Following Theorem 4.1 from [17]) The operator
Luin s a symmetric operator in the Hilbert space H with finite equal
deficiency indices.

1) If the operator matriz L is singular quasireqular (i.e. m(0) # 0 and
quasiregqularity conditions are satisfied), then the deficiency indices of
Loin are trivial and the operator Ly, is self-adjoint.

2) If the operator matriz is reqular or is not quasireqular then the de-
ficiency indices of Limin are equal to (1,1). The self-adjoint extensions
of Limin are described by boundary conditions using the following alter-
natives covering all possibilities:

a) If p(0)m(0) — 82(0) # 0 or B(0) = 0, then the first component u; of
any vector from the domain of the adjoint operator L. is continuous
in the closed interval [0,1]. All self-adjoint extensions of the operator
Lyin are described by the standard boundary condition at ¢ =0 3

(21) wU(O) = houy (O), ho € RU {OO}

b) If p(0)m(0) — £2(0) = 0, = (pm — §%) (0) # 0, and §(0) # 0, then

the first component uy; of any vector from the domain of the adjoint

2Notation Ly, was used in [17] to denote the symmetric operator determined
by the differential expression L on the domain C§°(0,1) & C§°(0,1) consisting of
functions with compact support separated from the point z = 1. In the current
article the domain of Ly, contains functions with support not necessarily separated
from z = 1, but satisfying the standard boundary condition (7) at this endpoint.

3 In the case ho = oo, the corresponding boundary condition should be written
asu1(0)=0o0rcy =0
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operator Ly .. admits the asymptotic representation
(22) u1(z) = kwy(0)Inz + ¢y + o(1), as z — 0,
2(0 1
where k = —6 (0) and cy is an arbitrary constant

p(O) % (Pm - 52) |a::0
depending on U. Then all self-adjoint extensions of the operator Limin
are described by the nonstandard boundary condition 3
(23) U)U(O) = h()CU, ho € RU {OO}

Information concerning the deficiency indices of Ly, and self-adjoint
local boundary conditions is collected in the following table

p(0)m(0) — 5*(0) # 0 p(0)m(0) — 5?(0) =0
dz (P — B%) =0 # 0 | 4z (pm — %) s—0 = 0
B(0)=0 indices (1,1) indices (1,1) indices (1,1)
standard b.c. (21) standard b.c. (21) standard b.c. (21)
B(0) #0 indices (1,1) indices (1,1) indices (0,0)
standard b.c. (21) | nonstandard b.c. (23) self-adjoint

This proposition implies in particular that deficiency indices of Ly
are always finite and equal. Therefore there always exists a family of
self-adjoint operators associated with the differential expression L. Ev-
ery operator from such family is an extension of L,;, and the essential
spectrum does not depend on the particular extension chosen.

4. Friedrichs extension

We have seen that the differential expression L does not necessar-
ily determine a unique self-adjoint operator in 4. In the case Ly, is
semibounded it is natural to associate with L the Friedrichs extension
of Liin. This extension is studied in the current section. Note that this
question has already been studied in a more general context in [16],
but we provide a detailed analysis for the operator under investigation.

THEOREM 1. The Friedrichs extension of the symmetric operator
Loin 2s described by boundary conditions at x = 0 depending on the
their type (and properties of the coefficients of course) as follows:

A) If the operator Ly is self-adjoint, then no boundary condition
at the origin is needed and the Friedrichs extension just coincides with
Luin. This case occurs if the coefficients of the operator matrixz satisfy
the following conditions

(24) pm — ﬂQ‘xzo =0 % (pm — B?) ‘w:O =0 and B(0) # 0.
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B) If the extensions of Ly, are described by the standard bound-
ary condition at the origin (see (21)), then the Friedrichs extension
corresponds to the condition

This case occurs if the coefficients of the operator matriz satisfy one of
the following two conditions

(26) pm — 52‘95:0 > 0,

or

d
2 _ 2 _
(27) pm — 3 ‘:1;:0_0’ ﬁ(pm—ﬁ )|$:0>0 and B(0) = 0.

C) If the extensions of Ly, are described by the non-standard bound-
ary condition at the origin (see (23)), then the Friedrichs ertension
corresponds to the condition

This case occurs if the coefficients of the operator matrix satisfy the
following conditions

,% (pm — 52)‘w:0 >0 and $(0) #0.
PROOF. The statement formulated in part A is trivial and is in-
cluded for the sake of completeness only. We are going to consider
the two remaining cases separately, but the same idea will be used. It
will be proven that every function from the domain of the Friedrichs
extension necessarily satisfies one of the boundary conditions ((25) or
(28) depending on their type) describing self-adjoint extensions of L.
This will be enough to determine the boundary conditions describ-
ing the Friedrichs extension, since the operator Ly, is closed and has
deficiency indices (1,1). Really every function satisfying the bound-
ary conditions corresponding to two different self-adjoint extensions
necessarily belongs to the domain of the original symmetric operator
Luin- Therefore to establish the boundary conditions describing the
Friedrichs extension it is enough to prove that the functions from the
domains of these extensions satisfy (25) and (28) respectively.

(29) pm — ﬁ2|w:0 =0

B) To construct the Friedrichs extension one has to consider the closure
of the domain Dom (Lyy,;,) with respect to the following quadratic form
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which is positive for all sufficiently large values of A
(30)
[U,U] = {(Liin + A)U,UY = (LU, UY + A || U |?

1 pm — (3 2 2
=l ——wu I +{——5—u2, u2) + {qui, ua) + hafur ()" + A [ U |
VP z%p
The terms (quy,u;) and hq|uq(1)]* can be estimated through the other
terms. Indeed the estimate for (quq,u;) is trivial

|2

(31)  Kqui,ur)| < maxg(z)] || us [|*< max|g(2)] | U ||
To get the estimate for hy|ui(1)|? consider the triangle inequality
1
| \/—wU 1> > |l %wU ||%2(1/2,1)

. VR

1 2
Z | ||L2 (1/2,1) —const | 5“2 ||L2(1/2,1) .

Then using (15) we get

4
WP < el B+ (+2) o Bagnn

2 1
(32) < 6ﬁ | %UJU 1Z,01/2,1) +const(e) | U (17,721
2 1
< e—— || —=wy ||* +const(e) | U ||* .
\/_ VP

It follows that the quadratic form [U, U] given by (30) for sufficiently
large values of A is equivalent to the following quadratic form
1 pm — 2 2

33 QU,U) =|| —=wy || +B{(——"—ug,us) + A || U ||%
(33) ()II\/ﬁ ||<x2p )+ANU
where A and B are certain positive real numbers. (The parameter A
appeared here may differ slightly from the one used in (30).)

Let us study the two possible cases (26) and (27) separately:

Case 1 Let condition (26) be satisfied: pm — §%|,—9 > 0. On a
certain interval (0,¢), ¢ > 0 the function # is strictly positive.

Consider any sequence U*¥ € Dom (Lyi,), & = 1,2, ... having support
on (0,¢) and converging in the norm given by Q(U,U). Since the form
( can be estimated from below as follows

QU,U) > Cs || U2 ||L2 0,0: C3>0
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and therefore for any sequence U* converging with respect to Q(U, U)
the sequence u’g is a Cauchy sequence in Ly(0,€). On the other hand
the same quadratlc form can also be estimated as

1 1
) QL) 2l v o= Vi + o -
Therefore —,/p(u})’ is a Cauchy sequence in L,(0, ). Taking into ac-
count that Q(U,U) > Cy || uy ||%2(0,6), C, > 0, we conclude that u? is a
Cauchy sequence with respect to the norm of W, (0, ¢). Every function
u¥ is equal to zero at the origin and therefore the limit function u,
satisfies the Dirichlet boundary condition (25).

The assumption that the support os U* belongs to (0, €) is not very
restrictive. Let U* be any sequence from Dom (L) converging in the
norm Q(U, U). Consider in addition any cut-off function ¢ € C§°(0, 1],
identically equal to 1 on the interval [¢, 1]. Then the sequence yU*
converges to a function from Dom (Ly,;,) and therefore the sequence
(1 — 4)U* is a Cauchy sequence with respect to Q(U,U) having sup-
port on the interval (0,¢). We have proven that every such sequence
converges to a function satisfying Dirichlet condition at the origin. It
follows that the limit of U* satisfies the same condition. Thus the
Friedrichs extension of the operator Ly, is described by (25) in this
case.

Case 2 Let condition (27) be satisfied: pm—p%[,—0 = 0, & (pm — B%)[,_, >
0 and 3(0) = 0. Again there exists ¢ > 0 such that the function
pm — 32 > 0 for z € (0,¢). Consider an arbitrary sequence U* €
Dom (L), £ = 1,2,... converging in the norm given by Q(U,U). We
assume again that supports of all functions U* belong to (0, €). Condi-
tion (27) imply that for a certain € > 0 the following estimate holds

(35) QU,U) 2 Cs || —=us [[1,(0,, Cs >0,

\/_
and therefore ﬁu’g is a Cauchy sequence in Ly (0, €). The estimate (34)
can be modified as

QU,U) = —\/EUH\TT x f U2 17, 0,0) -

Since 8 € C'(0,1) and B(0) = 0, the function \%ﬁ is bounded and
therefore —,/p(uf)’ is a Cauchy sequence in Ly(0, €). Taking into ac-
count that u* is a Cauchy sequence we conclude that u¥ converges with
respect to the norm of W.}(0, ¢) and therefore satisfy Dirichlet bound-
ary condition (25) at the origin. The same reasoning as in Case 1 may

be applied to modify the proof for sequences U* not necessarily having
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support in (0, €). Thus the Friedrichs extension of the operator Ly, is
also described by (25).

C) Under condition (29) the form [U, U] is again equivalent to the form
Q(U,U). As in Case 2, there exists esilon > 0, such that pm — % > 0
for z € (0,¢). Consider any sequence U* € Dom (Ly,), & = 1,2, ...
converging in the norm given by Q(U, U). The estimate (35) holds and
it follows that ﬁug is a Cauchy sequence in L9(0,¢). On the other

hand %wm is also a Cauchy sequence in Ly(0, €), as well, since
B 1

— —=uy.
NG
It follows that /zu!" is a Cauchy sequence in Ly (0, €). It follows that

the functions belonging to the domain of the Friedrichs extension in
particular satisfy

(36) Vrul € Ly(0,€).

Let us remind that in the case under investigation every function from
the domain of the adjoint operator L as well as its Friedriches ex-
tension possesses the asymptotic representation (22). Every function
possessing this representation satisfies (36) if and only if wy(0) = 0,
i.e. only if the function satisfies the non-standard boundary condition
(28). It follows that the Friedrichs extension is the extension described

by the boundary condition (28).

1 '
ﬁ%w(]k = —/pVaul +

g

5. The essential spectrum: the quasi-regularity conditions
are not fulfilled

This is the main section of the article and it is devoted to the calcu-
lation of the essential spectrum of any self-adjoint operator associated
with the differential expression L. This question has been solved in the
case where the quasiregularity conditions are satisfied (see [17]). These
condition guarantee that the operator is bounded. Therefore in this sec-
tion we concentrate our attention to the case where the quasiregularity
conditions (4) are not satisfied, but conditions (10-12) are fulfilled.

THEOREM 2. Let L,,;, be semi-bounded from below. Suppose that
the quasi-reqularity conditions (4) are not satisfied. Then the essential
spectrum of any self-adjoint extension L of the operator Ly, s given
by

m— 82

(37) Oess(L) = R{ L1

12
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PROOF. Let us make the change of variables

T=eY,
(38) Ty { dr = —e Ydy = —zxdy,
which transforms the interval [0, 1] into the semiaxis [0, 00). The points
0 and 1 are mapped into the points oo and 0 respectively. This change
of variables determines the following unitary correspondence between
the Hilbert spaces Ly(0,1) and Ly(0, 00):

® o ogla) = dly) =dleV)ed

(39) 3 -
o Y(y) — Y(z)= %w(— Inx).
The differential operator L is transformed into the following differential
operator K acting on two-component functions on [0, oo):
(40)
d d ! 3 d
2P (gla)+ P2 2P _4B_ B
20  Ax? dyx? = 222 ( A C*

d m
fd, B m
?dy 22 x?

In what follows we are going to use both variables z and y simul-
taneously hoping that this will not lead to misunderstanding.

Let us consider the minimal (symmetric) operator K,;, being the
closure of the differential operator K considered on the domain of func-
tions from C§°[0, 00) & C§°[0, 00) (arbitrarily many times differentiable
functions with compact support on [0,00) not necessarily separated
from the origin) satisfying the standard boundary condition at the ori-
gin, which can be recalculated from (8)

(41)  @y(0) = @, (0),  where  hy=hy — @ € RU {oo}.

The analysis of the operator K,,;, is equivalent to the analysis of the
operator L;, carried out in the preceding sections, since these two
operators are connected by the unitary transformation (39). Hence the
deficiency indices of the operator K, are (0,0) or (1, 1) depending on
the properties of the coefficients as y — oo. It is not hard to reformu-
late these conditions but we are not going to do that, since our aim
is to calculate the essential spectrum, which does not depend on the
particular extension of the minimal operator - all extensions have just
the same essential spectrum, since the deficiency indices are finite.
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Consider the resolvent equation
(Kuin — ) 'F=U
for sufficiently small negative values of u < —1. For smooth F' and U
F € R(Kuin|pom (Kmin)ﬂCg°[O,oo)®Cg°[0,oo));
U € C§°[0,00) & C5°[0, 00)
the equation can be written as
fi=(A—pus + C*us, fo=Cuy + (D — p)us.
Using the fact that the operator D — p = 73 — u is invertible for
sufficiently small negative y < —1 ( m|z—o > 0 or m'|z:0 > 0 if

m|z—o = 0 ) component uy can be excluded from the system by first
resolving the second equation

uy = (D — )7 fo = (D = p) 7' Cuy
and then substituting this expression into the first equation
42)  f=(A-p)—C*(D—p)'Clur+C*(D - p)~ fo.

Hence in order to calculate u; one needs to invert the so-called Hain-
Liist operator

(43) T(p) = (A~ pul) = C*(D - ul)~'C.

Let us consider the minimal operator T ., corresponding to this dif-
ferential expression and defined on the functions from the domain
C$°(0,00). This operator can be written in the following form:

(44)

d p 52 d
T - S Lr___ 2 =
mm(:u‘) dy($2 x2(m _ ,UJiEQ))dy
b _3p F d B
Hale) + 2 422 4x?(m — px?) da:(Zx?(m = ;1,1'2)) ph
d__d
d_yvudy + Wy,

where we use the following notations:

~

_ U _ 19, zd b, _
(45) VM - CU2, /7 4332 2 dx(.Z'Q) + Q(‘r) lu”
. pm—p*— pux?
(46) Uu: .

m — px?
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In what follows it will be convenient to separate the three only
possible sets of parameters which guarantee that the operator L, is
semibounded from below but the quasiregularity conditions are not
satisfied

e Case A
(47 (o = ) leco > 0.
(This condition implies in particular that m(0) > 0.)
e Case B

(48) (pm — %)]a=0 = 0, (pm — B2).|s=0 > 0 and m(0) = 0.

(This condition implies in particular that m’ (0) > 0.)
e Case C

(49) (pm — B)|g=0 = 0, (pm — ) |g=0 > 0 and m(0) > 0.

In what follows we are going to refer to these cases as Case A, B or

C.

LEMMA 2. Under conditions of Theorem 2 the action of the operator
Tmin can be written using one of the following two representations

d d

(50) Tmm(/'b) = ey(_d_yvli@ + w”)ey,
with
1. [P ! 2 -~
(51) Wy, = Z’UM - Ex(vu)a: + (C] - :u)x ’ Up = Uy,
and
d d
(52) Tnin (1) = e%(—d—yvu@ + wu)eﬂ,
0)
(53) wy, = (¢ — p)z, v, = ;“

Comment The first representation (50) will be used in Cases A and
B. In the Case C the function ¥, is vanishing at zero and therefore it
is natural to use the function v, = 0,/z (instead of v, = v,). This
leads to the second representation (52). Therefore in what follows we
are going to use the definition (51) for the function v, in the Cases A
and B, and definition (53) - in the Case C.

PROOF. We are going to prove representations (50) and (52) sepa-
rately starting from the first one. Consider formula (44) for the Hain-
Liist operator

dwv, d

d d
Tmin = - = —— Y vy
(w) 022 dy + W, ¢ g + W,
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Using the following commutation relation for the operator of multipli-
cation by a certain differentiable function ¢(y) and the operator of the
first differentiation

d .,

the expression for 7T,,;, can be transformed as follows

Timin (1)

(54)

d

= ydyvueyd_y - eyvueyd—y + W,
d d d d
= _eyd_yv“d_yey — eyvud—yey + eyd—yv ue? +evve? + W,
d d lv, xd v,
= et )+t oG+ 5 () + (o) — )t
Taking into account that j—y = —zi and L (%) = (1’;2)’“ — 2% we get

the desired representation

d d 1 1 ,
ay "y V= Ex(vu); + (g — p)a*)ev.
To get representation (52) we use similar calculations to obtain first

d d 1 1 y
d_yv“@ + E(Uu)ly + NG +aWy)e?,

Tnin (1) = €¥(—

Toin (1) = et (=

and then

ke

O

The following Lemma proves that the function v, is always positive
definite for negative p with sufficiently large absolute value.

LEMMA 3. Let conditions of Theorem 2 be satisfied. Then the func-
tion v, 1s positive definite for sufficiently small p < —1, i.e. there exist
c> 0 and py € R, such that

(55) 1< po = vu(z) = c.

ProOOF. The function v, is given by different formulas (51) and
(53) in the cases A, B and C. Therefore let us separate the proof into
three parts corresponding to these three situations.
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Case A Let condition A be satisfied. Then the function v, is given
by

(56) Uu
Choose negative p satisfying the following two inequalities:

(57) < @ and p < plp(x)m(a;)Q— ﬁz(x)'

2
This is possible, since the functions m(x) and p(z)m(z) — B?(x) are
continuous in [0, 1] and attain positive values at the origin. This im-
plies in particular that the functions are positive in a certain interval
[0, €], € > 0. Therefore having in mind negative values of the spectral
parameter pu, it can be chosen satisfying the inequalities (57) in the
interval © € [e, 1], where the quotients are continuous functions and
therefore are bounded from below.*

Under these conditions both the numerator and the denominator
of the function v, are continuous positive definite functions. Thus the
function v, is positive definite as well.

Case B Let condition B be satisfied. The function v, is again given
by formula (56). Choose u satisfying the following two inequalities

m'(z) 1 (p(x)m(z) — B*(z))’

58 = and —
(58) p< g, ad p<o 5 :

_ pm = B* — pux?
B m— pzr?

which is possible, since the functions m/(z) and (p(z)m(z) — 5%(z))’
are continuous and attain positive values at the origin.

Under these conditions the function v, is given by a quotient of two
functions which are positive definite for any positive z. Moreover the
limit of v, as * — 0 is positive

(pm B 52);|w:0

glg_}n(l) vu(x) = o > 0.

Therefore the function v, can be considered as a continuous function on
the compact interval [0, 1] and therefore attains its minimum, which is
clearly positive, since the function has positive limits at the end points
of the interval [0, 1] and is positive everywhere inside the open interval
(0,1). Therefore this function is positive definite.

Case C Let condition C be satisfied. The function v, is now given
by formula (53)
_pm — B — pua®
 z(m—px?)

Uy

4The same reasoning will be used in Cases B and C below.
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Choose p satisfying the following two inequalities

M) g o L @m) - )
T Po 2z

(59) <

and apply the same arguments as in Cases A and B.
The function v, is then again given by a quotient of two functions
which are positive for any z € (0, 1]. Moreover the limit of v, as z — 0

is positive
(pm B ﬁZ)Sp'w:O

li = :

lim vu() m(0) >0
The same argument as in the Case B leads to the conclusion that the
function v, is positive definite. g

LEMMA 4. Let conditions of Theorem 2 be satisfied. Then in the
Cases A and B the function w,, is positive definite for sufficiently small
<K —1, i.e. the following inequality is satisfied
(60) wy(z) > e >0
with a certain positive constant c. In the Case C the function w,/x is
positive definite, i.e. the following inequality is satisfied
(61) wy(z) > cx,
where ¢ is a certain positive constant.

PROOF. Let us consider the cases A, B and C separately.
Cases A and B The function w, is given by

1, 1
Yn = 4%~ ix(vu); + (g — p)z*.
The function h(z) = 19, — 32(0,), is a continuous function on [0, 1]

attaining positive value at the origin A(0) = ;v,(0) > 0. Therefore
there exists y; such that h(z)—pu,2? is positive definite, i.e. there exists
¢ > 0 such that h(z) — pz? > c. It follows that for p < ;1 — || ¢ || the
function w, is positive definite, i.e. satisfies (60).

Case B The function w, is now given by

w, = (¢ — p)z.
Choosing p1 < — || ¢ ||o We guarantee that w,, > cx, where c is a certain

positive constant.
O

LEMMA 5. Let conditions of Theorem 2 be satisfied. Then the op-
erator Twin(p) is positive definite for all sufficiently small p < —1
uniformly with respect to p, i.e. the following estimate is valid

(62) Toin > ¢ > 0.
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PrRoOOF. Cases A and B Consider the quadratic form of the opera-
tor Tiin. Let u € C§° then

d
(U, Tpinut) = (d—yeyu,vud—yeyW—l—(eyu, w,evu)

> minw,(z) || e'u[*> el u |,

where the constant ¢ taken from the estimate (60) from Lemma 4. The
estimate is valid uniformly with respect to u, provided it is sufficiently
small.
Case C The quadratic form may be estimated as
d d

(u, Tpinu) = (d—ey/zu,vud—eyﬂw+(ey/2u,wuey/2u>
Y Y

> inf 29y 12> e w2,
T

where c is the positive constant from (61). O

This Lemma implies in particular that the operator Ty, is bound-
edly invertible. Let us denote by T'(u) the Friedrichs extension of the
minimal operator T;,;, - an extension having the same lower bound as
the minimal operator. This extension will be called Hain-Liist operator
in what follows.

Consider the following resolvent operator
(63)

M () = (Kopin — p) ™"

() —T~H(u)[C*(D — pl)~']

N < —[(D = uh)TCIT~ (1) (D = pd)™ + [(D = pI) T CITH (W) [C*(D — )™

((Gnm G,

In what follows we are going to show that the operators G (i), G12(u),
and Go1(u) are compact for sufficiently small negative values of the
spectral parameter p, which will imply that the essential spectrum of
M () is determined exclusively by Goy(11).°

5This is in contrast to the case where the quasiregularity conditions (4) are
satisfied. In that case the essential spectrum is determined by the operator Gy (i)
as well [17].

)
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LEMMA 6. Let conditions of Theorem 2 hold true. Then the op-
erator Gy () = T, (1) is compact for sufficiently small values of
p < —1.

PRrooOF. To proof this lemma we are going to show that the operator
T (1) maps every bounded set to a compact set. In other words, we
are going to show that every set bounded in the graph norm of T, (1)
is compact in Ly[0, 00) for sufficiently small negative values of u. Let
u, || u ||< 1 is mapped by T:-.L (1) to v

min

v="T. (1)u = Tnin(p)v =u

= </U7Tmin(,u)'U> = <U, U).

Then Lemma 5 implies that every set bounded in the graph norm is
bounded in the norm associated with the quadratic form of the operator

cllv < (o, Towv) <[ v [ w ]

= (v, Tminv) < C.
We conclude that to proof this lemma it is enough to show, that ev-
ery bounded with respect to the quadratic form (v, Trnv) subset of
Dom (Tiin) is compact in the Hilbert space L»[0,00). In other words it
is enough to show that the set of functions

{u € C5°[0, 00)|u(0) =0, <eay (—%Uu% + wu> eo‘yu,u> < 1}

is compact, where & = 1 in the Cases A and B, and o = 1/2 in the
Case C. Taking into account estimates on the functions v, and w,
(Lemmas 3 and 4) we conclude that for sufficiently small u to prove
the compactness of Ty, (1) it is enough to show the compactness of
the following sets:

Cases A and B

(64) Sap = {“ € C5°10,00)|u(0) = 0, | d%l/ (e¥u) I + || e¥u |I°< 1}

and
Case C

d
(65) So= {u € CF(0.00)u(0) = 0. 7 (70) |P + [ u |P< 1}

Let us construct a compact e-net for these sets. Consider a set of cut-off
functions xn with the following properties

00 1, ySN,
xn € C5°[0, 00), XN(Z/):{ 0, y>N—+1.
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Then the tails (1 — xn)u of functions from the sets Ssp ¢ can be esti-
mated as follows:
Cases A and B.

[etul[<1=e" || (1—xpul<1—=| (1 —xnull<e ™.
Case C.

/2 (y) = / ")y dy

= )| < [ 1) 1dg < \/ IR / (eH/2u(@)Y[2dj < /5

= |u(y)| < Ve 9/2:»/ y)2dy < (N + 1)e-

= (1—=xn)u||< VN + le V2,

These estimates show that taking sufficiently large N the sets xnSap,c =
{xnulu € Sap,c} the sets approximate the sets Sap c with arbitrary
precision €. The set Syp ¢ are bounded in the metrics of W, [0, N +1].
Since the embedding of W3[0, N + 1] into Ly[0, N + 1] is compact for
any finite N (Rellich Theorem), these sets form a compact e-net for
the set S. Hence the operator Ty, (1) is compact. O

LEMMA 7. Under the conditions of Theorem 2 the operators Tk (1)

dy min

and Tt (p )—y are compact for sufficiently small negative values of ju.

PROOF. The two operators under consideration

1 and T d

o el
dy min (/’IJ) rnln( )dy
are formally mutually adjoint. Therefore it is enough to proof the com-

pactness of only one of them, say W 41 (1). This operator is compact

if and only if it maps every bounded set, say By = {u; || u ||< 1} onto a
compact set. For arbitrary u consider the function v = T} (#)u. Then
the operator 3 T ! (1) is compact if and only if the set

S ={v:| Tuin(p)v [[< 1}

is compact in the norm of W3[0, 0c0). During the proof of the previous
lemma we have already shown that the sets x5S form an e-net for the
set S in the norm of L,[0, 00). Let us show that these sets form an e-net
even in the norm of W3[0, 00). It remains to show that for sufficiently
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large N the first derivatives can be estimated uniformly. Let o = 1 in
the Cases A and B and @ = 1/2 in the Case C, then we have

|| d%[(l — )l |

d —Q Q
=|l &y [(1 = xw)e ] |

<@ =xn)v [+ 11 (= xw) (=)o [+ (1 - XN)e_“y% (e*v) ||

B d
< (e 0) 10 ratvasy e || 5 () |,

where ¢ = max |x/y|. We have already proven that the first term tends

to zero as N — oo. The sets xnyS are compact since the estimate in
the Cases A and B

d
(Toinv,v) 2 C'| d—y(eyU) 1+ 1l evu |1*

implies that TI;iln/ ?(11) is a bounded operator from L[0, N] onto W3[0, N].
It follows that the operator Tz} (1) is a bounded operator from Ly[0, N]
onto W#[0, N]. Similar estimate holds in the Case C. Therefore the op-
erator 2T (1) is a bounded operator from Ly[0, N] onto W3[0, N]

dy ~ min
and it is a compact operator as an operator in L»[0, N], since the em-
bedding of W,[0, N] in L,[0, N] is compact. O

The last two lemmas imply that the operators G2(p) and Goy (1)
are compact. Really the operator Gio(u) can be written as

d
Cralp) = Tmiln(“)d_ym_iwz - T@(MW.

In the Cases A and C the C'-function m(z) has positive value at the ori-
gin. In the Case B the derivative m’(0) is positive. Hence the function
m — pux? is positive definite for sufficiently small values of . Therefore

the operator B; = mfwﬂ is bounded and thus the operator
Gral) = Th (1) - B = ST (1) B
min dy 2 min
is compact. The operator
d 1
G =—B—T! — —BT !
21(:“’) dy mm(/j’) 9 mln(:u’)

is compact as well.
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Thus the essential spectrum of the matrix operator M (1) coincides
with the essential spectrum of the operator Goo(p) up to the spec-
tral point u = 0, which may be ignored during the calculation of the
essential spectrum of the operator K.

Consider the Cases A and B first. Then the operator Gao(u) has
the form

1 1 1
— T—l *
x? B d 1 d 1 B
= — 4+ )7t S S
m—,u:c2+m—,ux2 (dy+2) (,u)( dy+2)m—,u:c2
) z? B d.., 1 B
f T g
m — ux m — px? dy 2m — px
z? Be ¥ d 1 d Be?

d

m — px? m—,uxQd_y@

d A — a2’
vu@—wudym T

where we used representation (50) and commutation relation (54) to
get the last expression.

In what follows we are going to use the calculus of pseudodifferential
operators and therefore Fourier transform on R. Let us consider a new
operator M (u) defined in the space Ly(R) @ Lo (R) by the same matrix
differential expression (63), where all functions involved are extended
as even functions to the whole real axis. The essential spectrum of the
new operator coincides up to multiplicity with the essential spectrum
of the original operator [24]. Using the operator p = 1-¢ the operator

i dy
Ga2(1) can now be written as follows

N . 72 Be Y 1 pe Y
m—pr?  m-— /Lx?ppvup + wupm — px?

Let us use the following fact proven in [17]

PROPOSITION 3. (Lemma 8 from [17]) Let the real valued function
f(y) be positive bounded and separated from zero

0<c<fly) <C
for some ¢,C € R,. Let the function g(y) be bounded and the operator

L=pf(y)p+a(y)
be self-adjoint and invertible in Ly(R). Suppose that the operator

pL™'p
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be bounded. Then for any bounded function h(y) such that limy_,.h(y) =
0 the following equality holds in Calkin algebra

h
pL~'ph = —.
f

Applying this proposition to the operator Goy we get

2
A . z x 1 =z
Goo = 3T i 2., i 2
m— px?  m— pxr’v,m— ux
_ z? N Bz m — ux? zf3
 om—pz? m— pa? pm — BPppx?m — pa?
(66)
_ px’
~ pm— % — pua?
_ 1
= —>%

Using Weyl’s theorem for compact perturbations [15] and Dunford
spectral mapping theorem [5] we conclude that the essential spectrum
of any self-adjoint extension of the operator K, and therefore any
self-adjoint extension of L, can be calculated as

m —_— 16_2
(67) Gus(L) = Range{—

In the Case C similar calculations can be carried out. The operator
Gas (k) given by

2

Gor(p) = ;2

m—ux?

-1
+m—1/,l,z2 (5,1% + 5/2> e Y/2 (_d%v”% + wu) e Y/2 (_%ﬁ + ﬁ/2> m—l,u?
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may be continued as a pseudodifferential operator to the whole axis

N x? 1 1
- —y/2 ~1 _—y/2
Gn(p) = —— P Ra— Bpe™" (poup + w,) " e B — e
- z? 1 -y/2 -1 -y/2g_ ~
) x? 1 1 1
= BV ——;
m — ux m — ux vy m — Ux

- 24 1 g a?(m—pz?) 1
m—pz? m—ux2 ™  pm—B2—pur? m—pux?

1
— s
B jw o H
where we again used commutation relations (54) and representations
(53) and (45) for the function v,. This accomplishes the proof.? O

It is clear that the set R ’”Z;fz is unbounded from above in all

three Cases A,B and C. On the other hand if the quasiregularity condi-
tions are satisfied, then the essential spectrum is bounded from above
as well as from below, but in addition to the described branch of essen-
tial spectrum a new branch of essential spectrum is present. This new
branch of the essential spectrum has been called singularity spectrum,
since it cannot be obtained as a limit of the essential spectra of differ-
ential operators given by restrictions of the differential operators L to
intervals (e, 1]. This singularity spectrum is absent if the quasiregular-
ity conditions are not fulfilled. In the following section we are going to
discuss the relations between the singularity spectrum and properties
of Hain-Liist operator.

6. Weyl circles for Hain-Liist operator and quasiregularity
conditions

In this section we are going to investigate the relations between the
quasiregularity conditions and the properties of the Hain-Liist operator,

6Note that in the considered case the entries Gi1,G12 an Gay are compact
operators. This case differs drastically from the case where the quasiregularity
conditions are satisfied [17]. In the latter case a certain more elaborated technique
had to be used (Lemma on the essential spectrum of the triple sum of operators in
Banach space, [17], see also [25, 26]).
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which is a second order differential operator on the interval z € [0, 1].
This operator is given by the following differential expression

)  T() = i(”m‘ﬁz’— i x2>%+q(x)_u_

Cdz \m—px?2 m— px?

In order to avoid inessential difficulties we are going to study this oper-
ator for sufficiently small values of the parameter y, i.e. we assume that
i < po < —1. The minimal operator Ty, () determined by (68) is de-
fined on C'*°(0,1) - the set of smooth functions with compact support
separated from the end points of the interval z € [0,1]. The maximal
operator - adjoint to T, (1) in Le[0, 1] is defined by the same differ-
ential expression (68) on the domain {f € Ly[0,1] : T'(u) f € L5[0,1]}.
The operator T'(u) is formally symmetric and it can be made self-
adjoint by introducing proper boundary conditions at the end points.
The endpoint x = 1 is always regular and we assume that certain
symmetric condition is imposed at this point. The point z = 0 is sin-
gular and in order to investigate it Weyl’s limit point-limit circle theory
(6, 28] will be used. These studies will tell us whether it is necessary
to introduce additional boundary condition at the origin in order to
make T'(u) self-adjoint (provided p is negative and sufficiently small).
It will be more convenient to use the y-representation (38). In this
representation the singulat point x = 0 corresponds to y = +o0.

THEOREM 3. Let standard assumptions (2) and (3) on the coef-
ficients of the operator L given by (1) be satisfied. Suppose that the
operator L is semibounded. Then the Hain-Liist operator T'(u) is in
the limit point case at x = 0 (y = oo) for sufficiently small values
of u, t.e. for p < —1, if and only if the quasiregularity conditions
(4) are satisfied, but the operator is not reqular. In other words, the
Hain-Liist operator is in the limit circle case at x =0 (y = 00) for suf-
ficiently small values of p < —1 if and only if either the quasireqularity
conditions (4) are not satisfied or the operator L is regular.

Proor. We are going to consider five different cases covering all
possible values of the coefficients. The Cases A,B and C coincide with
the ones introduced first during the proof of Theorem 2. The Case D
covers all coefficients satisfying quasiregularity conditions, but which
are not regular. The last case (Case E) is added for the sake of com-
pleteness and corresponds to the regular operator L.

Cases A and B

Suppose that conditions (47) or (48) are satisfied. Then in accor-
dance with Lemma 2 the operator T'(u) can be written in the form
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(50)

d d
=¥ | —py, — Y
T(u)=e ( dyvudy-i-wu) e

with the functions v, and w, given by (51). These functions satisfy
the following inequalities due to Lemmas 3 and 4:
vu(z) >e>0, wy(z)>c>0,

for sufficiently small values of i. Let us study the asymptotics as y — oo
of the solutions to the equation

(69) T f=if,

which is a second order differential equation. Straightforward calcula-
tions transform this equation into the standard form
(70)

d? d d 1.d 3 u—q+i
d—y2f+<2+ (d_yvu)/vu) @f"‘ <§(d_yvu)/vu+ Z"‘ W) f=0.

The functions (%vu) /v, and ’“équ;i are exponentially small as y —
oo and therefore it is natural to expect that the asymptotics of the
solutions is just the same as for the equation

d? d 3 1 3

—f+2—f+-f=0= = Cie 2Y 4+ Core™ 2V,

gl Pt =0=fW) =G :
Let us discuss how to prove this fact for general second order differential
equation [20]

2

(71) dd—ny + (a1 + 91(9) d%f T (ar 4 g2) f =0,

where a4, ay are certain real constants and g; o are real valued functions
tending to zero exponentially fast as y — oo. One may get rid of the
first derivative by introducing the new function h as follows

(72) Fly) = e 2@yt a1 @dD) p ()
The equation (71) transforms as
d? 1 , 1,
(73) d—y2h+ _Z(al +g1) - igly-l-az-l-gg h=0.

It will be more convenient to introduce the following notations

\/ 1a2 a
C = — — :
(74) 4t

1 1, 1,
g = §a191+191+§91y_92-
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Using these notations equation (73) can be written as follows
(75) —h—ch—g(y)h=0.

We are interested to prove that the solutions to this equation have the
same asymptotics as solution to the free equation

d2
(76) d—th —th=0= h=C1e“+ Coe .
Suppose that the potential g satisfies the following estimate
(77) l9()| < aly)e ™,

where @ is a certain L; - function. Then the growing solution to equa-
tion (75) satisfies the following Volterra type equation

[e.e]
(18) b= [ g (0 — ) g g)hg)dg.
y

This integral equation has a solution having the asymptotics hy(y) ~
e if the potential ¢ satisfies the estimate (77). In this case the so-
lution may be obtained by the method of successive approximations.
Then there is another linear independent solution with the asymp-
totics ha(y) ~ e~ %Y. This follows easily from the fact that h; and hy are
solutions to one and the same second order differential equation and
therefore their Wronskian is constant.

Let us return back to the studies of equation (70). Comparison
with equation (71) gives us

d
) g1 = d_yvu /Uua

a; = 2
2 = g2 = dy " Iz )

d d B—q+i o,
\ 2d_y<<d_y”">/”“) v

The potential g can be simplified as

2 " .
(1 (e) s bt e
4\ v, 2 vy, vy
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Since the function v, never vanish for sufficiently small 4 < —1 and
all functions are two times differentiable, the expression in brackets is
uniformly bounded. It follows that ¢ satisfies the necessary estimate

lg(y)| < const e .
Hence solutions to (75) have asymptotics
hy ~ e2Y and ho ~ e~ 3.
The corresponding solutions to (69) have the following behavior
(79) fi~e 2 and fo e 2v.

Both solutions are square integrable in the neighborhood of y = +o0,
i.e. the case of Weyl’s limit circle occurs.

Case C

This case can be investigated using similar method. The Hain-Liist
operator can be written in the form (52)

d d
T(u) = ev/? (——vu— + wu> e¥/?
with the coefficients satisfying (53)
v,>c>0, w,>cx,c>0

for sufficiently small values of p. Then the equation (69) can be trans-
formed into

d? d d 1 1.d p—q+i
1 J— J— — —(— _ = U.
dy2f+< + (dyvu)/vu> dyf+ <4 + 2(dyvu)/vu + ev, ) f=0

Comparison with equation (71) gives

d

g2

a; =

=)
N
Il
=
|
DN | =
N
QA
| &
S
=
N~
~
=
+
=
|
[l
+
-~
|
LR

3 1

1
45 =
4 4 2

1/(/d 2 1d d p—gq+i _,
g = 4((@) /”“) *5@((@““)/”“)‘7% o

The potential g can be simplified as

2 " .
g= _le—y Ulﬂ +1U,ﬂ+16—y1}““‘ _ p—q+e e Y.
4 vy 2 v, 2 vy vy
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The expression in brackets is again uniformly bounded. It follows that
g satisfies the necessary estimate

lg(y)| < const e Y.
Hence solutions to (75) have asymptotics
h ~ Cly + 02.

The corresponding solutions to (69) have the following behavior
(80) f~ (Cy+ Ca)e2"

and both solutions are square integrable in the neighborhood of y =
+00, i.e. the operator T'(x) is in the limit circle case.

Case D under construction

Assume that the coefficients satisfy quasiregularity conditions (4)
but the operator is not regular. This implies in particular that m|,—q #
0. Otherwise the quasiregularity conditions would imply that 3|,—o = 0
and therefore m has second order zero at the origin.

The coefficients V,, and W, of the Hain-Liist operator (44)

d_ d
V— + W,

T(,LL) = _d_y Mdy

are uniformly bounded and positive definite functions for sufficiently
small values of y < —1. It follows that the quadratic form of T'(u)
is equivalent to the quadratic form of the second derivative operator
—% + 1. The later operator is in the limit point case at y = 4o0.
Hence the Hain-Liist operator is in the limit point case as well.

Case E

Suppose that the operator L is regular, i.e. the functions § and
m have first order, respectively second order zeroes at the origin. In
this case 9, is uniformly bounded and positive definite for sufficiently
small values of y, i.e. u < —1. Therefore this case is similar to Cases
A and B just considered. The asymptotics of the solution is given by
the same formula (79) and all solutions are square integrable. 0

This theorem implies that the singularity spectrum for the operator
L appears if and only if the Hain-Liist operator is in the limit point
case at the singular point. We believe that this observation is crucial
for the existence of the singularity spectrum even in a more general
settings. It is planned to continue studies of this phenomena for more
sophisticated singular matrix differential operator.
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