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Abstract

In this paper we study the class of differential operators T' = E?:l Q; Di
with polynomial coefficients Q; and deg @Q; < j with equality for at least
one j. We show that if deg@r < k then the root of the nth degree
eigenpolynomial p, of T with the largest absolute value tends to infinity
when n — o0, as opposed to the case when deg Qr = k. Moreover we
present an explicit conjecture and partial results on the growth of the
largest root. Based on this conjecture we deduce the algebraic equation
satisfied by the asymptotic Cauchy transform of the appropriately scaled
eigenpolynomials.

1 Introduction

In this paper we study asymptotic properties of zeros in families of polyno-
mials satisfying certain linear differential equations. Namely, consider a linear
differential operator

k
T=% QD
P

where D = d/dz and the @); are complex polynomials in a single variable z.
We are interested in the case when deg(@; < j for all j, and in particular
deg Qr < k for the leading term. Such operators are referred to as degenerate
ezactly-solvable operators, see Definition 1 below. In this paper we study the
polynomial eigenfunctions of this operator, that is polynomials satisfying

T(pn) = AnPn (1)

for some value of the spectral parameter \,, where n is a nonnegative integer
and degp, = n.



The basic motivation for this study comes from two sources: 1) a classical
question going back to S. Bochner, and 2) the generalized Bochner problem,
which we describe below.

1) In 1929 Bochner asked about the classification of differential equations (1)
having an infinite sequence of orthogonal polynomial solutions, see [11]. Such
a system of polynomials {p,}32, which are both eigenpolynomials of some fi-
nite order differential operator and orthogonal with respect to some suitable
inner product, are referred to as Bochner-Krall orthogonal polynomial systems
(BKS), and the corresponding operators are called Bochner-Krall operators. It
is an open problem to classify all BKS - a complete classification is only known
for Bochner-Krall operators of order k < 4, and the corresponding BKS are var-
ious classical systems such as the Jacobi type, the Laguerre type, the Legendre
type and the Bessel and Hermite polynomials (see [5]).

Notice that for the operators considered below, the sequence of eigenpolyno-
mials is in general not an orthogonal system of polynomials, and can therefore
not be studied by means of the extensive theory known for such systems.

2) The problem of a general classisfication of linear differential operators for
which the eigenvalue problem (1) has a certain number of eigenfunctions in the
form of a finite-order polynomial in some variables, is referred to as the gener-
alized Bochner problem, see [15] and [16]. In the former paper a classification of
operators possessing infinitely many finite-dimensional subspaces with a basis
in polynomials is presented, and in the latter paper a general method has been
formulated for generating eigenvalue problems for linear differential operators
in one and several variables possessing polynomial solutions.

Definition 1. We call a linear differential operator T of the kth order ezactly-
solvable if it preserves the infinite flag Py C Py C Po C --- C P, C -+, where
P, is the linear space of all polynomials of degree less than or equal to n.! Or,
equivalently, the problem (1) has an infinite sequence of polynomial eigenfunc-
tions if and only if the operator T is ezactly-solvable (see [17]).

The exactly-solvable operators T = E;.c:l Q; D7 with deg Q; < j for all j,
split into two major classes: non-degenerate and degenerate, where in the former
case deg Qr = k, and in the latter case deg Qr < k for the leading term. The
major difference between these two classes is that in the non-degenerate case
the union of all roots of all eigenpolynomials of T' is contained in a compact set,
contrary to the degenerate case, which we will prove in this paper.

Let us briefly recall our previous results for eigenpolynomials of the non-
degenerate exactly-solvable operators. In [1] we proved that asymptotically as

ICorrespondingly, a linear differential operator of the kth order is called quasi-ezactly-
solvable if it preserves the space P, for some fixed n.



n — 00, the zeros of the nth degree eigenpolynomials p,, of the non-degenerate
exactly-solvable operators are distributed according to a certain probability
measure which has compact support and which depends only on the leading
polynomial Q. These are our main results from [1]:

Theorem A. Let Q) be a monic polynomial of degree k. Then there exists
a unique probability measure pg, with compact support whose Cauchy trans-

form C(z) = d“ff’“éo satisfies C(2)F = 1/Qx(2) for almost all z € C.
Theorem B. Let @} and pg, be as in Theorem A. Then supp pg, is the union
of finitely many smooth curve segments, and each of these curves is mapped to
a straight line by the locally defined mapping ¥(z) = [ Qr(2)~'/*dz. Moreover,
supp pq, contains all the zeros of Qy, is contained in the conver hull of the
zeros of Qy, is connected and has connected complement.

If p, is a polynomial of degree n we construct the probability measure u.,
by placing the point mass of size % at each zero of p,, and we call u,, the root

measure of p,. We then have the (main) result:

Theorem C. Let p,, be the monic degree n eigenpolynomial of a non-degenerate
ezxactly solvable operator T' and let p, be the root measure of p,. Then p, con-
verges weakly to ug, when n — oco.

To illustrate, we show the zeros of the polynomial eigenfunctions psg, p7s
and pigo for the non-degenerate exactly-solvable operator T = @Q5D® where
Qs =(z2—24+2i)(z+1—2i)(2+3+1)(z+ 2i)(2 — 2{ — 2). In the pictures below,
the large dots represent the zeros of ()5 and the small dots represent the zeros
of the eigenpolynomials psg, prs and pigo respectively:
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As a result of this study, we were then able to prove a special case of a
general conjecture describing the leading terms of all Bochner-Krall operators,
see [2].

In the present paper we are interested in the cl_ass of degenerate exactly-
solvable operators, that is operators 7' = Ele Q;D’ where deg@; < j for all j
with equality for at least one j, and deg Qr < k. Without loss of generality we



assume that the nth degree eigenpolynomial p,, of T' is monic. Some well-known
classical polynomials, such as the Laguerre polynomials, appear as polynomial
solutions to the eigenvalue problem (1) for certain choices on the polynomials
coefficients ();. Studies on the asymptotic zero behaviour for these polynomials
can be found in [4], [7],[9], [13] and [14].

Computer experiments indicate the existence of a limiting measure for the
asymptotic zero distribution of the nth degree polynomial eigenfunction p,, of
any degenerate exactly-solvable operator after an appropriate scaling. Without
such a scaling the roots of p, tend to infinity when n — oo, see Theorem 1.
Based on calculations involving the Cauchy transform we conjecture how the
largest modulus of all roots of p, grows as n — oo for any given degenerate
exactly-solvable operator, see Main Conjecture. All experiments performed by
the author are consistent with this conjecture (see numerical evidence in Section
4), and we also prove it partially (lower bounds on the largest roots) for some
classes of degenerate exactly-solvable operators, see Theorems 3 and 4.

The appropriately scaled eigenpolynomials will then (conjecturally) have
nice compactly supported zero distribution in the limit as n — oco. Under the
same assumptions as in Main Conjecture, we then derive the algebraic equation
satisfied by the asymptotic Cauchy transform of the scaled eigenpolynomials for
any given degenerate exactly-solvable operator (see Main Corollary). From this
equation it is possible to obtain detailed information on the asymptotic zero
distribution of the scaled eigenpolynomials.

These are our main results:

Theorem 1.2 Let T = 2?21 Q;D’ be a degenerate ezactly-solvable opera-
tor of order k, and let v, be the largest modulus of all roots of the unique and
monic nth degree eigenpolynomial p, of T. Then r, — 00 as n — 0.

Main Conjecture. Let T = Zle Q;D? be a degenerate exactly-solvable op-
erator of order k, and denote by jo the largest j for which deg@; = j. Denote

by r,, be the largest modulus of all roots of the unique and monic nth degree
eigenpolynomial p, of T. Then

where cg > 0 is a positive constant and
J—Jo
d:= max (7)
j€lio+1.k] \J — deg @;

Based on this Main Conjecture, we now introduce the scaled eigenpolynomial
@n(2) = pp(n?z), for which the union of all roots are (conjecturally) contained

2This theorem is joint work with H. Rullgard.



in a compact set. We then make the following basic assumption: assume that
Cn(2) 1= Cro(2) = Cri(2) = ... = Chr—1(2) as n — oo for the Cauchy trans-
forms® of the scaled eigenpolynomial ¢, (z) and its derivatives. This means that
we assume that the root measures p0, ul p2 ... pk=t of g, PG A
respectively, are all equal as n — oo, and let C(z) := lim,, o, Cp(2) (computer
experiments strongly indicate that this assumption is true, see Section 4.3).

Now let T = Z?Zl Q;D’ = Z?Zl (37, @j,iz') DI be a degenerate exactly-
solvable operator and denote by jo the largest j such that deg(); = j. More-
over, with no loss of generality, we make a normalization by assuming that @,
is monic, i.e. aj,j, = 1. Consider the scaled polynomial g,(2) = p,(n?z),
where p,(2) is the unique and monic nth degree eigenpolynomial of T', and
d := maX;e[jo+1,k] (J—_%g"%]) We then have the following;:

Main Corollary. Assume that Cp(2) := Cpo(z) = Cp1(2) = ... = Cpp-1(2)
when n — oo for the Cauchy transforms of the scaled eigenpolynomial q,(z) and
its derivatives. Then, for almost all complex z in the usual Lebesgue measure
on C, the function C(z) := lim,_,o Cp(2) satisfies the following equation:

2007 (2) + Z @ deg @; 2B CI (2) = 1.
JEA

Here A is the set consisting of all j for which the mazimum
d := maxje[jo+1,k] (j—jd—;-;%j) is attained, i.e. A={j:(j—jo)/(j—degQ;) = d}
where d is as above.

In the following theorem we prove a lower bound for the largest modulus of
all roots of p, when n — oo for any degenerate exactly-solvable operator:
Theorem 2. Let T = Ele Q;D’ = Ele (37 @;,i2') D7 be a degenerate
ezactly-solvable operator of order k. Let z, be the root with the largest modulus,
|2n| = T, of the unique and monic nth degree eigenpolynomial p, of T. Then
there exists a positive constant co > 0 such that

) r
lim

S L
n—oo (n —k + 1) 0>

3If g, is a polynomial of degree n we construct the probability measure u, by placing a
point mass of size % at each zero of ¢,. We call p, the root measure of g,. By definition, for
any polynomial gn, the Cauchy transform C;, ; of the root measure u%] ) for the jth derivative
qgj) is defined by

Chp,j(2) :=

AR / i (©)
m-da’z) S FoC

and it is well-known that the measure y can be reconstructed from C by the formula y = % .
where 0/0z = %(G/Bz + i0/0y).

Q|
518



for any v < b where

b:= m—gn ( k= )
T ek \k—j+degQ; —degQr )’
where the notation min™ means that the minimum is taken only over positive

terms (k — j + deg Q; — deg Q).
The following two theorems are partial results supporting Main Conjecture:

Theorem 3. Let T be a degenerate exactly solvable operator of order k con-
sisting of precisely two terms: T = Q;, D7 + QrD*. Let z, be the root with the
largest modulus of the unique and monic nth degree eigenpolynomial p, of T,
and let |z,| = rn. Then there ezists a positive constant ¢ > 0 such that

Tn

oy ey

- . J—Jo _ _k—jo
where d := maxXje[j,41,k) (j—deg Q]-) = %—degQr "

This result can be generalized, but with certain conditions on the polynomi-
als Qj for ] > jg:

Theorem 4. Let T be a degenerate exactly-solvable operator of order k. De-
note by jo the largest j such that deg Q; = j. Furthermore, let (j — deg@;) >
(k —degQy) for every j > jo. Let z,, be the root with the largest modulus of the
unique and monic nth degree eigenpolynomial p,, of T, and let |z,| = r,,. Then
there exists a positive constant ¢ > 0 such that

. Tn
_— >
nlglgo (n —k+ l)d =6

— o Jj—Jo — _k—Jo
where d := max;e[j, 41,k (j_deng) = =g On-

Conjecturally, for any degenerate exactly-solvable operator T', the support
of the asymptotic zero distribution of the scaled eigenpolynomial ¢, is the union
of a finite number of analytic curves in the complex plane, which we denote by
Zr. We then have the following conjecture:

Conjecture 1.* [Interlacing property] For any family {g,} of appropriately’
scaled polynomial eigenfunctions of any degenerate exactly-solvable operator T,
the zeros of any two consecutive polynomials gn41 and qy, interlace along E1 for
all sufficiently large integers n.5

4We believe the interlacing property also holds for the non-degenerate exactly-solvable
operators, but without such a scaling of the eigenpolynomials.

5 According to the scaling in Main Conjecture.

6The question concerning interlacing was raisedby B. Shapiro. For details see Section 4.4



We now present some typical pictures of the zero distribution of the scaled
eigenpolynomials for some degenerate exactly-solvable operators. Below, p,, de-
notes the nth degree monic polynomial eigenfunction of a given operator 7', and
gn denotes the corresponding (appropriately) scaled polynomial.

Fig.1: Ty = zD + 2D? + 2D? + zD* + zD>.

roots of
gs0(2) = ps0(502)

Fig.2: Ty = 2°D?> + D”.
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Fig.3: T3 = 23D® + 22D* + 2D°.
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The algebraic equation satisfied by the asymptotic Cauchy transform in Main
Corollary indicates that the asymptotic zero distribution of the scaled eigenpoly-
nomials depends only on the term 27D’ and the term(s) ;,deg @; 29 D7 of



T for which d = max;e(jo+1,4] (]—_%Jg"@) is attained. To illustrate this fact we
present below some pictures of the zero distributions of the scaled eigenpolyno-
mials for some distinct operators for which the asymptotic Cauchy transform
C(z) of the scaled eigenpolynomials satisfy the same equation.

As a first example, consider the operator Ty = z3D3 + 2°D°.  Clearly
d = maxjefjo+1,k] (%) = (5-3)/(5—2) = 2/3 and the asymptotic
Cauchy transform of the scaled eigenpolynomial ¢,(2) = p,(n*/32) satisfies
the equation z3C? + 22C® = 1 in the limit when n — oco. Now consider
the slightly modified operator Ty = 22D? + z°D? + 2D* 4 22D% + D% and
note that d = max;e(jo11,4] (%) is obtained again (only) for j = 5
(for 5 = 4 we have (4 —3)/(4—1) = 1/3 < 2/3 and for j = 6 we have
(6—3)/(6—0)=3/6=1/2< 2/3). We therefore obtain the same asymptotic
equation in C'(z) for the scaled eigenpolynomials of Ty as for the scaled eigen-
polynomials of Ty; hence we can consider the added terms 2>D?, zD* and D¢
in Ty as ”irrelevant” for the asymptotic zero distribution. The pictures below
clearly illustrate this:

[ <

Ty = 23D3 + 22D, Ty = 22D? + 23D% + 2D* + 22D° + D,
roots of g100(2) = p10o(100%/3z) roots of gio0(z) = p100(100%/32)

_ As a second example, consider the operators Ts = 25D° + 24 D% + 22D?® and
Ts = 22D? + 2° D% + 2* D% + 2 D7 + 22 D® whose scaled eigenpolynomials ¢, (z) =
pn(n'/?2) both satisfy the Cauchy transform equation 2°C® + z*C® + 22C® in
the limit when n — oo. In the pictures below one can see that the ”irrelevant”
terms z2D? and zD7 of Ty seem to have no affect on the zero distribution of
the scaled eigenpolynomials for sufficiently large n.

Ts = 2°D% + 2* DS + 22 D8, Ts = 22D + 25D% + 24 D% + 2D + 22D8,
roots of q1o0(2) = p1oo(100'/22) roots of q1o0(2) = p1oo(100'/22)



In the sequel we will settle our Main Conjecture for some special classes
of degenerate exactly-solvable operators, and then describe the asymptotic zero
distribution of the scaled polynomial eigenfunctions for these operators in detail.

Let us finally mention some possible applications of our results and direc-
tions for further reasearch. Operators of the type we consider occur, as was
mentioned earlier, in the theory of Bochner-Krall orthogonal systems. A great
deal is known about the asymptotic zero distribution of orthogonal polynomials,
and by comparing such results with results on the asymptotic zero distribution
of eigenpolynomials of degenerate exactly-solvable operators, we believe it will
be possible to gain new insight into the nature of BKS.

Acknowledgements. I am sincerely greatful to my PhD advisor Professor B.
Shapiro for introducing me to this very fascinating problem and for his constant
support during my work. I would also like to thank Professor J-E. Bjérk and H.
Rullgard for stimulating discussions on the topic. My research was supported
by Stockholm University.

2 Proofs

We start with the following

Lemma 1. Let T = E§:1 Q;D? be a degenerate exactly-solvable operator of
order k. Then, for a sufficiently large integer n, there exists a unique constant
An and a unique monic polynomial p, of degree n which satisfy T (pn) = A\npn-
If deg Q; = j for precisely one value j < k, then there exists a unique constant
An and a unique monic polynomial p, of degree n which satisfy T'(pn) = AnPn
foreveryn=1,2,....

Proof of Lemma 1. In [1] we proved that for any exactly-solvable opera-
tor T, the eigenvalue problem T'(p,) = A,p, can be written as a linear system
MX =Y, where X is the coefficient vector of the monic nth degree eigenpoly-
nomial p, with components ano,0n,1,0n,2;---,0nn-1, Y is a vector and M is
an upper triangular n x n matrix, both with entries expressible in the coefficients
of T. With T = 2521 Q;DI, Q; = Y1 a2, and pu(z) = Y1 an,i2", the
eigenvalue )\, is given by

k

!
/\n = Za]‘,j(nj

YL
= n—j)!

and the diagonal elements of M are given by

. k ,
it i! n!

Mit1,i41 = E Qjj s — A :E a--[, _ :
? ’ _ i n VY _ 1 _ 1
1<j<min(i,k) (i =)! =1 (i—j3)0 (n—j)



fori =0,1,...,n—1. The last equality follows since i!/(i—j)! =0fori < j < k
by definition (see Lemma 2 in [1]). In order to prove that p, is unique we only
need to check that the determinant of M is nonzero, which implies that M is
invertible and the system M X =Y will have a unique solution. Notice that M
is upper triangular, whence its determinant equals the product of its diagonal
elements. We now prove that every diagonal element M;1 ;41 is nonzero for all
sufficiently large n for all T as above, and for every n if deg Q; = j for exactly
one j.

From the expression

k )
n! 7!
i =S|

j=1 n =)t

it is clear that M;41,i41 # 0 for every ¢ € [0,n — 1] and every n if o;; # 0 for
precisely one j, that is if deg Q); = j for precisely one j - thus we have proved
the second part of Lemma 1.

Now assume that deg@; = j for more than one j and denote by jo the
largest such j (clearly aj,,j, 7 0). We then have

Jo ! !
n! ?:
- Mip1501 = Zaj’j [(n - ) - (i _j)!]

Jj=1

_ n! o (11— i/ (i = jo)! o (n—Jo)! (n — jo)li!
a ("—jo)![ JO’”(l ”!/("—jo)!>+ 2 (n =)t 2 "!(i—j)!]-

1<5<do 1<ji<jo

The last two sums on the right-hand side of the equality above tend to zero as
n — 00, since jo > j and ¢ < n — 1. Thus for sufficiently large n we have

i+l = ni')' [ajo*jo (1 h M)] #0

(n —jo n!/(n — jo)!
for every i € [0,n — 1], and we have proved the first part of Lemma 1. O
Ptz _

To prove Theorem 1 we need the following lemma. Recall that e =

(3)
[ afS) C(O : Cp,j(2). Then we have:
Lemma 2. Let z, be the root of p, with the largest modulus, say |z,| = .
Then, for any complex number zy such that |29| = ro > ry,, we have |Cy, j(20)| >
3o for all j > 0.

Proof. With ¢ belng some root of pi¥) we have |¢| < |#0| by Gauss Lucas’
Theorem. Thus 2 = 1. = L. 1 where || = |(/20| < 1. With

Zo—C 20 1-(/20 zo 1—

10



w = ﬁ we obtain

19|

1—o]
Thus
(J) d (5
, _ pn (O] _ 1
Crste)l = | [ 2] - o] [

—‘/Re )du (¢ ‘> —/dum

Proof of Theorem 1. Take T = 2?21 Q;D? and denote by jo the largest
pUth ()

(n—j)pi’ (2)

w—1| = = Blw] < ] & [w—1] < jw] = Re(w) > 1/2.

/ wdu%’ (o‘

Y

J such that deg @Q; = j (clearly jo < k). From the definition C,, ; =

we get
()
Pn(2)

= Cn,o(z)Cn,l(z) HE Cn,jfl (Z) . n(n — 1) s (n —j + 1)

n

= T Cn,m .
(n—j)! ml_:[O )

With Q;(2) = Y089 a; ;2% we have A, = Z;c’zl i s and dividing the
eigenvalue equation T'(p,(z)) = Anpn(2) by pn(z) we thus obtain
(k) (k=1)

QU S+ Qs+ Qi z T
=4
n! k1 n! k=2
..+Q1(Z)(nn7' Z J,J (n—j)! (2)

Now assume that the largest modulus r, of all roots of p, (and hence, by

Gauss Lucas’ Theorem, of any derivative p(])) is (strictly) less than some fixed
constant R < oco. We can always assume that R is (strictly) larger than the
largest absolute value of all roots of Q. Now let Z be such that |2| = R. Then
37 < |Ch,;j(2)| by Lemma 2. Inserting Z in equation (2) we obtain:

n!
--+Q1(z)(n7 ]Zla” (n—j)

11



Note that by the choice of z clearly Qr(2) # 0 and p,(Z) # 0. Dividing both
sides of this equation by (n_ k)! we get

k—1

: S, =B 1 @)
@ Il Cntd| 4 G Vo et
(n— B) 1 QGa(), L oB_ 1 )
(n—k+2)!Cri-1(8)Cri-2(2) Qu(2) (=D €, .0 (2) Qr(2)
2% (o) @

In this equation, the right-hand side tends to zero when n — oo since jp < k.
On the other hand, in the left-hand side of (3), the terms in the bracket (except
for the constant term 1) all tend to zero when n — oo, since G 1 (Z)I < 2R
and R < oo by assumption. Thus, for sufficiently large n, we can find a positive
constant K,,, with lim,_,, K,, = 1, such that the modulus of the left-hand side
of equation (3) equals

1
ILHS| = K, - |Qk(2)| H Cnim ()] 2 K - |Qr(2) g = Ko >0

when n — oo for some positive constant Kg > 0, since R < co. Thus we obtain
the contradiction Ko < 0 when n — oo, and therefore the largest modulus r,
of all roots of p, must tend to infinity when n — oo. O

In order to prove Theorem 2 we need the following lemma:

Lemma 3. Let T = Z;“:l Q;D’ = Zle (Zgzo ;,i2') DI be a degenerate
ezactly-solvable operator of order k. With no loss of generality we assume that
Qr is monic, i.e. Opdeg, = 1. Let 2z, be the root with the largest modulus of
all roots of the unique and monic nth degree eigenpolynomial p, of T, and let
|2n| = 7n. Then the following inequality holds:

J

Zla"l2’“"w+ ol
752 deg Q. —1 "

i (n—k+1)F 0<i<degQp '™ o

pU+D
Proof of Lemma 3. From the definition C, ;(z) = % we easily derive

(k)
(.)Z — Pn (2:) '
P9 (2) n—k+1)(n—k+2)--(n—j) 15 Com(2) Vo i<k (4

m=j

Inserting z, in our eigenvalue equation T'(p,(z)) = Anpn(z) we obtain
k—1

3 (St (3w ) o) = ) =0

j=1 = =0

12



Dividing this equation by zd¢& @« p%k) (zn) we get

J ()
P’ (2n) 1
(L) B+ ¥ anig+1=0

(k)
j=1 Ni=0 n (2n) 0<i<deg Q

and from this, using (4) and Lemma 2, we obtain the following inequality:

k—1 j (1)
pr (2n) 1
> (Z @ deng ) D Ckigmo
p Zn

k
j=1 \i=0 Sw)(zn) 0<i<deg Qs
k—1 (4)
1 |pr’ (20)] |ovg,i
< Z Z i dew @ || ) + deg Qi
= n (2n)] 0<i<degQy '™
k—1 j
|041 il 1 |k, i
< p ¥ el
— d . k—1 d
— & Tneng i ( _k+1)(n—]) Hm:] |Cn,m(zn)| 0<i<deg Qu Tnengc 1
-1 3 k—i
|, (2rp)~? |k, i]
< Z ’ D D e
= d _ deg Q
=1i=0" eng ' n k+ 1) 0<i<deg Qx T"eg L

—Jj—deg Qr+i |k |

-1 3
= ZZ|an|k]k—+1)k]+ Y Gl

j=1i=0 0<i<deg Qx Tn

Now, using Theorem 1 and Lemma 3, we can prove Theorem 2:

Proof of Theorem 2. Consider the inequality in Lemma 3. Applying Theo-
rem 1 we see that the last sum on the right-hand side of this inequality tends
to zero as n — 0.

Now consider the double sum on the right-hand side of the inequality in
Lemma, 3. If the exponent (k—j — deg Q, +1) of r,, for given i and j is negative
or zero, the corresponding term tends to zero when n — oo by Theorem 1.
Consider the remaining terms in the double sum, namely those for which the
exponent (k — j —deg Qy, +1) of ry, is positive. Assume that r, < co(n—k+1)7
where ¢g > 0 is a positive constant and v < k—j%(‘iegﬁ for given j € [1,k—1]
and given ¢ € [0, j]. Then for the corresponding term in the double sum we get

rk—i+i=deg Qu r

- = = —0
(n—k+ 1)k ((n_k+1)lc—j-}];—‘iegc),c

) k—j+i—deg Qk

when n — oco. Assume that r, < co(n — k + 1)7 where ¢o > 0 is a positive
constant and v < b, where

b= + k—j + k—j
B Jf[el[éejlll k—j +z—deng ] [lk 11k—j+degQ; —degQr’
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The notation min™ means that we only take the minimum over positive terms

(k—j+degQ; —deg Qr)- (Above we have written the minimum over i € [0, j],
but actually i € [0,deg @;] for any given j, so since we look for the minimal
value we can put ¢ = deg(@; in this expression). Then v < % for
every j € [1,k — 1] and every i € [0, j]; thus every term with positive expo-
nent (k — j + 14 — deg Q) will tend to zero when n — oo. Therefore, assuming
that r, < co(n — k + 1)” and v < b where b is as above, we get that every
term on the right-hand side of the inequality in Lemma 3 tends to zero as
n — o0, and we arrive at the contradiction 1 < 0. From this we conclude that
for sufficiently large choices on n there must exist a positive constant cg > 0
such that r, > co(n — k + 1) for all v < b, where b is as above, and hence
limy, oo W > ¢g for any v < b. O

We have conjectured that lim, o, 7% = ¢o > 0 for the largest modulus
ryn, of all roots of p, for all degenerate exactly-solvable operators, where d :=
MAX; [jo+1,k] (%) and jo is the largest j such that deg@; = j. Thus, if
the following condition is fulfilled:

b:= m—gn ( - k= )zmax (&> i=d,
jeltk—1] \ k — j + deg Q; — deg Q% jeltk] \ j — degQ;
then there exists a positive constant cg > 0 such that lim,_, (n—zinﬂ)* > ¢ for
any v < d.

Below we describe two classses of degenerate exactly-solvable operators for which
the above condition is satisfied, namely:

Corollary 1. Let T = 2521 Qij be a degenerate exactly-solvable operator
of order k such that deg Q; < jo for all j > jo, and in particular deg Qr = jo,
where jo is the largest j such that degQ; = j. If ry, is the largest modulus of all
roots of the unique and monic nth degree eigenpolynomial p, of T, then there
ezists a positive constant cg > 0 such that lim,,_, (71727"“)., > co for any v < 1.

Proof of Corollary 1. For this class of operators it is conjectured that
lim, o0 I2 = ¢y > 0, since

n
d:= max (_‘7_‘70 ):k_‘m:l.
j€lio+1,k] \ J — deg Q;

The maximum is attained by choosing any j > jo with deg Q; = jo, e.g. j = k.
Also, for this class of operators we have

b = rrﬁn k—j
T jeltk-1k —j +degQ; — deg Qy
+ k—j k—Jo
= min - — = — =1,
jeltk—11 k — j 4+ deg Q; — jo k—jo

14



and the proof is complete by applying Theorem 2. O

Corollary 2. Let T = Z;c:l Q;D’ be a degenerate ezactly-solvable operator
of order k such that deg@Q; = 0 for all j > jo, where jo is the largest j such
thot degQ; = j. Let r, be the largest modulus of all roots of the unique and
monic nth degree ezgenpolynomml pn, of T. Then there exists a positive constant
co > 0 such that lim,_, m > ¢g for any v < —]—

Proof of Corollary 2. For this class of operators it is conjectured that
lim,, 00 W = ¢o > 0, since

d:= max (i) = max (‘7 _,‘70) = k_JO.
j€lio+1,k] \ J — deg Q; je€lio+1,k] \ J k

Also, for this class of operators we have

b = m—iin ( k—3j )
T jelk=1) \k — j + deg @, — deg Q¢

" ( k—j >_ min k—j _k—Jo
j€llk—1] \k — j + deg Q; Cjelgl ko k

where the third equality follows choosing any j such that deg@; = j, and the
minimum is attained for j = jo (for j > jo we get (k —j)/(k —j + degQ;) =
1> (k— jo)/k), and the proof is complete by applying Theorem 2. |

Remark. For the classes of operators considered in Corollary 1 and Corollary
2 we can actually prove that lim,, o, 7% > co, where d is as in Main Conjecture,
if we assume that we already have the upper bound lim,,, 7% < ¢ for some
positive constant ¢, see Section 5.

Proof of Theorem 3. First we note that deg@;, = jo since there must
exist at least one such j < k. Let

deg Qr
T =Q;D" + QiD* = Zam i2'D%o 4 Z ay, i2'D

where o, j, # 0, and where we wlog assume that () is monic. From Lemma 3
we get:

Jo 25 pi—deg Qu+k—jo o 1
1< Yoo T S g
= s _ k— s deg Qr—1
i=0 (n =k +1)k=de 0<i<deg Qx Th ek
deg Qr+k—jo
ok—j -
S Z'a]m | 0 1)k_]0 + €,

where we choose n large enough that € < 1 (this is possible since € — 0 when

15



n — 00). Thus for sufficiently large n we have the following inequality:

ok T.z deg Qr+k—jo
o < Zlajo,l Ok—ﬂ)k]o

k— deng
k7 T
< Z|O‘Jo,z|2 Ok—ﬂ)km
ph—deg Qu
e

where 1 — e = ¢o > 0 and K > 0 since a;j,,;, # 0 (the last inequality follows
since 4 < jo)- Thus

s
Ty > %(n—k—}—l)ﬁ

for sufficiently large n, and hence

Tn Co
>—=c>0.
- K

lim =
T (n— k4 1)k
Finally, it is clear that for this two-term operator we have
J—Jo k = jo
d:= max - = ,
J€ljo+1,k] (] — deg Q,-) k — deg Qy

and we are done. O

Remark. If ; is a monomial (Q = 298 @), then there exists a positive con-
stant ¢ such that r, > ¢(n—k+1)? for every n, where d := max;e(j,11,4] (m)

kkdﬁ This is easily seen from the calculations in the proof of Theorem 3

above. Note that the sum } o; qeq 0, |ak,i|ﬁk_i on the right-hand side of

k—deg Q
the inequality in Lemma 3 vanishes, and therefore 1 < K ﬁ

n. Also, from the second part of Lemma 1 we know that for this class of oper-
ators there exists a unique monic nth degree eigenpolynomial for every n, and
the conclusion follows.

for every

Proof of Theorem 4. First, since j < k and (j — degQ;) > (k — degQx)
for every j > jo for this class of operators, it is clear that

max ( Jj—Jo ): k—jo
j€ljo+1,k] \ J — deg @ k — deg Qg

We assume, with no loss of generality, that )y is monic, i.e. akdegq, = 1.
From Lemma 3 we then have the inequality

k=1 j
1<ZZ|O‘J,
j=1i=

0

d:=

k —Jjti—deg Qk

ARG o . )
k— deg Qr—
—k+1)k—J 0<ila o pdeg Qi—i

16



Clearly the last sum here tends to zero as n — 0o by Theorem 1. Considering
the double sum on the right-hand side of the inequality above it is clear that
for every j we have, using i < deg();, that

k j+i—deg Qr deg Q; k —j+deg Q;—deg Qx
Z|a |2k J Z o | 287 In pi=deg Q;
Jyi 7@ ( — k‘-l— l)k*j n

k —j+deg Q; —deg Qu
Tn

= —— (2" g aegq; |+ D 28 |aylrh B
(n—k+ 1)k )
i<deg Q;

k—j+deg Q; —deg Qs
nTn

= K e Thror 6)

where _ _ .

KJT-L — 2k7]|aj,deng| + Z 2k7]|aj’i|7';':deng >0,

i<deg Q;

since ajdeg @; # 0. Also, Ki < 0o, since i € [0,deg @] and thus (i—deg Q;) < 0
for every j (note that KJ' — 2" 7|a; ez ;| when n — 0o due to Theorem 1).
Thus, with the decomposition
A={j:degQ; =j},
B={j:degQ; <j and (k—j+degQ; —degQs) >0},
C={j:degQ; <j and (k—j+degQ;—degQs) <0},
and using (6), inequality (5) is equivalent to:

k-1 J ph—i+i—deg Qi |
— ag zl
1< Y gt T g okl
= . | J,l| ( k+1)k j + ) ,rdeng i
j=11i=0 0<i<degQr '™
k—deg Qi k—j+deg Q; —deg Qx

r r
= Kr—r 4 E Kr=2
J _ k—j J _ k—
= n—k+1) ey n—k+1)
k—j+deg Q;—deg Qk
Tn |Oék z|
+ ZKJ (n—k+ 1)k + Z deg Qr—i’

jec 0<i<deg Qi '™

Consider the last two sums on the right hand side of this inequality. They
both tend to zero as n — oo, the last one due to Theorem 1, and the sum over
C since we have (j — deg QJ) (k—degQr) © (k—j+degQ; —degQr) <0
for every j € C by assumption, and then applying Theorem 1.

Therefore, in the limit when n — oo, we get the inequality

pk—deg Qi k —j+deg Q; —deg Qi

<) K7 In .
@ ]26;4 k+1kﬂ+z (n—k+ 1)k 0

where
k—j+deg Q] deg Q&

Tn |k ;]
0<e=1-Y K? Y A
Ay Qi
jec (n =k + 1)k 0<i<deg Q rp
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for sufficiently large n.

Now assume that the set B is empty. This corresponds to an operator with
(j—degQ;) > (k—deg Q) for every j for which deg @; < j. Then the inequality
(7) above becomes

rfb_deg Qk

G < Z K 7
e (n—Fk+1)kJ
k—deg Qr 1
™ ( n
=____fK4.Z_K____ﬁ
— k—j Jo — 1)do—3
(n =k 1)k jenti (T EADE
rk—deg Qu
< Ky—2—— 8
- A(n—k+1)’°—10 (&)

where K 4 > 0 is a positive constant (since A is nonempty) which is finite when
n — 00, since jo — j > 0 for every j € A\{jo} (recall that jo is the largest
element in A by definition). Thus for sufficiently large n there exists a positive
constant ¢ = ¢g/K 4 > 0 such that

rn>cn—Fk+1 )W
and thus

r
n >c¢>0.

lim

k—
n—o0 —Jjo

( _k+ l)k deg Qg

Now assume that B is nonempty. Then for sufficiently large n there exists
a positive constant ¢g > 0 such that (as in the case of empty B) inequality (7)
above holds:
rk—deg Qi 7, —j+deg Q;—deg Q&

< _n
w < D K} n—k+Dkﬂ+§: -kt D

JjEA

For the sum over A we previously concluded in (8) that there exists a positive
and finite constant K 4 such that

Tﬁ_deg Qk T’f)l—deg Qk
K? - < K -
Z T n—k+1)kd =" A n—k+ 1)k o

JjEA

for sufficiently large n, whence we get the following inequality from (7):

pk—deg Qr k—j+deg Q;—deg Qx
< Kn n Kn n
@ = g; (n—Fk+ 1)k 22 (n—Fk+ 1)k
k —deg Qu k—j+deg Q; —deg Qi
< Ky—2» n :
= A(n—k+1)’° JO+Z (n—k+1)kJ
k—deg Q& deg Q;—j
rk ( n  Tn
:-————fm+zx___ff)
_ k— J _ _
(n—k+ 1)k 7 (n—k+ 1)
rkideg Qk
< Kuyp—2—— .
= AP (n —k+ 1)k—do
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Here K4p is a positive and finite constant for sufficiently large n (note that
Kap — K4 when n — o0, since (deg@; — j) < 0 and jo — j > 0 for every
J € B). Thus there exists a positive constant ¢ = ¢o/Kgp > 0 such that

J

rn>cn—k+1 )W%_k

for sufficiently large choices on n, and thus

r
lim n =, > ¢>0.

n—)(XJ( _k+1)k deg Q,

3 How did we arrive at Main Conjecture?

Our Main Conjecture is based on calculations involving the Cauchy transform
and is consistent with all experiments we have performed concerning the zero
distribution of eigenpolynomials of degenerate exactly-solvable operators.

With p,, being the unique monic nth degree eigenpolynomial of T', we define
the corresponding scaled polynomial q,(2) = p,(n?z), where we need to find
the positive number d specific for each operator. For a polynomial g, of degree

n, the Cauchy transform C,, ; of the root measure yf, for the jth derivative g

is 1 (J"‘Fl) (.7)
dur,
C ij( z) : ( ) ) / (C) .

z—=¢

From this definition we obtain

jl:[lc ( ) j—1 (i+1)( )
n,il%) = N (DN
p im0 (0= )z (2)
_ e e )
ngn(z) (n—1qW(2) (n—2¢@(2)
R O ¢t (2)
n—ji+2)a7 ) (m-j+1)d ()
a9 (2)

n(n—=1)--(n—j+1)gn(z)

Now the basic assumption (see also section 4.3) we make to get our conjecture
is the following. Assume that the Cauchy transforms of the scaled polynomial
gn(z) and its derivatives are all equal when n — oo, i.e. Cyn(2) := Cp(z) =
Cni(z) = ... = Chr—1(2) when n — co. This means that we assume that the
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root measures puQ, pl, p2 ..., uk=1 of gy, aP P ... gt Y respectively, are all

equal as n — oo. Then

j—1 ()
; 3 . . dn (z)
Cn(z) = E)Cn,z(z) = TL(TL— 1)---(n—j+1)QH(z)’ (9)

and with C(z) := lim, 00 Cr(2) (we call this function the asymptotic Cauchy
transform of g,), we get

i—l (7)
j _ : ) _ a’ (2)
C') = fim 1) = lim, 11 Ons®) = Sy g 0

With ¢, (z) = pn(n?z) the scaling factor n? is now appropriately chosen in
the sense that we obtain a "nice” equation in the asymptotic Cauchy transform
C(z) for the scaled polynomials. Then the asymptotic zero distribution of the
scaled polynomials will (conjecturally) be compactly supported.

Let T = Zle (Y7, @ji2") DI be a degenerate exactly-solvable operator

and denote by jo the largest j such that deg@; = j. Consider the equation
T (pn(z)) = Anpn(z) where

ZaJJ ZO‘H ZO‘J,J" cr(n—j+1).

Clearly this sum ends at jo since a; ; = 0 for all j > jo by definition of j,. We

then have

4

Zi:l(iaﬂz) (= Zaunn—l “(n—j + 1)pn(2)

=0

Now letting z — n?z in this equation we obtain

k J
Z (Z aj,indizi>p(]) niz) z ajn(n—1)--(n—j+ 1)p,(nz),

and making the substitution g,(z) = p,(n%z) the equation above will be equiv-
alent to the following:

k
Z<Z 0y T z) (3) Za“n (n=1)---(n—J+ Dagp(2).

j=1
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Dividing this equation by (TL_L;O),qn(z) =n(n—1)---(n—jo + 1)g.(2) we get

k J i (9)
< dn (Z)
Z (Zaj’i nd(f—i)) n(n—1)

2\ & (= jo+ Daal?)

LHS

~ —1)---(n—j+1
) ;a"”’:((:—l))---<?—fo+1)):RHS -

where a, j, # 0. Consider the right-hand side (RHS) of equation (11). Since
Jj < jo, all terms for which j < jo (if not already zero, which is the case if
aj; =0, ie. if deg@; < j) tend to zero when n — oo, and therefore

Jo .
nn—1)---(n—j+1)

RHS:E ., e =1 .
j:1a]7‘7n(n_1)...(n_]'0+1) aJO’JO as n 00

Here we wlog have made a normalization by assuming that ();, is monic, i.e.
Qo ,jo = 1.

Now consider the jth term in the sum on the left-hand side (LHS) of equation
(11). Using (9) and (10) we get, for any given j:

ia” 7 ¢ (2) _
S dG=) n(n = 1)+ (n — jo + 1)gn(2)

J i () i
& s &) a1t )
D o AT e ey e a2 R g e ey

J i .
_ A _n(n—l)---(n—g+1)

¢ - .n(n—l)---(n—j—l-l) nio

J
z
— o e
2 it ) n nn=1)-(n=jo+1)

i

J
2 .
— Zai I(z when n — co.
~ ]”nd(J—Z)ﬂo—JC (2)
3=

Thus, for the left-hand side of (11) we have

k J i €))]
_ o ? qr (2)
s = 3 (S esiation ) s e o

j=1 \i=0

k J i
VA .
o N\
— <Za1,,nd(j_i)+j0_j)0 (z) when n — co.
j=1 1=0
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Adding up we have the following equation satisfied by the asymptotic Cauchy

transform C' for the scaled eigenpolynomial ¢, (z) = p,(n?z):
k J Zi ]
Z(Z%%E?QTym”:L (12)
j=1 Ni=0

In order to make (12) a ”"nice” equation we need to (in order to avoid infinities
in the denominator) impose the following condition on the exponent d of n:
AG=i)+jo=j20 & d>2=

for all j € [1,k] and all i € [0,5]. Therefore we take d = max e 4 (JT__%),
but this maximum is clearly obtained for the maximum value of ¢ for a given
Jj. Since i € [0,deg@;] for any given j, we may as well put ¢ = deg@;. Our
condition then becomes” d = max;e (T—%J;TJ) But clearly we need only
take this maximum over j € [jo + 1, k], since jo < k and therefore there always
exists a positive value on d for any operator of the type we consider; thus our

condition becomes: L
J—Jo
d= max — |-
j€ljo+1,k] (.7 — deg Qj)

This is how we arrived at the scaling factor n?. If we put this d into equa-
tion (12) and let n — oo we obtain an equation satisfied by the asymptotic
Cauchy transform of the scaled polynomial ¢, (2) = p,(n?z) - namely the alge-
braic equation in Main Corollary.

Arriving at Main Corollary. We insert d in (12), where d is as above (i.e.
as in Main Conjecture). We then get the following equation:

zkj (degfj . 2 )cﬁ () =1. (13)

i—ig o - .
j=1 i=0 nmaxje[jo+1,k] (j—Jdeg Q; )(J—’l)+Jo —J

Denote by N;; the exponent of n in (13) for given j and i. Thus
J—1Jo . ) .
N;; = max — —t)+Jo—J-
75t €l +1,k] (J _degQ]>(J ) Jo J
The terms for which this exponent is positive tend to zero as n — co.

First we consider j for which deg@; = j, and denote, as usual, by jo the
largest such j. If j = jo, then i < degQj, = jo; thus for j = jo and i = jo we

"To make sure we do not take this maximum over nonexisting terms we can write d =
Qj,deg Q;
@j,deg Q;

mMax;e(1,k] (Jfbm*_d;g Q; ) .
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get

N J—Jo S
. — m — — %) + jg —
Jo,Jo je[joi}i,k] (] . deg QJ ) (] l) Jo J

J—Jo . . . .
max — - + J0 — jJo = 0,
J€ljo+1,K] (J —deg Qj>(]0 jo) +Jo = Jo

and for j = jo and ¢ < jo we have
s ( J—Jo
j€ljo+1,k] \ J — deg Q;
J = Jo
max —_—
j€lio+1,k] (J —deg Q;

Njo,i >(j—i)+jo—j

> )(jo—jo)+j0—j0=0-

Thus Nj,,j, = 0 and N;,; > 0 for i < jo, and for the term corresponding to
Jj = join (13) we get

Jo i
Qjo,i — C7°(2) = jy,jo27°C7° (2) = 27°C7°(2)
; % anaxje[jo+1,k] (ﬁoq_j)(h*i)-i-jo*jo J0:30
in the limit when n — oo, assuming that @, is monic (a;j,,j, = 1).
Now let j be such that deg@; = j and j < jo. Then ¢ < deg@; = j and
J—Jo N
Ny o= max (L) —i)+jo-
35 eljod1 k] (,7 —_ deng)(J )+jo—1J
J—Jo
max —
j€ljo+1,k] (J — deg Q;

and for i < j we get

)(J'—j)+jo—j=jo—j>0,

J—Jo N

N;; = max |(———"—)({—1i)+jo—
t j€ljo+1k] (J — deg Qj) G=9+do~]
J—Jo

> max |——"
j€ljo+1,k] (J —deg Q;

)(j—j)+j0—j=j0—j>0;

that is N;; > 0 for all j < jo such that degQ; = j and for all ¢ < j. Thus the
corresponding terms in (13) tend to zero:

deg Q; i

2D s ;

- =i ) (=)o —j
jeticinang @i =5 nmeetiorn (e ) G-

Ci(z) =0

when n — oo for every j < jo such that deg@Q; = j.

Now denote by j, the j for which the maximum d = max;e(jo+1,4] (%)
2
is attained. Note that there may be several distinct j for which this maximum
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is attained!® Then
J—Jo N
N; ; max | ———"—"—— (=) +jo—
Jm,degQj,, J€Lo+1,k] (J . deg Q]>(] ) Jo J
jm _jO . . .
= [(—dm—Jo0 —deg Q; -
(]m _degQJm>(Jm egQ]m)+.70 Jm
= Jm —Jo+Jjo—jm =0,

and for ¢ < deg@;,, we get

N

J—Jo CoN
i max —_— — 1)+ Jo —
It J€ljo+1,k] (g - deng)(J ) +do =
Jm —Jo . . .
> ———~  |Um — de Q im) T J0— )
(22 ) i - deg Qi) + o~ i
= Jm—Jo+Jjo—Jm =0,
i.e. Nj, degq;, = 0and Nj ;> 0 for i < deg@j, , and for the term corre-
sponding to j = jp, in (13) we get

deg Qjm i

z
§ : Qi i
=0

" Xi€lio+1,k] (ﬂg—j) (Jm—1)+jo—jm

CI™ (2) = 0 des @, 225 9 €77 (2)

when n — co. In case of several j for which d is attained, we put A = {j :
(G—Jo)/(j —deg Q;) = d := max;c[jo+1,k] (%)}, and for the corresponding
terms in (13) we get

deg Q; i
. J , deg Q; 1J
§ , E : 05, (it ) =i+ -C7(2) — § :ag,dengz 1C7(z)
jEA i=0 X ietio+1h \5=aes g5 ) (= +do = jeA

when n — co. Now consider the remaining terms in (13), namely terms for
which j < jo such that deg Q); < j, terms for which jo < j < jm, and terms for
which j,, < j <k, (clearly this last case does not exist if j,, = k). We start
with § < jo for which deg @; < j. Then i < deg@; < j and

J—1Jo . ) .
N;; = max —_— —1)+Jo—
” F€[jo+1,k] (g - deng>(J )+ o=
J—Jo
> max -_—
j€ljo+1,k] (J —deg Q;

8 Consider, for example, the Laplace type operator (that is with all polynomial coefficients
Qj linear) T' = zD +2D?+...2zD*. Here jo = 1 and the equation satisfied by the asymptotic
Cauchy transform of the scaled eigenpolynomial g, (2) = pn(nz) is given by 2C(2) +2C%(z) +
...2C*(2) = 1, since the maximum d = max;e[2, k] ( i—J ) = 1 is attained for every
i=2,3,.. .k

)(j—j)+j0—j=jo—j>0;

_J=Jo
j—deg Qj
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and the corresponding terms in (13) for which j < jo such that deg Q); < j tend
to zero when n — oo:

deg Q;

Z Z (o7 X i Cj (Z) —0

s =00 ) (i) io—d
je{j<joidegQ;<j} i=0 nmax’e“o“"“](i—dest)(J )+jo=

when n — oo.

Now assume that j,, < k and consider j,, < j < k. Clearly j,, > jo since
the maximum is taken over j € [jo + 1,k], and therefore i < deg@; < j for
Jm < j < k. Also,

J—Jo Jm — Jo J—Jo
max - = | - > | - ,
je€ljo+1,k] (.7 — deg Qj) (Jm — deg Qj,, ) (J — deg Qj)

since the maximum is attained for j,, by assumption. Thus we get

j - jO . . . . jm - jO . . . .
Nj; = max |(———— |G —19)+jo— =(7> — i) +jo —
- F€[Go+1,k] (] — deg Q)U ) +do=3 Jm —deg Qj,, (=i +jo—J
J—Jo J—Jo

o (=00 NG o i (I N dew 00 4 i —
(J_deng)(J ) + Jo J_(J_degQJ)(J gQ;) +Jjo—J
= J—JotJjo—Jj=0,

ie. Nj; > 0 for every j,, < j < k and every ¢ < deg@;. The corresponding
terms in (13) therefore tend to zero when n — oo:.

deg Q; i
VA .
E E Qi F—y ——— (0 (z) —0
Im<j<k =0 p I Elio+ L.kl (m)(]_’)ﬂ“’

as n — o0.

Finally we consider jo < j < jm. Note that this also covers the case jn,, <
j < jms, where the maximum d = maxX;ejo41,k] (%) is attained for j,,
and jp,. Since i < deg@; < j we get
J—Jo . . . Jm — Jo . . .
max |~ ) (j —i) +] —J=<.7>J—l +jo—J
j€ljo+1,k] (] - deng>( )+ Jm — deg Qj,, Ui+
J—Jo N J—Jo . S
> |\ /=5 0-0)+jo—ij> (.7)(] —degQ;) +jo — Jj
(J—deng> j—degQ; !
= J—Jot+Jjo—Jj=0,

Nji =

i.e. Nj; > 0 for every jo < j < jm and every ¢ < deg@;. Thus the correspond-
ing terms in (13) tend to zero when n — oco:

deg Q; i

2. D -

— —C7(2) = 0
jo<j<jm i=0 nmaxje[j=+1,k]0 (m)(i—l)-ﬂo —J

25



when n — oo.

Adding up these results we get the following equation from (13) for the
asymptotic Cauchy transform C(z) of the scaled eigenpolynomial ¢, (z) = p,(n¢z)

where d is as in Main Conjecture:

00 (2) + ) 0jaegq, 2"V CI(2) = 1,
jeEA

where jo is the largest j such that deg@; = j, and A is the set consisting
of all j for which the maximum d = max;c(jo+1,] (%) is attained, i.e.
A={j:(j—jo)/(j —degQ;) = d} where d is as above. d

4 Numerical evidence

4.1 Evidence for Main Conjecture

On page 30 we present numerical evidence for Main Conjecture on the asymp-
totic root growth. We have performed similar computer experiments for a large
number of other degenerate exactly-solvable operators, and the results are in all
cases consistent with this conjecture.

4.2 Comments on Main Corollary

We here present and comment some pictures of the zero distribution for some
properly (according to Main Conjecture) scaled eigenpolynomials of some de-
generate exactly-solvable operators. In Section 1 we presented pictures of the
zero distributions of the scaled eigenpolynomials for some distinct operators for
which the Cauchy transform C' of the scaled eigenpolynomials satisfy the same
equation in the limit as n — oo. We considered the operator Ty = 22D? + 22D5
for which d = 2/3 and for which the asymptotic Cauchy transform of the scaled
eigenpolynomial g, (2) = p,(n?/3z) satisfies the equation z3C® + 22C® = 1. For
the slightly modified operator Ty = 22D? + 23D3 + 2D* + 22D® + DS we noted
that d is obtained again (only) for 7 = 5 and we therefore obtain the same
equation in C for the scaled eigenpolynomials of T} as for the scaled eigenpoly-
nomials of Ty, whence we can consider the added terms 22D?, zD* and D as
irrelevant for the zero distribution.

However, instead of pﬁ, we may add the “more disturbing” term 2D® to Tj.

Consider the operator Ty = 22D2 + 23D3 + 2D* + 22D® + 2D® and note that
for j =6 we have (6 — 3)/(6 —1) =3/5=0.6 < 2/3 - it is clear that the closer
the value (j — jo)(j — deg @) of the added term @Q;D? is to d = 2/3, the more
disturbing is this term, since, besides the term for which j = jo, it is precisely
the terms for which (j — jo)/(j — deg@;) = d = 2/3 that are involved in the
asymptotic Cauchy transform equation. Se pictures below.
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T4, roots of 1~“4, roots of 1~“4, roots of
q100(2) = P100(100%/32)  gioo(2) = P100(100%/32)  ge00(2) = Pe0o(600%/%2)

The term 2D% should however be irrelevant in the limit when n — oo (ac-
cording to the asymptotic Cauchy transform equation), and experiments indi-
cate that for sufficiently large n the zero distributions for the scaled eigenpoly-

nomials of Ty and T4 coincide, as they (conjecturally) should.

Note also that it is only the term of highest degree in a given (relevant)
Qj, L. ajdegq,;79% 9, that is relevant for the zero distribution of the scaled
polynomials in the limit when n — oo. This is illustrated by the following ex-
ample, where adding lower degree terms in the (relevant) @); clearly does not
affect the zero distribution of the scaled eigenpolynomials for large n. Below,
Ts = 23D3 + 22D®, and Ts = [(1 + 134) + (24i — 3)z + 1122 + 23] D% + [(22i —
13) + (=9 — 14i)z + 22| D® (note the difference in scaling between the pictures).

07505025 0 0.250.50.75 T oS i TE T R R S W

Te, roots of fg, roots of fa, roots of
q100(2) = P100(100%/42)  gu0o(2) = P100(100%/%2)  gs00(2) = P500(5003/42)

4.3 On the basic assumption

Finally, we show some pictures which support the basic assumption upon which
Main Conjecture and Main Corollary are built, namely that the Cauchy trans-
forms for the scaled eigenpolynomial and its derivatves are all equal when
n — oo, ie. Cpo = Cp1 = ... = Chp—1 in the limit when n — oo. This

means that we assume that the zero distributions p,, ,u%l), cee ,u%k) of the scaled

eigenpolynomial and its derivatives qn,q’n,...,qr(lk) respectively, are all equal
when n — oo. Below, p, denotes the nth degree monic eigenpolynomial of
the given operator, and ¢, = p,(n?z) denotes the corresponding appropriately
scaled polynomial.
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Fig. 1: Ty = zD + D? and qn(2) :pn(n2/3z).

0.5 0.5 0.5 0.5
-0.5| -0.5| -0. 5| -0. 5|
roots of gigo(z)  roots of gjgq(2) roots of gipo(2)  roots of gi)y(2)
Fig. 2: Tz = 2°D? + D% and ¢,(2) = pn(n®/%2).
0. 5 0.5 0. 5
1] -1 1
-1 'Ué 0 0.5 1 -1 -0. 5 0 0.5 1 -1 'U.é 0 0.5 1
roots of qi00(2) roots of ¢fgq(2) roots of ¢iyo(2)
1 1 1] :
0.5 ":. 0.5 "~,. 0.5
- 0. 5} -0.5] - 0. 5
1 1 m
-1 —Oé [ 0.5 1 -1 —Oé 0 0.5 1 -1 —Oé 0 0.5 1
i
roots of ¢}, (2) roots of qgo) (2) roots of q%z) (2)
Fig. 8: Ty = 2D + zD* + 23D7 and ¢, (2) = pp(n®/?z).

roots of qigo(2)  roots of qjge(2)  roots of qfpy(2)  roots of ¢iy(2)

T05 0 05 1 T 05 0 05 1 T 05 0 05 T T 05 0 05 T

roots of qfo‘g (z)  roots of (Iﬁ%(z) roots of q%ig (2) roots of q%ioi) (2)
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4.4 Interlacing property

We now state the exact meaning of interlacing on curves in the complex plane.
Conjecturally the support of the asymptotic zero distribution of the scaled eigen-
polynomial g, of T is the union of a finite number of analytic curves in the
complex plane, which we denote by Zr. When defining the interlacing prop-
erty some caution is required since the zeros of ¢, do not lie exactly on Zg.
Thus, identify some sufficiently small neighbourhood N(Z71) of Er with the
normal bundle to E7 by equipping N(Er) with the projection onto Er along
the fibres which are small curvilinear segments orthogonal to Z7. Then we say
that two sets of points in N(Er) interlace if their (orthogonal) projections on
Zr interlace in the usual sense. If =1 has singularities one should first remove
some sufficiently small neighbourhoods of these singularities and the proceed in
the above way on the remaining part of Z;. Conjecture 1 then states that for
any sufficiently small neighbourhood N (Z7) of Z there exists N such that the
interlacing property holds for the roots of ¢, and ¢,4+1 for all n > N. Below,
small dots are roots of g,+1 and large dots are roots of g, for some fixed n.

0.6 Ps 1 .
0.4 ‘. * o
0.5
L] o )
0.2
3 o .
0 ° Of-e . . . .
. ., .
-0.2
o ., °
-0.5
-0.4 . o o,
-0.6t* . -1 o
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -1 -0.75-0.5-0.25 0 0.25 0.5
T =22D? + 2°D? + zD5, T = 2D + z2D? + D3,
roots of ¢o5 and go4. roots of g0 and ¢i9.
‘ 0.6 ¢
0.75
0.5l 0.4 o
. ¢
0.25 ‘e 0.2 .
o« ® .
0 ce: o o o o Of-e . . °
L] ? )
0.25 K 0.2 .
] LY
0.5/ 0.4 o
0.75
. -0.6 N
-1.75-1.5-1.25 -1 -0.75-0.5-0.25 0 0.8 -0.6 -0.4 -0.2 0 0.2 0.4
T = 2D+ 2D? 4+ 2D? + 2D* + 2D?, T = 23D3% 4 22D% + 2DS,
roots of go3 and go9. roots of g9 and gq9.
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| Operator | n | r, experimental | r,, conjectured ]
50 2.7 - 500967595 T ¢ . 50T
Ty = 2D + 2D? + 2D3 + 2D* + 2D5 100 | 2.7- 100098280 | ¢, . 100"
200 | 2.7-200099%557 | ¢, . 200"
250 | 2.7- 2500998272 | ¢, . 2501
50 1.3 - 500671977 | ¢, . 50%/7
100 | 1.3-1000-694847 | ¢, .100%/7
Ty = 22D?2 + D7 200 | 1.3-2000:706226 | ., . 2005/7
300 | 1.3-3000-7T0085 | ¢, . 3005/7
400 | 1.3-4000-7120%3 | ¢, . 40057
50 4/3 . 500.469007 cs - 501/2
100 | 4/3 - 1000489821 | ¢5 . 1001/2
Ts = 23D3 + 22D* + 2D° 200 | 4/3-2000-492832 [ 5. 2001/2
300 | 4/3-3000-495592 | ¢5.3001/2
400 | 4/3 - 4000497009 | ¢. . 400172
50 1.4 - 500633226 | o . 502/3
100 | 1.4-1000-652141 |, .100%/3
Ty = 23D3 + 22D5 200 | 1.4-2000-661412 | ¢, . 200%/3
300 | 1.4-3000-56%5TT [ ¢, . 300273
400 | 1.4-4000-666066 | . . 400%/3
50 1.4 - 500632811 | & . 5(2/3
100 | 1.4-1000-651960 | & . 1002/3
Ty = 22D? + 23D3 + 2D* + 22D + DS 200 | 1.4-2000:661332 | & . 9002/3
300 | 1.4-3000-664461 | z . 3002/3
400 | 1.4 -4000-666030 | &, . 400%/3
50 1.5 - 5(0-462995 cs - 501/2
100 | 1.5-1000-48168% 1 .. 1001/2
Ts = 2°D% + 2* DS + 22D8 200 | 1.5-2000-491066 [ (.. 2001/2
300 | 1.5-3000-494304 | (.. 3001/2
400 | 1.5-4000-495971 | ¢y . 4001/2
50 1.5 - 500463391 | & . 501/2
100 | 1.5-1000-481837 1 &..100'/2
Ts = 22D2 + 25D5 + 24DS + 2D + 22D8 200 | 1.5-2000491129 [ & . 9001/2
300 | 1.5-3000-494342 | & . 300'/2
400 | 1.5-4000-495998 | & . 4001/2
50 1.4 - 500702117 [ o 503/4
100 | 1.4-100%7%715 | ¢ -1003/%
Ts = 23D3 + 22D6 200 | 1.4-2000737541 | ¢q . 200374
300 | 1.4-3000-74161% T ¢4 . 300374
400 | 1.4-4000-78713 | ¢4 - 400374
50 | 1.4.500769260 T .. 503/4
Te = [(1 + 13i) + (24i — 3)z + 11iz% + 23]D3 | 100 | 1.4-100°-760399 | &5 .1003/4
+[(22i — 13) — (9 + 14i)z + 22| D8 200 | 1.4-2000-7°6161 | &, .2003/%
300 | 1.4-3000-73%590 | & . 3003/%
30 400 | 1.4-4000753765 | &, . 400374




5 Appendix

For the classes of degenerate exactly-solvable operators considered in Corollary
1 and Corollary 2, what we really want is the lower bound lim,,_, m >

co > 0, since we have conjectured lim,, o, :L—’; = ¢g > 0, where

d := maxjepj, 41,5 (%) and jo is the largest j such that deg @; = j. Recall
that in Corollary land 2 we obtained the result lim,,_, (n_zi"ﬂ)v > ¢o > 0 for
any v < d.

Here we prove that for a class of operators containing the operators con-
sidered in Corollary 1 and 2, the lower bound r, > co(n — k + 1) follows
automatically from the inequality in Lemma 3, if we assume that the upper
bound 7, < ¢1(n — k + 1)? holds for large n, where ¢; > 0 is a positive contant
and ¢g < ¢;.

Theorem 5. Let T be a degenerate exactly-solvable operator which satisfies
the following condition:

b:= mﬁn ( - k—J )= max (i) =:d,
jeltk—1] \ k — j + deg Q; — deg Qk j€lio+1,k] \ J — deg @

where the notation min™ means that the minimum is taken only over positive
values of (k — j + deg Q; — deg Q). Assume that r, < c1(n —k +1)? holds for
large n, where ¢1 > 0 is a positive constant. Then there exists a positive constant
co > 0 such that co < ¢1 and rp, > co(n — k + 1)? for sufficiently large n, and
thus lim,_, o (717’,;7"“)(1 = ¢, where cg < & < ¢; and d := maxje[jo41,k] (%)
Proof. From Lemma 3 and using ¢ < deg @, for every given j, we have

k-1

-1 j —j+i—deg Qk |O£ |
k: ] #
1 < ZZ|O‘M| k4 1)k i Z deg Qu—i
=1 i=0 0<i<degQr '™
-1 k —j+deg Q; —deg Q¢ |ak |
i
S ZKJ (n—k+ 1)k - Z e (4
j=1 0<’l<lk

where K; > 0 is a positive constant. The second sum on the right-hand side of
this inequality tends to zero as n — oo due to Theorem 1. To prove our theorem
we decompose the first sum on the right-hand side of the inequality above into
three parts:

. . k—j
e j for which T des Qi_deg o = &
(note that (k — j + deg Q; — deg Q) > 0 here since d > 0),
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. . k—j
° ) for which k—j+deg Q; —deg Qx, > d’

(note that (k — j + deg Q; — deg Q) > 0 here since d > 0),

e j for which (k — j + deg Q; — deg Q) <0,

where d := max;c[j 41,k ( Clearly there are no terms for which

Jj—J
. j—degij)'
= J+deg(5]—deng < dand (k—j+ degQ; — degQy) > 0, due to the con-
dition b = d.

In the first case, for any term for which (k—j)/(k—j+degQ; —deg Qx) =
we have

,r.fb—j-i-deg Qi —deg Qp Tn k—j+deg Q;—deg Qr
(n—k+1)k=J ((n—k+1)d)

The second part we consider consists of terms for which (k—j)/(k—j+degQ; —
deg Qr) > d,ie. d(k—j+degQ;—deg Q) < (k—j), and this inequality together
with the upper bound r, < ¢;(n — k + 1)? gives the following estimation of the
corresponding terms in (14):

ri—j-ﬁ-deg Q;—deg Qr ca(n—k+ l)d(k7j+deg Q;—deg Qx)

(n—k+1)k3 — (n—k+ 1)k

-0

when n — oo.

The third part we consider consists of the remaining terms, namely terms
for which (k — j + deg@Q; — deg Q) < 0, since (k — j) > 0. But clearly the
corresponding terms ph—itdeg Qi —deg Qi /(n—k+1)¥=7 in (14) tend to zero when
n — 00, using Theorem 1.

Thus, decomposing the first sum on the right-hand side of the last inequality
in (14) in this way, we obtain the following inequality :

k-1 k Jjtdeg @; —deg Qu |ak |
K3
1 < ZK n_k+1 J + Z ;lk i
0<i< iy,
Z k—j+deg Q; —deg Qs
< Er(aim )
ey k +1)¢
C n — k- + 1 d(k ]+degQ1—deng)
+ ZK 1 )
(n—k+ 1)k

jEB
k—j+deg Q; —deg Qu

Tn |ak1|
LD DL b e = D Dl

jec b T

— {s- k—j _ g k—j
where A = {j : trrasq,—amsar = ¥ B =1/ ' i7aw g, e > 4 and

C={j:(k—j+degQ;—deg Qi) < 0}. The last three sums in on the right-hand
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side of this inequality tend to zero when n — oo, the last one due to Theorem
1, the sum over B since d(k — j + deg Q; — deg Q) < (k — j), and the sum over
C due to Theorem 1.

Thus, when n — oo, there exists a positive constant ¢’ > 0 such that

k—j+deg Q; —deg Qu
< K; 15
¢< 25 (i) a3
jEA
where A = {j : k_j+de;53_deng = d} and A is nonempty. If A contains

precisely one element, then the sum in the inequality (15) consists of one single
term, and we are done; there exists a positive constant ¢o such that r,, > co(n —
k 4+ 1)? for sufficiently large n. But clearly for some operators A will contain
more elements.” If this is the case, let m = minjc 4(k—j +deg Q; —deg Q) and
denote by j,, the corresponding j. Using the upper bound r,, < ¢;(n — k +1)¢
we then get the following inequality from (15):

Z r k—j+deg Q; —deg Qk
¢ < 1@(———1;——>
— _ d
= n—k+1)
< ™ "
= "\ (n—-k+1)d

r m T‘ k—j+deg Q; —deg Qr—m
K. n_ " <
+ Z ’((n—k+1)d) ((n—k+1)d> =

j€A\{im}

9Consider for example the operator T' = zD + D2 + zD3 + zD%. Then, from Lemma 3, we
get the following inequality (here k = 4 and deg Qy = 1):

3 _ 3 jt+deg Q;
Z 24-ip i _s rd 44 ™ Lo T
= n7341 (n—3)3 (n — 3)2 (n—3)
where 7, is the largest modulus of all roots of the unique and monic eigenpolynomial of T'.
For this operator d = 1 and we see that ﬁ = d for the first (j = 1) and the last
2

(4 = 3) term. Now assuming that r, < ¢1(n — 3) our inequality becomes

3

T Tn Tn

LS S Mo T2
Tn c2(n —3)2 c1(n —3) Tn
S R ) ER ey ) oy
Tn 4cq
= (8c%+2)(n73)+(n73)

where the last term tends to zero as n — co. Thus 7, > ¢o(n — 3) for some positive constant
co for sufficiently large choices on n.

33



IN

(e N kideg Qp—deg Qu—m
I\ (n—k+1)d !

o (i)
JEA\{J
K k j+deg Q;—deg Qr—m
(=i )( s

JEA\{jm}
Tn
— | K
((n —k+ l)d)

where K > 0. Thus there exists a positive constant ¢o = (¢//K)Y/™ > 0 such
that r,, > co(n—k+1)? for sufficiently large choices on n, i.e. lim,_, (71—11;711)'1 >

co, and thus lim, (71;6711)‘1 = ¢ for some positive contant ¢ such that ¢y <
¢ S C1. O
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