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Abstract

We study the existence and the number of decaying solutions for the semilinear Schrödinger
equations −ε2∆u+V (x)u = g(x, u), ε > 0 small, and −∆u+λV (x)u = g(x, u), λ > 0 large. The
potential V may change sign and g is either asymptotically linear or superlinear (but subcritical)
in u as |u| → ∞.

1 Introduction and statement of main results

In this paper we will be concerned with the existence and the number of nontrivial solutions for

the following two problems:

(1.1)

{
−ε2∆u + V (x)u = g(x, u), x ∈ R

N

u(x) → 0 as |x| → ∞

and

(1.2)

{
−∆u + λV (x)u = g(x, u), x ∈ R

N

u(x) → 0 as |x| → ∞,

respectively when ε > 0 is small and λ > 0 is large. If g(x, u) = |u|p−2u and ε2 = λ−1, then u is a

solution of (1.2) if and only if v = λ−1/(p−2)u is a solution of (1.1). Hence as far as the existence and

the number of solutions are concerned, these problems are equivalent. However, for more general

g this is no longer true and as we shall see, if g is asymptotically linear, then (1.1) and (1.2) are in

fact quite different (cf. Remark 3.6).

The first to study (1.1) by modern methods of nonlinear functional analysis were Floer and

Weinstein [11]. Using a reduction of Liapunov-Schmidt type they have shown that if N = 1,

g(x, u) = u3 and V > 0, then there exist solutions uε > 0 which concentrate at a nondegenerate

critical point of V as ε → 0. This result has been subsequently generalized by Oh [15, 16] to

N ≥ 2 and g(x, u) = |u|p−2u, 2 < p < 2N/(N − 2). Variational approach to (1.1) was initiated by

Rabinowitz in [18], and since then several authors have studied (1.1) under different assumptions

on V and g. We mention here the work by del Pino and Felmer [8], Ambrosetti, Malchiodi and
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Secchi [2], Byeon and Wang [6], Jeanjean and Tanaka [12], and Byeon and Jeanjean [5]. A more

complete up-to-date list of references may be found e.g. in [5, 12]. A problem similar to (1.2) has

been considered by Bartsch, Pankov and Wang [4], and Liu, van Heerden and Wang [14]. In these

papers the potential was of the form Vλ(x) = a0(x) + λa1(x), λ > 0 large.

In all the work mentioned above it has been assumed that V (or Vλ) is positive and bounded

away from 0 (V ≥ 0 in [6]). Also, much attention has been paid to the asymptotic shape of the

solutions as ε → 0, and in particular, to the occurrence of solutions possessing well localized peaks.

In this paper we are mostly interested in sign-changing V though in a few cases we need to have

V ≥ 0. We consider the existence and the number of nontrivial solutions to (1.1) and (1.2) but

leave open the problem of existence of solutions exhibiting sharp peaks. The only earlier work on

(1.1) and (1.2) we know of where V was allowed to change sign is that by Felmer and Torres [10]

and our recent paper [9].

Let G(x, u) :=
∫ u
0 g(x, s) ds,

G̃(x, u) :=
1

2
g(x, u)u − G(x, u)

and denote the spectrum of a densely defined operator A in L2(RN ) by σ(A). We make the following

assumptions on V and g:

(V1) V ∈ C(RN , R) and V is bounded below;

(V2) There exists b > 0 such that the set {x ∈ R
N : V (x) < b} is nonempty and has finite measure;

(g1) g ∈ C(RN × R, R), G(x, u) ≥ 0 for all (x, u) and g(x, u) = o(u) uniformly in x as u → 0;

(g2) g(x, u) = a∞(x)u+g∞(x, u), where a∞ ∈ L∞(RN ), g∞(x, u) = o(u) uniformly in x as |u| → ∞

and â∞ := inf a∞(RN ) > 0;

(g3) Either (i) 0 /∈ σ(−∆ + V − a∞), or (ii) G̃(x, u) ≥ 0 for all (x, u) and G̃(x, u) ≥ δ0 for some

δ0 > 0 and all (x, u) with |u| large enough;

(g4) γ < bmax, where γ := supu6=0, x∈
�

N g(x, u)/u and bmax := sup {b ∈ R : the measure of the set

{x ∈ R
N : V (x) < b} is finite

}
;

(g5) G(x, u)/u2 → ∞ uniformly in x as |u| → ∞;

(g6) G̃(x, u) > 0 whenever u 6= 0;

(g7) |g(x, u)|τ ≤ a1G̃(x, u)|u|τ for some a1 > 0, τ > max{1, N/2} and all (x, u) with |u| large

enough.

Clearly, (g1) implies that (1.1) and (1.2) have the trivial solution u = 0. Solutions u 6= 0 will

be called nontrivial.

We shall either require that g satisfies (g1)-(g4) (the asymptotically linear case) or (g1), (g5)-(g7)

(the superlinear case). A simple example of asymptotically linear g satisfying (g1), (g2) and (ii)

of (g3) is g(x, u) = f(x)α(|u|)u, where 0 < inf f ≤ sup f < ∞, α(0) = 0 and α is increasing and
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bounded. If (g1) and (g7) hold, then |g(x, u)|τ ≤ 1
2a1|g(x, u)||u|τ+1 for large |u|, hence g satisfies

the growth restriction

(1.3) |g(x, u)| ≤ a2(|u| + |u|p−1),

where p = 2τ/(τ − 1) ∈ (2, 2∗) (2∗ := 2N/(N − 2) if N ≥ 3, 2∗ := ∞ if N = 1 or 2). On the other

hand, if g satisfies (1.3) with p ∈ (2, 2∗) and the Ambrosetti-Rabinowitz superlinearity condition

(1.4) 0 < µG(x, u) ≤ g(x, u)u for some µ > 2 and all (x, u) with u 6= 0,

then it is easy to see that (g5) and (g6) hold, and it will be shown in Lemma 2.2 that so does (g7).

We shall also show in this lemma that (g5)-(g7) imply G̃(x, u) → ∞ as |u| → ∞. An example of g

satisfying (g1), (g5)-(g7) but not (1.4) is g(x, u) = f(x)u ln(1 + |u|), 0 < inf f ≤ sup f < ∞.

Now we are ready to state our main results.

Theorem 1.1 Suppose (V1), (V2) and (g1)-(g4) are satisfied. If V (x) < a∞(x) for some x, then

there exists ε0 > 0 such that (1.1) has at least 1 nontrivial solution whenever ε ∈ (0, ε0). Moreover,

if g is odd in u, then for each k ≥ 1 there exists εk > 0 such that (1.1) has at least k pairs of

nontrivial solutions whenever ε ∈ (0, εk).

Theorem 1.2 Suppose (V1), (V2) and (g1)-(g3) are satisfied. If V (x) < 0 for some x, then there

exists a sequence λk → ∞ such that (1.2) has a nontrivial solution for each λ = λk.

Denote the interior of V −1(0) by Ω. If Ω 6= ∅, let 0 < µ1(Ω) < µ2(Ω) ≤ . . . be the eigenvalues

of −∆ in H1
0 (Ω).

Theorem 1.3 Suppose V ≥ 0, (V1), (V2) and (g1)-(g3) are satisfied, V −1(0) has nonempty interior

Ω and µk(Ω) < â∞ for some k ≥ 1. Then there exists Λ0 > 0 such that (1.2) has at least 1 nontrivial

solution whenever λ > Λ0. Moreover, if g is odd in u, then (1.2) has at least k pairs of nontrivial

solutions whenever λ > Λ0.

Theorem 1.4 The conclusions of Theorem 1.1 remain valid if (V2) and (g4) are replaced by

(V ′
2) There exists b∞ > 0 such that the set {x ∈ R

N : V (x) − a∞(x) < b∞} is nonempty and has

finite measure;

(g′4) γ∞ < b∞,max, where γ∞ := supu6=0, x∈
�

N g∞(x, u)/u and b∞,max := sup {b∞ ∈ R : the measure

of the set {x ∈ R
N : V (x) − a∞(x) < b∞} is finite

}
.

Theorem 1.5 Suppose (V1), (V2), (g1), (g5)-(g7) are satisfied and V −1(0) has nonempty inte-

rior Ω.

(i) If G(x, u) ≥ a0|u|
δ for some a0 > 0, δ ∈ (2, 2∗) and all |u| small enough, then there exists ε0 > 0

such that (1.1) has at least 1 nontrivial solution whenever ε ∈ (0, ε0). Moreover, if g is odd in u,

then for each k ≥ 1 there exists εk > 0 such that (1.1) has at least k pairs of nontrivial solutions

whenever ε ∈ (0, εk).

(ii) There exists Λ0 > 0 such that (1.2) has at least 1 nontrivial solution whenever λ > Λ0. More-

over, if g is odd in u, then for each k ≥ 1 there exists Λk > 0 such that (1.2) has at least k pairs

of nontrivial solutions whenever λ > Λk.
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Theorem 1.6 Suppose (V1), (V2), (g1) and (g5)-(g7) are satisfied.

(i) If V (x) < 0 for some x and G(x, u) ≥ a0|u|
δ for some a0 > 0, δ ∈ (2, 2∗) and all |u| small

enough, then there exists a sequence εk → 0 such that (1.1) has a nontrivial solution for each

ε = εk.

(ii) If V (x) < 0 for some x, then there exists a sequence λk → ∞ such that (1.2) has a nontrivial

solution for each λ = λk.

The paper is organized as follows. In Section 2 we introduce a variational setting, discuss a

linear eigenvalue problem and state some results which will be needed later. Section 3 is concerned

with the asymptotically linear and Section 4 with the superlinear case. In Section 5 concentration

of solutions to (1.2) on the set V −1(0) as λ → ∞ is briefly discussed.

Notation. “⇀” denotes weak convergence. |M | is the Lebesgue measure of the set M . Bρ(x)

and Sρ(x) are respectively the ball and the sphere of radius ρ and center x, Bρ := Bρ(0) and

Sρ := Sρ(0). ‖ . ‖p is the usual norm in Lp(RN ) and (. , .)2 the usual inner product in L2(RN ).

Similarly, ‖ . ‖p,Ω is the norm in Lp(Ω) and (. , .)2,Ω the inner product in L2(Ω).

2 Variational setting and preliminaries

In addition to (1.1) and (1.2) we shall consider the problem

(2.1)

{
−∆u + V (x)u = g(x, u), x ∈ R

N

u(x) → 0 as |x| → ∞,

with V and g satisfying (V1), (V2), (g1) and either (g2)-(g4) or (g5)-(g7). Let

E := {u ∈ H1(RN ) :

∫
�

N

V +(x)u2 dx < ∞}

be equipped with the inner product and norm

〈u, v〉 :=

∫
�

N

(∇u · ∇v + V +(x)uv) dx, ‖u‖ := 〈u, u〉1/2.

We shall also need the inner product

〈u, v〉λ :=

∫
�

N

(∇u · ∇v + λV +(x)uv) dx, λ > 0.

The corresponding norm will be denoted by ‖ . ‖λ (so ‖ . ‖ ≡ ‖ . ‖1), and we set Eλ := (E, ‖ . ‖λ).

Clearly, ‖u‖ ≤ ‖u‖λ if λ ≥ 1 and it follows from (V1), (V2) and the Poincaré inequality that the

embedding E ↪→ H1(RN ) is continuous. Let

(2.2) Φ(u) =
1

2

∫
�

N

(|∇u|2 + V (x)u2) dx −

∫
�

N

G(x, u) dx.

It is well known (see e.g. [20]) that Φ ∈ C1(E, R) and Φ′(u) = 0 if and only if u ∈ E is a solution of

the equation in (2.1); moreover, u(x) → 0 as |x| → ∞ (see e.g. [7] where this is shown for a much

more general class of Schrödinger equations).
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Let

F := {u ∈ E : suppu ⊂ V −1([0,∞))}

and denote the orthogonal complement of F in E by F ⊥. If V ≥ 0, then E = F , otherwise

F⊥ 6= {0}. Let

A := −∆ + V ;

then A is formally self-adjoint in L2(RN ) and the associated bilinear form

a(u, v) :=

∫
�

N

(∇u · ∇v + V (x)uv) dx

is continuous in E. Consider the eigenvalue problem

(2.3) −∆u + V +(x)u = µV −(x)u, u ∈ F⊥.

Since suppV − is of finite measure, the quadratic form u 7→
∫

�
N V −(x)u2 dx is weakly continuous,

hence there exists a sequence of positive eigenvalues (µj) which may be characterized by

µj = inf
dimM≥j
M⊂F⊥

sup

{
‖u‖2 : u ∈ M,

∫
�

N

V −(x)u2 dx = 1

}
, j = 1, 2, . . . .

Moreover, µj → ∞ and the corresponding eigenfunctions ej , which may be chosen so that 〈ei, ej〉 =

δij , are a basis for F⊥ (see e.g. [19], Theorems 4.45, 4.46 and note that
∫

�
N V −(x)uv dx = 0 if

u ∈ F⊥, v ∈ F ). Let

Ê := span{ej : µj ≤ 1} and E+ := span{ej : µj > 1}.

Then E = Ê ⊕ E+ ⊕ F is an orthogonal decomposition, dim Ê < ∞, the quadratic form a is

negative semidefinite on Ê, positive definite on E+ ⊕ F and it is easy to see that a(u, v) = 0 if u,

v are in different subspaces of the above decomposition of E.

In a similar manner we set

(2.4) Aλ := −∆ + λV, aλ(u, v) :=

∫
�

N

(∇u · ∇v + λV (x)uv) dx,

and to the problem

−∆u + λV +(x)u = µλV −(x)u, u ∈ F⊥
λ ,

where λ > 0 is fixed and F⊥
λ is the orthogonal complement of F in Eλ, there corresponds a sequence

µj(λ) := inf
dimM≥j
M⊂F⊥

λ

sup

{
λ−1‖u‖2

λ : u ∈ M,

∫
�

N

V −(x)u2 dx = 1

}
(2.5)

= inf
dim M≥j
M∩F={0}

sup

{
λ−1‖u‖2

λ : u ∈ M,

∫
�

N

V −(x)u2 dx = 1

}
, j = 1, 2, . . .

(the equality follows immediately from the fact that
∫

�
N V −(x)u2 dx = 0 if u ∈ F ). Then, in an

obvious notation, Eλ = Êλ ⊕ E+
λ ⊕ F is an orthogonal decomposition and as before, dim Êλ < ∞,

the quadratic form aλ is negative semidefinite on Êλ, positive definite on E+
λ ⊕F and aλ(u, v) = 0

if u, v are in different subspaces of the decomposition above. Below we collect some properties of

µj(λ).
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Lemma 2.1 Suppose V − 6≡ 0. Then, for each fixed j,

(i) µj(λ) → 0 as λ → ∞ (so in particular, dim Êλ → ∞ as λ → ∞);

(ii) µj(λ) is a non-increasing continuous function of λ.

Proof (i) Let ϕi ∈ C∞
0 (RN ), 1 ≤ i ≤ j, be functions such that suppϕi ⊂ suppV −, suppϕi ∩

suppϕm = ∅ if i 6= m and let M := span{ϕ1, . . . , ϕj}. Then

µj(λ) ≤ sup
u∈M\{0}

∫
�

N |∇u|2 dx∫
�

N λV −(x)u2 dx
→ 0 as λ → ∞.

(ii) Let u ∈ M , M ∩ F = {0} and
∫

�
N V −(x)u2 dx = 1. Then

(2.6) λ−1
1 ‖u‖2

λ1
− λ−1

2 ‖u‖2
λ2

= (λ−1
1 − λ−1

2 )‖∇u‖2
2,

hence µj is non-increasing in λ. To show continuity, let λ1, λ2 ∈ (λ0, λ̃), where λ0 > 0. It suffices

to consider subspaces M for which the supremum in the second line of (2.5) is ≤ C := µj(λ0) + 1.

Then ‖∇u‖2
2 ≤ Cλ̃ and it follows from (2.6) that µj(λ2) → µj(λ1) whenever λ2 → λ1. 2

Lemma 2.2 (i) If g satisfies (1.3) and (1.4) for some a2 > 0, p ∈ (2, 2∗) and µ > 2, then (g7)

holds with τ ∈ (N/2, p/(p − 2)), τ > 1.

(ii) If (g5)-(g7) are satisfied, then G̃(x, u) → ∞ uniformly in x as |u| → ∞.

Proof (i) First we note that p/(p−2) > max{1, N/2} because p ∈ (2, 2∗). Fix τ ∈ (N/2, p/(p−2)),

τ > 1. If |u| ≥ 1, then |g(x, u)| ≤ a3|u|
p−1 for some a3 > 0. Choose r ≥ 1 so large that

1

µ
≤

1

2
−

aτ−1
3

|u|p−(p−2)τ
whenever |u| ≥ r.

Then, for such |u|,

G(x, u) ≤
1

µ
g(x, u)u ≤

(
1

2
−

aτ−1
3

|u|p−(p−2)τ

)
g(x, u)u ≤

(
1

2
−

|g(x, u)|τ−1

|u|τ−1u2

)
g(x, u)u,

and it follows that
|g(x, u)|τ

|u|τ
≤

1

2
g(x, u)u − G(x, u) = G̃(x, u).

(ii) Using (g5)-(g7), it follows that for |u| large enough,

a1G̃(x, u) ≥

(
g(x, u)

u

)τ

≥

(
2G(x, u)

u2

)τ

→ ∞

uniformly in x as |u| → ∞. 2

Recall that (um) is called a Cerami sequence for Φ if Φ(um) is bounded and (1+‖um‖)Φ′(um) →

0 as m → ∞, and Φ satisfies the Cerami condition if each such sequence has a convergent subse-

quence. A Cerami sequence with Φ(um) → c will be called a (C)c-sequence, and we shall say that

Φ satisfies the (C)c-condition if each (C)c-sequence has a convergent subsequence.

We shall make use of the following two propositions. The first one is Rabinowitz’s linking

theorem and may be found e.g. in [17, 20], and the second is a result by Bartolo, Benci and

Fortunato [3, Theorem 2.4]. In the linking theorem it is usually assumed that Φ satisfies the

stronger Palais-Smale condition; however, the Cerami condition is sufficient for the deformation

lemma, and hence for the linking theorem to hold [3].
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Proposition 2.3 Suppose Φ ∈ C1(E, R), E = E1 ⊕ E2, where dimE2 < ∞, and there exist

R > ρ > 0, κ > 0 and e0 ∈ E1 \ {0} such that inf Φ(E1 ∩ Sρ) ≥ κ and supΦ(∂Q) ≤ 0, where Q =

{u = v + te0 : v ∈ E2, t ≥ 0, ‖u‖ ≤ R}. If Φ satisfies the (C)c-condition for all c ∈ [κ, supΦ(Q)],

then Φ has a critical value in [κ, sup Φ(Q)].

Proposition 2.4 Suppose Φ ∈ C1(E, R) is even, Φ(0) = 0 and there exist closed subspaces E1, E2

such that codimE1 < ∞, inf Φ(E1 ∩ Sρ) ≥ κ for some κ, ρ > 0 and supΦ(E2) < ∞. If Φ satisfies

the (C)c-condition for all c ∈ [κ, supΦ(E2)], then Φ has at least dimE2 − codimE1 pairs of critical

points with corresponding critical values in [κ, supΦ(E2)].

3 Proofs of Theorems 1.1-1.4

First we shall be concerned with (2.1).

Lemma 3.1 Suppose that V and g satisfy (V1), (V2) and (g1)-(g4). Then the functional Φ given

by (2.2) satisfies the Cerami condition.

Proof We adapt an argument in [8], see also [12]. Since γ < bmax, we may choose b in (V2) so

that γ < b. Let R > 0 be given and let ϕR ∈ C∞(RN , [0, 1]) be such that ϕR(x) = 1 for |x| ≥ R,

ϕR(x) = 0 for |x| ≤ R/2 and |∇ϕR(x)| ≤ a0/R for some a0 > 0. If (um) is a Cerami sequence, then

Φ′(um)(ϕRum) =

∫
�

N

(|∇um|2 + V +u2
m)ϕR dx +

∫
�

N

um∇um · ∇ϕR dx(3.1)

−

∫
�

N

V −u2
mϕR dx −

∫
�

N

g(x, um)umϕR dx → 0.

We show that (um) is bounded. Assuming the contrary, ‖um‖ → ∞, vm := um/‖um‖ ⇀ v in E and

vm → v a.e. after passing to a subsequence. Since |g(x, u)| ≤ γ|u| and g(x, um(x))/um(x) → a∞(x)

if v(x) 6= 0, it is easy to see that

(3.2) −∆v + (V (x) − a∞(x))v = 0.

Below we shall denote different constants by c1, c2, . . .. It follows from (3.1) that

(3.3)

∫
�

N

(|∇vm|2 + V +v2
m)ϕR dx −

∫
�

N

g(x, um)

um
v2
mϕR dx ≤

∫
�

N

V −v2
mϕR dx +

c1

R
+ εm,

where εm → 0. Since g(x, u)/u ≤ γ < b, (1−γ/b)V +(x) ≤ V +(x)− g(x, u)/u whenever V +(x) ≥ b.

Using this and the fact that the measure |DR| → 0 as R → ∞, where

DR := {x ∈ R
N : V +(x) < b and |x| ≥ R/2},

we see from (3.3) and the inequality
∫

DR

v2
m dx ≤ c2|DR|

(p−2)/p‖vm‖2

(2 < p < 2∗) that

(3.4)
(
1 −

γ

b

) ∫

|x|≥R
(|∇vm|2 + V +v2

m) dx ≤ δ(R) + εm,
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where δ(R) → 0 as R → ∞. Since vm → v in Lp
loc(R

N ), it follows from the Sobolev embedding

theorem and (3.4) that vm → v in Lp(RN ), 2 ≤ p < 2∗. As a consequence of (3.1) (with ϕR replaced

by 1) and (3.2),

lim
m→∞

∫
�

N

(|∇(vm − v)|2 + V +(vm − v)2) dx = lim
m→∞

∫
�

N

g∞(x, um)

um
v2
m dx

+ lim
m→∞

∫
�

N

(V − + a∞)(vm − v)2 dx.

The first limit on the right-hand side is 0 by the dominated convergence theorem, and so is the

second limit because V − and a∞ are bounded. Hence vm → v in E and in particular, v 6= 0. This

is a contradiction if (i) of (g3) is satisfied. If (ii) holds, then G̃(x, u) ≥ 0 and there is β > 0 such

that G̃(x, u) ≥ δ0 whenever |u| ≥ β. Therefore

c3 ≥ Φ(um) −
1

2
Φ′(um)um =

∫
�

N

G̃(x, um) dx

≥

∫

|um|≥β
δ0 dx = δ0

∣∣{x ∈ R
N : |um(x)| ≥ β}

∣∣ ,

hence ∣∣{x ∈ R
N : |um(x)| ≥ β}

∣∣ ≤ c3

δ0
.

Since v(x) 6= 0 on a set of infinite measure (by the unique continuation property), there exist ε > 0

and ω ⊂ R
N such that |v(x)| ≥ 2ε in ω and 2c3/δ0 ≤ |ω| < ∞. By Egoroff’s theorem we can

find a set ω′ ⊂ ω of measure larger than c3/δ0 on which vm → v uniformly. So for almost all m,

|vm(x)| ≥ ε and hence |um(x)| ≥ β in ω′. Consequently,

c3

δ0
< |ω′| ≤

∣∣{x ∈ R
N : |um(x)| ≥ β}

∣∣ ≤ c3

δ0
,

a contradiction again. This completes the proof of boundedness of (um).

Passing to a subsequence, um ⇀ u in E and um → u a.e. in R
N . Moreover, u is a solution of

(2.1). Using (3.1) we obtain

∫
�

N

(|∇um|2 + V +u2
m)ϕR dx −

∫
�

N

g(x, um)

um
u2

mϕR dx ≤

∫
�

N

V −u2
mϕR dx +

c4

R
+ ε′m

(cf. (3.3)) and hence (3.4) with um replacing vm. It follows that um → u in Lp(RN ) for 2 ≤ p < 2∗

and

lim
m→∞

∫
�

N

(|∇(um − u)|2 + V +(um − u)2) dx = lim
m→∞

∫
�

N

(g(x, um)um − g(x, u)u) dx

+ lim
m→∞

∫
�

N

V −(um − u)2 dx.

The first limit on the right-hand side is 0 by the continuity of the Nemytskii operator and the

second limit is 0 as before. Hence um → u in E. 2

Remark 3.2 If (V2) and (g4) are replaced by (V ′
2) and (g′4), then Φ still satisfies the Cerami

condition. The proof above needs to be slightly modified. In (3.3) V ± should be replaced by
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(V −a∞)± and g by g∞. Then g∞(x, u)/u ≤ γ∞ < b∞ and (1−γ∞/b∞)(V −a∞)+ ≤ (V −a∞)+ −

g∞(x, u)/u whenever (V −a∞)+ ≥ b∞. A more convenient (for this proof) equivalent inner product

in E is

〈〈u, v〉〉 :=

∫
�

N

(∇u · ∇v + (V − a∞)+(x)uv) dx.

Taking these changes into account, the argument of Lemma 3.1 can be repeated.

Proposition 3.3 Suppose that (V1), (V2) and (g1)-(g4) are satisfied and W is a nontrivial finite-

dimensional subspace of E such that Ê ∩ W = {0}. If

∫
�

N

(|∇u|2 + (V (x) − a∞(x))u2) dx < 0

for all u ∈ (Ê ⊕W ) \ {0}, then (2.1) has at least 1 solution u 6= 0. Moreover, if g is odd in u, then

(2.1) has at least dimW pairs of solutions u 6= 0.

Before proving this result we show that Φ has geometric properties required in Propositions 2.3

and 2.4.

Lemma 3.4 There exist κ, ρ > 0 such that inf Φ ((E+ ⊕ F ) ∩ Sρ) ≥ κ.

Proof Let p ∈ (2, 2∗). Since the quadratic form in (2.2) is positive definite on E+⊕F and for each

ε > 0 there exists Cε such that 0 ≤ G(x, u) ≤ ε|u|2 + Cε|u|
p, the conclusion follows by a standard

argument. 2

Lemma 3.5 There exists R (depending on W ) such that Φ(u) ≤ 0 for all u ∈ (Ê ⊕ W ) \ BR.

Proof We have

Φ(u) =

∫
�

N

(|∇u|2 + (V (x) − a∞(x))u2) dx −

∫
�

N

G∞(x, u) dx,

where the quadratic form above is negative definite on the finite-dimensional space Ê ⊕ W . Since

G∞(x, u)/u2 → 0 uniformly in x as |u| → ∞, it is easy to see that
∫

�
N G∞(x, u) dx = o(‖u‖2) as

‖u‖ → ∞. Hence the conclusion. 2

Proof of Proposition 3.3 By Lemma 3.1, Φ satisfies the Cerami condition. If Ê = {0}, then

Φ has the mountain pass geometry and the argument is simpler. Therefore we assume Ê 6= {0}.

Let w0 ∈ W \ {0} and Q := {u = v + tw0 : v ∈ Ê, t ≥ 0, ‖u‖ ≤ R}. Since G ≥ 0, Φ ≤ 0 on Ê.

Hence it follows from Lemmas 3.4 and 3.5 that the hypotheses of Proposition 2.3 are satisfied (with

E1 = E+ ⊕ F , E2 = Ê and e0 = the projection of w0 on E+ ⊕ F ) which gives the first conclusion.

Suppose now g is odd in u. Then we can use Proposition 2.4 with E1 = E+⊕F and E2 = Ê⊕W .

It is clear that dimE2 − codim E1 = dimW , hence the second conclusion. 2

Remark 3.6 Let u ∈ E be a solution of (2.1). Multiplying by u and integrating we obtain

∫
�

N

(
|∇u|2 +

(
V (x) −

g(x, u)

u

)
u2

)
dx = 0.

9



It follows that if V (x) ≥ γ (cf. (g4)) for all x, then the only solution u ∈ E of (2.1) is u = 0. This

has the following consequences regarding (1.1) and (1.2). If V ≥ γ, then there are no nontrivial

solutions u ∈ E of (1.1). In particular, if g(x, u) = a∞u+ g∞(x, u), where a∞ is a positive constant

and g∞(x, u)u ≤ 0, then a∞ = γ. Hence there are no solutions u ∈ E \ {0} if V ≥ a∞ while

according to Theorem 1.1 there are such solutions if V (x) < a∞(x) somewhere, and their number

tends to infinity as ε → 0 provided g is odd in u. For (1.2) the situation is different. If V ≥ b0 for

some b0 > 0, then, when λ is large, λV (x) ≥ g(x, u)/u and there are no solutions u ∈ E \ {0}. On

the other hand, according to Theorems 1.2 and 1.3, solutions u 6= 0 do exist if V changes sign or

V −1(0) has nonempty interior. However, in the sign-changing case we have only been able to show

the existence of nontrivial solutions for a sequence λm → ∞ and not for all large λ.

Proof of Theorem 1.1 Let λ = 1/ε2 and

(3.5) Ψλ(u) :=
1

2

∫
�

N

(|∇u|2 + λV (x)u2) dx −

∫
�

N

λG(x, u) dx.

Then critical points of Ψλ are solutions of (1.1). Replacing V by λV and g by λg in Lemma 3.1 we

see that Ψλ satisfies the Cerami condition if λ > 0. In view of Proposition 3.3 it suffices to show

that for each k ≥ 1 there exist Λk and a k-dimensional subspace W of Eλ such that Êλ ∩W = {0}

and

(3.6)

∫
�

N

(|∇u|2 + λ(V (x) − a∞(x))u2) dx < 0 for all u ∈ (Êλ ⊕ W ) \ {0}, λ > Λk.

If V − ≡ 0, then Êλ = {0}. Let W = span{ϕ1, . . . , ϕk}, where ϕj ∈ C∞
0 (RN ), suppϕi ∩ suppϕj = ∅

whenever i 6= j and suppϕj ⊂ {x ∈ R
N : V (x) < a∞(x)}, j = 1, . . . , k. Since W is finite-

dimensional, it is clear that (3.6) holds for λ large enough.

Suppose V − 6≡ 0. Then Êλ 6= {0} for large λ (see Lemma 2.1). Let W be as above and in

addition,

(3.7) suppϕj ⊂ {x ∈ R
N : â∞/20 < V (x) < â∞/10}, j = 1, . . . , k.

Since W ⊂ F , Êλ ∩ W = {0}. Write u = v + w ∈ Êλ ⊕ W and let

w = ŵ + w̃, where ŵ ∈ Êλ and (v, w̃)2 = 0 for all v ∈ Êλ.

Then

(3.8) ‖u‖2
2 = ‖v + ŵ‖2

2 + ‖w̃‖2
2

and since w ∈ C∞
0 (RN ) ∩ F , we obtain using the notation (2.4) that

(Aλw, ŵ)2 = aλ(w, ŵ) = 〈w, ŵ〉λ = 0.

Hence by (3.7),

(Aλw, w̃)2 = (Aλw,w)2 = aλ(w,w) ≥
λâ∞
20

‖w‖2
2

and

‖Aλw‖2
2 =

∫
�

N

(−∆w + λV w)2 dx ≤ 2

∫
�

N

((∆w)2 + (λV w)2) dx ≤

(
b1 +

λ2â2
∞

50

)
‖w‖2

2
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for some b1 > 0. Combining these inequalities gives

λâ∞
20

‖w‖2
2 ≤ (Aλw, w̃)2 ≤ ‖Aλw‖2‖w̃‖2 ≤

(
b1 +

λ2â2
∞

50

)1/2

‖w‖2‖w̃‖2.

Therefore

(3.9) ‖w‖2 ≤
(b1 + λ2â2

∞/50)1/2

λâ∞/20
‖w̃‖2 ≤ 3‖w̃‖2

provided λ is large enough. Let b2 be a constant such that ‖∇w‖2
2 ≤ b2‖w‖2

2 for all w ∈ W .

Employing (3.7)-(3.9) and the fact that aλ(v, v) ≤ 0 we obtain

∫
�

N

(|∇u|2 + λ(V − a∞)u2) dx ≤ aλ(w,w) − λâ∞‖w̃‖2
2

≤ b2‖w‖2
2 +

λâ∞
10

‖w‖2
2 − λâ∞‖w̃‖2

2 ≤

(
9b2 −

λâ∞
10

)
‖w̃‖2

2 < 0

whenever λ is sufficiently large and w 6= 0. Hence (3.6) is satisfied for λ > Λk and w 6= 0. If v 6= 0

and w = 0, then (3.6) obviously holds. 2

Proof of Theorem 1.2 Let

(3.10) Φλ(u) :=
1

2

∫
�

N

(|∇u|2 + λV (x)u2) dx −

∫
�

N

G(x, u) dx

and choose Λ0 so that γ = Λ0bmax. Then (g4) holds (with λV replacing V ) and hence the Cerami

condition is satisfied for all λ > Λ0 according to Lemma 3.1. We need to show that for each

λ̄ > Λ0 there exists λ ≥ λ̄ such that (1.2) has a nontrivial solution. Since µj(λ) → 0 as λ → ∞,

we may find k such that µk(λ̄) > 1 and then use Lemma 2.1 in order to obtain λ ≥ λ̄ with

1 < µk(λ) < 1 + (λ‖V −‖∞)−1â∞. Let W = Rek(λ) and u ∈ Êλ ⊕ W . Since µj(λ) ≤ µk(λ) for all

j ≤ k and 〈ei(λ), ej(λ)〉λ = δij , a simple computation shows that

∫
�

N

(|∇u|2 + (λV (x) − a∞)u2) dx ≤ (λ(µk(λ) − 1)‖V −‖∞ − â∞)‖u‖2
2 < 0

whenever u 6= 0. Hence the conclusion follows from Proposition 3.3 with Ê replaced by Êλ. 2

Proof of Theorem 1.3 Let Φλ and Λ0 be as in the preceding proof and let W = span{ϕ1, . . . , ϕk},

where (ϕj) is an orthonormal set of eigenvalues corresponding to µj(Ω), j = 1, . . . , k. Since V ≥ 0,

Êλ = {0}. Hence

∫
�

N

(|∇w|2 + (λV − a∞)w2) dx =

∫
�

N

(|∇w|2 − a∞w2) dx ≤ (µk(Ω) − â∞)‖w‖2
2 < 0

for all w ∈ W \ {0} and the conclusion follows from Proposition 3.3.

Proof of Theorem 1.4 By Remark 3.2, Ψλ satisfies the Cerami condition. Since a∞ > 0, suppV −

has finite measure again and Eλ = Êλ ⊕ F as before (Eλ = F if V ≥ 0). Hence the argument of

Theorem 1.1 goes through unchanged. 2
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4 Proofs of Theorems 1.5 and 1.6

Lemma 4.1 Let (V1), (V2), (g1) and (g5)-(g7) be satisfied. Then any Cerami sequence for Φ is

bounded.

Proof Let (um) ⊂ E be a Cerami sequence. Then, for large m and some C > 0,

(4.1) C ≥ Φ(um) −
1

2
Φ′(um)um =

∫
�

N

G̃(x, um) dx.

Set

g(r) := inf
{
G̃(x, u) : x ∈ R

N , |u| ≥ r
}

.

By (g6) and Lemma 2.2, g(r) > 0 for all r > 0 and g(r) → ∞ as r → ∞. For 0 < α < β, let

Ωm(α, β) :=
{
x ∈ R

N : α ≤ |um(x)| < β
}

and

cβ
α := inf

{
G̃(x, u)/u2 : x ∈ R

N , α ≤ |u| < β
}

.

One has

G̃(x, um(x)) ≥ cβ
αum(x)2 for all x ∈ Ωm(α, β).

It follows from (4.1) that

C ≥

∫

Ωm(0,α)
G̃(x, um) dx +

∫

Ωm(α,β)
G̃(x, um) dx +

∫

Ωm(β,∞)
G̃(x, um) dx(4.2)

≥

∫

Ωm(0,α)
G̃(x, um) dx + cβ

α

∫

Ωm(α,β)
u2

m dx + g(β)|Ωm(β,∞)|.

Arguing indirectly, assume ‖um‖ → ∞. Set vm := um/‖um‖. Then ‖vm‖ = 1 and ‖vm‖s ≤ Cs for

all s ∈ [2, 2∗). Using (4.2),

(4.3) |Ωm(β,∞)| ≤
C

g(β)
→ 0 uniformly in m as β → ∞,

and, for any fixed 0 < α < β,

(4.4)

∫

Ωm(α,β)
v2
m dx =

1

‖um‖2

∫

Ωm(α,β)
u2

m dx ≤
C

cβ
α‖um‖2

→ 0 as m → ∞.

It follows from (4.3) and the Hölder inequality that for any s ∈ [2, 2∗), p ∈ (s, 2∗) and a suitable

constant c1,

(4.5)

∫

Ωm(β,∞)
|vm|s dx ≤ c1|Ωm(β,∞)|(p−s)/p → 0 uniformly in m as β → ∞.

Write u = û + u+, û ∈ Ê, u+ ∈ E+ ⊕ F , and similarly for v. Then

(4.6) ‖v+
m‖s ≤ Cs‖v

+
m‖ ≤ Cs‖vm‖ = Cs
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and

(4.7) ‖um‖−2Φ′(um)u+
m = a(v+

m, v+
m) −

∫
�

N

g(x, um)

um
vmv+

m dx → 0.

Let ε > 0. By (g1) there is aε > 0 such that |g(x, u)| ≤ ε
C2

2

|u| for all |u| ≤ aε. Consequently,

(4.8)

∫

Ωm(0,aε)

g(x, um)

um
|vm||v+

m| dx ≤

∫

Ωm(0,aε)

ε

C2
2

|vm||v+
m| dx ≤

ε

C2
2

‖vm‖2‖v
+
m‖2 ≤ ε

for all m. By (g7), (4.2), (4.5) and (4.6) with s = 2τ/(τ − 1) ∈ (2, 2∗), we can take bε so large that

∫

Ωm(bε,∞)

g(x, um)

um
|vm||v+

m| dx(4.9)

≤

(∫

Ωm(bε,∞)

∣∣∣∣
g(x, um)

um

∣∣∣∣
τ

dx

)1/τ (∫

Ωm(bε,∞)
|vm|s dx

)1/s(∫

Ωm(bε,∞)
|v+

m|s dx

)1/s

≤

(∫

Ωm(bε,∞)
a1G̃(x, um) dx

)1/τ (∫

Ωm(bε,∞)
|vm|s dx

)1/s(∫

Ωm(bε,∞)
|v+

m|s dx

)1/s

< ε

for all m. By (4.4) and (4.6) there are constants c2 and m0 such that

(4.10)

∫

Ωm(aε ,bε)

g(x, um)

um
|vm||v+

m| dx ≤ c2

∫

Ωm(aε,bε)
|vm| |v+

m| dx ≤ c2‖vm‖2,Ωm(aε,bε)‖v
+
m‖2 < ε

for all m ≥ m0. Now a combination of (4.8), (4.9) and (4.10) implies that for m ≥ m0,

∫
�

N

g(x, um)

um
vmv+

m dx < 3ε.

Since the quadratic form a is positive definite on E+ ⊕ F and ε has been chosen arbitrarily, it

follows from (4.7) that v+
m → 0 in E. Hence, passing to a subsequence, vm → v 6= 0 in E (recall

dim Ê < ∞). By (4.1), (g6), Lemma 2.2 and Fatou’s lemma,

C ≥

∫
�

N

G̃(x, um) dx ≥

∫

v 6=0
G̃(x, um) dx → ∞,

a contradiction. 2

Lemma 4.2 Suppose (V1), (V2), (1.3) are satisfied and let (um) be a Palais-Smale sequence for Φ

such that Φ(um) → c and um ⇀ u. Then, passing to a subsequence, there exists a sequence vm → u

such that

(4.11) Φ(um − vm) → c − Φ(u) and Φ′(um − vm) → 0.

This result is essentially due to Ackermann [1]. Since the setting in [1] is rather different from

ours, for the reader’s convenience we prove Lemma 4.2 (in fact in a slightly more general form) in

Appendix. It is clear that the conclusion of this lemma remains valid also for the functionals Φλ

and Ψλ defined respectively in (3.10) and (3.5).
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Lemma 4.3 Let (V1), (V2), (g1) and (g5)-(g7) be satisfied. Then for any M > 0 there is Λ =

Λ(M) > 0 such that Φλ satisfies the (C)c-condition for all c ≤ M and λ ≥ Λ, and Ψλ for all

c ≤ Mλ−α and λ ≥ Λ, where α > 2/(2∗ − 2) if N ≥ 3 and α > 0 if N = 1 or 2.

Proof First we consider Φλ. Let (um) be a (C)c-sequence with c ≤ M . By Lemma 4.1, (um)

is bounded in Eλ, hence passing to a subsequence we may assume that um ⇀ u and Φλ satisfies

(4.11). Let wm := um − vm. Since V (x) < b on a set of finite measure and wm ⇀ 0,

(4.12) ‖wm‖2
2 =

∫

V (x)≥b
w2

m dx +

∫

V (x)<b
w2

m dx ≤
1

λb
‖wm‖2

λ + o(1);

moreover, if 2 < s < p < 2∗, then by (4.12) and the Hölder and Sobolev inequalities,

(4.13) ‖wm‖s
s ≤ ‖wm‖

2(p−s)/(p−2)
2 ‖wm‖p(s−2)/(p−2)

p ≤ d1(λb)−(p−s)/(p−2)‖wm‖s
λ + o(1),

where the constant d1 is independent of wm.

It is clear that given ε > 0, there is δ > 0 such that |g(x, u)| ≤ ε|u| for all x ∈ R
N and |u| ≤ δ,

and (g7) is satisfied for |u| ≥ δ (with the same τ but possibly larger a1). It follows from (4.12) that

(4.14)

∫

|wm|≤δ
g(x,wm)wm dx ≤ ε

∫

|wm|≤δ
w2

m dx ≤
ε

λb
‖wm‖2

λ + o(1).

By (4.11),

(4.15) Φλ(wm) −
1

2
Φ′

λ(wm)wm =

∫
�

N

G̃(x,wm) dx → c − Φλ(u).

Using (g7), (4.13) with s = 2τ/(τ − 1) and (4.15), we obtain (cf. (4.9))

∫

|wm|>δ
g(x,wm)wm dx ≤

(∫

|wm|>δ
a1G̃(x,wm) dx

)1/τ

‖wm‖2
s(4.16)

≤ a
1/τ
1 (c − Φλ(u))1/τ ‖wm‖2

s + o(1) ≤ d2M
1/τ (λb)−θ‖wm‖2

λ + o(1),

where θ = 2(p−s)
s(p−2) > 0. Now by (4.14), (4.16), and since Φ′

λ(wm)wm → 0 and wm → 0 in L2({x ∈

R
N : V (x) < 0}),

o(1) = ‖wm‖2
λ −

∫
�

N

g(x,wm)wm dx ≥

(
1 −

ε

λb
−

d2M
1/τ

(λb)θ

)
‖wm‖2

λ + o(1).

Letting Λ = Λ(M) be so large that the term in the brackets above is positive when λ ≥ Λ, we get

wm → 0 in Eλ. Since wm = um − vm and vm → u, it follows that also um → u.

For Ψλ we still have (4.11) and (4.14) but since g has been replaced by λg, the integrand in

(4.15) is λG̃ and (4.16) becomes

∫

|wm|>δ
g(x,wm)wm dx ≤ d2(Mλ−α)1/τ λ−1/τ (λb)−θ‖wm‖2

λ + o(1).
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Hence

o(1) = ‖wm‖2
λ −

∫
�

N

λg(x,wm)wm dx + o(1)(4.17)

≥

(
1 −

ε

b
−

d2λ
1−1/τ (Mλ−α)1/τ

(λb)θ

)
‖wm‖2

λ + o(1) =
(
1 −

ε

b
− d3λ

β
)
‖wm‖2

λ + o(1),

where β = 2−α(p−2)
τ(p−2) . If N ≥ 3, then α > 2/(2∗ − 2); therefore p ∈ (s, 2∗) may be chosen so that

α > 2/(p− 2) and hence β < 0. If N = 1 or 2 and p > s is sufficiently large, we have α > 2/(p− 2)

and β < 0 again. Consequently, (4.17) will be satisfied for all λ large provided ε < b, and it follows

that wm → 0 and um → u. 2

Proof of Theorem 1.5 Let W = span{ϕ1, . . . , ϕk}, where ϕj ∈ C∞
0 (Ω) have disjoint supports.

Then W ⊂ F . By Lemma 3.4, Φλ((E+
λ ⊕ F ) ∩ Sρ) ≥ κ and Ψλ((E+

λ ⊕ F ) ∩ Sρ) ≥ κ (ρ and κ

may depend on λ). We consider Φλ first and then point out the differences for Ψλ. According

to Propositions 2.3, 2.4, Lemma 4.3 and since G ≥ 0, it suffices to show that supΦλ(Êλ ⊕ W ) is

bounded above by a constant independent of λ and there exists R > 0 (possibly depending on λ)

such that Φλ(u) ≤ 0 whenever u ∈ Êλ ⊕ W and ‖u‖λ ≥ R. By (g5), for each η > 0 there is rη > 0

such that G(x, u) ≥ 1
2ηu2 if |u| ≥ rη. Let u = v + w ∈ Êλ ⊕ W . Then

Φλ(u) ≤
1

2
aλ(u, u) −

∫

Ω
G(x, u) dx ≤

1

2
aλ(w,w) −

1

2
η‖u‖2

2,Ω +

∫

Ω

(
1

2
ηu2 − G(x, u)

)
dx(4.18)

=
1

2
‖∇w‖2

2 −
1

2
η‖u‖2

2,Ω +

∫

Ω

(
1

2
ηu2 − G(x, u)

)
dx ≤

1

2
‖∇w‖2

2 −
1

2
η‖u‖2

2,Ω + Cη,

where Cη depends on η but not λ. Furthermore, since w ∈ C∞
0 (Ω) and aλ(v, w) = 0,

‖∇w‖2
2 = aλ(w, u) =

∫

Ω
(−∆w)u dx ≤ ‖∆w‖2‖u‖2,Ω ≤ b0‖∇w‖2‖u‖2,Ω ≤

b2
0

2η
‖∇w‖2

2 +
η

2
‖u‖2

2,Ω

(b0 is a constant depending on W ). Choosing η ≥ b2
0, we obtain ‖∇w‖2

2 ≤ η‖u‖2
2,Ω and it follows

from (4.18) that Φλ(u) ≤ Cη. That Φλ(u) ≤ 0 for ‖u‖λ large enough is an easy consequence of (g5)

and the finite-dimensionality of Êλ ⊕ W .

Now we turn to Ψλ. We still have (4.18) with λG replacing G, hence Ψλ(u) ≤ Cη,λ, where Cη,λ

is an upper bound for
∫
Ω

(
1
2ηu2 − λG(x, u)

)
dx. So we need to show that Cη,λ ≤ Mλ−α (α is as in

Lemma 4.3). Since G ≥ 0,

(4.19)

∫

Ω∩{|u|≤λ−α/2}

(
1

2
ηu2 − λG(x, u)

)
dx ≤ c1λ

−α

for some constant c1 (η ≥ b2
0 fixed). Moreover, (g6) and the condition on G for u close to 0 imply

G(x, u) ≥ c2|u|
δ whenever |u| ≤ 1 (c2 > 0). Hence if λ−α/2 ≤ |u| ≤ 1, then

1

2
ηu2 − λG(x, u) ≤

1

2
ηu2 − λc2|u|

δ ≤ u2

(
1

2
η − c2λ

1−α(δ−2)/2

)
.

Since δ < 2∗, we may choose α > 2/(2∗ − 2) so that 1− α(δ − 2)/2 > 0. Hence the right-hand side

above is ≤ 0 for large λ. Obviously, 1
2ηu2 −λG(x, u) ≤ 0 if |u| ≥ 1 and λ is large enough. It follows

that Ψλ(u) ≤ c1λ
−α, where c1 is as in (4.19). 2
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Proof of Theorem 1.6 We combine the arguments of Theorems 1.2 and 1.5. Given λ̄ > 0 there

exists λ ≥ λ̄ such that 1 < µk(λ) < 1 + 1/λ for some k. Let W = Rek(λ), u = v + w ∈ Êλ ⊕ W

and recall
∫

�
N V −u2 dx =

∫
�

N V −v2 dx +
∫

�
N V −w2 dx by the orthogonality of Êλ and W . Hence

(cf. (4.18))

Φλ(u) ≤
1

2
aλ(w,w) −

∫

supp V −

G(x, u) dx =
1

2
λ(µk(λ) − 1)

∫
�

N

V −w2 dx −
1

2
η‖u‖2

2,supp V −

+

∫

supp V −

(
1

2
ηu2 − G(x, u)

)
dx ≤

1

2

∫
�

N

V −w2 dx −
η

2‖V −‖∞

∫
�

N

V −u2 dx + Cη

≤
1

2

∫
�

N

V −w2 dx −
η

2‖V −‖∞

∫
�

N

V −w2 dx + Cη,

where Cη is independent of λ. Choosing η ≥ 1/‖V −‖∞, we obtain Φλ(u) ≤ Cη. If λ̄ is large enough,

then Φλ satisfies (C)c for all c ≤ Cη. As in the proof of Theorem 1.5, Φλ ≤ 0 outside a large ball.

Hence Φλ has a critical point u 6= 0 according to Proposition 2.3.

For Ψλ we show as in the preceding proof that Cη,λ ≤ c1λ
−α whenever λ ≥ λ̄ and λ̄ is large

enough. 2

5 Remarks on concentration of solutions

In this section we consider (1.2) with λ = λm → ∞. As before, we denote the interior of V −1(0)

by Ω (we do not exclude the case Ω = ∅).

Theorem 5.1 Suppose (V1), (V2) and (1.3) with p ∈ (2, 2∗) are satisfied, and let um ∈ E be a

solution of (1.2) with λ = λm. If λm → ∞ and ‖um‖λm ≤ C for some C > 0 and all m, then,

passing to a subsequence, um → ū in Lq(RN ) for all q ∈ (2, 2∗), ū is a weak solution of the equation

−∆u = g(x, u), x ∈ Ω

and ū = 0 a.e. in R
N \ V −1(0). If in addition V ≥ 0 and (g1) is satisfied, then um → ū in E.

Note that if Ω = ∅, then the conclusion of the theorem is that um → 0 in Lq(RN ) (and in

E provided V ≥ 0). Note also that if V −1(0) = Ω̄ and ∂Ω is locally Lipschitz continuous, then

ū ∈ H1
0 (Ω) (cf. [4]).

Proof We modify an argument in [4]. Since ‖um‖ ≤ ‖um‖λm ≤ C, um ⇀ ū in E and um → ū

in Lr
loc(R

N ) for 2 ≤ r < 2∗ after passing to a subsequence. Since Φ′
λm

(um)ϕ = 0 and (1.3) holds,

it follows easily that
∫

�
N V (x)umϕdx → 0 and hence

∫
�

N V (x)ūϕ dx = 0 for all ϕ ∈ C∞
0 (RN ).

Therefore ū = 0 a.e. in R
N \ V −1(0) and −∆ū = g(x, ū) in Ω.

Next we show that um → ū in Lq(RN ). Assuming the contrary, it follows from P.L. Lions’

vanishing lemma [13, Lemma I.1], [20, Lemma 1.21] that

∫

Bρ(xm)
(um − ū)2 dx ≥ γ
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for some (xm) ⊂ R
N , ρ, γ > 0 and almost all m. Moreover, |xm| → ∞ (for otherwise the left-hand

side above tends to 0 as m → ∞). Hence
∣∣Bρ(xm) ∩ {x ∈ R

N : V (x) < b}
∣∣→ 0 and

∫
Bρ(xm) ū2 dx →

0. Consequently,

‖um‖2
λm

≥ λmb

∫

Bρ(xm)∩{V ≥b}
u2

m dx = λmb

(∫

Bρ(xm)
(um − ū)2 dx + o(1)

)
→ ∞,

a contradiction.

Suppose V ≥ 0 and (g1) holds. Since Φ′
λm

(um)um = Φ′
λm

(um)ū = 0,

(5.1) ‖um‖2 ≤ ‖um‖2
λm

=

∫
�

N

g(x, um)um dx

and

(5.2) 〈um, ū〉λm =

∫
�

N

g(x, um)ū dx.

Letting m → ∞ in (5.2) and recalling that ū(x) = 0 if V (x) > 0, we obtain

(5.3) ‖ū‖2 =

∫
�

N

g(x, ū)ū dx.

We claim that

(5.4)

∫
�

N

g(x, um)um dx →

∫
�

N

g(x, ū)ū dx

(which is not obvious because we do not know whether um → ū in L2(RN )). Assuming this, it

follows from (5.1) and (5.3) that lim supm→∞ ‖um‖ ≤ ‖ū‖2; hence um → ū in E.

It remains to prove (5.4). We have

∫
�

N

|g(x, um)um − g(x, ū)ū| dx ≤

∫
�

N

|g(x, um)| |um − ū| dx +

∫
�

N

|g(x, um) − g(x, ū)| |ū| dx,

and since um → ū in Lr
loc(R

N ), 2 ≤ r < 2∗, it is easy to see that the second integral on the right-hand

side above tends to 0. Since for each ε > 0 there is Cε > 0 such that |g(x, u)| ≤ ε|u| + Cε|u|
p−1,

∫
�

N

|g(x, um)| |um − ū| dx ≤ ε

∫
�

N

|um| |um − ū| dx + Cε

∫
�

N

|um|p−1 |um − ū| dx,

and the conclusion follows from the Hölder inequality because um → ū in Lp(RN ), (um) is bounded

in L2(RN ) and ε has been chosen arbitrarily. 2

Although the result above is not very satisfactory (it says nothing about the strong convergence

in E unless V ≥ 0 and gives no conditions for ū to be different from 0), it has some interesting

consequences which we would like to point out. Under the assumptions of Theorem 5.1 (with

possibly sign-changing V ) we have Φ′
λm

(um)um = 0, hence if (g1) holds,

|aλm(um, um)| ≤

∫
�

N

|g(x, um)um| dx ≤ ε‖um‖2
2 + Cε‖um‖p

p.
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If ū = 0, then um → 0 in Lp(RN ) and therefore aλm(um, um) → 0 (recall ‖um‖2 is bounded and ε

arbitrary). Now it follows easily that Φλm(um) → 0. Hence if Φλm(um) is bounded away from 0,

we either have ‖um‖λm unbounded or ū 6= 0. Moreover, the second possibility cannot occur when

Ω = ∅.

Suppose now V ≥ 0 and g(x, u) = |u|p−2u, 2 < p < 2∗. Then

Φλm(um) =
1

2
‖um‖2

λm
−

1

p
‖um‖p

p

and

Φλm(um) = Φλm(um) −
1

2
Φ′

λm
(um)um =

(
1

2
−

1

p

)
‖um‖p

p.

Hence if Φλm(um) is bounded, so is ‖um‖p, and therefore also ‖um‖λm . Passing to a subsequence,

um → ū in E; moreover, ū 6= 0 whenever Φλm(um) is bounded away from 0. In particular, Ω 6= ∅

in this case. It is easy to see from the proof of Theorem 1.5 that for a fixed k, supΦλ(W ) ≤ C

and inf Φλ(Sρ) ≥ κ, where C, κ, ρ are positive constants independent of λ. So if (um) is a sequence

of solutions of (1.2) (with λ = λm → ∞) obtained with the aid of Theorem 1.5, then, up to a

subsequence, um → ū 6= 0 in E and −∆ū = |ū|p−2ū in Ω (this conclusion may also be found in [9]).

On the other hand, if Ω = ∅, there can be no sequence of solutions (um) with Φλm(um) ∈ [κ,C]

while in view of Theorem 1.6 such sequence necessarily exists provided V changes sign. This does

not exclude the possibility of having nontrivial solutions to (1.2) also when V ≥ 0, regardless of

whether Ω is empty or not. In fact it has been shown in [9] that for such V and each λ > 0 (1.2) has

a solution uλ 6= 0 such that Φλ(uλ) → ∞. The proof uses a compactness argument which heavily

relies on the fact that g(x, u) = |u|p−2u and it is not clear whether it can be made applicable to

the larger class of nonlinearities considered in this paper.

A Appendix

In this appendix we prove a convergence result for the Nemytskii operator. As an easy consequence

of it we obtain Lemma 4.2 in a somewhat more general form (see Corollary A.3 and Remark A.4

below).

Proposition A.1 Let Ω be an open set in R
N and f ∈ C(Ω×R, R) a function such that |f(x, u)| ≤

a|u|s for some a > 0 and s ∈ [1,∞). Suppose s ≤ p < ∞, p > 1, (um) is a bounded sequence in

Lp(Ω), um → u a.e. in Ω and in Lp(Ω ∩ BR) for all R > 0. Then, passing to a subsequence, there

exists a sequence vm → u in Lp(Ω) such that

(A.1) f(x, um) − f(x, um − vm) − f(x, u) → 0 in Lp/s(Ω).

Under somewhat more restrictive assumptions on f it can be shown that vm in (A.1) can be

replaced by u. We do not know whether this can be done under the hypotheses of Proposition A.1.

Proof We adapt an argument in [1]. Since (um) is bounded in Lp(Ω) and um → u a.e., um ⇀ u

in Lp(Ω) [19, Theorem 10.36]. We claim that there is a subsequence (umj ) of (um) and a sequence

Rmj → ∞ such that for each ε > 0, each R ≥ R(ε) and j ≥ j(ε),

(A.2)

∫

Ω∩BRmj
\BR

|umj |
p dx ≤ ε.
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Since um → u in Lp(Ω ∩ BR), it follows that for each fixed j ≥ 1 and almost all m,

(A.3)

∫

Ω∩Bj

(|um|p − |u|p) dx ≤
1

j
.

Hence there exists mj ≥ j such that the above inequality holds, and we may assume mj < mj+1

for all j. Choose R so that

(A.4)

∫

Ω\BR

|u|p dx ≤
ε

2
.

Then, writing Rmj = j,
∫

Ω∩BRmj
\BR

|umj |
p dx =

∫

Ω∩BRmj

(|umj |
p − |u|p) dx

+

∫

Ω∩BRmj
\BR

|u|p dx +

∫

Ω∩BR

(|u|p − (|umj |
p) dx

whenever Rmj > R, and (A.2) is a consequence of (A.3), (A.4) and the fact that the last term on

the right-hand side above tends to 0 as j → ∞.

Let χ ∈ C∞(R, [0, 1]) be a function such that χ(t) = 1 for t ≤ 1, χ(t) = 0 for t ≥ 2 and

set vmj (x) := χ(2|x|/Rmj )u(x). Clearly, vmj → u in Lp(Ω). By the continuity of the Nemytskii

operator,

(A.5) f(x, umj ) − f(x, umj − vmj ) − f(x, u) → 0 in Lp/s(Ω ∩ BR).

Furthermore,

‖f(x, umj ) − f(x, umj − vmj ) − f(x, u)‖Lp/s(Ω\BR)

≤ ‖f(x, umj ) − f(x, umj − vmj ) − f(x, vmj )‖Lp/s(Ω\BR) + ‖f(x, vmj ) − f(x, u)‖Lp/s(Ω\BR).

Since vmj → u in Lp(Ω), the second term on the right-hand side above tends to 0 by the continuity

of the Nemytskii operator. Since |vmj | ≤ |u| and suppvmj ⊂ B̄Rmj
,

|f(x, umj ) − f(x, umj − vmj ) − f(x, vmj )|
p/s ≤ ap/s(|umj |

s + |umj − vmj |
s + |vmj |

s)p/s

≤ b(|umj |
p + |u|p)

for some constant b > 0 and the left-hand side above is 0 for x ∈ Ω \ BRmj
. Hence the conclusion

follows from (A.2), (A.4) and (A.5). 2

Recall that Lp(Ω) + Lq(Ω) is the space of functions u such that u = u1 + u2, u1 ∈ Lp(Ω),

u2 ∈ Lq(Ω), normed by ‖u‖p∨q = inf{‖u1‖p + ‖u2‖q}, where the infimum is taken with respect to

all decompositions u = u1 + u2 as above.

Theorem A.2 Let Ω be an open set in R
N and f ∈ C(Ω × R, R) a function such that |f(x, u)| ≤

a(|u|r + |u|s) for some 1 ≤ r < s < ∞. Suppose s ≤ p < ∞, r ≤ q < ∞, q > 1, (um) is a bounded

sequence in Lp(Ω) ∩ Lq(Ω), um → u a.e. in Ω and in Lp(Ω ∩ BR) ∩ Lq(Ω ∩ BR) for all R > 0.

Then, passing to a subsequence, there exists a sequence vm → u in Lp(Ω) ∩ Lq(Ω) such that

f(x, um) − f(x, um − vm) − f(x, u) → 0 in Lq/r(Ω) + Lp/s(Ω).
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Proof We follow an argument in [20, Theorem A.4]. Let η ∈ C(R, [0, 1]) be such that η(t) = 1 for

|t| ≤ 1 and η(t) = 0 for |t| ≥ 2. Set

f1(x, u) := η(|u|)f(x, u), f2(x, u) := (1 − η(|u|))f(x, u).

Then |f1(x, u)| ≤ a1|u|
r and |f2(x, u)| ≤ a2|u|

s for appropriate constants a1, a2, so by Theorem A.1,

f1(x, um)− f1(x, um − vm)− f1(x, u) → 0 in Lq/r(Ω) and f2(x, um)− f2(x, um − vm)− f2(x, u) → 0

in Lp/s(Ω) after passing to a subsequence. Now the conclusion follows if we note that the same

subsequence (umj ) can be chosen both for f1 and f2. 2

Let E be the Sobolev space defined in Section 2, suppose L : E → E is a bounded linear

selfadjoint operator and g ∈ C(RN × R, R) satisfies

|g(x, u)| ≤ a(|u| + |u|p−1),

where 2 < p < 2∗. Set Φ(u) := 1
2 〈Lu, u〉 −

∫
�

N G(x, u) dx.

Corollary A.3 Let um ⇀ u in E. Then, passing to a subsequence, there exists a sequence vm → u

in E such that

Φ(um) = Φ(um − vm) + Φ(u) + o(1)

and

Φ′(um) = Φ′(um − vm) + Φ′(u) + o(1)

as m → ∞. In particular, if (um) is a (PS)c-sequence, then Φ(um − vm) → c −Φ(u) and Φ′(um −

vm) → 0 after passing to a subsequence.

Proof Passing to a subsequence, um → u a.e. in R
N , um ⇀ u in Lt(RN ) and um → u in Lt

loc(R
N ),

2 ≤ t < 2∗. Let f(x, u) = G(x, u) in Theorem A.2. Then r = 2, s = p and if we set q = 2, we

obtain ∫
�

N

G(x, um) dx =

∫
�

N

G(x, um − vm) dx +

∫
�

N

G(x, u) dx + o(1).

Next we let f(x, u) = g(x, u). Then r = 1, s = p − 1 and we may set q = 2 again. By Theorem

A.2, g(x, um) − g(x, um − vm) − g(x, u) → 0 in L2(Ω) + Lp/(p−1)(Ω), and therefore

sup
‖ϕ‖≤1

∫
�

N

g(x, um)ϕdx = sup
‖ϕ‖≤1

∫
�

N

(g(x, um − vm) + g(x, u)) ϕdx + o(1).

The sequence (vm) constructed in the proof of Proposition A.1 has the property that vm → u in

E; hence Lum = L(um − vm) + Lu + o(1) and the conclusion follows. 2

Remark A.4 (i) The conclusions of Corollary A.3 remain valid if E ↪→ H 1(Ω), where Ω ⊂ R
N

is a domain with regular boundary (in the sense that the Sobolev embeddings H 1(Ω) ↪→ Lt(Ω),

2 ≤ t < 2∗, are continuous) and vm → u in E, where (vm) is the sequence appearing in the proof

of Proposition A.1.

(ii) Since the embedding H1/2(R, R2N ) ↪→ Lt(R, R2N ) is continuous if 2 ≤ t < ∞, the conclusions

of Corollary A.3 remain valid for E = H1/2(R, R2N ). This is useful when looking for homoclinic

solutions of the Hamiltonian systems ż = JHz(z, t) in R
2N .
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[20] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
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