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HILBERT POLYNOMIAL FOR A SYSTEM OF LINEAR
PARTIAL DIFFERENTIAL EQUATIONS

A. G. KHOVANSKII, S. P. CHULKOV

Abstract. Systems of linear partial differential equations with
analytic coefficients are considered. Suppose the coefficients of a
system are defined in a domain U ∈ Cn. We study the spaces of
germs of formal and analytic solutions of the system at a point u

of the domain U . We discuss the following questions. 1) How to
pose “proper” initial conditions for formal and analytic solutions
for the system. 2) How depend dimensions of the spaces of k-jets
of germs of formal and analytic solutions of the system at a point
u in the domain U on the positive integer k and the point u.

1. Introduction

Consider a system of linear partial differential equations with ana-
lytic coefficients on a one unknown function z in a domain U of the
space C

n. We study the spaces of germs of formal and analytic so-
lutions of the system at a point u of the domain U . We discuss the
following questions:

1) How to pose “proper” initial conditions for formal and analytic
solutions for the system. More precise, how to fix some set of deriva-
tives of unknown function z at the point u such that for any values
of fixed derivatives there exists unique formal (analytic) solution with
such initial conditions.

2) How depend dimensions of the spaces of k-jets of germs of formal
and analytic solutions of the system at a point u in on the positive
integer k and the point u.

There are obtained the following results. We show that exists a
”bad” hypersurface Σ such that in the complement U \ Σ the spaces
of germs at a point u of formal and analytic solutions of the system do
not depend on point u in some sense. More precise, there exists a set
of partial derivatives (which set does not depend on u) such that for
any values of fixed derivatives there exits unique formal solution with
such initial conditions (see Theorem 4.1). A formal solution will be
analytic if and only if partial sum of Taylor series consisted only fixed
derivatives converges (see Theorem 5.3).

For any point u in U \Σ and any positive integer k denote by Au(k)
and Fu(k) the spaces of k-jets at the point u of germs of formal and
analytic solutions of the system respectively. We prove that for any

1



nonnegative integer k dimensions of the spaces Au(k) Fu(k) are coin-
cide and do not depend on the point u (see Corollary 5.4). More over,
the function H(k) = dimAu(k) = dimFu(k) is a polynomial for suffi-
ciently large positive integers k (see Corollary 4.3). The function H has
the following geometrical interpretation. To the system corresponds a
family of algebraic varieties analytically parameterized by a point u of
the domain U . For the values of parameters u from the complement
U \Σ to the hypersurface Σ the Hilbert functions of these varieties are
coincide to each other and the function H (see Paragraph 6.4).

Studied problems are classical and described results are more or less
known. The most important works in this area are Riquier’s book [1]
and V.P. Palamodov’s paper [2]. Riquier [1] considered the problem
how to pose “proper” initial condition for formal and analytic solu-
tions of a system of partial differential equations. In his distinguished
paper, Riquier for the first time introduced a well-ordering on the set
of partial derivatives of a function of several variables and use it to
make substantial progress in the problem. In the case of linear par-
tial differential equations with constant coefficients, Riquier’s method
essentially contains what has later been called Gröbner bases and has
made a breakthrough in computational aspects of commutative alge-
bra. However, owing to the great generality of the problem stated,
Riquier’s work does not give definitive answers.

In this paper we apply Riquier’s method (now it is called differential
Gröbner bases) with some modifications to systems of linear partial
differential equations only. For this situation it gives quite good results.
We especially interested in corollaries of the existence and uniqueness
theorem such as existence of Hilbert polynomial of the system.

The most comprehensive existence and uniqueness theorems for for-
mal and analytic solutions for the case a system of linear partial differ-
ential equations were proved by Palamodov [2]. Palamodov proves the
theorems of existence and uniqueness for formal and analytic solutions
which are strictly stronger than Riquier’s method gives: Palamodov
proves that “bad” set is smaller than “bad” hypersurface Σ which one
can get by Requiter’s method. Palamodov’s paper [2] is complicated
and based on a special technique developed by him for linear differential
operators.

Note that Palamodov’s results concerning the existence and unique-
ness for formal and analytic solutions of a system of linear differential
equations one can prove on the following way. First, one can prove
the theorem of existence and uniqueness for formal solution of the sys-
tem. The proof is purely algebraic and not complicated. Second, for
studying analytic solutions one use the convergence theorem from [3].

2. The semigroup Zn�
0

Consider the semigroup Zn�
0 = {α = (α1, . . . , αn)|αi ∈ Z, αi > 0}.
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The set On(a) = {α ∈ Zn�
0|∃β ∈ Zn�

0 such that α = a + β} will be
called the octant with vertex a in Zn�

0.
An ideal in the semigroup Zn�

0 (Zn�
0-ideal) is a subset of the semi-

group satisfying the following condition if a point a lies in the ideal,
then the octant On(a) is a subset of the ideal. It is clear that any
octant is an ideal of the semigroup Zn�

0.
The following well-known statements (see, for example, [4]) fully

describes structure of ideals of the semigroupZn�
0:

Proposition 2.1. (Noetherianness of the semigroup Zn�
0) Any Zn�

0-
ideal can be written as a union of a finite number of octant (in other
words, if we take a union of infinite number of octant we can ever take
several octant such that the union of taken octant contains all others).

The semigroup Zn�
0 contains 2n special subsemigroups: for each sub-

set I of the set {1, . . . , n} is defined the semigroup Z �
0(I) consisting

of the points a = (a1, . . . , an) such that ai = 0, i ∈ I and ai ≥ 0, i /∈ I.
Note that, Z �

0({1, . . . , n}) = 0 and Z �
0(∅) = Zn�

0.
A subset of the semigroup Z

n�
0 is called moved special subsemigroup,

if it has a form a + Z �
0(I) for a ∈ Zn�

0.

Proposition 2.2. The complement Zn�
0 \ I to an ideal I of the semi-

group Zn�
0 can be decomposed in a disjoint union of a finite number of

moved special subsemigroups.

The nonnegative integer |α| =
∑
αi will be called the modulus of

an element α of the semigroup Zn�
0.

We take linear ordering ≺ on the semigroup Z
n�

0 such that
(a) α ≺ β for any elements α and β such that |α| < |β|;
(b) the ordering ≺ is compatible with addition on the semigroup

Z
n�

0: α + γ ≺ β + γ for any elements α, β and γ such that α ≺ β.
It is obviously follows from condition (a) that (Zn�

0,≺) is a well-
ordered set.

3. Gröbner map and bases of a differential ideal

In this section we define Gröbner map for the ring of differentials
operators and by means of it we study ideals of this ring.

Consider an arbitrary domain U in the space Cn = {x1, . . . , xn|xi ∈
C}. Let B be a subring of the ring O(U) of holomorphic functions
in the domain U such that B contains 1 and is closed with respect to
differentiation.

Denote by DifB the ring of linear differential operators with coef-
ficient in B. If d ∈ DifB then d =

∑
α∈supp d

bα∂α, where bα(6≡ 0) ∈ B

and supp d is a finite subset of the semigroup Z
n�

0; here and in what

follows ∂α denotes the operator ∂|α|

∂x
α1

1
...∂x

αn
n

. The finite subset supp d of
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the semigroup is called support of the operator d. Note that the ring
DifB has the evident natural structure of a left B-module.

Definition 1. The following map is called Gröbner map

Grb : DifB \ {0} → Z
n�

0

Grb(d) = maxα∈supp d α.

Maximal element in the right-hand side of the last expression is taken
with respect to linear ordering ≺.

The following simple lemma describes important property of the
Gröbner map.

Lemma 3.1. For any two nonzero elements D and d of the ring DifB

holds

(1) Grb(D ◦ d) = Grb(d ◦D) = Grb(D) +Grb(d).

More over, denote by Dα and dβ the coefficients by the leading deriva-
tives of operators D and d respectively. Then the coefficients by the
leading derivatives of operators D ◦ d and d ◦D are coincide and equal
to Dα · dβ.

Proof. Assume
∑

|α|=N(D)Dα∂α and
∑

|α|=N(d) dα∂α, where Dα, dα ∈
A, are highest homogeneous parts of operator D and d respectively. It
is clear that highest homogeneous parts of operators D ◦ d and d ◦D
are coincide and equal to

(2)
∑

|α|=N(D)+N(d)

∑

{|β|=N(D),|γ|=N(d),β+γ=α}

Dβdγ∂α.

But by the condition () on the order relation ≺ (see Sec.2)) the im-
age by the Gröbner map of an operator and the image of its highest
homogeneous part are the same. This completes the proof. �

Corollary 3.1. The image by Gröbner map of an ideal of the ring
DifB is an ideal of the semigroup Z

n�
0.

Let I be a left ideal of the ring DifB. By Corollary 3.1 the image
Grb(I) is an ideal of the semigroup Zn�

0, hence by Proposition 2.1, it
can be written as a union of finite number of octants. Assume

(3) Grb(I) = ∪N
i=1O(γi).

Consider some elements l1, . . . , lk of the ideal I such that Grb(li) = γi.
For each index i (1 6 i 6 N) denote by aγi

∈ B the coefficient by the
derivative ∂γi

in the operator li.
Let M be an multiplicatively closed subset of B, generated by

the functions aγ1
, . . . , aγN

. I.e. M is the minimal closed with re-
spect to multiplication subset of the ring B containing the elements
1, aγ1

, . . . , aγN
. Consider the ring of fractions M−1B. It consists of all
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formal fractions b
m

, where b ∈ B and m ∈ M, and b1
m1

= b2
m2

if and only
if equality holds b1m2 = b2m1 in the ring B.

It is clear that there exists the natural monomorphism of the ring of
fractions M−1B to the ring O(U \M) of holomorphic functions in the
domain U \M , M = {aγ1

· · · · · aγN
= 0}. Moreover, the ring M−1B

is closed with respect to differentiation.
Consider the ring DifM−1B. Let us consider elements of the ring

DifB as elements of the ring DifM−1B by means of natural monomor-
phism

π : DifB 7→ DifM−1B(4)
∑

bα∂α 7→
∑ bα

1
∂α.

Proposition 3.3. The elements l1, . . . , lN generates the ideal I ·
DifM−1B of the ring DifM−1B.

By I · DifM−1B we denote the minimal left ideal of the DifM−1B

containing the image by the monomorphism (4) of the ideal I.

Proof. For the ringsDifM−1B andDifB the Gröbner mapsGrb are de-
fined. Moreover, for any element d of the ring DifB holds Grb(π(d)) =
Grb(d). Hence, the following equality holds Grb(I · DifM−1B) =
Grb(I).

Consider arbitrary nonzero element u of the ideal I ·DifM−1B. Sup-
pose u = fu∂Grb(u)+{lower terms}. There exists a number k ∈ 1, . . . , N
such that the image Grb(u) belongs to the octant On(γk). Hence,
Grb(u) = γk +α, α ∈ Zn�

0. Assume u1 = u− fu

aγk

∂α ◦ lk. There are only

two possibilities or u1 = 0, or by Lemma 1 holds inequality Grb(u1) ≺
Grb(u). If the element u1 of the ideal I ·M−1 · DifM−1B is nonzero,
we can repeat described the construction and get the elements u2 and
so on. But infinite chain of elements u, u1, u2, · · · ∈ I ·M−1 ·DifM−1B

such that Grb(u) � Grb(u1) � Grb(u2) � . . . can not exist. Indeed,
condition () on the linear ordering ≺ immediately implies that exists
only finite numbers of elements of the semigroup Z

n�
0 smaller than a

given one. Hence, there exists a positive integer l such that ul = 0.
Substituting in the last equality the element ul by it expression from
u and li we complete the proof. �

Remark 1. The expansion of the element u =
∑k

i=1 pi ◦ li constructed
in the proof of the proposition satisfies the following property for any
i holds Grb(pi ◦ li) � Grb(u).

A system of generators of the ideal given by the proposition above
is called a Gröbner basis of the ideal.

Consider the submodule MI ⊂ DifM−1B generated over M−1B by
the elements {∂α}, α ∈ Zn�

0 \Grb(I).
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Proposition 3.4. The following decomposition in a direct sum of vec-
tor spaces holds

(5) DifM−1B = MI ⊕ I ·DifM−1B

Proof. We have to prove that an arbitrary element d of the ring
DifM−1B can be only decomposed to a sum

(6) d = m(d) + i(d),

where i(d) ∈ I · DifM−1B and m(d) ∈ MI ( i.e., suppm(d) ⊂ Zn�
0 \

Grb(I)). Let us prove the uniqueness. Assume the inverse. Consider
two different decompositions:

d = i1 +m1 = i2 +m2,

where i1, i2 ∈ I and m1, m2 ∈ MI. Then 0 6= i1 − i2 = m2 − m1,
hence Grb(i1 − i2) = Grb(m2 −m1). But (i1 − i2) ∈ I, hence Grb(i1 −
i2) ∈ Grb(I). On the other side, supp(m2 − m1) ⊂ Z

n�
0 \ Grb(I).

Therefore, we have Grm(m2−m1) /∈ Grb(I). The contradiction proves
the statement.

Let us prove the existence of the decomposition. The decomposition
could be constructed by the algorithm. Suppose d ∈ DifM−1B. If
supp d ∩ Grb(I) = ∅, assume m(d) = d and i(d) = 0. Otherwise,
consider the element µ(d) = maxα∈supp d∩Grb(I) α of the semigroup. Let
µ(d) = γk+α for some 1 6 k 6 N and α ∈ Z

n�
0. Consider the difference

d− a∂α( lk
aαk

), where the coefficient a ∈ B is taken such that

or supp(d− a∂α( lk
aαk

)) ∩Grb(I) = ∅, then m(d) = d− a∂α( lk
aαk

) and

i(d) = a∂α( lk
aαk

);

or supp(d− a∂α( lk
aαk

)) ∩Grb(I) 6= ∅ and the repeat the process.

Note that on each step holds µ(d − a∂α( lk
aαk

)) ≺ µ(d). The pair

(Zn�
0,�) is a well-ordered set, hence after a finite number of steps we

will get desired decomposition. �

4. Formal solutions of a system of linear partial

differential equations

Let us introduce necessary notions. Fix a domain U of the space of
independent variables Cn. Consider a subring A of the ring O(U) of
holomorphic functions in the domain U containing 1 and closed with
respect to differentiation.

Consider a system of linear partial differential equations in the do-
main U 




D1z = 0
...

Dkz = 0
... ,

(S)

where Di ∈ DifA (i = 1, 2, . . . ).
6



The system (S) may contain infinite number of equations. In this
Section we describe the space of germs of formal and analytic solutions
for the system (S) for each point u of some open everywhere dense
subset of the set U .

4.1. Formal solution and linear function on the ring of dif-
ferential operators. Let u be a point of the domain U . Consider
a subring B of the ring Ou of germs of holomorphic functions at the
point u.

Definition 2. A map ϕ : M 7→ C of B-module M is called u-linear
map if

(7) ϕ(

N∑

j=1

fjLj) =

N∑

j=1

fj(u)ϕ(Lj),

for arbitrary Li ∈M and fi ∈ B.

By Lu(M) we denote the space of the u-linear maps of the B-module
M .

It is obvious that the ring DifA has a natural structure of an A-
module. The following lemma describes the space Lu(DifA), u ∈ U .

Lemma 4.2. For any point u in U there exists the natural isomorphism
of the vector spaces

(8) Lu(DifA) ∼= C[[x− u]].

Proof. It is clear that the following map gives us desired isomorphism

C[[x− u]] 7→ Lu(DifA)(9)

f(d) = d(f)|x=u,(10)

where d ∈ DifA, f, d(f) ∈ C[[x − u]], and by d(f)|x=u we denote the
constant term of the power series d(f). �

Denote by I(S) a left ideal of the ring DifA generated by the oper-
ators from the left-hand side of the equations of system (S).

Proposition 4.5. A formal power series f ∈ C[[x−u]] defines u-linear
map of the ring DifA vanishing on the ideal I(S) if and only if for any
element d ∈ I(S) the formal power series d(f) equals 0 (in other words,
the formal power series f is a formal solution of system (S)).

Proof. Indeed, the statement that for any operator d ∈ DifA holds
d(f) = 0 is equivalent to ∂α(d(f))|x=u = (∂α ◦ d)(f)|x=u = 0 for any
α ∈ Z

n�
0. The proof is complete. �

Let us denote by Fu(S) the space of formal solutions at a point u of
the system (S).
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Corollary 4.2. There is the natural isomorphism

(11) Fu(S) = Lu(DifA/I(S)).

We will describe spaces of u-linear maps using the following lemma.
Let M be a multiplicatively closed subset in A. The ring of fractions
M−1A is evidently closed with respect to differentiation. It is clear that
the natural monomorphism (dividing by 1) π : A 7→ M−1A induce the
ring morphism

(12) π∗ : DifA 7→ DifM−1A

Consider a left ideal I of the ring DifA. Denote by M−1I the minimal
left ideal of the ring DifM−1A containing the image π∗(I) of the ideal
I.

Lemma 4.3. Consider a point u of the domain U . If for any func-
tion f ∈ M holds f(u) 6= 0 then there exists the natural isomor-
phism between the vector space of the u-linear maps Lu(DifA/I) and
Lu(DifM−1A/M

−1I).

Proof. Inclusion π induces the map

(13) π∗ : Lu(DifM−1A/M
−1I) 7→ Lu(DifA/I)

The following computation shows that π∗ is an isomorphism:

(14) (π∗)−1(l)([
N∑

j=1

dα

xα

∂α]) =
N∑

j=1

dα(u)

xα(u)
l([∂α]),

dαj
∈ A, xαj

∈ M. By [d] ∈ DifM−1A/M
−1I here we denote the

equivalence class of the element d ∈ DifA. �

4.2. Existence of the formal solutions. Consider the Zn�
0-ideal

Grb(I(S)). By Proposition 2.1 we can find a finite number of octants
such that

(15) Grb(I(S)) = ∪l
i=1O(γi).

Choose elements s1, . . . , sl of the ideal I such that Grb(si) = γi holds
for each i. Denote by Γ a multiplicatively closed subset in the ring
A generated by the leading coefficients of the operators si (i.e. the
coefficients sγi

by the derivatives ∂γi
). Besides, by Σ we denote an

analytic hypersurface defined by the equation sγ1
· . . . · sγl

= 0.
Proposition 3.3 immediately implies the following proposition.

Proposition 4.6. The elements s1, . . . , sl generate the ideal I ·
DifΓ−1A. In other words, in the domain U \ Σ considered system (S)
is equivalent to the system consisting of equations siz = 0, where index
i ranges over the set {1, . . . , l}.
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The support supp f of an formal (convergence) power series f =∑
α∈ � n�

0

fα(x− u)α is the following subset of the semigroup

(16) supp f = {α ∈ Z
n�

0|fα 6= 0}.

Theorem 4.1. Consider a point u ∈ U \ Σ. Then

(17) Fu(S) ∼= {f ∈ C[[x− u]] | supp f ⊂ Z
n�

0 \Grb(I)}.

Proof. Consider a free Γ−1A-module MI(S) with basis {∂α}, α ∈
Zn�

0 \Grb(I). It is clear that

(18) Lu(MI) ∼= {f ∈ C[[x− u]] | supp f ⊂ Z
n�

0 \Grb(I)}.

Then by Proposition 3.4 there is an isomorphism of Γ−1A-modules

(19) MI ∼= DifΓ−1A/Γ
−1I.

Therefore, since for any point u ∈ U \ Σ and any function f ∈ Γ ⊂ A
holds f(u) 6= 0, we have (using Lemma 4.3)

(20) Fu(S) ∼= Lu(DifA/I) ∼= Lu(DifΓ−1A/Γ
−1I).

To complete the proof we just have to combine the statements (18), (19)
and (20). �

For any nonnegative integer i we put by definition

(21) Fu,i(S) = Fu(S)/(f ∼ g
def
⇔ f − g = o((x− u)i)).

Fu,i(S) is the space of i-jets of formal solutions at a point u ∈ U of the
system.

Definition 3. The function H(u, i) = dimFu,i(S) of nonnegative in-
teger argument i is called the Hilbert function at a point u of system
(S).

Corollary 4.3. The function H(u, i) does not depend on u ∈ U \ Σ
and coincide with a polynomial for sufficiently large i.

Proof. By (17) holds

(22) dimFu,i(S) = |{α ∈ Z
n�

0 \Grb(I)||α| 6 i}|,

where for a finite subset A we denote by |A| the number of elements of
the set A. This proves the first statement of the theorem.

By Proposition 2.2, we can decompose the set Zn�
0 \ Grb(I) to the

disjoint union of moved special subsemigroups

(23) Z
n�

0 \Grb(I) = ∪l
k=1{ak + Z �

0(Ik)}.

But for any moved special subsemigroup ak + Z �
0(Ik) the function

H(ak ,Ik)(i) = |{α ∈ ak + Z �
0(Ik)||α| 6 i}|,

coincides with a polynomial for i > |ak| (it is easy to compute that

for i > |ak| holds H(ak ,Ik)(i) = (
(

n−|I|+i−ak

i−ak

)
)). Hence, the Hilbert
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function H(u, i) =
∑l

j=1H(aj ,Ij)(i) coincides with a polynomial for

i > maxk |ak|. The proof is complete. �

5. Convergence of formal solutions

Suppose that a formal power series z(x) =
∑

α∈ � n�
0

aαx
α satisfies the

following finite system of differential relations



∂γ1
z = F1(x, ∂αz), α ≺ γ1

...
∂γ1

z = Fk(x, ∂αz), α ≺ γk

Here F1, . . . , Fk are holomorphic functions of the variables x1, . . . , xn

and the derivatives ∂αz such that α satisfy inequalities of the right-hand
column above. Consider the subset I = ∪k

i=1O(γi) of the semigroup
Zn�

0.

Theorem 5.2. Suppose that the truncated power series z̃(x) =∑
α∈ � n�

0
\I

aαx
α has a nonzero radius of convergence. Then so does the

formal solution z(x).

The Theorem 5.2 is a particular case of the convergence theorem
form [3].

Denote by Au(S) the space of germs of analytic solutions at a point
u of the system (S). Combining the Theorem 5.2 and 4.1 we have

Theorem 5.3. For any point u ∈ U \ Σ holds

(24) Au
∼= {f ∈ C{(x− u)} | supp f ⊂ Z

n�
0 \Grb(I)}.

Proof. Consider a system of partial differential equations consisting
of equations s1z = 0, . . . , slz = 0, where si are taken above elements
of ideal I such that Grb(si) = γi holds for each i. By Proposition 4.6
in the domain U \ Σ this system is equivalent to system (S). Let us
solve each equation siz = 0, where i ranges over the set {1, . . . , l}, for
the derivative γi which is the highest-order derivative with respect to
the ordering ≺ (we can do this by choice of Σ). Now we can apply
mentioned above convergence theorem 5.2. �

Let us consider a decomposition of the set Zn�
0 \ Grb(I) on moved

special subsemigroups

(25) Z
n�

0 \Grb(I) = ∪l
k=1{ak + Z �

0(Ik)}.

The following theorem is a corollary of Theorem 5.3

Theorem 5.4. For any point u ∈ U \Σ exists unique analytic in some
neighborhood of the point u solution z(x) for the system (S) satisfying
the following initial conditions: for any l (1 6 k 6 l)

∂ak
z(x)|{xi=ui,i∈Ik} = ψ1(xi1 , . . . , xim), where {i1, . . . , ik} = {1, . . . , n}\Ik
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and ψi are an arbitrary holomorphic functions in some neighborhood
of the point u (if Ik = {1, . . . , n} for some k the ψk is just a complex
number).

Proof. To deduce this theorem from the previous one it is sufficient
to note that a convergence power series consisting of monomials xα,
where α belongs to a special subsemigroup Z �

0(I) and I = {1, . . . , n}\
{i1, . . . , ik}, is a gem of holomorphic function depending on variables
xi1 , . . . , xik . �

Denote by Au,i the space of i-jets at a point u of analytic solutions
of the system.

Corollary 5.4. For any point u ∈ U \Σ and each nonnegative integer
i the dimensions of the following spaces are coincide

(26) dimFu,i(S) = dimAu,i(S).

6. Remarks and examples

6.1. The condition (a) on linear ordering ≺ and convergence of
formal solutions. The following weaker condition (a’) on the linear
ordering ≺ is enough to develop the theory of existence and uniqueness
of formal solutions

(’) for any element α of the semigroup holds 0 ≺ α.
The constructions of the Gröbner map and all needed statement

holds for this case. In particular, the condition (a’) implies that (Zn�
0,�

) is a well-ordered set. Besides, the statement and the proof of the
Theorem 4.1 for this case does not change.

But the following example due to S. Kowalevsky(see [5, 6]) shows
that the condition (’) are not enough to prove convergence of formal
solutions (Theorem 5.3 and 5.2). Consider the equation

∂2z

∂x2
=
∂z

∂y
.

It easy to construct a linear ordering ≺ satisfying conditions (a’) (b)

such that ∂2

∂x2 ≺ ∂
∂y

. We claim that the formal solutions z(x) with initial

data
z = φ(x) for y = y0,

where φ(x) is a holomorphic function, could has the zero radius of
convergence.

6.2. The case of several unknown functions. It is important to
note that all presented results can readily generalized to the case of
systems of several unknown functions z1, . . . , zp.

The set of partial derivatives of the tuple of unknown
function z1, . . . , zp is parameterize by points of the product
Z = Zn�

0 × {1, . . . , p}. Let ≺ � n�
0
be a linear ordering on the semigroup
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Zn�
0 satisfying conditions (a) and (b) of Section 2. Consider the fol-

lowing well-ordering ≺ on the set Z. For any two elements (α, i) and
(β, j) of the set Z we first compare the element α and β of the semi-
group Zn�

0 with respect to the linear ordering ≺ � n�
0
, if the element

coincides, we compare numbers i and j (as integers). Reproducing the
argument in this paper almost word for word, one can readily extend
Theorems 4.1, 5.2, 5.3 and 5.4 to this case.

6.3. On germs of solutions at points of “bad” hypersurface Σ.
Above we described the space of germs of formal and analytic solutions
of the system at points belonging to the complement of some analytic
hypersurface Σ only. The following example shows that at some points
belonging to Σ the space of germs of formal and analytic solutions of the
system may be different form described above. Consider an equation
of the form ∑

aixi

∂

∂xi

z = 0,

where ai are integer points. ”Bad” hypersurface for this case is one of
the hyperplanes xi = 0 (it depends on choice of the linear ordering).
It is clear that for appropriate ai all theorem proved above (Theo-
rem 4.1, 5.2, 5.3 and 5.4) are fails for the point 0 ∈ Σ. In particular,
the function H(0, i) does not coincide with a polynomial for sufficiently
large positive integers.

6.4. Algebraic sense of Hilbert function of a system. Recall
that highest homogeneous symbol of the system is a family of alge-
braic varieties (more precise, a family of ideals of the polynomial ring
C[ξ1, . . . , ξn]) M(u) depending on a point u of the domain U . The fam-
ily M(u) is defined on the following way. For equation of the system
we take an operator

(27) D =
∑

α∈supp D

dα∂α,

from the left-hand side of the equation. We corresponds to the operator
a family of homogeneous polynomials

(28) D̃(u, ξ) =
∑

α∈supp Di,|α|=r(D)

dα(u)ξα,

where ξα = ξα1

1 . . . ξαn
n and r(D) is the order of the operator D. M(u)

is a family of ideals polynomials of the ring C[ξ1, . . . , ξn] generated by

polynomials D̃.
The Gröbner bases construction immediately implies

Proposition 6.7. For any point u ∈ U \ Σ and nonnegative integer i
holds

(29) HM(u)(i) = H(u, i),
12



where by HM(u) we denote the Hilbert function of algebraic variety M(u)
(i.e., the Hilbert function of the corresponding ideal).
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