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ON CONVERGENCE OF FORMAL SOLUTIONS TO A

SYSTEM OF PDE’S

S.P. CHULKOV

1. Introduction

The aim of this paper is to study a variant of the classical prob-
lem of the convergence of formal solutions to a system of PDE’s. The
theory of ODE’s studies differential equations written in the explicit
form with respect to highest order derivative. For analytic ODE’s the
Cauchy problem is solvable and any formal solution is analytic. A
possible generalization of this on the case of many-dimensions is the
Cauchy-Kovalevskaya theorem. It describes, in particular, all formal
solutions to the Cauchy-Kovalevskaya type PDE’s and gives conver-
gency conditions for them. For equations of this type, as for ODE’s,
a certain partial derivative is marked as leading and the equations are
written in the explicit form with respect to this derivative.

Riquier in [1] has developed a theory generalizing the Cauchy-
Kovalevskaya theorem. In the multidimensional case there is no natural
way to select the leading partial derivative. Riquier considered which
paritial derivative of unknown function should be selected as leading
and how to state initial conditions for which the theorem of existence
and uniqueness of formal and analytic solutions holds. In his great work
Riquier introduces a total ordering on the set of parital derivatives of
a function in several variables and by using it significantly advances in
the mentioned problem. In the case of linear PDE’s with constant co-
efficients the Riquier method, in substance, consists of what is actually
called the Groebner bases and significantly advanced in the computing
aspects of the commutative algebra.

The matter of study of Riquier’s paper are stating of ”correct” initial
conditions and constructing corresponding formal solutions. Besides,
Riquier studies convergence of the formal solutions. However his work
is not complete in some sense because of the great generality of the
stated problem: the Riquier method could be applied to a system writ-
ten in the explicit form with respect to the leading derivatives only
if certain strong and difficult to control conditions on the considered
system are satisfied.

Partially supported by the grants RFBR-01-01-00739 and NSh-1972.2003.1
Adress: (I) Department of mathematics, Stockholm university, 106 91, Stockholm,
Sweden; (II) Independent University of Moscow, 119002, Russia, Moscow, Bolshoi
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One can find an exposition of [1] in Russian in the book of S.P.
Finikov [2].

The most complete theorems of existence and uniqueness of formal
and analytic solutions have been proved in the case of systems of linear
PDEs with analytic coefficients. This case has been studied by V.P.
Palamodov in [3]. V.P. Palamodov follows the idea of Riquier. Using
a special algebraic technique, Palamodov finds new formal solutions
which Riquier has not considered (see [4]). The theorem of existence
and uniqueness proven in [3] contains the statement concerning conver-
gence of formal solutions which statement Riquier’s theorem does not
cover. Palamodov’s proof of convergence of formal solutions is based
on the special algebraic technique developed by himself for the case of
linear differential operators and can not be generalized to the case of
systems of non-linear PDE’s.

The problem of constructing formal solutions is mostly algebraic
(see [4, 5]). We do not consider this. The aim of our work is studying
the convergency of a given formal solution ( found by any possible way).
One can apply our theorem to any system of PDE’s which is written
in the explicit form with respect to leading derivatives and, most im-
portant, to any system of PDE’s written in the ”almost explicit form
with respect to leading derivatives”, (see below). Our main theorem
states that a formal power series which is a formal solution to a system
converges iff some special partial sum of this series converges. One can
see that our theorem generalizes the Riquier convergence theorem. In
the proof we use some ideas of his work [1]. But our generalization
can be applied to formal solutions of ”Palamodov‘s type”, (such solu-
tions characterize the system written in the ”almost explicit form with
respect to leading derivatives”), Riquier did not know about these so-
lutions and his method can not be applied to this case. Our theorem
generalizes also some corollaries of Palamodov’s work [3] concerning
the convergence of formal solutions: in contrast to Palamodov’s work
it can be applied to non-linear systems.

One can see that our main result can be generalized to the case of
systems with several unknown functions (see Section 5).

Besides the works of Palamodov and Riquier, there are different
proofs and generalizations of the Cauchy–Kovalevskaya theorem. One
can find them in the works of Ovsyannikov [6] , Pate [7], Treves [8],
Nirenberg [9] and Nishida [10].

This paper is organized as follows. In Section 2 we give several
definitions and formulate the main result. In Section 3 some properties
of the ordered semigroup Zn�

0 are considered. In Section 4 we prove
the main theorem. Followed by examples and remarks in Section 5.

The author is grateful to professor A.G. Khovanskii for constant
attention to this work and professor M. A. Shubin for useful remarks.
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2. Main result

Consider the semigroup Zn�
0 = {(α1, . . . , αn)|αi ∈ Z, αi > 0}. The

modulus |α| of an element α ∈ Z
n�

0 is the non-negative integer
∑

αi.
Fix a total ordering ≺ on the semigroup Zn�

0 such that:
i) for any elements α and β of the semigroup, the condition |α| < |β|

implies α ≺ β;
ii) the ordering relation ≺ is compatible with the sum operation on

Zn�
0, i.e., for any elements α, β and γ, the inequality α ≺ β implies

that α + γ ≺ β + γ.
From the condition i) it follows obviously that (Zn�

0,�) is a complete
ordered set.

As an example of the total ordering ≺ one can consider the following
total ordering. For any elements α and β of the semigroup Zn�

0 we
compare theirs modulus, if theirs modulus are equal to each other, we
compare these elements with respect to the lexicographic order.

Let us consider the following finite system of PDE’s in a neighbor-
hood of the 0 of the space Cn with coordinates x1, . . . , xn:







∂γ1
z = F1(x, ∂αz) + M1(x, ∂αz)

...
∂γk

z = Fk(x, ∂αz) + Mk(x, ∂αz),

where F1, . . . , Fk and M1, . . . , Mk are holomorphic functions in vari-
ables x1, . . . , xn and derivatives ∂αz of the function z. Here and below

∂α, where α ∈ Zn�
0, denotes the differentiation operator ∂|α|

∂x
α1

1
...∂xαn

n

.

Assume that the formal power series z =
∑

α∈ � n�
0

zαxα, where zα are

complex numbers and xα is the monomial xα1

1 . . . xαn

n , is a formal solu-
tion for the system.

Suppose also that the following conditions are satisfied
1) for any index i, the function Fi depends only on the variables

x1, . . . , xn and derivatives ∂αz, where α ≺ γi;
2) for any index i, the function Mi is of the form

(1) Mi(x, ∂αz) =
∑

β,|β|=|γi|

Mβ
i (x, ∂αz)∂βz,

where Mβ
i are holomorphic function in variables x1, . . . , xn and deriva-

tives ∂αz such that |α| < |γi|, and for any i and β, the following equality

(2) Mβ
i (0, α!zα) = 0

holds at the initial point. Here and below α! is the product of factorials
α1! . . . αn!

Saying informally, the conditions above mean that our system is writ-
ten in the ”almost explicit form with respect to the leading derivatives
in the sense of our total ordering”, but on the right side of every equa-
tion one can add a linear function with respect to derivatives of highest
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order (peculiar for each equation), and coefficients of this linear func-
tion are equal to zero at the initial point. In the each equation some
partial derivatives added to the right side could be larger with respect
to the total ordering ≺ than the derivative from the left side.

An octant On(a) with the vertex at the point a of the semigroup Z
n�

0

is the set {α ∈ Zn�
0 | ∃β ∈ Zn�

0 such that α = a + β}.

Consider a subset I = ∪k
i=1O(γi) of the semigroup Zn�

0. Provided
the conditions above are fulfilled,the following theorem holds

Theorem 1. Suppose that the power series z̃(x) =
∑

α∈ � n�
0
\I

zαxα has a

non-zero radius of convergence. Then the formal solution z(x) has a
non-zero radius of convergence.

The proof is in Section 4.

Remark 1. Note that the condition (1) that the functions Mi are linear
with respect to highest order derivatives does not restrict generality of
considered systems very strong. Indeed, if we start with some function
Mi and it is not linear with respect to dirivatives of the highest order,
then we can derivate corresponding equation by any variable and get
new equation with new function Mi which will be linear with respect
to derivatives of the highest order. All other conditions are preserved.

3. Properties of the total ordered semigroup Zn�
0

Recall that in the previous section we fixed the total ordering on
the semigroup Zn�

0. The next Lemma shows that the total ordering ≺
on the semigroup Zn�

0 on any finite subset of the semigroup could be
defined by one linear function. More clearly,

Lemma 1. Let A be a finite subset of the semigroup Zn�
0. There exists

a linear function
ΠA : Zn�

0 → R �
0

ΠA(α) =
∑n

i=1 πiαi,

where πi are some positive real numbers and α = (α1, . . . , αn) ∈ Zn�
0,

which function posseses the property:
for any α, β ∈ A such that α ≺ β the ΠA(α) < ΠA(β) holds.

Proof. Consider the chain of natural inclusions Zn�
0 ⊂ Zn ⊂ Rn. De-

note by B the following finite subset of the semogroup Zn:

B = {δ ∈ Z
n|∃α, β ∈ A : α ≺ β, δ = β − α}.

Let conv(B) be the convex hull of the set B in the space R
n. As

total ordering ≺ is compatible with the sum operation on the semigroup
Zn�

0, we claim that the set conv(B) does not contain the origin. Indeed,
assume the converse. Let the following equality holds

(3)
N

∑

1

piδ
i = 0,
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where δi ∈ B ⊂ Zn (δi = βi − αi, βi, αi ∈ A) and pi ∈ R, pi > 0.
One can consider the equation (3) as a system of homogeneous lin-
ear equations with integer coefficients on the coordinates of the vector
p = (p1, . . . , pN) ∈ RN . The existence of a nontrivial solutions of the
system implies the existence of a nontrivial vector space of solutions.
The coefficients of equations in the system (3) are integer numbers,
hence rational vectors are everywhere dense in the space of solutions.
Therefore, there exist rational and, hence, integer positive numbers p̃i

such that
N

∑

1

p̃iδ
i = 0.

Then,
N

∑

1

p̃iβ
i =

N
∑

1

p̃iα
i.

In the other hand, αi ≺ βi, hence
∑N

1 p̃iαi ≺
∑N

1 p̃iβi. This is a
contrudiction.

Because the closed bounded convex set conv(B) does not contain the
point 0 there exists a linear function

L : Rn → R

L(x) =
∑n

i=1 lixi,

such that for any point x ∈ conv(B) the value of the function L(x) > 0.
Now if we put πi = S + li, where S is a big enough natural number, we
get needed linear function ΠA. �

Remark 2. Using the argument above, it is easy to prove the following
well-known statement (see, for example, [11] or [12])

Proposition 1. On the semigroup Zn�
0 consider some total ordering

relation ≺ such that it is compatible with the sum operation. Then there
exist a linear functions Π1, . . . , Πj, j 6 n,

Πi : Z
n�

0 7→ R

such that the total ordering ≺ is the lexicographic ordering with respect
to this set of linear functions, i.e. the statement α ≺ β is equivalent to
the the statement

Π1(α) = Π1(β), . . . , Πi(α) = Πi(β), Πi+1(α) < Πi+1(β),

for some i ∈ {0, . . . , j − 1}.

Denote by Πk, for any natural number k, a linear function posseses
the conditions of the previous Lemma for the set Ak = {α ∈ Zn�

0||α| 6

k}. Denote µk = min{α,β∈Ak} |Πk(β) − Πk(α)|. Note that µk > 0.
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4. The proof of Theorem 1

Our proof is based on the majorant method. Let C[[y1, . . . , yl]] be
the ring of formal power series of variables y1, . . . , yl. Let A, B ∈
C[[y1, . . . , yl]].

Definition 1. We say that a formal power series A(y) =
∑

α∈ � l�
0

aαyα

majorize (or is majorant) the power series B(y) =
∑

α∈ � l�
0

bαyα, if for

any element α of the semigroup Zl�
0 the following conditions hold

aα ∈ R �
0 and |bα| 6 aα.

The idea of the proof is to construct a majorant convergent power
series for our formal solution. More presisely, the majorant power series
is a solution to some equation which, rather say, is majorant of each
partial differential equation of the our system. The majorant equation
is an ordinary differential equation and the standard theorem of ex-
istence and uniqueness applies to proving the existence of the needed
solution.

In Section 4.1 we prove some lemmas about the majority relation.
In Sections 4.2 - 4.5 we prove a special case of the theorem when

the equations of the systems are linear with respect to derivative of
the high order and and all leading derivatives have the same order. In
Section 4.2 we state the conditions of the special case. In Section 4.3
by means of an appropriate coordinate change our systems is reduced
to the form that is very useful for constructing needed majorant equa-
tion. In Section 4.4 we obtain the majorant differantional equation
and prove the existence of needed anaylitic solution of this equation.
In Section 4.5 using founded solution of the majorant equation we con-
struct a convergent power series and using Lemma 2 of Section 4.1,
we prove that this power series majorizes the formal solution of our
system. And, finally, in the Section 4.6 we complete the proof reducing
general case to the considered one.

4.1. Some properties of the majority relation. In the first of two
Lemmas of this Section we state that the operation of composition
preserves in some sense the majority relation.

Consider holomorphic functions f1 and f2 defined in the neighbor-
hood of the origin in the space C

n+m = {(x1, . . . , xn, ξ1, . . . , ξm)|xi, ξj ∈
C}. Suppose that the series expansion about 0 of the function f2 ma-
jorizes the series expansion of the f1.

Fix an (m+1)-tuple α1 ≺ · · · ≺ αm ≺ α0 of elements of the semigroup
Zn�

0.
6



Let w =
∑

wαxα ∈ R �
0[[x]] and z =

∑

zαxα ∈ C[[x]] be some power
series and suppose that the following two conditions are satisfied

for any α ≺ α0, |zα| 6 wα holds;

for any i(1 6 i 6 m), wαi
= zαi

= 0holds.

In this case the power series W ∈ R �
0[[x]] wich is the result of sub-

stituting in the expansion of the function f2 variables ξi by the series
∂αi

w ((1 6 i 6 m)), and Z ∈ C[[x]] wich is the result of substitut-
ing in the expansion of the function f1 variables ξi by the series ∂αi

z
((1 6 i 6 m)), are well-defined.

Lemma 2. The inequality |∂βZ|0| 6 ∂βW |0 holds for any β ≺ α0.

Proof. Assume that Z =
∑

α Zαxα and W =
∑

α Wαxα. The series
∂βZ|0 = β!Zβ and ∂βW |0 = β!Wβ are the sums of the following expres-
sions over the same set of indices

(4) β!f 1
(α,δ)

m
∏

i=1

(αi!)
δizθ1+αi

· · · · · zθδi
+αi

and

(5) β!f 2
(α,δ)

m
∏

i=1

(αi!)
δiwθ1+αi

· · · · · zθδi
+αi

respectively; in (4) and (5) above α, θj ∈ Zn�
0, δ = (δ1, . . . , δm) ∈ Zm�

0,

and f j
(α,δ), j = 1, 2, are the coefficients of the series expansions of

the functions f j. To prove the Lemma it remains to note that
α +

∑

θi = β ≺ α0 in (4) and (5), hence, by the conditions above,
each summand in (4) is greater or equal than the modulus of the cor-
responding summand in (5). �

The proof of the following simple lemma one can find in [2].

Lemma 3. Suppose that the power series A(x) =
∑

α∈ � n�
0

aαxα con-

verges absolutly at the point x1 = · · · = xn = ρ > 0 and let M be a
positive number greater than absolute value of any term of the series
A(ρ). Then the power series expansions about the origin of the fuctions
F1(x) = M

(1−x1/ρ)...(1−xn/ρ)
and F2 = M

(1−(x1+···+xn)/ρ)
majorize the power

series A(x).

4.2. The condition of the special case. Without loss of generality,
one can believe that the coefficients zα for α ∈ Zn�

0 \ I of the power
series z are equal 0. Indeed, according to the conditions of the theorem,
the power series naturally constructed by this defines some analytic
function ϕ in the neighborhood of the origin. Considering new unknown
function z̃ = z − φ we get the statement.

Consider now the following special case. Suppose that every equa-
tion of our system is linear with respect to derivatives of highest order
and all leading paritial derivatives (derivatives on the left side of the
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equations) have the same order. Clearly, the system is written in the
following form

(6)















∂γ1
z =

∑

|α|=N,α≺γ1

f 1
α∂αz + f 1 +

∑

|α|=N

Mα
1 ∂αz

...
∂γk

z =
∑

|α|=N,α≺γk

fk
α∂αz + f k +

∑

|α|=N

Mα
k ∂αz,

where |γ1| = · · · = |γk| = N > 0 and the holomorphic functions
f i

α, f i, Mα
k depend on the variables x1, . . . , xn and derivatives ∂βz such

that |β| < N . Besides, as it was above, for any admissible i and α
Mα

i (0)=0 holds.

4.3. The change of the coordinates. In this section by means of an
appropriate coordinates change we obtain that the leading derivatives
(with respect to our total ordering) become ”chief”. The coefficient of
the another derivatives multiplies by some small numbers.

In the given conditions, f i
α, f i, Mα

i are the holomorphic funcions in
the neighborhood of 0. Consider power series expansions about the
origin of the functions f i

α, f i and Mα
i for all admissible values of the

parameters i and α. Suppose that all these series converge absolutely
in the point x1 = · · · = xn = ∂αz = ρ, where |α| < N . By Lemma 3 of
Section 4.1, let us choose a positive real number C such that the series
expansion of the function

C

(1 − (x1 + · · ·+ xn +
∑

|α|<N ∂αz)/ρ)

majorizes the corresponding expansions of the functions f i
α, f i, Mα

i for
all admissible i and α.

Denote by Π the linear functional ΠN (see Section 3), and let µ = µN .
Consider a positive real number θ < 1 such that

θµ < ε =
1

2

1

∆NC
,

where ∆i (i ∈ Z �
0) is the number of elements α of the semigroup Zn�

0

such that |α| = i.
Suppose yi = θ−πixi, 1 6 i 6 n. Then

∂|α|z

∂xα
(x) = θ−Π(α) ∂

|α|z

∂yα
(y(x)).

The equations (6) have a form

(7) ∂γi
z =

∑

|α|=N

f i
α(y, θ−Π(γ)∂γz(y))θΠ(γi)−Π(α)∂αz+

+ f i(y, θ−Π(β)∂βz(y))θΠ(γi) +
∑

|α|=N

Mα
i (y, θ−Π(γ)∂γz(y))θΠ(γi)−Π(α)∂αz,
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for every i, after the coordinates change and dividing by the coefficients
of the leading derivatives. Here and below the operators of partial
differentiation are considered in the new coordinate system. The formal
power series z(y) = z(x(y)) satysfies (7) in the new coordinate system
(with zero initial conditions). Suppose that

f̃ i
α(y, ∂γz) = f i

α(y, θ−Π(γ)∂βz)θΠ(γi)−Π(α);

f̃ i(y, ∂γz) = f k(y, θ−Π(γ)∂γz)θΠ(γi);

M̃α
i (y, ∂γz) = Mα

i (y, θ−Π(γ)∂γz)θΠ(γi)−Π(α),

for any admissible α, i. As before, M̃α
i (0) = 0 for any admissible i and

α. Let us prove the following lemma

Lemma 4. For any admissible i and α, the power series expansion (at
the point 0) of the function

εC

1 − (y1 + · · · + yn +
∑

|α|<N ∂αz)/ρ1

,

for some 0 < ρ1 � ρ, majorizes corresponding expansions of the func-
tions f̃ i

α and f̃ i.

Proof. Choose ρ1 as follows

(8) ρ1 = ρ min
|α| � N

θπ(α).

Check Lemma’s statement for the functions f i
α. Indeed, in the coordi-

nates x1, . . . , xn the series expansion about the origin of the function

C

1 − (x1 + · · ·+ xn +
∑

|α|<N ∂αz)/ρ

majorizes the series expansion of each function f i
α. By the formulas

of the change of coordinates, we claim that the series expansion of the
function (in the new coordinates)

C

1 − (y1 + · · ·+ yn +
∑

|α|<N ∂αz)/ρ1

majorizes the expansion of each function f i
α(y, θ−Π(γ)∂βz). But

f̃ i
α(y, ∂γz) = f i

α(y, θ−Π(γ)∂βz)θΠ(γi)−Π(α),

where the coefficient θΠ(γi)−Π(α) 6 θµ < ε, as α ≺ γi and |α| 6 |γi| = N .
This proves the statment.

For the functions f̃ i we can check mentioned relations in the same
way, if we take into account the inquality θγi 6 θµ which holds due to
the choice of the constant µ for each i. �

Consider a positive real number K such that the function

(9)
KC

1 − (y1 + · · ·+ yn +
∑

|α|<N ∂αz)/ρ1

9



majorizes the series expansion about the point 0 of each function M̃α
i

for any possible i and α.

4.4. Constructing of the majorant equation. Consider an ODE

(10) Y (N)(t) =
εC

1 − (t +
∑N−1

j=1 ∆jY (j)(t))/ρ1

(∆NY (N)(t) + 1)+

+ (
KC

1 − (t +
∑N−1

j=1 ∆jY (j)(t))/ρ1

− KC)∆NY (N)(t).

Recall that ∆j is the number of elements α of the semigroup Zn�
0 such

that |α| = j. Rewrite the equation (10) in the explicit form with
respect to the derivative of highest order, we have

(11) Y (N)(t) =
2εC

1 − 2(KC∆N + 1)(t +
∑N−1

j=1 ∆jY (j)(t))/ρ1

.

We take into account the relation ε∆NC = 1/2. By the theorem of
existence and uniqness of solutions of an ODE, we claim that there
exists a unique solution Z(t) to the equation (11)( (10)) with the initial
conditions Z(0) = · · · = Z(N−1) = 0.

As the power series expansion about the point 0 of the function

2εC

1 − 2(KC∆N + 1)(t +
∑N−1

j=1 ∆jY (j)(t))/ρ1

of variables t and Y, Y (1), . . . , Y (N−1) has positive coefficients, we claim
that the power series expansion about the origin of the solution Z(t)
has positive coefficients.

Denote

G(Y, t) =
C

1 − (t +
∑N−1

j=1 ∆jY (j)(t))/ρ1

.

4.5. Constructing of the majorant power series. Let us to prove
the following

Lemma 5. The power series expansion about the point 0 of the function
Z(

∑n
i=1 yi) majorizes the formal solution z(y). Hence, the power series

z(y) converges in some neighborhood of 0.

Proof. Assume Z(
∑

i yi) =
∑

α∈ � n�
0

Zαyα. Show by induction on α ∈

Z
n�

0 that the following eniquality holds

(12) |zα| 6 Zα

for each α. Indeed, the condition (12) holds for α ∈ Zn�
0\I, and, hence,

for α = 0. Suppose now that (12) holds for every α ≺ α0. Prove the
eniquality for α0. Let α0 = β + γi for some i (1 6 i 6 k).

10



Then

α0!|zα0
| = |∂α0

z|y=0| =

= |(∂β(
∑

|α|=N,α≺γi

f̃ i
α∂αz + f̃ i +

∑

|α|=N

M̃α
i ∂αz))|y=0|.

Futher more, by Lemma 2 and the equality

(13) ∂αF (
∑

yi) = F (|α|)(
∑

yi),

where F is an arbitrary holomorphic function, we get

|(∂β





∑

|α|=N,α≺γi

f̃ i
α∂αz + f̃ i +

∑

|α|=N

M̃α
i ∂αz



)|y=0| 6

6 (∂β

[

εG(Z,
∑

i
yi)(∆NZ(N)(

∑

i
yi) + 1)+

+(KG(Z,
∑

i
yi) − KC)∆NZ(N)(

∑

i
yi)

]

)|y=0

Indeed, it follows from Lemma 4 and the inductive assumption that
each summand of the form

(14) f̃ i
α∂αz

is majorized by the summand

(15) εG(Z,
∑

i
yi)Z

(N)(
∑

i
yi),

but the number of summand of the form (14) is not larger than ∆N .
Similarly, using Lemma 4, relations on the constant K (see (9)) and
by inductive assuption, we get the same for other summand; then we
apply Lemma 2. But by (10) and (13) we have

(∂β

[

εG(Z,
∑

i
yi)(∆NZ(N)(

∑

i
yi) + 1)+

+(KG(Z,
∑

i
yi) − KC)∆NZ(N)(

∑

i
yi)

]

)|y=0 =

∂α0
Z(

∑

i

yi)|y=0 = α0!Zα0

This proves the Lemma. �

4.6. The completing of the proof of the Theorem. To complete
the proof we have to note that the general case can be reduced to the
case considered above. Indeed, instead of the initial system one can
consider the finite tuple of differential corolaries of the equations of the
system

∂β∂γi
z = ∂βfi(x, ∂αz) + ∂βMi(x, ∂αz),

where |β| + |γi| = N , N is big enough natural number (for example,
one can take N = maxi |γi| + 1). This new system satisfies all the
conditions of the considered special case. Formal power series z(x) iz
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a formal solution to the new system. The set Zn�
0 \ I changes for finite

tuple of elements and it does not affect the convergence of the power
series z̃(x).

5. Remarks and examples

5.1. Example. The case of one equation. Consider the PDE

∂γz = F (x, ∂αz) + M(x, ∂αz).

Suppose that all conditions of Theorem 1 are satisfied. In this case it
is obvious that there exists a unique formal solution to this equation
with the following initial conditions ∂αz|x=0 = α!zα, where α lies in the
set Zn�

0 \O(γ) and zα is an arbitrary complex number, i.e., as an initial
conditions we assign on an arbitrary way the coefficients of soughted
solution by the monomials xα with α ∈ Zn�

0 \ O(γ). The power series
z̃(x) coincides with the power series of the initial conditions. For this
case Theorem 1 claims the convergence of formal solution, if the power
series of the initial conditions converges.

5.2. Example. On the necessity of conditions of the Theorem.

Consider the equation

(1 + i)
∂2

∂x∂y
=

∂2

∂x2
+ i

∂2

∂y2
.

For this equation the conditions of Theorem 1 does not hold for any
total ordering sastisfying conditions i) and ii) of Section 2. In this case
it is easy to construct a nontrivial formal solution z =

∑

zαxα such
that zα = 0 for any α ∈ Z2�

0 \ O((1, 1)) but the formal power series
z =

∑

zαxα does not converge at any point except the origin. Indeed,
soughted formal solution is uniquely difined by the following conditions

z(0,n) = 0 for any non-negative integer n;
z(1,n) = n!(1 − i), if the remainder on dividing non-negative integer

n by 4 is equal to 3, and z(1,n) = 0 otherwise.

5.3. The case of several unknown functions. It is important to
note that Theorem1 may be obviously generalized to the case of systems
of several unkown functions z1, . . . , zp.

The set of partial derivatives of the tuple of unknown function
z1, . . . , zp is parametrize by points of the product Z = Z

n�
0 × {1, . . . , p}.

Let ≺ � n�
0

be a total ordering on the semigroup Zn�
0 satisfying condi-

tions i) and ii) of Section 2. Consider the following total ordering ≺
on the set Z. For any two elements (α, i) and (β, j) of the set Z we
compare first the element α and β of the semigroup Zn�

0 with respect
to the total ordering ≺ � n�

0
, if the element coincides, we compare (as

integer numbers) numbers i and j. Repeating of the argument of this
work, it is simple to extend Theorem 1 to this case.
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