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1 Introduction

Consider the quasilinear elliptic boundary value problem

{
−∆p u = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R
n, n ≥ 1, ∆p u = div (|∇u|p−2 ∇u) is the

p-Laplacian, 1 < p < ∞, and f is a Carathéodory function on Ω × R such
that

f(x, t)

|t|p−2 t
→

{
λ0 as t → 0,

λ∞ as |t| → ∞
uniformly in x (1.2)

with λ0, λ∞ /∈ σ(−∆p), the Dirichlet spectrum of −∆p on Ω. In the semilinear
case p = 2, a well-known theorem of Amann and Zehnder [1] states that this
problem has a nontrivial solution if there is an eigenvalue λl of −∆ between
λ0 and λ∞. In this paper we extend their result to the quasilinear case p 6= 2.

The quasilinear problem is far more difficult as a complete description
of the spectrum is not available and there are no eigenspaces to work with.
Although there is a sequence of variational eigenvalues λl ↗ ∞ defined by a
standard minimax scheme involving the Krasnoselskii genus it is not known
whether this is a complete list when n > 1. Using the cohomological index
of Fadell and Rabinowitz [9] we will construct an unbounded sequence of
minimax eigenvalues µl ≥ λl for which the following theorem holds.

Theorem 1.1. Assume that µl−1 < µl. Then for each ε0 ∈ (0, µl − µl−1),
there is an eigenvalue µ̃l ≥ µl such that problem (1.1) has a nontrivial solu-

tion if

F (x, t) :=

∫ t

0

f(x, s) ds ≥
1

p
(µl−1 + ε0) |t|

p ∀(x, t) (1.3)

and

(i) λ0 < µl ≤ µ̃l < λ∞, or

(ii) λ∞ < µl ≤ µ̃l < λ0.

In the ODE case n = 1, µ̃l = µl = λl.
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It follows from (1.2), (1.3) and l’Hospital’s rule that λ0, λ∞ > µl−1 + ε0.
It will be easily seen from our construction of µl that µ1 is the smallest
eigenvalue of −∆p, and it is well known that µ1 < µ2 (see, e.g., Drábek,
Kufner, and Nicolosi [8], Theorem 3.1 and Lemma 3.9). Hence if λ0 > µ1

(respectively λ∞ > µ1) is given, there always exists l ≥ 2 such that µl−1 <
λ0 < µl (or µl−1 < λ∞ < µl). If l = 1 or 2, the conclusions above are known.
Moreover, in these cases µ̃l = µl and hypothesis (1.3) is unnecessary (see
Dancer and Perera [5]). We suspect that (1.3) is unnecessary and one can
take µ̃l = µl also if l ≥ 3.

When f is odd in t we will also prove the following multiplicity result.

Theorem 1.2. Assume that f is odd in t for all x. Then problem (1.1) has

m − l pairs of nontrivial solutions if

(i) µl−1 < λ0 < µl ≤ µm−1 < λ∞ < µm, or

(ii) µl−1 < λ∞ < µl ≤ µm−1 < λ0 < µm.

Case (i) of Theorem 1.2 generalizes a recent result of Li and Zhou [10]
where it was assumed that λ0 = 0 and a different sequence of numbers ≥ µl

(not necessarily eigenvalues) was used.

2 Cohomological Index

Let W be a Banach space and let A denote the class of symmetric subsets
of W . Fadell and Rabinowitz constructed an index theory i : A → N∪{0,∞}
with the following properties ([9], Sections 5 and 6, see also Bartsch [2],
Example 4.4 and Remark 4.6):

(i) Definiteness: i(A) = 0 ⇐⇒ A = ∅.

(ii) Monotonicity: If there is an odd map A → A′, then

i(A) ≤ i(A′). (2.1)

In particular, equality holds if A and A′ are homeomorphic.

(iii) Subadditivity: i(A ∪ A′) ≤ i(A) + i(A′).
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(iv) Continuity: If A is closed, then there is a closed neighborhood N ∈ A
of A such that

i(N) = i(A). (2.2)

(v) Neighborhood of zero: If U is a bounded symmetric neighborhood of 0
in W , then

i(∂U) = dim W. (2.3)

(vi) Stability: If A is closed and A ∗Z2 is the join of A with Z2, realized in
W ⊕ R, then

i(A ∗ Z2) = i(A) + 1. (2.4)

(vii) Piercing property: If A, A0, A1 are closed and ϕ : A × [0, 1] → A0 ∪ A1

is an odd map such that ϕ(A × [0, 1]) is closed, ϕ(A × {0}) ⊂ A0,
ϕ(A × {1}) ⊂ A1, then

i(ϕ(A × [0, 1]) ∩ A0 ∩ A1) ≥ i(A). (2.5)

For a definition of join A ∗ B we refer, e.g., to Bartsch [2]. Here we only
recall that if Z2 = {1,−1} ⊂ R, then A ∗Z2 is the union of all line segments
in W⊕R, joining {1} and {−1} to points of A. Hence A∗Z2 is the suspension
of A.

Note that i(A) ≤ γ(A), where γ denotes the Krasnoselskii genus. Indeed,
if γ(A) = k < ∞, then there exists an odd map A → Sk−1, hence by (ii)
and (v), i(A) ≤ i(Sk−1) = k. We also note that for compact A the Fadell-
Rabinowitz index is equivalent to that of Yang [9].

3 Variational Eigenvalues

Let W 1,p
0 (Ω) be the usual Sobolev space, normed by

‖u‖ :=

(∫

Ω

|∇u|p
)1/p

. (3.1)
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We see from the Lagrange multiplier rule that the Dirichlet eigenvalues of
the p-Laplacian are the critical values of the functional

I(u) =
1∫

Ω

|u|p
, u ∈ S :=

{
u ∈ W = W 1, p

0 (Ω) : ‖u‖ = 1
}
. (3.2)

We use the customary notation

Ic :=
{
u ∈ S : I(u) ≤ c

}
, Ic :=

{
u ∈ S : I(u) ≥ c

}
. (3.3)

Note for further reference that if u 6= 0, then

u

‖u‖
∈ Ic ⇐⇒

∫

Ω

|∇u|p ≤ c

∫

Ω

|u|p (3.4)

and

u

‖u‖
∈ Ic ⇐⇒

∫

Ω

|∇u|p ≥ c

∫

Ω

|u|p. (3.5)

Lemma 3.1. I satisfies the Palais-Smale compactness condition (PS), i.e.,

every sequence {uj} such that {I(uj)} is bounded and I ′(uj) → 0, called a

Palais-Smale sequence, has a convergent subsequence.

Proof. Since ‖uj‖ = 1 for all j, for a subsequence, uj converges to some u
weakly in W and strongly in Lp(Ω). Moreover, u 6= 0 as {I(uj)} is bounded.
Let

J(u) := ‖u‖p and Ĩ(u) :=
1∫

Ω

|u|p
, u ∈ W \ {0}. (3.6)

Then there exists a sequence {νj} ⊂ R such that

I ′(uj) = Ĩ ′(uj) − νjJ
′(uj) → 0 (3.7)

(cf. Willem [13], Proposition 5.12). Since

〈Ĩ ′(uj), uj〉 = −p Ĩ(uj) and 〈J ′(uj), uj〉 = p ‖uj‖
p = p, (3.8)

νj = −Ĩ(uj) → −Ĩ(u) 6= 0. Moreover, J ′ has a continuous inverse (see, e.g.,
Drábek, Kufner, and Nicolosi [8], Lemma 3.3), so it follows from follows from
(3.7) that uj → u.
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Denote by A the class of compact symmetric subsets of S, let

Fl :=
{
A ∈ A : i(A) ≥ l

}
, (3.9)

and set

µl := inf
A∈Fl

max
u∈A

I(u). (3.10)

Proposition 3.2. µl is an eigenvalue of −∆p and µl ↗ ∞.

Proof. Note first that critical values of I coincide with eigenvalues of −∆p.
If µl is not a critical value of I, then there is an ε > 0 and an odd homeomor-
phism η of S such that η(Iµl+ε) ⊂ Iµl−ε by the first deformation lemma. Let
us remark here that since S is of class C1 but not C1,1 if 1 < p < 2, the stan-
dard deformation lemma cannot be used. However, a more general version
of it, see, e.g., Corvellec, Degiovanni, and Marzocchi [4] does apply in our
situation. Taking A ∈ Fl with max I(A) ≤ µl + ε, we have A′ = η(A) ∈ Fl,
but max I(A′) ≤ µl − ε, contradicting (3.10).

Clearly, µl+1 ≥ µl. To see that µl → ∞, recall that this holds for the
Ljusternik-Schnirelmann eigenvalues λl defined using the genus γ (see, e.g.,
Struwe [12]). But i(A) ≤ γ(A), so µl ≥ λl.

If µl−1 < µl and ε0 ∈ (0, µl − µl−1), take A0 ∈ Fl−1 with A0 ⊂ Iµl−1+ε0/2,
let

G :=
{

g ∈ C(CA0, S) : g|A0
= id

}
, (3.11)

where CA0 = (A0 × [0, 1])/(A0 × {1}) is the cone over A0, and set

µ̃l := inf
g∈G

max
u∈g(CA0)

I(u). (3.12)

Proposition 3.3. µ̃l ≥ µl is an eigenvalue of −∆p.

Proof. Let g ∈ G. Regarding A0 ∗ Z2 as the suspension of A0, g can be
extended to an odd map g̃ ∈ C(A0 ∗ Z2, S). Then g̃(A0 ∗ Z2) ∈ A and

i(g̃(A0 ∗ Z2)) ≥ i(A0 ∗ Z2) = i(A0) + 1 ≥ l, (3.13)

so

max I(g(CA0)) = max I(g̃(A0 ∗ Z2)) ≥ µl. (3.14)

It follows that µ̃l ≥ µl.
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If µ̃l is not a critical value of I, then there is an ε ∈ (0, µ̃l − µl−1 − ε0/2)
and an odd homeomorphism η of S such that η|A0

= id and η(I
�

µl+ε) ⊂ I
�

µl−ε.
Taking g ∈ G with max I(g(CA0)) ≤ µ̃l + ε, we have g′ = η ◦ g ∈ G, but
max I(g′(CA0)) ≤ µ̃l − ε, contradicting (3.12).

4 Variational Setting

Solutions of (1.1) are the critical points of

Φ(u) =

∫

Ω

|∇u|p − p F (x, u), u ∈ W. (4.1)

Lemma 4.1. Φ satisfies (PS).

Proof. First we show that every Palais-Smale sequence {uj} is bounded. Sup-
pose that ρj = ‖uj‖ → ∞ for a subsequence. Setting vj = uj/ρj and passing
to a further subsequence, vj converges to some v weakly in W and strongly
in Lp(Ω). We have

1

ρp−1
j

〈Φ′(uj), w〉 = 〈J ′(vj), w〉 − p

∫

Ω

f(x, uj)

|uj|p−2uj
|vj|

p−2 vj w → 0. (4.2)

If vj ⇀ 0, then it follows from (4.2) with w = vj that p = p ‖vj‖
p =

〈J ′(vj), vj〉 → 0. Hence v 6= 0. For each w ∈ W , passing to the limit in
(4.2) gives

∫

Ω

|∇v|p−2 ∇v · ∇w − λ∞ |v|p−2 v w = 0, (4.3)

so λ∞ is an eigenvalue of −∆p, contrary to our assumption.
Since {uj} is bounded, for a subsequence, uj converges to some u weakly

in W and strongly in Lp(Ω). We have

〈Φ′(uj), w〉 = 〈J ′(uj), w〉 − p

∫

Ω

f(x, uj) w → 0, (4.4)

so uj → u (recall J ′ has a continuous inverse).

Let

Φ0(u) :=

∫

Ω

|∇u|p − λ0 |u|
p, Φ∞(u) :=

∫

Ω

|∇u|p − λ∞ |u|p. (4.5)

In the proofs of Theorems 1.1 and 1.2 it will be convenient to replace Φ by
the functional Φ̃ defined below.
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Proposition 4.2. For all sufficiently small ρ > 0 and sufficiently large

R > 4ρ, there is a functional Φ̃ ∈ C1(W, R) such that

(i) Φ̃(u) =





Φ0(u), ‖u‖ ≤ ρ,

Φ(u), 2ρ ≤ ‖u‖ ≤ R/2,

Φ∞(u), ‖u‖ ≥ R,

(ii) u = 0 is the only critical point of Φ and Φ̃ with ‖u‖ ≤ 2ρ or ‖u‖ ≥ R/2,

in particular, critical points of Φ̃ are the solutions of (1.1),

(iii) Φ̃ satisfies (PS),

(iv) Φ̃(u) ≤

∫

Ω

|∇u|p − (µl−1 + ε0) |u|
p for all u if (1.3) holds,

(v) Φ̃ is even if f is odd in t for all x.

Proof. Since λ0, λ∞ /∈ σ(−∆p), Φ0 and Φ∞ satisfy (PS) and have no critical
points with ‖u‖ = 1, so

δ0 := inf
‖u‖=1

‖Φ′
0(u)‖ > 0, δ∞ := inf

‖u‖=1
‖Φ′

∞(u)‖ > 0, (4.6)

and

inf
‖u‖=ρ

‖Φ′
0(u)‖ = ρp−1 δ0, inf

‖u‖=R
‖Φ′

∞(u)‖ = Rp−1 δ∞ (4.7)

by homogeneity. Let

Ψ0(u) = −

∫

Ω

p F (x, u) − λ0 |u|
p, Ψ∞(u) = −

∫

Ω

p F (x, u) − λ∞ |u|p.

(4.8)

By (1.2),

sup
‖u‖=ρ

|Ψ0(u)| = o(ρp), sup
‖u‖=R

|Ψ∞(u)| = o(Rp) (4.9)

and

sup
‖u‖=ρ

‖Ψ′
0(u)‖ = o(ρp−1), sup

‖u‖=R

‖Ψ′
∞(u)‖ = o(Rp−1) (4.10)
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as ρ → 0 and R → ∞. Since Φ = Φ0 + Ψ0 = Φ∞ + Ψ∞, it follows from (4.7)
and (4.10) that

inf
‖u‖=ρ

‖Φ′(u)‖ = ρp−1(δ0 + o(1)), inf
‖u‖=R

‖Φ′(u)‖ = Rp−1(δ∞ + o(1)).

(4.11)

Take smooth functions ϕ0, ϕ∞ : [0,∞) → [0, 1] such that

ϕ0(t) =

{
1, t ≤ 1,

0, t ≥ 2,
ϕ∞(t) =

{
0, t ≤ 1/2,

1, t ≥ 1
(4.12)

and set

Φ̃(u) = Φ(u) − ϕ0(‖u‖/ρ) Ψ0(u) − ϕ∞(‖u‖/R) Ψ∞(u). (4.13)

Since

‖d(ϕ0(‖u‖/ρ))‖ = O(ρ−1), ‖d(ϕ∞(‖u‖/R))‖ = O(R−1), (4.14)

(4.11) holds with Φ replaced by Φ̃ also, and (i) and (ii) follow.

By construction, ‖Φ̃′‖ is bounded away from 0 for ρ ≤ ‖u‖ ≤ 2ρ and

‖u‖ ≥ R/2, so every Palais-Smale sequence for Φ̃ has a subsequence in
‖u‖ < ρ or 2ρ < ‖u‖ < R/2, which is then a Palais-Smale sequence for Φ0

or Φ, respectively.
To see (iv), note that

Φ̃(u) =

∫

Ω

|∇u|p −
(
λ0 ϕ0(‖u‖/ρ) + λ∞ ϕ∞(‖u‖/R)

)
|u|p

− p
(
1 − ϕ0(‖u‖/ρ) − ϕ∞(‖u‖/R)

)
F (x, u), (4.15)

1 − ϕ0(‖u‖/ρ) − ϕ∞(‖u‖/R) ≥ 0 for all u, and λ0, λ∞ ≥ µl−1 + ε0 if (1.3)
holds. (v) is clear.

5 Proof of Theorem 1.1

Let A be a closed subset of a metric space K, B a closed subset of W ,
A 6= ∅ 6= B, and let f ∈ C(A, W ) be a map such that f(A) ∩ B = ∅. We
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shall say that (A, f) links B with respect to K if γ(K) ∩ B 6= ∅ for every
map γ ∈ C(K, W ), γ|A = f . If A ⊂ K ⊂ W and f is the identity map on A,
then we say A links B.

Suppose (A, f) links B with respect to K and sup Φ̃(f(A)) < inf Φ̃(B),
then

c := inf
γ∈C(K,W )

γ|A=f

sup
z∈K

Φ̃(γ(z)) ≥ inf Φ̃(B) (5.1)

is a critical value of Φ̃ according to a general minimax principle (see, e.g.,
Willem [13]).

5.1 Case (i)

Take g ∈ G, g(CA0) ⊂ Iλ∞ . Then, employing (iv) of Proposition 4.2 and
(3.4),

Φ̃(u) ≤

∫

Ω

|∇u|p − (µl−1 + ε0) |u|
p ≤ 0,

u

‖u‖
∈ A0 (5.2)

(recall A0 ∈ Fl−1, A0 ⊂ Iµl−1+ε0/2) and, since g(CA0) ⊂ Iλ∞ ,

Φ̃(u) = Φ∞(u) ≤ 0, ‖u‖ = R,
u

R
∈ g(CA0) (5.3)

by (3.4) again (here ρ and R are as in Proposition 4.2). We may regard W
as a subspace of W ⊕ R and we may assume CA0 is a (geometric) cone over
A0 in W ⊕ R, with vertex at some point /∈ W . Let

A1 =

{
tu : u ∈ A0, t ∈ [0, 1]

}
, A = A1 ∪ CA0 (5.4)

and f(z) = Rz for z ∈ A1, f(z) = Rg(z) for z ∈ CA0. Since g|A0
= id, f is

well defined. By (5.2) and (5.3), Φ̃(f(z)) ≤ 0 whenever z ∈ A. On the other
hand, by (3.5),

Φ̃(u) = Φ0(u) ≥

(
1 −

λ0

µl

)
ρp > 0 (5.5)

on

B =

{
u ∈ Sρ :

u

ρ
∈ Iµl

}
, (5.6)
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where Sρ =
{
u ∈ W : ‖u‖ = ρ

}
. We will complete the proof by showing

that (A, f) links B with respect to

K =

{
tz : z ∈ A, t ∈ [0, 1]

}
(5.7)

and hence Φ̃ has a positive critical value c.
Any γ ∈ C(K, W ) such that γ|A = f can be extended to an odd map γ̃

on

K̃ =

{
tz : z ∈ Ã, t ∈ [0, 1]

}
, (5.8)

where Ã := A1 ∪CA0 ∪ (−CA0) = A1 ∪ (A0 ∗Z2) and it suffices to show that

γ̃(K̃) ∩ B 6= ∅. (5.9)

We note that γ̃(0) = 0 (by oddness), γ̃|A0∗
�

2
= Rg̃, where g̃ is as in the proof

of Proposition 3.3, and K̃ =

{
tz : z ∈ A0 ∗ Z2, t ∈ [0, 1]

}
. Applying the

piercing property to

C = A0 ∗ Z2, C0 = Bρ, C1 = W \ Bρ, (5.10)

where Bρ =
{

u ∈ W : ‖u‖ < ρ
}

, and

ϕ : C × [0, 1] → C0 ∪ C1, (z, t) 7→ γ̃(tz) (5.11)

gives

i(γ̃(K̃) ∩ Sρ) = i(ϕ(C × [0, 1]) ∩ C0 ∩ C1) ≥ i(C) = i(A0 ∗ Z2) ≥ l
(5.12)

by (3.13), so

max
u∈

�

γ(
�

K)∩Sρ

I

(
u

ρ

)
≥ µl (5.13)

and (5.9) follows.
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5.2 Case (ii)

We have

Φ̃(u) = Φ∞(u) ≥

(
1 −

λ∞

µl

)
Rp, ‖u‖ ≥ R,

u

‖u‖
∈ Iµl

(5.14)

(by (3.5)) and Φ̃ is bounded on bounded sets, so Φ̃ is bounded below on

B =

{
tu : u ∈ Iµl

, t ≥ 0

}
. (5.15)

On the other hand,

Φ̃(u) = Φ∞(u) ≤ −

(
λ∞

µl−1 + ε0/2
− 1

)
‖u‖p, ‖u‖ ≥ R,

u

‖u‖
∈ A0

(5.16)

and the coefficient of ‖u‖p is negative since λ∞ ≥ µl−1 + ε0, so taking

A =

{
u ∈ SR′ :

u

R′
∈ A0

}
(5.17)

with R′ ≥ R sufficiently large, max Φ̃(A) < inf Φ̃(B). We will complete the
proof by showing that A links B with respect to

K =

{
tu : u ∈ A, t ∈ [0, 1]

}
(5.18)

and that the critical value c defined by (5.1) is negative.
Let γ ∈ C(K, W ), γ|A = id. We are done if 0 ∈ γ(K), so suppose not.

Then the map

g(u, t) =
γ(R′(1 − t) u)

‖γ(R′(1 − t) u)‖
, (u, t) ∈ CA0 (5.19)

is in G, and it suffices to show that

g(CA0) ∩ B 6= ∅. (5.20)

But max I(g(CA0)) ≥ µl by (3.14), so (5.20) follows.
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To see that c < 0, take ε ∈ (0, λ0 − µ̃l) and g ∈ G, g(CA0) ⊂ I
�

µl+ε. Then

Φ̃(u) ≤ −
ε0/2

µl−1 + ε0/2
ρp < 0,

u

‖u‖
∈ A0, ‖u‖ ≥ ρ (5.21)

by (iv) of Proposition 4.2 and (3.4), and

Φ̃(u) = Φ0(u) ≤ −

(
λ0

µ̃l + ε
− 1

)
ρp < 0, ‖u‖ = ρ,

u

ρ
∈ g(CA0),

(5.22)

so max Φ̃(γ(K)) < 0 for

γ(tu) =

{
ρ g(u/‖u‖, 1− R′t/ρ), 0 ≤ t ≤ ρ/R′,

tu, ρ/R′ ≤ t ≤ 1.
(5.23)

5.3 ODE Case

Let Ω = (0, 1). The spectrum in this case consists of a sequence of simple
eigenvalues λl ↗ ∞ given by the usual minimax scheme involving the genus,
and the eigenfunction ϕl of λl has exactly l nodal domains (see, e.g., Drábek
[7], Theorem 11.3, or del Pino, Elgueta, and Manásevich [6]).

As we noted in the proof of Proposition 3.2, µl ≥ λl. Let ξj = ϕl on the
j-th nodal domain of ϕl and 0 everywhere else in (0, 1). Then I = λl on the
(l − 1)-sphere S l−1 = S ∩ span {ξ1, . . . , ξl} ∈ Fl, so µl = λl.

To see that µ̃l = λl, let ε0 ∈ (0, λl − λl−1) and let Sl−1
+ be the hemisphere

of Sl−1 that contains ϕl and has boundary S l−2 = Sl−1 ∩ span {ξ1, . . . , ξl−1}.
Since ±ϕl /∈ Sl−2 and I has no critical values in [λl−1 + ε0/2, λl), there
is an odd homeomorphism η of S such that A0 = η(Sl−2) ⊂ Iλl−1+ε0/2 and
η(Sl−1

+ ) ⊂ Iλl by a repeated application of the first deformation lemma. Then
the map

g(u, t) = η

(
(1 − t) η−1(u) + tϕl

‖(1 − t) η−1(u) + tϕl‖

)
, (u, t) ∈ CA0 (5.24)

is in G and I ≤ λl on g(CA0) = η(Sl−1
+ ).
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6 Proof of Theorem 1.2

6.1 Case (i)

Denote by A the class of compact symmetric subsets of W and by Γ the
group of odd homeomorphisms γ of W such that γ| �

Φ0 = id, let

i∗(A) := min
γ∈Γ

i(γ(A) ∩ Sρ), A ∈ A, (6.1)

where ρ is as in Proposition 4.2, be the pseudo-index of Benci [3] related to
i, Sρ, and Γ, and set

cj := inf
A∈A

i∗(A)≥j

max
u∈A

Φ̃(u), j = l, . . . , m − 1. (6.2)

We will show that 0 < cl ≤ · · · ≤ cm−1 < +∞ and hence Φ̃ has m − l pairs
of nontrivial critical points (see Benci [3]).

If i∗(A) ≥ l, then i(A ∩ Sρ) ≥ l, so

max
u∈A∩Sρ

I

(
u

ρ

)
≥ µl (6.3)

and hence

max
u∈A

Φ̃(u) ≥ max
u∈A∩Sρ

Φ0(u) ≥

(
1 −

λ0

µl

)
ρp > 0. (6.4)

It follows that cl > 0.
To show that cm−1 is well defined and finite, we construct a set A ∈ A

with i∗(A) ≥ m − 1. Take A0 ∈ Fm−1, A0 ⊂ Iλ∞ and let

A =

{
tu : ‖u‖ = R,

u

R
∈ A0, t ∈ [0, 1]

}
. (6.5)

Then Φ̃ = Φ∞ ≤ 0 on

∂A =

{
u : ‖u‖ = R,

u

R
∈ A0

}
, (6.6)

so for any γ ∈ Γ, γ|∂A = id and hence applying the piercing property to

C = ∂A, C0 = Bρ, C1 = W \ Bρ (6.7)
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and

ϕ : C × [0, 1] → C0 ∪ C1, (u, t) 7→ γ(tu) (6.8)

gives

i(γ(A) ∩ Sρ) = i(ϕ(C × [0, 1]) ∩ C0 ∩ C1) ≥ i(C) = i(A0) ≥ m − 1.
(6.9)

6.2 Case (ii)

Set

cj := inf
A∈A

i(A)≥j

max
u∈A

Φ̃(u), j = l, . . . , m − 1. (6.10)

We will show that −∞ < cl ≤ · · · ≤ cm−1 < 0 and hence Φ̃ has m − l pairs
of nontrivial critical points (see, e.g., Rabinowitz [11]).

Take ε ∈ (0, λ0 − µm−1) and A0 ∈ Fm−1, A0 ⊂ Iµm−1+ε and let

A =

{
u ∈ Sρ :

u

ρ
∈ A0

}
. (6.11)

Then i(A) ≥ m − 1 and

Φ̃(u) = Φ0(u) ≤ −

(
λ0

µm−1 + ε
− 1

)
ρp < 0 (6.12)

on A, so cm−1 < 0.
We claim that cl ≥ inf Φ̃(BR). If not, take A ∈ A, i(A) ≥ l with

max Φ̃(A) < inf Φ̃(BR) < 0. Then A ⊂ W \ BR, so

Φ∞(u) = Φ̃(u) < 0, u ∈ A (6.13)

and hence I < λ∞ < µl on

A0 =

{
u

‖u‖
: u ∈ A

}
∈ Fl, (6.14)

contradicting (3.10).
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