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Abstract

Here we prove a Hardy-type inequality in the upper half-space which
generalize an inequality originally proved by V. G. Maz’ya (see [10], p. 99).
Here we present a different proof, which enable us to improve the constant
in front of the remainder term. We will also generalize the inequality to
the L

p case.

1 Introduction

There are many Hardy inequalities that can be called classical, see for example
[4],[5],[9], or [10]. They are all, in some way, generalizations of the original
inequality by G. Hardy [6].
Hardy inequalities are, in general, not sharp in the sense that there exist no
extremal functions. Remainder terms might therefore be added to improve the
inequalities. Those terms can be of many different forms.
The problem of improving the remainder terms has received much attention
during the last decade and many articles have been written on the subject.

Some results concerning a type of Hardy inequality involving the distance to
the boundary were obtained in [1], [3], [7] and [11]. These inequalities are all
improvements and generalizations of the inequality

∫

Ω

|∇u|2dx ≥
1

4

∫

Ω

|u|2

δ(x)2
dx u ∈ C∞

0 (Ω),

where δ(x) = dist(x, ∂Ω) and Ω is a convex domain in R
n.

Here we shall obtain an estimate for a remainder term for a special case
suggested by a result of V. G. Maz’ya.

In the well known book ‘Sobolev Spaces’ by V. G. Maz’ya [10], the following
inequality is derived
∫

Rn

|xn|
p−1|∇u(x)|pdx ≥

1

(2p)p

∫

Rn

|u(x)|p

(x2
n−1 + x2

n)
1
2

dx, u ∈ C∞
0 (Rn). (1.1)
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If p = 2 and one substitutes u(x) = |xn|
−1/2v(x) into (1.1) one gets

∫

Rn

|∇u|2dx ≥
1

4

∫

Rn

v2dx

x2
n

+
1

16

∫

Rn

v2dx

(x2
n−1 + x2

n)
1
2 |xn|

, (1.2)

valid for all v ∈ C∞
0 (Rn) that vanishes for xn = 0.

Here we will derive (1.2) (but with the constant 1/16 replaced by 1/8) using a
different method, which is partly based on techniques from [2]. Notice that, in
the case p = 2, this will improve inequality (1.1) as well.

It is an open problem, formulated by V. G. Maz’ya, whether the following
generalization of the above inequality holds or not :

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx + α(p, τ)

∫

R
n
+

|u|p

xp−τ
n (x2

n−1 + x2
n)

τ
2

dx,

where p > 1, τ > 0, α(p, τ) is a positive constant and u ∈ C∞
0 (Rn

+).
Here we will answer the question affirmative.

The paper will be organized in the following way.
First, we prove the original L2 inequality, with the improved constant.
Then we prove the theorem for p > 1 and τ = 1. The proof will be slightly
different from the general case and gives us better constants in this particular
case.
At last we present a proof of the general τ -version.

2 Auxiliary results

Let
δ(x) = dist(x, ∂Ω).

Our starting point will be the following lemma.

Lemma 2.1. Let u ∈ C∞
0 (Ω), d ∈ (−∞, mp − 1) where m ∈ N+ and let

F = (F1, . . . , Fn) be a vector field in R
n with components in C1(Ω).

Furthermore, let w(x) ∈ C1(Ω) be a nonnegative weight function and

hp,m,d =

(

mp − d − 1

p

)p

,

then

∫

Ω

|∇u|p · w

δ(m−1)p−d
dx ≥ hp,m,d

(∫

Ω

|u|p · w

δmp−d
−

p · |u|p∆δ · w

(mp − d − 1)δmp−d−1
dx

)

+ hp,m,d

∫

Ω

(

p · divF

mp − d − 1
+

(p − 1)

δmp−d

(

1 −
∣

∣∇δ − δmp−d−1F
∣

∣

p

p−1

)

)

|u|p · wdx

+

(

np − d − 1

p

)p−1 ∫

Ω

∇w ·

(

F −
∇δ

δnp−d−1

)

dx. (2.1)
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Proof. Hölders inequality and partial integration gives

pp

∫

Ω

|∇u|p · w

δ(m−1)p−d
dx ·

(

∫

Ω

∣

∣

∣

∣

∇δ

δm(p−1)+ d
p
−d

− δm−1− d
p F

∣

∣

∣

∣

p

p−1

|u|p · wdx

)p−1

≥ pp

∣

∣

∣

∣

∫

Ω

(

∇δ · w

δmp−d−1
− F · w

)

(sign u)|u|p−1 · ∇udx

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∫

Ω

((

mp − d − 1

δmp−d
−

∆δ

δmp−d−1
+ divF

)

w + ∇w

(

F −
∇δ

δnp−d−1

))

|u|pdx

∣

∣

∣

∣

p

.

By factoring out the constant (mp − d − 1)p from the R.H.S. and applying the

ineq. |A|p

Bp−1 ≥ pA − (p − 1)B (B > 0) to the resulting inequality, we get (2.1)
and the proof is complete.

Corollary 2.1. Let the notation be as in the above lemma, then
∫

Ω

|∇u|p · w

δ(m−1)p−d
dx ≥ hp,m,d

∫

Ω

|u|p · w

δmp−d
dx

−

(

np − d − 1

p

)p−1 ∫

Ω

(

∆δ · w

δnp−d−1
+

∇w · ∇δ

δnp−d−1

)

|u|pdx

Proof. Simply put F ≡ 0 in the previous lemma.

Notice that if we also require that Ω should be convex and ∇w · ∇δ ≤ 0, then
both terms occuring in the last integral on the R.H.S. in the corollary become
nonpositive.
The corollary is, in general, a very rough estimate and can be improved by
choosing the vector field F differently. The most suitable F , of course, depend
on the domain in question and what type of remainder terms we wish to
obtain.
It should be noted however, that the constant, hp,m,d in front of the main term
cannot be improved (see [5]), at least if we don’t want it to depend on the
dimension n.

We will also need some simple lemmas :

Lemma 2.2. Let −1 ≤ x ≤ 0 and α ≥ 2, then

(1 + x)α ≤ 1 + αx +
α(α − 1)

2
x2.

Proof. Taylor expansion of (1 + x)α around 0 gives

(1 + x)α = 1 + αx +
α(α − 1)

2
x2 + α(α − 1)(α − 2)(1 + ξx)α−3 x3

6
,

where 0 ≤ ξ ≤ 1. The last term is non positive if −1 ≤ x ≤ 0.

Lemma 2.3. Let −1 ≤ x ≤ ∞ and α ≤ 2, then

(1 + x)α ≤ 1 + αx +
α

2
x2.

Proof.

(1 + x)α = (1 + 2x + x2)
α
2 ≤ 1 +

α

2
(2x + x2) = 1 + αx +

α

2
x2,

according to a variant of Bernoulli’s inequality.
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3 Improvement of the constant in inequality

(1.2)

We will, in the next section, generalize the proof here, to prove a Lp variant of
the inequality. The L2 case will then follow from the general Lp ineqality, but
since the proof is easier and shorter in the L2 case, I present it here before I
proceed to the more general case.

Lemma 3.1. Let u ∈ C∞
0 (Rn

+), where R
n
+ = {x1, . . . , xn : xn > 0}, then we

have
∫

R
n
+

|∇u|2dx ≥
1

4

∫

R
n
+

|u|2

x2
n

dx +
1

4

∫

R
n
+

|u|2

x2
n−1 + x2

n

dx

Proof. Apply lemma 2.1 to the case where Ω = R
n
+, p = 2, m = 0, w ≡ 1 and

F =

(

0, . . . , 0,
xn−1

x2
n−1 + x2

n

,
xn

x2
n−1 + x2

n

)

.

Lemma 3.2. Let u ∈ C∞
0 (Rn

+), where R
n
+ = {x1, . . . , xn : xn > 0} and a ≥ 0,

then
∫

R
n
+

|∇u|2dx ≥
1

4

∫

R
n
+

|u|2

x2
n

dx +
a

2

∫

R
n
+

|u|2

xn(x2
n−1 + x2

n)
1
2

dx (3.1)

−
(a2 + 2a)

4

∫

R
n
+

|u|2

x2
n−1 + x2

n

dx (3.2)

Proof. Now apply lemma 2.1 to the case where Ω = R
n
+, p = 2, m = 0, w ≡ 1

and

F =

(

0, . . . , 0,
a

(x2
n−1 + x2

n)
1
2

)

and use the simple estimate

divF =
−axn

(x2
n−1 + x2

n)
3
2

≥
−a

x2
n−1 + x2

n

to get inequality (3.2).

Corollary 3.1. Let u be as in the above lemma. Then the following inequality

holds
∫

R
n
+

|∇u|2dx ≥
1

4

∫

R
n
+

|u|2

x2
n

dx +
1

8

∫

R
n
+

|u|2

xn(x2
n−1 + x2

n)
1
2

dx.

Proof. Multiply the inequality in lemma (3.1) by a2 + 2a and add the result to
the inequality in lemma (3.2) to get

∫

R
n
+

|∇u|2dx ≥
1

4

∫

R
n
+

|u|2

x2
n

dx +
a

2(a2 + 2a + 1)

∫

R
n
+

|u|2

xn(x2
n−1 + x2

n)
1
2

dx.

The maximum value of the expression in front of the second integral on the
right side is obtained when a = 1 and equals 1

8 .
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4 L
p inequalities

We will now prove an analogous inequality for Lp.

The special case of lemma 2.1 when m = 1, d = 0 and w ≡ 1 gives

∫

Ω

|∇u|pdx ≥

(

p − 1

p

)p ∫

Ω

|u|p

δp
dx +

(

p − 1

p

)p

·

·

∫

R
n
+

(

p

p − 1
· divF −

p · ∆δ

(p − 1)δ
+

(p − 1)

δp

(

1−
∣

∣∇δ − δp−1F
∣

∣

p−1
p

))

|u|pdx.

(4.1)
We will apply this inequality to two different vector fields F and then add the
corresponding inequalities to get our desired result. As before, let
Ω = R

n
+, δ = xn. Substituting this into (4.1) gives

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx +

(

p − 1

p

)p

·

·

∫

R
n
+

(

p

p − 1
· divF +

(p − 1)

xp
n

(

1 −
∣

∣(0, . . . , 0, 1)− xp−1
n F

∣

∣

p−1
p

))

|u|pdx. (4.2)

This inequality will be our starting point when we prove the following theorem.

Theorem 4.1. Let Ω = R
n
+ and u ∈ C∞

0 (Ω), then

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx

+ D(p)

(

p − 1

p

)p−1 ∫

R
n
+

|u|p

xp−1
n (x2

n−1 + x2
n)

1
2

dx,

where

D(p) =

{

2
2+3p if 1 < p < 2

1
4(p−1) if p ≥ 2

.

Proof. We will split the proof into two parts, corresponding to different
inequalities. Each part, will in turn, be divided into two cases depending on
whether 1 < p < 2 or p ≥ 2. The inequalities in the two parts will then be
combined to prove the theorem.
Let

mp =

(

p − 1

p

)p−1

.

Part 1 :
Apply inequality (4.1) to the vector field

F =

(

0, . . . , 0,
ap

xp−2
n (x2

n−1 + x2
n)

1
2

)

, 0 ≤ ap ≤ 1

5



and note that

p · divF

p − 1
=

app · (2 − p)

(p − 1)xp−1
n (x2

n−1 + x2
n)

1
2

−
app · x3−p

n

(p − 1)(x2
n−1 + x2

n)
3
2

≥
app · (2 − p)

(p − 1)xp−1
n (x2

n−1 + x2
n)

1
2

−
ap · p

(p − 1)xp−2
n (x2

n−1 + x2
n)

.

Now we must estimate the expression

p − 1

δp

(

1 −
∣

∣(0, . . . , 0, 1) − δp−1F
∣

∣

p
p−1

)

=
p − 1

xp
n



1 −

(

1 −
ap · xn

(x2
n−1 + x2

n)
1
2

)
p

p−1



 . (4.3)

Case 1. 1 < p < 2
Lemma 2.2 enables us to estimate (4.3) from below by

ap · p

xp−1
n (x2

n−1 + x2
n)

1
2

−
1

2

p

p − 1

a2
p

xp−2
n (x2

n−1 + x2
n)

.

Altogether, (4.2) and the above estimates leads to the inequality

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx + ap · mp

∫

R
n
+

|u|p

xp−1
n (x2

n−1 + x2
n)

1
2

dx

−

(

ap +
a2

p

2

)

mp

∫

R
n
+

|u|p

xp−2
n (x2

n−1 + x2
n)

. (4.4)

Case 2. p ≥ 2
By lemma 2.3 one can now show that (4.3) is bounded from below by

ap · p

xp−1
n (x2

n−1 + x2
n)

1
2

−
p

2
·

a2
p

xp−2
n (x2

n−1 + x2
n)

.

In this case our lower estimates of the R.H.S. of (4.2) gives us

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx + ap · mp

∫

R
n
+

|u|p

xp−1
n (x2

n−1 + x2
n)

1
2

dx

−

(

ap + (p − 1)
a2

p

2

)

mp

∫

R
n
+

|u|p

xp−2
n (x2

n−1 + x2
n)

. (4.5)

In the above inequalities, there is a negative term in the R.H.S. which must be
taken care of. This will be done by adding yet another inequality to the above
ones.

Part 2 :
To begin with, consider the vector field

F =

(

0, . . . , 0,
cp · xn−1x

2−p
n

x2
n−1 + x2

n

,
cp · x

3−p
n

x2
n−1 + x2

n

)

, 0 ≤ cp ≤ 1.

6



Direct calculations shows that

p

p − 1
· divF =

cp · (2 − p)p

p − 1

1

xp−2
n (x2

n−1 + x2
n)

and

p − 1

δp

(

1 −
∣

∣∇δ − δp−1F
∣

∣

p

p−1

)

=
p − 1

xp
n



1 −

(

1 +
(c2

p − 2cp)x
2
n

x2
n−1 + x2

n

)
p

2(p−1)



 .

(4.6)
Again, the estimates of the expressions above will be different depending on
whether 1 < p < 2 or p ≥ 2.

Case 1. 1 < p < 2
If we assume −1 ≤ c2

p − 2cp ≤ 0, then (4.6) is not greater than

(p − 1)(2cp − c2
p)

xp−2
n (x2

n−1 + x2
n)

.

If we apply the above estimates to (4.2) we can conclude that the inequality

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx + α(p, cp)

∫

R
n
+

|u|p

xp−2
n (x2

n−1 + x2
n)

dx (4.7)

holds, where

α(p, cp) =
(

(p2 − 2p + 2)cp − (p − 1)2c2
p

) 1

p − 1

(

p − 1

p

)p

.

One may put cp = 1 to get

α(p, 1) =
1

p

(

p − 1

p

)p−1

.

By multiplying this inequality by a suitable (positive) constant and adding the
result to (4.4) we get, after maximizing with respect to the parameter ap

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx

+

(

p − 1

p

)p−1
2

2 + 3p

∫

R
n
+

|u|p

xp−1
n (x2

n−1 + x2
n)

1
2

dx.

Case 2. p ≥ 2
If x ≥ −1 and 0 ≤ α ≤ 1 then

(1 + x)α ≤ 1 + αx

according to a variant of Bernoulli’s inequality. So, if one assume, as in the
case 1 < p < 2, that −1 ≤ c2

p − 2cp ≤ 0, then (4.6) is bounded from below by

(2cp − c2
p)p

2xp−2
n (x2

n−1 + x2
n)

.

7



In this case, our estimates applied to (4.2) gives us

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx + β(p, cp)

∫

R
n
+

|u|p

xp−2
n (x2

n−1 + x2
n)

dx, (4.8)

where

β(p, cp) =
1

2

(

p − 1

p

)p−1
(

(1 − p)c2
p + 2cp

)

.

The choice cp = 1
p−1 maximizes β(p, cp) and

β

(

p,
1

p − 1

)

=
1

2(p − 1)

(

p − 1

p

)p−1

.

This inequality may be multiplied by a (positive) constant which, when added
to (4.5), gives (after maximizing with respect to the parameter ap)

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx

+

(

p − 1

p

)p−1
1

4(p − 1)
∈ tRn

+

|u|p

xp−1
n (x2

n−1 + x2
n)

1
2

dx.

Remark 1. Note that putting p = 2 gives us back our previous inequality with
1
8 as the constant in front of the integral in the remainder term.

Remark 2. It should be noted that the above estimates are very rough and can

probably be improved.

5 A generalized L
p inequality

We will now generalize the above inequalities by introducing a parameter τ .
The proof of this result will be a slightly modified variant of the proof above.

Theorem 5.1. Let 0 < τ ≤ 1 and let Ω = R
n
+ and u be as in the above, then

the following inequality holds

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx + A(p, τ)mp

∫

R
n
+

|u|p

xp−τ
n (x2

n−1 + x2
n)

τ
2

dx,

where

A(p, τ) =

{

τ2

2(1+pτ2) if 1 < p < 2
τ2

2(p−1)(1+2τ2) if p ≥ 2.

Proof. Let

mp =

(

p − 1

p

)p−1

.

8



Recall inequality (4.1), which gives a remainder term of the form

(

p − 1

p

)p ∫

R
n
+

(

p

p − 1
· divF +

(p − 1)

xp
n

(

1 −
∣

∣∇xn − xp−1
n F

∣

∣

p−1
p

))

|u|pdx

(5.1)
in the ordinardy Hardy inequality.
Put

F =

(

0, . . . , 0,
cxτ−p+1

n

(x2
n−1 + x2

n)
τ
2

)

, c = c(τ, p) , 0 ≤ c ≤ 1.

This implies

p · divF

p − 1
=

cp(τ − p + 1)

p − 1

1

xp−τ
n (x2

n−1 + x2
n)

τ
2

−
τcp

p − 1

xτ
n

xp−2
n (x2

n−1 + x2
n)

τ
2 +1

≥
cp(τ − p + 1)

p − 1

1

xp−τ
n (x2

n−1 + x2
n)

τ
2

−
τcp

p − 1

1

xp−2
n (x2

n−1 + x2
n)

.

Furthermore

(p − 1)

xp
n

(

1 −
∣

∣∇xn − xp−1
n F

∣

∣

p−1
p

)

=
(p − 1)

xp
n

(

1 −

(

1 −
cxτ

n

(x2
n−1 + x2

n)
τ
2

)
p−1

p

)

(5.2)
Again, the estimates of this will depend on whether 1 < p < 2 or p ≥ 2.

Case 1. 1 < p < 2
According to lemma 2.2, (5.2) is not greater than

cp

xp−τ
n (x2

n−1 + x2
n)

τ
2

−
c2p

2(p − 1)

1

xp−2τ
n (x2

n−1 + x2
n)τ

≥

≥

(

cp −
c2p

2(p − 1)

)

1

xp−τ
n (x2

n−1 + x2
n)

τ
2

.

In this case, from (5.1), we get

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx

+ mp
τ2

2

∫

R
n
+

|u|p

xp−τ
n (x2

n−1 + x2
n)

τ
2

dx

− mpτ
2

∫

R
n
+

|u|p

xp−2
n (x2

n−1 + x2
n)

dx

after choosing c = τ (which maximizes the expression in front of the second
integral in the R.H.S). By adding the inequality

pτ2

∫

R
n
+

|∇u|pdx ≥ pτ2

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx

+ mpτ
2

∫

R
n
+

|u|p

xp−2
n (x2

n−1 + x2
n)

dx

9



(which was proven in the above) to this one, one gets

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx + B(p, τ)

∫

R
n
+

|u|p

xp−τ
n (x2

n−1 + x2
n)

τ
2

dx,

where

B(p, τ) = mp
τ2

2(1 + pτ2)
.

Case 2. p ≥ 2
By lemma 2.3, (5.2) is greater or equal to

cp

xp−τ
n (x2

n−1 + x2
n)

τ
2

−
cp2

2

1

xp−2τ
n (x2

n−1 + x2
n)τ

≥
cp − pc2

2

xp−τ
n (x2

n−1 + x2
n)

τ
2

.

This leads to the inequality

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx

+ mp
τ2

2(p − 1)

∫

R
n
+

|u|p

xp−τ
n (x2

n−1 + x2
n)

τ
2

dx

− mp
τ2

p − 1

∫

R
n
+

|u|p

xp−2
n (x2

n−1 + x2
n)

dx,

which, when added to

2τ2

∫

R
n
+

|∇u|pdx ≥ 2τ2

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx

+ mp
τ2

p − 1

∫

R
n
+

|u|p

xp−2
n (x2

n−1 + x2
n)

dx

(which also was proven in the above) gives

∫

R
n
+

|∇u|pdx ≥

(

p − 1

p

)p ∫

R
n
+

|u|p

xp
n

dx + C(p, τ)

∫

R
n
+

|u|p

xp−τ
n (x2

n−1 + x2
n)

τ
2

dx,

where

C(p, τ) = mp ·
τ2

2(p − 1)(1 + 2τ2)
.

It should be noted that the constants A(p, τ) are, in general, not optimal,
since for example A(2, 1) = 1

12 and we know that it can be improved to 1
8 .
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