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Interpreting Descriptions

in Intensional Type Theory

Jesper Carlström

Abstract

Calculi of indefinite and definite descriptions are presented, and inter-

preted in Martin-Löf’s intensional type theory. The interpretations are

formalizations of the implicit ideas found in the literature of constructive

mathematics: if we have proved that an element with a certain property

exists, we speak of ’the element such that the property holds’ and refer by

that phrase to the element constructed in the existence proof. In particu-

lar, we deviate from the practice of interpreting descriptions by contextual

definitions.

1 Introduction

There are two kinds of descriptions to be considered in this paper: εxA(x) is an
element such that A(x) and ιxA(x) is the element such that A(x), thus requiring
uniqueness. Formally, εxA(x) is an individual if ∃xA(x) is true, while ιxA(x) is
an individual only if ∀x∀y(A(x) & A(y) ⊃ x = y) is true as well. This difference
is the reason for us to distinguish between εxA(x) and ιxA(x). We say that they
are indefinite and definite descriptions, respectively. It is not quite correct to
expect that this difference should always be reflected in English by the articles
a/an and the. We say things like ‘I met a man. The man was tall’, and refer by
‘the man’ to the man we met, even if there are more than one man in the world
[8]. Hence this occurrence of ‘The man’ is best represented by εxA(x), rather
than by ιxA(x).

We also vary our phrases by saying ‘I met a man, who was tall’ or ‘I met
a man. He was tall’. We will do no attempts to analyze such grammatical
variants, but view them as synonymous to ‘I met a man. The man was tall’.
Thus the representation in natural language of εxA(x) can be ‘he’, ‘who’, ‘it’
etc., as well as the typical one: ‘an element such that A(x)’.

Our main goal is to understand definite descriptions intensionally. That is,
we are not satisfied with a proof that one can live without definite descriptions
by eliminating them, we actually want to carry out an interpretation of them
which explains what they mean. Among constructivists, it is often believed
that this can be done and the aim of this paper is to show that this belief is
indeed correct; but also to investigate how such an interpretation really works,
intensionally.

Therefore, we introduce a ι-calculus and give a formal interpretation into
Martin-Löf’s intensional type theory. However, the hope that this should be a
trivial task is immediately turned down, as we will demonstrate. We simplify
our task by proceeding in two steps. First, we introduce an ε-calculus and show
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how it can be interpreted into intensional type theory. Then, we introduce the

ι-calculus and show that it can be interpreted into the ε-calculus. Interestingly,
the first step relies quite heavily on type-theoretical choice and the strong dis-
junction elimination which is present in Martin-Löf’s type theory. It is an open
problem whether a similar interpretation could be carried out in weaker type
theories, like logic-enriched type theory [2].

ι

// ε // MLTT

Being more general than the ι-calculus, but still interpretable in type theory,
the ε-calculus would be very interesting, was it not the case that it suffers from
some unfamiliar restrictions: modus ponens and existence introduction are not
valid in general. We will explain how this fact is dealt with, and why it is not
a problem in the ι-calculus.

2 The Structure of the Paper

We relate our work to previous work on descriptions in section 3 and discuss
some properties of our calculi. In section 4, we introduce the ε-calculus, which
is extended to include equality in section 5. We then show how this calculus is
interpreted into Martin-Löf’s type theory in section 6, and give some examples
in section 7. Then we introduce the ι-calculus in section 8 and explain how it is
translated into the ε-calculus. We end by some comments about how restricted
quantifiers are interpreted (sect. 9) and how the calculus can be used to treat
partial functions (sect. 10).

3 Background

Russell [9, 10] proposed a contextual definition of descriptions. It interprets the
sentence ‘the father of Charles II. was executed’ as

It is not always false of x that x begat Charles II. and that x was
executed and that “if y begat Charles II., y is identical with x” is
always true of y. [9, p. 482]

The theory makes every proposition of the form P (the present King of France)
false, a fact that Russell considers ‘a great advantage in the present theory’ [p.
482]. In particular, propositions of the form x = x are false according to Russell
if ‘the present King of France’ is substituted for x, and so its negation ∼(x = x)
is instead true.

In [10, pp. 167–180], Russell considers examples like ‘I met a man’ and ‘I met
a unicorn’ and argues that the latter one is as meaningful as the first one, even
if we assume that unicorns do not exist, because it is perfectly clear what the
speaker is trying to communicate. Hence, Russell argues, it must be admitted
that descriptive phrases may be meaningful even if they don’t refer to anything.

In mathematics, however, it is very unusual to use descriptive phrases that do
not refer, even though descriptions as such are very common. At least, it seems
to be practice to require a hypothetical reference, that is, that the description
refer under some condition. This is the case when multiplicative inverses are
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defined by descriptions, as in done by Mines, Richman and Ruitenburg, among
several others:

If a and b are elements of a monoid, and ab = 1, then we say that
a is a left inverse of b and b is a right inverse of a. If b has a left
inverse a and a right inverse c, then a = a(bc) = (ab)c = c; in this
case we say that a is the inverse of b and write a = b−1. If b has an
inverse we say that b is a unit, or that b is invertible. [5, p. 36]

According to this passage, the expression ‘b−1’ is used only when b has an
inverse, and it then refers to this inverse. It is, it seems, not even allowed to use
the expression unless b has an inverse. This is indeed the usual attitude taken
by most mathematicians, in contrast to the attitude advocated by Russell, who
seems to claim (when we have translated his examples to more mathematical
ones) that we need to say things like ‘0−1 does not exist’ and that we have to
consider an expression like ‘∼(0−1 = 2)’ to be a true proposition. It is rather
mathematical practice to consider such expressions meaningless—as ill-formed
propositions. More precisely, a term is considered to make sense only when
it refers to some individual. In order for ‘∼(0−1 = 2)’ to be accepted as a
legitimate proposition, ‘0−1’ must make sense, which it does not unless the ring
under consideration is trivial (a case in which ‘∼(0−1 = 2)’ actually turns out
to be false).

It is also doubtful whether Russell’s argument is acceptable in every-day life.
Russell tries to understand the claim ‘I met a unicorn’ under the assumption that
there are no unicorns. But the claim is clearly inconsistent with that assumption.
It would not make sense to claim that ‘there are no unicorns, but I met one’.
Indeed, the man who thinks that he met a unicorn must be a different one than
the person who believes that there are no unicorns. It therefore appears, that
we must understand the term ‘a unicorn’ under the assumption that there are
unicorns. Further, if the man continues with the sentence ‘Unfortunately, the
unicorn ran away before anyone else saw it’, it is quite obvious that he refers
by ‘the unicorn’ to the unicorn he claims that he met, rather than to any other
unicorn or to the concept of unicorn, as Russell proposes.

Our idea is simply, following Stenlund [12], that the reference of a description
may depend on an assumption. In mathematics, the necessary assumptions are
made explicit beforehand, while it is common in every-day life not to spell out
such assumptions.

Let us analyze the claim ‘I met a unicorn’. Write ‘P (x)’ for ‘I met x’ and
‘Q(x)’ for ‘x is a unicorn’. We can then write ‘I met a unicorn’ as ‘P (εxQ(x))’.
This expression will be admitted as a proposition (under some assumptions) in
our system only if ∃xQ(x) can be proved (under the same assumptions). Hence,
the inference rule

P (εxQ(x))

∃xQ(x)

will be admissible in the sense that whenever the premise can be derived from
certain assumptions, so can the conclusion. But we cannot derive P (εxQ(x)) ⊃

∃xQ(x), unless we can derive ∃xQ(x) (possibly under assumptions).
There is, however, an alternative formalization of ‘I met a unicorn’. If we

regard it as a short form of the proposition ‘I met something, which was a
unicorn’, or ‘I met something, and the thing was a unicorn’, then the natural
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formalization is ∃xP (x) & Q(εxP (x)). This can be proved to be a proposition
in the calculus we are about to study, and it implies ∃xQ(x). Furthermore, the
interpretation we will propose will interpret εxQ(x) as referring to the thing
which the man claims he met, in correspondence with how we understand him
when he speaks about ‘the unicorn’. We will return to this example in section
7.

This view has some consequences for Russell’s examples. All talk about
‘the present King of France’ presupposes the existence of a present King of
France, not necessarily in our ordinary world, but in an imagined context of
the utterances. In this context, it is true that ‘the present King of France is
the present King of France’, contrary to Russell’s proposal. In the same way, if
‘∼(0−1 = 2)’ is to be accepted as a legitimate proposition, we have to presuppose
that 0 has an inverse.

The attitude we will take towards descriptions is thus that they are used
only when they refer to individuals (possibly under assumptions). Formal sys-
tems based on this idea were introduced by Stenlund [12, 13], who also argued
philosophically for this view in a much more elaborate way than we have done
above. We will introduce systems that are similar to Stenlund’s intuitionistic
one, with the aim of interpreting them in Martin-Löf’s type theory.

The idea behind the interpretations is to follow the practice of construc-
tivists, like Mines, Richman and Ruitenburg, quoted above: when we have a
constructive existence proof that b is invertible, that is, we have an a with
ab = ba = 1, we allow ourselves to use the notation b−1, and refer by this
notation to the individual a.

Martin-Löf [4, p. 45] noted that, in his type theory, there is a natural way
of making sense of indefinite descriptions by observing that the rules

∃xA(x)

εxA(x) : I

∃xA(x)

A(εxA(x))

can be viewed as special cases of the rules

p : ∃xA(x)

π`(p) : I

p : ∃xA(x)

πr(p) : A(π`(p))

if we make the definition εxA(x)
def

= π`(p), where π`(p) is the left projection of the
existence proof p. This is the idea behind the interpretation. But unfortunately,
it is not as easy as it might seem at a first sight. The reason is that in replacing
‘π`(p)’ by ‘εxA(x)’, we remove the p, which can be crucial. For instance, consider
the following derivation, which looks quite harmless:

P (a) ∨ P (b)

[P (a)]

∃xP (x)

P (εxP (x))

[P (b)]

∃xP (x)

P (εxP (x))

P (εxP (x)).

When we replace all ε-terms by the left projections of the corresponding exis-
tence proofs, we get the following (after reduction):

P (a) ∨ P (b)

[P (a)]

∃xP (x)

P (a)

[P (b)]

∃xP (x)

P (b)

?

4



So we don’t get the same proposition twice above the final line, as we want to.
This problem remains if we have a unique element satisfying P : consider for
instance natural numbers and take a

def

= n + 0 and b
def

= 0 + n. Then P (n + 0)
and P (0 + n) are equivalent, but they are not definitionally equal propositions
according to intensional type theory. Fortunately, it turns out that this problem
can be solved, as will be shown in section 6.

We should finally mention a work by Abadi, Gonthier and Werner [1], who
took the approach of extending type theory with indefinite descriptions with a
special operational semantics. Our aim is instead to keep the type theory and
its semantics as it is, and show that a first order proof involving descriptions
can be interpreted in it.

4 Indefinite Descriptions

We will set up a natural deduction system for first order logic with indefinite
descriptions, very much like the systems for definite descriptions introduced by
Stenlund [12, 13]. Characteristic for all these systems is the idea that terms
containing descriptions may refer to individuals only under some assumptions,
and that they are allowed in the system only when they refer (possibly depending
on currently open assumptions). Hence we have to incorporate in the system a
possibility to judge that a term t refers to an individual. Such a judgement will
read ‘t : I ’ in our system. Further, we allow as propositions only formulas in
which all terms refer, so we need also the possibility to judge that a formula A
is admitted as a proposition, which we do by saying ‘A : prop’.1 We have also
a third form of judgement: the usual one, that a proposition is true (under the
open assumptions). As usual in first order logic, we write simply ‘A’ instead of
‘A true’ for this kind of judgements. Because of these three different kinds of
judgements, our system is more complicated than natural deduction for ordinary
first order logic. It looks in fact already like a piece of type theory.

The rules for forming individuals and propositions are as follows.2

t1 : I · · · tn : I
fF

f(t1, . . . , tn) : I

t1 : I · · · tn : I
PF

P (t1, . . . , tn) : prop

∃xA(x)
εF

εxA(x) : I

A : prop

[A]
·
·
·

B : prop
&F

A & B : prop

A : prop B : prop
∨F

A ∨ B : prop
⊥F

⊥ : prop

1Stenlund used the dichotomy ‘formula expression’ vs. ‘formula’.
2Per Martin-Löf proposed to me that also the formation rules for functions and predicates

should allow partial ones. This is indeed a good idea, but makes the calculus more complicated.
For many applications, like set theory and algebra, it is sufficient with total primitive functions
and relations, because the partial ones can be defined with descriptions.
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A : prop

[A]
·
·
·

B : prop
⊃F

A ⊃ B : prop

[x : I ]
·
·
·

A(x) : prop
∀F

∀xA(x) : prop

[x : I ]
·
·
·

A(x) : prop
∃F

∃xA(x) : prop

The rules fF and PF are schemata: every primitive n-ary function f and
every primitive n-ary predicate P needs such a rule. In particular, we admit
the case n = 0, giving us constants. (In this case we have zero premises.)

We have the following rules for introducing and eliminating logical opera-
tions.3

A B
&I

A & B

A & B
&E`

A

A & B
&Er

B

A : prop ⊥
⊥E

A

A B : prop
∨I`

A ∨ B

A : prop B
∨Ir

A ∨ B

A ∨ B

[A]
·
·
·
C

[B]
·
·
·
C

∨E
C

A : prop

[A]
·
·
·
B

⊃I
A ⊃ B

A A ⊃ B
⊃E

B

[x : I ]
·
·
·

A(x)
∀I

∀xA(x)

∀xA(x) t : I
∀E

A(t)

[x : I ]
·
·
·

A(x) : prop t : I A(t)
∃I

∃xA(x)

∃xA(x)

[x : I ][A(x)]
·
·
·
B

∃E
B

∃xA(x)
ε

A(εxA(x))

Two kinds of assumptions are allowed: that a variable x is an individual
(written ‘x : I ’) and that a proposition A is true (written ’A’). The usual vari-
able restrictions apply.4 Any assumption A which is not discharged anywhere in
the derivation tree must come together with a derivation of A : prop (possibly
with other open assumptions, which in turn come together with derivations,
etc.). We introduce also some unusual restrictions on ⊃E (modus ponens) and

3One could consider to have more premises in these rules. For instance, conjunction intro-
duction could look as follows:

A : prop

[A]
·
·
·

B : prop A B

A & B.

We discuss this alternative in an appendix.
4To be precise: a rule which discharges an assumption of the form x : I is allowed only if x

does not occur free in any non-discharged assumption in the same sub-derivation, nor in the
conclusion of the rule. The notation A(t), of course, is intended to presuppose that t is free
for x in A(x).
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∃I . We will soon discuss these restrictions, but first, let us consider an example
of a derivation in the system, namely of a familiar property of fields:

∀x(x 6= 0 ⊃ xx−1 = 1) .

To this end, we introduce some abbreviations

a−1 def

= εx(ax = 1 & xa = 1)

U(a)
def

= ∃x(ax = 1 & xa = 1)

FIELD
def

= ∀x(x 6= 0 ⊃ U(x)) ,

which let us state two useful special cases of the rules εF and ε:

U(a)
εF

a−1 : I

U(a)
ε

aa−1 = 1 & a−1a = 1.

We can now make the following formal derivation in the system:

[x : I ]2 0 : I

x 6= 0 : prop

[x 6= 0]1
FIELD [x : I ]2

x 6= 0 ⊃ U(x)

U(x)

xx−1 = 1 & x−1x = 1

xx−1 = 1
1

x 6= 0 ⊃ xx−1 = 1
2

∀x(x 6= 0 ⊃ xx−1 = 1).

This illustrates how the calculus can be used to define and reason about
functions (like x−1) that are only partially defined. We devote section 10 to
some comments about such applications.

Let us now turn to the restrictions on ⊃E and ∃I . They are motivated by
the fact that we have similar restrictions in natural language, restrictions which
seem to be unavoidable when references of descriptions depend on contexts.

If the author of a novel lets the detective conclude ‘if the man was in the
room, the murder didn’t take place there’, and later on ‘the man was in the
room’, it would be correct to conclude ‘the murder didn’t take place there’ only
if it is obvious that the term ‘the man’ refers to the same individual both times.

So we need a restriction like the following one:

In ⊃E, ε-terms occurring in A
refer to the same individual in both occurrences of A.

Unfortunately, this restriction is semantical, which is not satisfying in a
formal system, which should allow correctness of proofs to be automatically
and syntactically checked. Moreover, it is not very precise unless we define
carefully what ‘refer to the same individual’ means. Finally, it is in general not
decidable. We therefore replace this condition by a syntactical and decidable
one which is met only when the semantical one is too.

One such syntactical restriction would be not to allow ε-terms at all in A.
This would be sufficient, but far too restrictive. Our solution uses the fact that
the derivation of t : I determines the individual to which t refers. Hence, we
may check that two occurrences of t refer to the same individual by checking
that they have equal derivations of t : I .
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The restriction we will choose is to require that both occurrences of A in
⊃E is proved to be propositions in the same ways, after reduction. Consider
the situation

D1

A

D2

A ⊃ B
⊃E

B

where D1 and D2 are derivations, possibly involving hypotheses (we assume that
they include also the end formulas A and A ⊃ B, respectively; but we display
these for enhanced clarity). We will define derivations D∗

1 and D∗
2 of A : prop

and A ⊃ B : prop, respectively, in a moment. By inspection of the formation
rules, we see that D∗

2 must look as follows:

·
·
·

A : prop

[A]
·
·
·

B : prop

A ⊃ B : prop

and so we can pick out the derivation of A : prop. We reduce it and compare
the result syntactically with the reduced form of D∗

1 , and require them to be
equal. This is our condition for accepting a use of ⊃E.

For the existence introduction rule, we have the following situation:

[x : I ]

D3

A(x) : prop

D4

t : I

D5

A(t)
∃I

∃xA(x).

We define the derivation D∗
5 of A(t) : prop and compare it with the one

obtained when t is substituted for x in the derivation we had of A(x) : prop,5

D4

t : I
D3[t/x]

A(t) : prop.

The restriction on ∃I is equally needed because an unrestricted use of it
would let us derive the unrestricted version of ⊃E from the restricted one,
assuming the domain I is inhabited:

·
·
·

A : prop t : I A
∃I

∃xA

[A] A ⊃ B
⊃E

B
∃E

B.

Let us turn to the definition of D∗. It is given in the proof of the following
theorem, which is a sharpening of a theorem by Stenlund [12, Theorem 3.2.6.].

Theorem 1. If there is a derivation D of A from some assumptions, there is
a derivation D∗ of A : prop from the same assumptions.

5It might be necessary to change variables if t is not free for x in D3, but this is done in
the usual way.
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Let us first isolate a lemma, to be used when D includes a use of ∨E. It will
also play a crucial role in the interpretation.

Lemma 2. If we have a derivation of C : prop from an assumption A (and
possibly other assumptions Γ) as well as a derivation of C : prop from the
assumption B (and Γ), we can construct a derivation of C : prop from the
assumption A ∨ B (and Γ).

Proof of the lemma. Say the derivations are D1 and D2, respectively. By inspec-
tion of the formation-rules, we see that D1 and D2 must end in the same ways:
the only possible differences occur before some application of εF . If there is no
such application, the two proofs must be identical, and so in particular, they
do not use the assumptions A and B unless they are found in Γ. Hence we are
done in that case. Now, assume there is at least one application of εF . There
has, then, to be some application of εF below which D1 and D2 are identical.
So they look as follows:

A
·
·
·

∃xD(x)
εF

εxD(x) : I
·
·
·

C : prop

B
·
·
·

∃xD(x)
εF

εxD(x) : I
·
·
·

C : prop

with the lower dotted parts identical. We now use ∨E and get

A ∨ B

[A]
·
·
·

∃xD(x)

[B]
·
·
·

∃xD(x)
∨E

∃xD(x)
εF

εxD(x) : I
·
·
·

C : prop.

This procedure is repeated if necessary. The result is a derivation with the
required properties.

Proof of the theorem. We define D∗ by induction. In the base case, D is nothing
but an assumption ‘A’. If D is an open assumption in a bigger derivation tree,
a derivation of A : prop is required in order for the tree to be a valid derivation;
and we take D∗ to be this derivation of A : prop. If D is an assumption which is
discharged somewhere below in the tree, then A occurs also as a premise in the
discharging rule (see the derivation rules in which assumptions are discharged),
and D∗ is defined with respect to this occurrence.

As induction steps, we have many cases. Here are some of them, the rest
are similar.

1. D ends with &I :
D1

A

D2

B
&I

A & B.
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By the induction hypothesis, D∗
1 and D∗

2 are defined, and so we let D∗ be
the derivation

D∗
1

A : prop

D∗
2

B : prop
&I

A & B : prop.

2. D ends with &E`. D is then of the form

D1

A & B
&E`

A.

But D∗
1 must be of the form

·
·
·

A : prop

[A]
·
·
·

B : prop
&F

A & B : prop.

and we let D∗ be the piece ending with A : prop.

3. D ends with &Er. Then it is of the form

D1

A & B
&Er

B.

But D∗
1 must be as in the previous case and we let D∗ be the tree

D1

A & B
&E`

A
·
·
·

B : prop.

4. D ends with ⊥E. This case is obvious but our form of the rule ⊥E
is essential; the theorem is not true with Stenlund’s rule, in which the
premise A : prop is left out. In Stenlund’s proof sketch of the corresponding
theorem [13, p. 206], this rule is forgotten. Stenlund has agreed that the
new form of the rule is probably the right one (private communication,
Jan. 30, 2003).

5. D ends with ∨E,

·
·
·

A ∨ B

[A]
·
·
·
C

[B]
·
·
·
C

∨E
C .

Let us call the sub-derivations D1, D2, D3, respectively. By induction, we
have derivations D∗

2 and D∗
3 of C : prop from the assumptions A and B,

respectively. According to the lemma, we get a derivation of C : prop from
the assumption A ∨ B. But we have also a derivation D1 of A ∨ B. This
derivation, followed by the one proving C : prop from A∨B is taken to be
D∗.
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6. D ends with ∃E,

·
·
·

∃xA(x)

[x : I ][A(x)]
·
·
·
B

∃E
B.

By induction hypothesis, we get a derivation of B : prop using the assump-
tions x : I and A(x), which we now have to get rid of. First notice that
the derivation cannot make use of such assumptions unless εF is used. If
it is not, we can take D∗ to be the derivation we have. Otherwise, the
derivation has the following form:

x : I A(x)
·
·
·

∃yD(y)
εF

εyD(y) : I
·
·
·

B : prop

where the last dots represent a part where only formation rules are used.
We now transform this tree using ∃E:

·
·
·

∃xA(x)

[x : I ][A(x)]
·
·
·

∃yD(y)
∃E

∃yD(y)
εF

εyD(y) : I
·
·
·

B : prop

(the variable restrictions are met: since x does not occur free in B, it
cannot occur free in ∃yD(y) either). We repeat this procedure if necessary
and the result is D∗.

7. D ends with the ε-rule:
·
·
·

∃xA(x)
ε

A(εxA(x))

By induction hypothesis, we have a derivation of ∃xA(x) : prop, hence
a derivation of A(x) : prop from the assumption x : I . By substituting
εxA(x) for x in this one, we get D∗:

·
·
·

∃xA(x)
εF

εxA(x) : I
·
·
·

A(εxA(x)) : prop.
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Derivations are said to be equal if they have identical normal forms:

Definition 3. The relation ≈ is the smallest equivalence relation between deriva-
tions such that

• if a derivation ends by a redex in the sense of Prawitz [7, II. § 2., pp. 35–
38]6, they are ≈-equal,

• if derivations are composed by ≈-equal subderivations, then they are them-
selves ≈-equal.

The relation ≈ is decidable, since one can normalize and compare the normal
forms, which are ≈-equal if and only if they are syntactically equal. We are now
ready to state precisely what restrictions we put on ⊃E and ∃I .

Restriction on ⊃E. The inference

D1

A

D2

A ⊃ B
⊃E

B

is allowed if D∗
2 , which is of the form

D3

A : prop

[A]

D4

B : prop
⊃F

A ⊃ B : prop,

satisfies D3 ≈ D∗
1 .

Restriction on ∃I. The inference

[x : I ]

D1

A(x) : prop

D2

t : I

D3

A(t)
∃I

∃xA(x)

is allowed if the following derivation is ≈-equal to D∗
3 .

D2

t : I

D1[t/x]

A(t) : prop

6Per Martin-Löf suggested that one should have also the reductions

[x : I]
·
·
·

A(x) : prop

·
·
·

t : I

·
·
·

A(t)
∃I

∃xA(x)
εF

εxA(x) : I ;

·
·
·

t : I

[x : I]
·
·
·

A(x) : prop

·
·
·

t : I

·
·
·

A(t)
∃I

∃xA(x)
ε

A(εxA(x)) ;

·
·
·

A(t)

Indeed, these reductions will be justified by the translation we are about to define in the next
section, but they violate the classical interpretation where εxA(x) does not depend on the
proof of existence of an object with the property A. We therefore omit these reductions, which
we do not need for the present purpose.
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It is thus a trivial but not in general convenient task to decide if an instance
of ⊃E or ∃I meets the requirement. It seems that human intuition is quite good
at guessing right (we know what we refer to by descriptions), so that a human
informal derivation often includes only acceptable instances, but it would be
desirable to let a computer check the derivations. We will return to these issues
in section 6. Notice however that the conditions are always satisfied when there
are no ε-terms at all involved, because then there is, for each formula, at most
one way of deriving that it is a proposition.

In section 8 we will show that if we use definite descriptions only, no restric-
tions will be necessary, except for the usual variable restrictions. In fact, we
give a process which repairs all illegal applications of ⊃E and ∃I . This process
works also partially for indefinite descriptions, but not in general.

Observe that ∨E (only!) is similar to ⊃E and ∃I in that the same proposition
occurs twice among the premises. Surprisingly, no restriction is needed in this
case, as the translation given in section 6 will show.

5 Equality

We have omitted rules for equality, because ε-terms make it possible to define
functions that do not preserve equality (‘non-extensional’ functions). Hence
equality is not very natural in the system. However, equality can be introduced
as any binary predicate (write ‘t = s’ for P (t, s)). Reasoning with equality
is then performed by using an axiom7 ∀x(x = x) for reflexivity, and for each
primitive predicate P (x1, . . . , xn) (with n ≥ 1), including the binary primitive
predicate =, an axiom

∀x1 · · · ∀yn

(

(x1 = y1 & · · · & xn = yn) ⊃ (P (x1, . . . , x2) ⊃ P (y1, . . . , y2))
)

,
(P ext)

and, finally, for each n-ary primitive function (with n ≥ 1) an axiom

∀x1 · · · ∀yn

(

(x1 = y1 & · · · & xn = yn) ⊃ (f(x1, . . . , x2) = f(y1, . . . , y2))
)

.
(f ext)

The rules for symmetry and transitivity can then be derived, but the replace-
ment rule will not in general be justified by the translation into type theory
(but see section 8).

6 The Translation into Type Theory

We now turn to the translation of the ε-calculus into intensional type theory, as
presented in [6], where also the translation of first order logic is explained. We
concentrate here on the things that have to be changed rather than defining the
translation from the beginning.

First of all, it is necessary to understand that the translation of a proposition
A will be determined, not by its syntactical form, but by the derivation of

7An axiom is here formally the same as an assumption. There is, however, a difference as
regards to their interpretations (Sect. 6): axioms are interpreted as proved propositions, while
assumptions are interpreted as assumptions also in type theory. Therefore, axioms can always
be used at no cost, unlike assumptions.

13



A : prop. For example, consider the derivations

[x : I ]
·
·
·

P (x) : prop

·
·
·

a : I

·
·
·

P (a)

∃xP (x)

εxP (x) : I

P (εxP (x)) : prop

[x : I ]
·
·
·

P (x) : prop

·
·
·

b : I

·
·
·

P (b)

∃xP (x)

εxP (x) : I

P (εxP (x)) : prop.

The end formula ‘P (εxP (x))’ will in the left case be translated into a proposi-
tion which is definitionally equal to the translation of P (a), while in the right
case it will be translated into a proposition which is definitionally equal to the
translation of P (b). However, we will have the following facts.

Proposition 4. If D1 and D2 are derivations of A : prop and D1 ≈ D2, then
both occurrences of A are translated into definitionally equal propositions.

Proof. Each derivation will be translated to a derivation in type theory, and
each redex will correspond to a redex in type theory.

Proposition 5. If D1 and D2 are derivations of A and D1 ≈ D2, then both
occurrences of A are translated into definitionally equal propositions.

Proof. Both derivations will be translated into derivations in type theory of
p : A1 and q : A2, respectively. Since p and q must be definitionally equal, also
A1 and A2 must be definitionally equal, by the monomorphic property of type
theory [6].

Proposition 6. If D1 is a derivation of A, then it is translated into a derivation
of p : A1, and D∗ is translated into a derivation of A1 : prop.

Proof. This follows immediately from the definition of D∗ and the translation.

We now give the translation. Fix a set I , which will act as the domain of
discourse, i.e., as the interpretation of the symbol ‘I ’. For each n-ary function
symbol f of the calculus there has to correspond an n-ary function on I . We
denote it by the same symbol, i.e., we write f : (I, . . . , I)I . Correspondingly, for
each n-ary predicate symbol P there has to correspond an n-ary propositional
function P : (I, . . . , I)prop. These requirements in themselves justify the rules
fF and PF in the interpretation.

The equality is supposed to be interpreted as an equivalence relation =I on
I . The axioms for equality are interpreted in the obvious ways. For instance,
the reflexivity axiom ∀x(x = x) is interpreted as λ(refl) : (∀x : I)(x =I x).
This is the reason why we call them axioms, rather than assumptions : they are
interpreted as proved propositions in contrast to assumptions, which must in
general be interpreted as assumptions also in type theory; i.e., an assumption
A is interpreted as A true, or rather, as p : A, where p is a fresh variable.

The rules εF and ε are interpreted as Martin-Löf [4, p. 45] proposed:

p : ∃xA(x)

π`(p) : I

p : ∃xA(x)

πr(p) : A(π`(p)).

14



The rule &F is interpreted as the general rule of Σ-formation

A : prop B(x) : prop (x : A)

Σ(A, B) : prop,

rather than the specialized one where B(x) is not allowed to depend on x.
Likewise for the rule ⊃F , which is interpreted as the general rule of Π-formation:

A : prop B(x) : prop (x : A)

Π(A, B) : prop.

The other formation rules are interpreted as usual [6].
Among the introduction rules, the only one needing a new idea is ∃I . The

reason is that this rule has two occurrences of A and t among the premises, and
we cannot be sure that they have been interpreted in the same ways. We may
therefore be faced with a situation where we would need a rule like this one:

A1(x) : prop (x : I) t1 : I A2(t2) : prop p : A2(t2)

(∃x : I)A1(x) true,

which is not a valid rule in type theory. However, the restriction put on ∃I in
section 4 gives us A2(t2) = A1(t1) : prop, so that we get

A1(x) : prop (x : I) t1 : I

p : A2(t2) A2(t2) = A1(t1) : prop

p : A1(t1)
,

(t1, p) : (∃x : I)A1(x)

which is a valid derivation in type theory.
Among the elimination rules, there are two that need some care: ⊃E and

∨E. Let us begin with the former one. After having interpreted the premises,
we might need a rule like this one:

p : A1 q : Π(A2, B)
,

B(p) true

which we do not have. Again, the restrictions put on ⊃E in section 4 gives us
A1 = A2 : prop and we may use the following derivation, which is indeed valid:

p : A1 A1 = A2 : prop

p : A2 q : Π(A2, B)

app(q, p) : B(p).

Finally, we should interpret ∨E. Assume we are interpreting a derivation D

which ends with ∨E. We have the following situation, after having interpreted
the premises:

c : A ∨ B

[x : A]

d(x) : C1

[y : B]

e(y) : C2

?.

It might well be, as an example on page 4 showed, that C1 and C2 are different
propositions, so it is not obvious what should be put as conclusion. Looking at
the corresponding rule in type theory we see that one premise is lacking:

c : A ∨ B

[z : A ∨ B]

C(z) : prop

[x : A]

d(x) : C(inl(x))

[y : B]

e(y) : C(inr(y))
.

when(c, d, e) : C(c)

15



Hence we have to come up with a propositional function C with C(inl(x)) = C1

and C(inr(y)) = C2, and such that C(c) is the proposition we get from the
interpretation of the derivation D∗ of C : prop, defined in the proof of Theorem
1.

By this theorem, we have derivations of C : prop from the assumptions A
and B, respectively. By Lemma 2, this gives us a derivation of C : prop from the
assumption A∨B. Interpreting this derivation, we get a propositional function
C(z) : prop (z : A∨B). Now, the derivation D∗ was defined by substituting the
derivation of A ∨ B for the assumption (see the proof of Theorem 1). We were
assuming that the derivation of A ∨ B had already been interpreted, yielding
c : A ∨ B. Thus, D∗ corresponds precisely to C(c), as we required.

Further, C(inl(x)) corresponds to replacing the assumption A ∨ B by the
derivation

A B : prop
∨I`

A ∨ B.

in the derivation of C : prop. Reducing the resulting derivation, we get the
original derivation from A to C : prop back. Hence, by Proposition 4, C(inl(x)) =
C1. An analogous argument shows that C(inr(y)) = C2.

It probably helps to consider an example: the ‘problematic’ derivation men-
tioned before (p. 4) is interpreted as in the figure on page 17.

7 The Man and the Unicorn

It was promised in the introduction that we return to the example of the uni-
corn after having defined the translation. Recall that ‘P (x)’ means ‘I met x’
and ‘Q(x)’ means ‘x was a unicorn’. Hence ‘I met a unicorn’ is formalized as
‘P (εxQ(x))’. In order for this to be a proposition, we must have εxQ(x) : I ,
hence we must assume, or prove, ∃xQ(x). So if we can prove that P (εxQ(x))
is a proposition, we must have assumptions enough for proving also ∃xQ(x).

More interesting is the alternative way of formalizing ‘I met a unicorn’,
namely as ‘I met something, and the thing was a unicorn’. Formally, this is
∃xP (x) & Q(εxP (x)). It can be proved to be a proposition in the following
way:

[x : I ]
PF

P (x) : prop
∃F

∃xP (x) : prop

[∃xP (x)]
εF

εxP (x) : I
QF

Q(εxP (x)) : prop
&F

∃xP (x) & Q(εxP (x)) : prop.

This, as may be checked by the reader, makes ∃xP (x) & Q(εxP (x)) interpreted
in type theory as a derivation of

(∃p : (∃x : I)P (x))Q(π`(p)) .

We may, from this proposition, derive that there are unicorns (notice that
the restriction on ∃I is met!):

[x : I ]
QF

Q(x) : prop

∃xP (x) & Q(εxP (x))
&E

∃xP (x)
εF

εxP (x) : I

∃xP (x) & Q(εxP (x))
&E

Q(εxP (x))
∃I

∃xQ(x)
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c : P (a) ∨ P (b)

[y : P (a) ∨ P (b)]
·
·
·

P (π`(when(y, (z)(a, z), (z)(b, z)))) : prop

[x : I ]

P (x) : prop a : I [z : P (a)]

(a, z) : (∃x : I)P (x)

z : P (a)

[x : I ]

P (x) : prop b : I [z : P (b)]

(a, z) : (∃x : I)P (x)

z : P (b)

when(c, (z)z, (z)z) : P (π`(when(c, (z)(a, z), (z)(b, z))))

The interpretation of the ‘problematic’ derivation mentioned on page 4.

1
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Hence, εxQ(x) is interpreted as

π`(π`(π`(q)), πr(q)) : I (q : (∃p : (∃x : I)P (x))Q(π`(p))) ,

which reduces to

π`(π`(q)) : I (q : (∃p : (∃x : I)P (x))Q(π`(p))) .

In particular, if a : I , b : P (a), and c : Q(a), we may take q
def

= ((a, b), c) and
so εxQ(x) is interpreted as something which is definitionally equal to a. This is
to say, if it is in fact true that the man met an individual which was a unicorn,
εxQ(x) refers to that individual.

8 Definite Descriptions

We now extend our system with definite descriptions, obtaining a system very
similar to Stenlund’s [12, 13], except for some minor changes, and the fact that
we can have ε-terms simultaneous in the system.

When no ε-terms are involved, but we have definite descriptions only, some
new inference rules can be justified, for instance unrestricted modus ponens, as
we will show. One could therefore introduce these rules in the system if ε-terms
were abandoned. This would, however, make it necessary to extend also the
translation, which is much more complicated than one would expect. We will
therefore instead derive the new rules. In other words, we show that a ι-calculus
with the new rules formally added, can be interpreted in the ε-calculus. The
translation from the ι-calculus to the ε-calculus then works by removing all
applications of the new rules, replacing them by derivations of these rules, and
replacing also all ιby ε.

Formally, we add the following two rules only:

∃xA(x) ∀x∀y(A(x) & A(y) ⊃ x = y) ι

FιxA(x) : I

∃xA(x) ∀x∀y(A(x) & A(y) ⊃ x = y) ι

A( ιxA(x)).

Equality is treated and interpreted as in section 5. In particular, all prim-
itive function symbols are supposed to be interpreted as equality-preserving
functions. Hence we assume that we have the axioms for reflexivity and exten-
sionality (P ext) (f ext) at hand, so that we need no special inference rules for
equality. When we use ‘Γ’ to denote an arbitrary set of assumption formulas, we
will always assume that it contains the necessary axioms for equality, because
we can do so at no cost, keeping in mind that we know how to interpret axioms.

The definition of D∗ is extended in the obvious way: a derivation that ends
with the ι-rule is replaced by the same derivation but ending with the ιF -rule,
followed by the derivation from ιxA(x) : I to A( ιxA(x)) : prop (for details, see
the case of the ε-rule in the definition of D∗, Theorem 1).

Terms of the form ιxA(x) are interpreted exactly as εxA(x). In particular,
the interpretations of the rules ιand ιF do not make use of the premises about
uniqueness. These premises are there solely because they allow us to prove the
following meta-mathematical result.
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Theorem 7. The following rules are derivable:

1. Unrestricted modus ponens

A A ⊃ B

B

when A does not contain any ε-term.

2. Unrestricted8 existence introduction

[x : I ]
·
·
·

A(x) : prop t : I A(t)

∃xA(x)

when A(t) does not contain any ε-term.

3. The replacement rule
A(t) t = s

A(s)

when A(t) does not contain any ε-term.

We need a number of lemmas.

Lemma 8. Assume A does not contain any ε-term. If D1,D2 are derivations
Γ ` A : prop, then there is a derivation D : Γ ` A ⊃ A such that D∗ is

D1

A : prop

D2

A : prop
⊃F

A ⊃ A : prop.

Proof. First note that if A does not contain any ι-term, the lemma is trivial
(since, by assumption, A does not contain ε-terms either). We need to take
care of the case when A contains some ι-term(s). We will do that by making a
simultaneous induction over terms and formulas.

Define the following measure:

µ(x) = 0 for variables x

µ(f(t1, . . . , tn)) = maxµ(ti) + 1

µ( ιxA(x)) = µ(A(x)) + 1

µ(P (t1, . . . , tn)) = maxµ(ti) + 1 ‘=’ included

µ(A & B) = max(µ(A), µ(B)) + 1

µ(A ∨ B) = max(µ(A), µ(B)) + 1

µ(A ⊃ B) = max(µ(A), µ(B)) + 1

µ(⊥) = 1

µ(∀xA(x)) = µ(A(x)) + 1

µ(∃xA(x)) = µ(A(x)) + 1

8By unrestricted, we mean without restrictions on how A(x) : prop and t : I are derived.
It is still, of course, necessary to have variable restrictions.
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Base case: µ(A) = 1. Then the lemma is obvious, because there is no ι-term
in A.

Suppose the lemma is proved for µ(A) < N (with N ≥ 2), we shall prove it
when µ(A) = N . There are a number of cases.

1. A is of the form P (t1, . . . , tn), with n ≥ 1. Use (P ext) to reduce the
problem to proving that for given derivations D3, D4 of Γ ` t : I , there is
a derivation D of Γ ` t = t such that D∗ is

D3

t : I

D4

t : I
=F

t = t : prop.

If t is a variable, or a constant, it is trivial. If t is f(t1, . . . , tn), with n ≥ 1,
we reduce the problem to deriving ti = ti in an appropriate way. Because

µ(ti = ti) = µ(ti) + 1 ≤ µ(t) < N ,

it follows by the induction hypothesis that ti = ti ⊃ ti = ti can be derived
in an appropriate way, so that the following derivation solves the problem:

∀x(x = x)

·
·
·

ti : I
∀E

ti = ti

·
·
·

ti = ti ⊃ ti = ti
⊃E

ti = ti .

It remains the case when t is of the form ιxB(x) (the form εxB(x) is
excluded by assumption). Then D3 and D4 end by the rule ιF . Let D′

3

and D′
4 be the derivations of B(t) obtained by replacing the final rule

ιF by the rule ιin D3 and D4, respectively. Since there is a derivation
of ∀x∀y(B(x) & B(y) ⊃ x = y) in D3 (and D4), it suffices to derive
B(t) & B(t) in a way which makes it possible to apply ⊃E. This can be
done as follows (the careful reader will notice that this derivation is not
reduced, simply because the argument will be easier).

D′
3

B(t)

[x : I ]
·
·
·

B(x) ⊃ B(x)
∀I

∀x(B(x) ⊃ B(x))

D3

t : I
∀E

B(t) ⊃ B(t)
⊃E

B(t)

D′
4

B(t)

[x : I ]
·
·
·

B(x) ⊃ B(x)
∀I

∀x(B(x) ⊃ B(x))

D4

t : I
∀E

B(t) ⊃ B(t)
⊃E

B(t)
&I

B(t) & B(t).

It is straightforward to check that both applications of ⊃E are allowed if
the dotted parts are filled in appropriately, which is possible to do accord-
ing to the induction hypothesis, because µ(B(x)) < µ(t) < N .

2. A is of the form B & C. The derivation then looks as follows:

D1

B & C : prop

[B & C]

B

·
·
·

B ⊃ B

B

[B & C]

C

·
·
·

C ⊃ C

C

B & C

B & C ⊃ B & C
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where the derivations of B ⊃ B and C ⊃ C exist by the induction hy-
pothesis. The derivation of C ⊃ C may depend on assumptions B, but
these can be derived, in appropriate ways, from B & C (which is currently
open and hence available) and B ⊃ B. It is easy to verify that D∗ has the
stated form.

3. A is of the form B ∨ C. This case is easy and left out.

4. A is of the form B ⊃ C. This case is similar to &.

5. A is of the form ⊥. Trivial. (And, in fact, included in the base case.)

6. A is of the form ∀xB(x). Easy.

7. A is of the form ∃xB(x). Easy.

This lemma is enough for proving the first two parts of the theorem.

Proof of Theorem 7, parts 1–2. For part 1, use the transformation

D1

A

D2

A ⊃ B

B
;

D1

A

·
·
·

A ⊃ A
⊃E

A

D2

A ⊃ B
⊃E

B

and the lemma to conclude that the dots can be filled in.
For part 2, use the transformation

D1

A(x) : prop

D2

t : I

D3

A(t)

∃xA(x)
;

D1

A(x) : prop

D2

t : I

D3

A(t)

·
·
·

A(t) ⊃ A(t)
⊃E

A(t)
∃I

∃xA(x).

In the following, we will therefore freely use modus ponens as a derived rule.
In particular, to prove the third part of the theorem, we need only prove that
A(t) ⊃ A(s) is derivable from Γ if A(t) and t = s are derivable from Γ. To do
that, we need a couple of more lemmas.

Lemma 9. Assume A(t) does not contain any ε-term, nor does s, and that
Γ ` A(t) : prop, A(s) : prop, t = s. Then Γ ` A(t) ⊃ A(s).

Proof. By induction on µ, as defined in the proof of the previous lemma. We
assume that the lemma is true whenever µ(A(t) ⊃ A(s)) < N , and prove it in
the case µ(A(t) ⊃ A(s)) = N .

If A(t) is atomic, (P ext) reduces the problem to deriving ti(t) = ti(s). If ti
is a variable or a constant, it is trivial. If ti is of the form f(. . .), (f ext) reduces
the problem to the arguments of f . Finally, if ti(t) is of the form ιxB(t, x) we
need to derive ιxB(t, x) = ιxB(s, x).
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Because Γ ` ιxB(s, x) : I , we have Γ ` ∀x∀y(B(s, x) & B(s, y) ⊃ x = y), so
it suffices to derive Γ ` B(s, ιxB(t, x)) & B(s, ιxB(s, x)). The second conjunct
is easy to derive: just change the last rule in the derivation of Γ ` ιxB(s, x) :
I . In order to derive Γ ` B(s, ιxB(t, x)), use that µ(B(t, x) ⊃ B(s, x)) <
µ(ti(t)) + µ(ti(s)) < µ(A(t)) + µ(A(s)) < µ(A(t) ⊃ A(s)), so the induction
hypothesis gives x : I, Γ ` B(t, x) ⊃ B(s, x). Now substitute ιxB(t, x) for x in
this derivation.

We now have to treat the cases when A(t) is a composite formula. These
cases are similar to each other. We exemplify with conjunction.

D1

B(s) & C(s) : prop

[B(s) & C(s)]

B(s)

·
·
·

B(s) ⊃ B(t)

B(t)

[B(s) & C(s)]

C(s)

·
·
·

C(s) ⊃ C(t)

C(t)

B(t) & C(t)

B(s) & C(s) ⊃ B(t) & C(t)

The derivations of B(s) ⊃ B(t) and C(s) ⊃ C(t) exist by the induction hypoth-
esis. In the latter case, the derivation may depend on assumptions B(s) and
B(t), but these can be derived from B(s) & C(s) (which is currently open and
hence available) and B(s) ⊃ B(t).

The next lemma shows that the assumption Γ ` A(s) : prop can be removed
from the previous lemma.

Lemma 10. Assume A(t) does not contain any ε-term, nor does s. If Γ `

A(t) : prop t = s, then Γ ` A(s) : prop.

Proof. Induction on µ again. We assume this time that the lemma is true for
µ(A(t)) < N and prove it in the case µ(A(t)) = N .

If A(t) is atomic, say P (t1(t), . . . , tn(t)), then PF reduces the problem to
deriving ti(s) : I . If ti is a variable or constant, this is trivial. If ti is f(. . .),
it reduces, by fF , to the arguments of f . If ti(t) is ιxB(t, x), then Γ, x :
I ` B(t, x) : prop and hence, by the induction hypothesis, Γ, x : I ` B(s, x) :
prop. Hence, by the previous lemma, Γ, x : I ` B(t, x) ⊃ B(s, x), so, since
Γ ` ∃xB(t, x), we conclude Γ ` ∃xB(s, x). A similar argument applies to the
uniqueness premise of the ιF -rule. Hence Γ ` ιxB(s, x) : I .

If A(t) is composite, it is an easy exercise to prove the lemma using the
induction hypothesis. The most complicated case is conjunction (or implication,
which requires precisely the same argument). If A(t) is B(t) & C(t), we have
Γ ` B(t) : prop and Γ, B(t) ` C(t) : prop. By induction hypothesis, Γ ` B(s) :
prop and Γ, B(t) ` C(s) : prop. Since Γ ` B(s) : prop, we have Γ ` B(s) ⊃ B(t)
(the previous lemma), hence Γ, B(s) ` C(s) : prop. Hence Γ ` B(s) & C(s) :
prop.

Proof of Theorem 7, part 3. First notice that it is sufficient to prove the theo-
rem when s is a fresh variable z, because if this has been done, we know that

Γ, z : I, t = z ` A(z) ,

so we can, by replacing all z by s, and each assumption z : I by a derivation
of s : I (which exists because Γ ` t = s), and each assumption t = z by a
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derivation of t = s, derive A(s) from Γ. We therefore assume in the following
that s is a variable.

Now the previous lemma gives Γ ` A(s) : prop. Hence, by Lemma 9, Γ `

A(t) ⊃ A(s). Using that modus ponens is derivable, we conclude Γ ` A(s).

9 Restricted Quantifiers

The translation interprets propositions U(x), where x is a free variable, as propo-
sitional functions U . Taking the subsets-as-propositional-functions attitude to-
wards subsets in type theory [6, 11, 3], and writing x ε U for U(x), we are
justified in saying that propositions depending on variables are interpreted as
subsets, and restricted quantifiers are interpreted as follows:

∀x(U(x) ⊃ A(x)) ; (∀x : I)(∀p : x ε U)Ap(x)

∃x(U(x) & A(x)) ; (∃x : I)(∃p : x ε U)Ap(x) ,

where Ap(x) may depend on p. Using the notation in [3], we can write

∀x(U(x) ⊃ A(x)) ; (∀xp ε U)Ap(x)

∃x(U(x) & A(x)) ; (∃xp ε U)Ap(x) .

Thus, restricted quantifiers are indeed interpreted as restricted quantifiers in
the sense of [3]. The notions of restricted quantifiers in [6, 11] are however in
general too restrictive, because they do not allow Ap(x) to depend on p. For
example, the field property, derived on page 7, is interpreted as follows:

∀x
(

U(x) ⊃ x · x−1 = 1
)

; (∀xp ε U)(x · x−1

p = 1) ,

where x−1
p is the left projection of p [3]. In this case, it is obvious that Ap

depends on p in a non-trivial way.

10 Partial Functions

A common use of definite descriptions is for defining (partial) functions. Let
R(x, y) be a binary partial functional relation, i.e., x : I, y : I, Γ ` R(x, y) :
prop and Γ ` ∀x∀y∀z(R(x, y) & R(x, z) ⊃ y = z). Let ‘x ε D’ denote the
interpretation in type theory of ∃yR(x, y). Then

∃yR(x, y)

·
·
·

∀x∀y∀z(R(x, y) & R(x, z) ⊃ y = z) x : I
∀E

∀y∀z(R(x, y) & R(x, z) ⊃ y = z) ι
ιyR(x, y) : I

is interpreted as
π`(p) : I (. . . , x : I, p : x ε D) ,

hence as a partial function from D to I/=I in the sense of [3]. It is not in general
a partial function in the sense of [11], because (∀p, q : x ε D) Id(I, π`(p), π`(q))
is not in general true.
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Suppose, on the other hand, that we in type theory have a partial function
on I , that is, an extensional domain of definition D ⊆ I

x ε D : prop (x : I)

and a partial function, which we in the notation of [3] can write

f(xp) : I (xp ε D) ,

and which satisfies (∀xp ε D, q : x ε D)(f(xp) =I f(xq)) as was required in [3].
Consider our ι-calculus with a unary primitive predicate symbol D(x), whose
interpretation is supposed to be x ε D, and a binary primitive relation symbol
R(x, y), whose interpretation is supposed to be (∃p : x ε D)(f(xp) =I y). Then
the following axioms are justified, in the sense that their interpretations can be
proved in type theory:

∀x(D(x) ⊃ ∃yR(x, y))

∀x∀y∀z(R(x, y) & R(x, z) ⊃ y = z) .

Also the required extensionality properties for D and R can be proved. Now,
introduce f(x) as a notation for ιyR(x, y). We can then derive the following:

D(x)

∀x(D(x) ⊃ ∃yR(x, y)) x : I
∀E

D(x) ⊃ ∃yR(x, y)
⊃E

∃yR(x, y)

·
·
·

∀y∀z(R(x, y) & R(x, z) ⊃ y = z) ι
F

f(x) : I .

If the axiom ∀x(D(x) ⊃ ∃yR(x, y)) is interpreted as

λxλp(f(xp), (p, refl(f(xp)))) : (∀xp ε D)(∃y : I)(∃q : x ε D)(f(xp) =I y) ,

where refl is the reflexivity proof of =I , then f(x) : I , as derived above, will be
interpreted as the type-theoretical f(xp) : I , after reduction. This shows that
the interpretation indeed captures the intended meaning of f , up to definitional
equality.

11 Summary and Conclusion

We have given calculi of indefinite and definite descriptions and interpreted
them into intensional type theory. The calculus of indefinite descriptions suffers
from unusual restrictions on modus ponens and existence introduction, while
the unrestricted versions of these rules can be derived for the calculus of defi-
nite descriptions. In fact, we had in the end just one calculus, in which both
indefinite and definite descriptions could coexist, the unrestricted versions of
the rules being derivable for formulas without ε-terms.

In the translation, we used strong disjunction elimination in an essential
way (p. 15), and it is therefore unclear if type theories without this rule would
work. Moreover, the type-theoretical axiom of choice was implicitly used it the
interpretation of descriptions, in the form of left projections of existence proofs
(p. 14).
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It seems that the interpretation follows closely what constructive mathemati-
cians have in mind when they speak about descriptions. One conclusion is there-
fore that strong disjunction elimination and the intensional (‘type-theoretical’)
axiom of choice seem to be important for a natural formalization of constructive
mathematics with descriptions.

A conclusion from sections 9–10 is that restricted quantifiers and partial
functions in the sense of first order logic with descriptions correspond to re-
stricted quantifiers and partial functions in the sense of [3], rather than in the
sense of [6, 11].
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A Appendix

In the logical inference rules, we could have, among the premises, some premises
that express that all formulas involved are indeed propositions. Conjunction
introduction, for instance, would then look as follows:

A : prop

[A]
·
·
·

B : prop A B

A & B

and disjunction elimination as follows:

A : prop B : prop

[A ∨ B]
·
·
·

C : prop A ∨ B

[A]
·
·
·
C

[B]
·
·
·
C

C .

This was the form my ε-calculus had originally, but Theorem 1 showed that
it was conservative to simplify it to the present one.

Although the more verbose ε-calculus is in a sense more natural, it is very
heavy to produce derivations in it, and, contrary to what one might first think,
the translation into type theory is more difficult. The reason is that every rule
except ⊥E has the undesirable property that the same proposition occurs several
times among the premises. Since the same propositions could be interpreted in
different ways in different places, we would need to introduce restrictions on
every rule except ⊥E in order to get the interpretation through. Alternatively,
we could perform the translation by just throwing all extra premises away and
proceed as in this paper, but it is then unclear what would be gained by having
them in the first place.
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[4] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

[5] R. Mines, F. Richman, and W. Ruitenburg. A Course in Constructive
Algebra. Springer-Verlag, New York, 1988.

[6] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s
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