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1 Introduction

For an ideal I in a ring R a reduction is defined as an ideal J ⊆ I such that
JI l = I l+1 for some integer l. An ideal which is minimal with respect to this
property is called minimal reduction, and the least integer l for these ideals is
called the reduction number of I . Further, J is a reduction of I if and only if
I is integral over J .

To a monomial ideal I in k[x1, . . . , xn] or k[[x1, . . . xn]] we associate the set
log I which consists of the exponents of all monomials belonging to I , that is,
log I = {(a1, . . . an) | xa1

1 · · ·xan
n ∈ I}. It is proved ([2], [3], [6]) that the integral

closure of I is the integrally closed monomial ideal, Ī , generated by all the
monomials with exponents in the convex hull of log I in N

n. In this paper we
determine minimal reductions of any monomial ideal in the ring k[[x, y]] using
the relation between reduction and integral closure.

2 Monomial ideals

Consider the two-dimensional local ring R = k[[x, y]] and an ideal of dimension
two in it. According to the general theory for minimal reductions, a minimal
reduction of the ideal will be generated by two elements in the ring, if the residue
field is infinite. However, the results that will follow are valid for any field k
in k[[x, y]]. Any monomial ideal I in R is of the form I = mI ′, where m is a
monomial and I ′ an m-primary monomial ideal. An ideal mJ is a reduction
of mI ′ if and only if J is a reduction of I ′. Thus, we may assume that I is
m-primary, that is, that xa and yb belong to I for some a and b.

For a moment we may let the ring R be the polynomial ring also. Let
I = 〈xAiyBi〉0≤i≤s ⊂ k[x, y] or k[[x, y]] where Ai < Ai+1, Bi > Bi+1 and
A0 = Bs = 0. We will construct a monomial ideal, which we call Ilmr, having
the same integral closure as I , and show that it is the unique smallest one. In
other words, conv(log Ilmr) = log Ī .
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Definition 2.1. Let I = 〈xAiyBi〉. Define Ilmr = 〈xAij yBij 〉 as follows:
i0 = 0,
i1 be the greatest i such that the minimal value of the expression Ai

B0−Bi
is

obtained,

for j ≥ 2 let ij = max { i > ij−1;
Ai−Aij−1

Bij−1
−Bi

is minimal }.

Graphically we define the generators of Ilmr in N
2 recursively by starting

with (0, B0) and choosing the greatest index i such that (Ai, Bi) gives the steep-
est slope between the two points. Taking this exponent as our new starting point
we repeat the procedure.

Example 2.2. Let I = 〈y12, xy11, x2y7, x5y4, x8〉. Then the integral closure is
Ī = 〈y12, xy10, x2y7, x3y6, x4y4, x5y3, x6y, x8〉 and the least monomial reduction
of both ideals is Ilmr = 〈y12, x2y7, x6y, x8〉, the generators of which are marked
by empty circles.
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It is clear that among all monomial ideals with integral closure Ī the ideal
Ilmr is the least one. Equivalently, among all monomial ideals which are re-
ductions of Ī , the ideal Ilmr is least. We call it least monomial reduction.
Moreover, Ilmr is the least monomial reduction of any ideal lying between itself
and Ī .

Remark 2.3. Any integrally closed monomial ideal is a product of blocks (The-
orem 3.8 in [2]), where we by an (a, b)-block mean the unique simple integrally
closed monomial ideal containing the elements xa and yb in its minimal gener-
ating set, that is, 〈xa, yb〉 where a and b are relatively prime. (We recall that an
ideal is called simple if it cannot be written as a product of two proper ideals.)
The product of s number of (ai, bi)-blocks satisfying the condition ai

bi
≤ ai+1

bi+1
is

the integrally closed ideal

s
∏

i=1

〈xai , ybi〉 =
s

∑

i=1

(

x
� i−1

i′=1
ai′ y

�
s

i′=i+1
bi′

)

〈xai , ybi〉. (2.1)

In N
2 we illustrate this product as the vertices (a1+ · · ·+ai, bi+1+ . . .+bs) =

(ai, bi), 0 ≤ i ≤ s, and the diagonal lines between two consecutive vertices. Then
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conv(∪(ai, bi)+N
2) constitutes the log-set of the product. If we keep only those

vertices (aj , bj) that satisfy the condition ai

bi
< ai+1

bi+1
, then the convex hull of

∪(ai, bi) + N
2 will also constitute the desired log-set. Thus, the generators of

the minimal monomial reduction are illustrated by such vertices (aj , bj) that
aj−aj−1

bj−1−bj
<

aj+1−aj

bj−bj+1
.

Example 2.4. The ideal Ī in the previous example is a product of the blocks
〈x2, y5〉, 〈x2, y3〉, 〈x2, y3〉, 〈x2, y〉. It is depicted by the vertices (12,0), (2,7),
(4,4), (6,1) and (8,0), where (4,4) is omitted to give the least monomial reduc-
tion, since 〈y12, x2y7, x6y, x8〉 = Ī .

The reduction number of an integrally closed ideal is two (Theorem 5.1 [4]).
Hence, Ilmr Ī = Ī2.

Proposition 2.5. Any power of a simple and m-primary integrally closed mono-
mial ideal in k[[x, y]] (or k[x, y])) has the ideal 〈yb, xa〉 as its minimal reduction,
where b denotes the highest power of y and a the highest power of x in the min-
imal set of generators.

Proof. There are two types of such ideals [2].

Let I = 〈xjyBj 〉0≤j≤s where Bj = d s−j
s

B0e. Theorem 3.8 in [2] states that
I2 = 〈xjyB0+Bj , xs+jyBj 〉 and it is obvious that I〈yB0 , xs〉 = I2.

Let I = 〈xAiyr−i〉0≤i≤r where Ai = diAr

r
e. Then I2 = 〈xAiy2r−i, xAr+Aiyr−i〉

and the result follows similarly.

Assume that the integral closure of a monomial ideal is some power of a
block. Then the least monomial reduction is generated by two monomials and
is, of course, a minimal reduction itself.

Suppose that the least monomial reduction of an ideal is generated by more
than two monomials. Then the generators satisfy a certain condition which we
at first will demonstrate by an example.

Example 2.6. Let Ilmr = 〈y12, x2y7, x6y, x8〉 = 〈mj〉0≤j≤3 as previously.
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It is clearly seen that moving m1 either vertically or horisontally it will
intersect the line between m0 and m2.The same is valid for m2 and the line
between m1 and m3. The pictures correspond to certain relations between any
three consecutive generators. We have

m3
1y | m2

0m2 and m3
2y | m1m

2
3. (2.2)

In (2.2) we could as well have chosen x instead of y and get:

m5
1x | m3

0m
2
2 and m4

2x | m1m
3
3. (2.3)

Any Ilmr is constructed in such a way that there are relations similar to
(2.2) between the generators. Let Ilmr = 〈xAj yBj 〉 = 〈mj〉0≤j≥r . Let further
cj = Aj+1 − Aj and lj = Aj+1 − Aj−1. Then we can easily deduce that

{

ljAj = cjAj−1 + (lj − cj)Aj+1

ljBj + 1 ≤ cjBj−1 + (lj − cj)Bj+1, that is, m
lj
j y | m

cj

j−1m
lj−cj

j+1 .
(2.4)

Remark 2.7. The results that will follow will depend on the ring being local.
Henceforth we will consider only the formal power series ring.

Often we can choose smaller lj , compared to Example 2.6 where c1 = 4 and
l1 = 6 to start with. In the local ring with the maximal ideal m = 〈x, y〉 the
expression (1.4) says

m
cj

j−1m
lj−cj

j+1 ∈ m
lj
j m. (2.5)

By taking l = lcm(lj), we can assume that all lj are equal. The relation between
three consecutive generators can be extended to three arbitrary generators. For
example, for any 0 < j < r − 2 we have:

m
cj l

j−1(m
cj+1

j m
l−cj+1

j+2 )l−cj ∈ (m
cj

j−1m
l−cj

j+1 )l
m ⊆ ml2

j m.

The power products mj are nonzerodivisors, hence

mc′

j−1m
l′−c′

j+2 ∈ ml′

j m.

This small result is worth generalizing in a lemma.

Lemma 2.8. Let (R, m) be a local integral domain and I = 〈mj〉0≤j≤r an ideal
in R. Suppose that the generators fulfil (2.5). Then, for each triple of indices
i < i′ < j there are positive integers c and l, c < l, such that

mc
im

l−c
j ∈ ml

i′m. (2.6)

There is an alternative way to express (2.6). For any pair of indices i and
j, j − i ≥ 2, there are positive integers c and l, c < l, such that mc

im
l−c
j ∈ I l

m.
Multiplying by a proper power of some of the two generators we can formulate
the following result.
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Proposition 2.9. Let Ilmr = 〈mi〉 be a least monomial reduction of some ideal
I in k[[x, y]]. Assume that its generators are ordered by descending powers of y
(or x). Then there is an integer l such that ml

im
l
j ∈ I2l

m for any two indices i
and j such that j − i ≥ 2.

In the next section we determine minimal reductions for a class of ideals in
any local commutative ring and will show that the least monomial reductions
we have defined belong to this class. In that way we will be able to determine
a minimal reduction J of any monomial ideal I in k[[x, y]], because J ⊆ Ilmr ⊆
I ⊆ Ī where Ilmr is integral over J . Hence, J is a minimal reduction of any
ideal between J and Ī .

3 Minimal reductions

Let (R, m) be a local ring and I = 〈mi〉0≤i≤r an ideal in it. Suppose that the
generators are ordered in such way that they satisfy the condition

ml
im

l
j ∈ I2l

m (3.1)

for some integer l if j − i ≥ 2.
A reduction of an ideal, the generators of which satisfy (3.1), can be ex-

pressed in a quite convenient way. Before we prove our theorem we need two
lemmas. The first one is found on p.147 in [6].

Lemma 3.1. Let J ⊆ I be ideals. Then J is a reduction of I if and only if
J + Im is a reduction of I.

Proof. If JI l = I l+1, then (J + Im)I l = JI l + I l+1
m = I l+1.

If (J + Im)I l = I l+1, then we use Nakayama’s lemma on m(I l+1/JI l) =
(I l+1

m + JI l)/JI l = I l+1/JI l which gives us I l+1/JI l = 0̄ and, hence, I l+1 =
JI l. The proof is complete.

Lemma 3.2. Let I = 〈mi〉0≤i≤r be an ideal. Assume further that ml
i ∈ JI l−1 +

I l
m for all i and some integer l. Then J is a reduction of I.

Proof. Let l′ = (l − 1)r, then I l′+1 = 〈
∏r

i=0 mli
i |

∑r

i=0 li = l′ + 1〉. For every
generator (product) there is some index k such that lk ≥ l, according to the
pigeon hole principle. Then mlk

k ∈ (JI l−1 + I l
m)I lk−l and, hence,

∏r

i=0 mli
i =

mlk
k

(
∏

i6=k mli
i

)

∈ JI l′ + I l′+1
m. Thus, I l′+1 ⊆ JI l′ + I l′+1

m and we are done
due to Lemma 3.1.

Theorem 3.3. Let I = 〈mi〉0≤i≤r be an ideal in (R, m). Assume that there is
a partition {0, . . . r} = ∪0≤α≤sSα, where s ≤ r, such that if i, j ∈ Sα, i 6= j,
then ml

im
l
j ∈ I2l

m for some integer l. Let J = 〈
∑

i∈Sα
mi〉0≤α≤s, then J is a

reduction of I.
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Proof. In the case when every |Sα| = 1, the ideal J = I is trivially a reduction.
Suppose that |Sα| ≥ 2 for some α. For that α define pα =

∑

i∈Sα
mi and fix

a k ∈ Sα. By assumption ml
kml

i ∈ I2l
m for all k 6= i ∈ Sα. Let l′ = |Sα| · (l− 1).

Then for any t, 0 ≤ t ≤ l + l′ − 1 we have

ml+l′−t
k (pα − mk)t+1 + ml+l′−t−1

k (pα − mk)t+2 =

= ml+l′−t−1
k (pα − mk)t+1pα ∈ I l+l′J.

(3.2)

Using this we can rewrite the zero element in the quotient ring R/JI l+l′ as:

[ml+l′

k pα] = [ml+l′+1
k + ml+l′

k (pα − mk)]
(1.8)
= [ml+l′+1

k − ml+l′−1
k (pα − mk)2] = . . .

. . . = [ml+l′+1
k ± ml

k(pα − mk)l′+1] = [ml+l′+1
k ± ml

k

(

∑

�
li=

l′+1

β...

(

∏

i6=k,
i∈Sα

m
lj
i

))

],

(3.3)

where the β...’s are the multinomial coefficients. According to the pigeon hole
principle there is some k′ in each product

∏

mli
i such that lk′ ≥ l. For that k′

we have
ml

k

(

∏

i6=k,�
li=l′+1

mli
i

)

∈ I2l
mI l′+1−l = I l+l′+1

m. (3.4)

From (3.3) and (3.4) we can deduce that ml+l′+1
k ∈ JI l+l′ + I l+l′+1

m. Since
the index k was chosen arbitrarily it follows easily that there is an integer L
such that mL

i ∈ JIL−1 + IL
m for all i. Lemma 3.2 completes the proof.

Example 3.4. Let I = 〈x3yz2, x2y2z, xy3z, y4z2〉 = 〈mi〉0≤i≤3 ⊂ R = k[[x, y, z]].
The partition of the indices is {0, 2} ∪ {1, 3}, since m0m2 ∈ m2

1m and m1m3 ∈
m2

2m. Applying Theorem 3.3 gives us a minimal reduction of I which is 〈x3yz2+
xy3z, x2y2z + y4z2〉.

Example 3.5. Let I = 〈x4, x2y, y4, y2z, z4, z2x〉 = 〈mi〉0≤i≤5 ⊂ R = k[[x, y, z]].
This is an m-primary ideal, so the number of the generators of a reduction of it
must be at least three. We see that (x2y)2z | (x4)(y2z) or, equivalently, m0m3 ∈
(x2y2)m. By symmetry there are similar relations for the other generators.
Hence, we get a partition {0, 3}∪ {2, 5}∪ {1, 4} and a minimal reduction 〈x4 +
y2z, y4 + z2x, z4 + x2y〉.

We return to the monomial ideals in k[[x, y]]. The minimal reductions of an
m-primary ideal is generated by two elements in this ring.

Corollary 3.6. Let I = 〈mj〉0≤j≤s be a monomial ideal in k[[x, y]] and Ilmr =
〈mi〉0≤i≤r its monomial reduction where the generators are ordered in such way
that the powers of y (or x) are descending. Then J = 〈

∑

even i mi,
∑

odd i mi〉 is
a minimal reduction of I.

Moreover, if J is a minimal reduction of any ideal between J and Ī.
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Proof. We have shown that the relation (3.1) is valid for all the generators of
Ilmr except for any two consecutive. Since two consecutive generators must lie
in different subsets of the partition, a split into even and odd indices is the only
one. The rest follows from the theorem.

Example 3.7. Consider Example 2.2. The ideal J = 〈y12 + x6y, x2y7 + x8〉 is
a minimal reduction of all ideals lying between J and Ī .
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