
ISSN: 1401-5617

Formalized Limits and Colimits of

Setoids

Jesper Carlström

Research Reports in Mathematics

Number 9, 2003

Department of Mathematics

Stockholm University

Electronic versions of this document are available at
http://www.math.su.se/reports/2003/9

Date of publication: September 18, 2003
2000 Mathematics Subject Classification: Primary 03B15, Secondary 18B05, 18B35.
Keywords: Type Theory, Setoids, Limits, Colimits, Projective systems, Inductive sys-
tems, Projective limits, Inductive limits.

Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se

Formalized Limits and Colimits of Setoids

Jesper Carlström

http://www.math.su.se/~jesper/

September 17, 2003

Abstract

We construct arbitrary limits and colimits of setoids in Type Theory and

prove the universal properties, hence proving constructively that the cate-

gory of setoids is complete and cocomplete. In particular, it has products

and disjoint unions of arbitrary setoid-indexed families of setoids.

Essential use is made of the Curry–Howard correspondence, exempli-

fying how it can relate different well-known concepts in a very elegant

way.

The reader is supposed to be familiar with Martin-Löf’s type theory [7, 8],
the theory in which the following formalization will take place. The work we
will present is straightforward, but might be of value anyway, since some of
the concepts treated are central and have not, to the authors knowledge, been
treated in type theory in full generality before.1 It is also a very good example
of the Curry–Howard correspondence at its best: the work shows very well that
‘proof objects’ should not be thought of as ‘proofs’ in the sense of convincing
arguments. Indeed, we will define preorders where a proof of i ≤ j is an arrow
in a category, rather than an ‘argument’ in any reasonable sense.

1 Graphs, Preorders, Deductive systems, and

Categories

A graph is a class I of objects and for every i, j in I a set Hom(i, j) of arrows
from i to j. We write i ≤ j for the proposition which is true precisely when
there is an arrow from i to j. By the Curry–Howard correspondence, we may

simply define i ≤ j
def

= Hom(i, j).
A graph (I, Hom) is small if I is a set.
Lambek and Scott [6] defines a deductive system to be a category but without

certain axioms; or rather, a category as a deductive system satisfying certain
axioms. Thus, a deductive system is a graph (I, Hom), with a certain arrow
1i : Hom(i, i) for every i in I and a composition f ◦ g : Hom(i, k) whenever g :

1Categories have been treated in e.g. [5, 1]. A. Säıbi [9] defines limits in a way similar
to ours. Our only advantage at this point is that we define limits of arbitrary diagrams,
while Säıbi, using a general cone transformation, defines limits of functors. Therefore, our
construction turns out to be intensionally simpler in some cases. Colimits of setoids seem not
to have been treated before in type theory.

1

Hom(i, j) and f : Hom(j, k). A category2 is a deductive system with equivalence
relations on the Hom-sets, satisfying

1j ◦ f = f (1)

f ◦ 1i = f (2)

(f ◦ g) ◦ h = f ◦ (g ◦ h) (3)

whenever the compositions make sense, and the replacement rule

p = p′ q = q′

p ◦ q = p′ ◦ q′
. (4)

A set with an equivalence relation is called a setoid and maps between setoids
are required to preserve the equivalence relations.

By the Curry–Howard correspondence, a deductive system is nothing but a
preorder:

Hom(i, j) ! i ≤ j (5)

1i ! refli (6)

f ◦ g ! tr(g, f) . (7)

Thus every category is a preorder with the order relation

i ≤ j
def

= Hom(i, j) .

Conversely, given a preorder we can give it a category structure by defining a
suitable equivalence relation on the proofs. There are two extreme ways of doing
that. The easiest one is to identify all proofs

p = q
def

= >

which will give a category with ‘unique’ arrows between the objects (hence pre-
cisely what usually is called ‘preorder’ by category theorists, see e.g. [6, p. 6,
example C3’]. The dual approach is the finest possible equivalence relation, in-
ductively generated3 by the axioms (1), (2), (3), (4) and the equivalence relation
axioms.

We will consider, for a given preorder (I,≤), the two extreme categories

I∗ = (I,≤) with maximal equivalence relations, (8)

I∗ = (I,≤) with minimal equivalence relations, (9)

the former being the one usually considered as a preorder.
A morphism of a graph into the underlying graph of a category is called a

diagram in the category. A functor between categories is a morphism of the
corresponding deductive systems (preorders), preserving also the equivalence
relations on the Hom-sets. Any morphism from a preorder (I,≤) to a category

2We restrict ourselves to locally small categories in the sense that we require a set of arrows
between every pair of objects.

3To formalize inductive definitions, one can either extend the type theory or use well-
orderings or tree-types, see e.g. [2]. We will make no formal use of these equivalence relations,
so we omit the formalizations.

2

C is automatically a functor I∗ → C, because the equations that hold in I∗ are
those which have to hold in any category.

Hence every functor is a morphism of preorders and every morphism of
preorders is a functor.

It will turn out that the category structures of index categories are not used
at all in the constructions of limits and colimits of functors. All that is needed
is the underlying graph structure. Therefore, it is more natural to speak of
limits and colimits of diagrams. It shows also that the generality introduced
by going to general limits and colimits from projective and inductive limits
is somewhat illusory: the limit of an arbitrary functor is the projective limit
obtained by considering the index category as a preorder, and the colimit is the
corresponding inductive limit.

2 Projective and Inductive Systems of Setoids

A projective system over (I,≤) is a contravariant functor I∗ → Setoid. In
elementary terms, this means that we have the following:

First of all, (I,≤) is a preorder:

I : set (10)

i ≤ j : prop (i, j : I) (11)

refli : i ≤ i (i : I) (12)

trijk(p, q) : i ≤ k (i, j, k : I, p : i ≤ j, q : j ≤ k) . (13)

Secondly, we have a family of setoids over I :

Ai : set (i : I) (14)

a =i b : prop (i : I, a, b : Ai) (15)

reflAia : a =i a (i : I, a : Ai) (16)

symAiab(p) : b =i a (i : I, a, b : Ai, p : a =i b) (17)

trAiabc(p, q) : a =i c (i : I, a, b, c : Ai, p : a =i b, q : b =i c) (18)

and a family of functions

fij(p, x) : Ai (i, j : I, p : i ≤ j, x : Aj)

which are extensional,

fij(p, x) =i fij(p, y) true (i, j : I, p : i ≤ j, x, y : Aj , x =j y true) ,
(19)

and assumed to preserve the relation in inverse order:

fii(refli, x) =i x true (i : I, x : Ai) (20)

fik(trijk(p, q), x) =i fij(p, fjk(q, x)) true (i, j, k : I, p : i ≤ j, q : j ≤ k, x : Ak) .
(21)

Because I∗ is what usually is considered as a preorder in category theory, one
might instead want to have a projective system being a contravariant functor
I∗ → Setoid. That is obtained by adding the requirement of proof-irrelevance

fij(p, x) =i fij(q, x) true (i, j : I, p, q : i ≤ j, x : Aj) . (22)

3

Category theorists would probably argue that this principle is what distinguishes
projective systems from contravariant functors in general. We shall, however,
make no use of (22) in the following.4

The formalization of inductive systems is precisely analogous, but in this
case we have covariant functors instead, so we reverse all arrows fij . Our family
of functions is now

fij(p, x) : Aj (i, j : I, p : i ≤ j, x : Ai) .

They are extensional,

fij(p, x) =j fij(p, y) true (i, j : I, p : i ≤ j, x, y : Ai, x =i y true) (23)

and assumed to preserve the relation:

fii(refli, x) =i x true (i : I, x : Ai) (24)

fik(trijk(p, q), x) =k fjk(q, fij(p, x)) true (i, j, k : I, p : i ≤ j, q : j ≤ k, x : Ai) .
(25)

Again, this is a functor from I∗. If we want functoriality from I∗, we need
to require also a principle of proof-irrelevance

fij(p, x) =j fij(q, x) true (i, j : I, p, q : i ≤ j, x : Ai) . (26)

3 Limits

In the sequel, we will assume that I is a set.
The projective limit of the projective system defined above is the limit of the

functor (I∗)
op → Setoid or (I∗)op → Setoid, depending on our taste regarding

the principle (22) of proof-irrelevance. It is interesting to notice that in both
cases we get the same limit. More precisely, the limit does not depend at all
on the equivalence relations on the Hom-sets. In this section we treat limits of
arbitrary functors to Setoid, but because we never use the equivalence relations
on Hom-sets, we will use the notation for preorders rather than categories, let-

ting i ≤ j
def

= Hom(i, j) etc. We will not even assume reflexivity and transitivity,
so we actually use only the graph structure of (I,≤).

Thus, let (I,≤) be a graph (think of it as the underlying graph of an arbitrary
small category) and consider an arbitrary diagram D : (I,≤) → Setoid (in
particular, D can be a functor). It is formalized precisely as our formalization
of inductive systems, but without requiring reflexivity (12) and transitivity (13)
of (I,≤), and consequently without assuming that this structure is preserved
(24), (25), (26). We cover in this way inductive systems, but also projective
systems by thinking of (I,≤) as (I,≥). We will define the limit of D.

The universal property for limits says that given a cone of functions from
a setoid A/=A to D, it should factor in a unique way through the limit. Any
element of A defines a function of type (i : I)Ai, so the limit should consist of
such functions. Not all functions, however, because being a cone means that

4Thanks to Per Martin-Löf, who communicated his suspicion that (22) might not be needed.

4

all triangles commute. Thus, we pick out the subsetoid consisting of acceptable
functions:

(Σf : Π(I, A))(∀i, j : I, p : i ≤ j)(fij(p, app(f, i)) =j app(f, j)) . (27)

Now, we define lim
←−

as this set with the equivalence relation being extensional
equality:

f
ext

= g
def

= (∀i : I)(πi(f) =i πi(g)) ,

where the πi are the projections

πi(f)
def

= app(π`(f), i) ,

and π` is the left projection (z) split(z, (x, y)x). The equality is thus defined as
the coarsest one making the projections πi extensional.

The maps πi are compatible with the functions fij precisely because we used
a subsetoid of the setoid of functions:

fij(p, πi(f)) =j πj(f) true (i, j : I, p : i ≤ j, f : lim
←−

) . (28)

This is easy to see if we replace f with a canonical element (f, q) and nor-
malize:

app(app(app(q, i), j, p) : fij(p, app(f, i)) =j app(f, j) (. . .) (29)

with the dots replaced by the appropriate typing of i, j, p, f, q.
We have to verify the universal property. Assume there is a setoid A/=A

with a cone of extensional functions

gi(x) : Ai (i : I, x : A) (30)

exti(p, x, y) : gi(x) =i gi(y) (i : I, x, y : A, p : x =A y) (31)

coneij(p, x) : fij(p, gi(x)) =j gj(x) (i, j : I, p : i ≤ j, x : A) . (32)

We should then have a function g : A→ lim
←−

satisfying

πi(g(x)) =i gi(x) true (i : I, x : A) . (33)

We obtain such a function by letting

g1(x)
def

= λi.gi(x) (34)

g2(x)
def

= λi.λj.λp.coneij(p, x) (35)

g(x)
def

=(g1(x), g2(x)) . (36)

Inserting this definition in the requirement (33) and normalizing, we obtain
the requirement

gi(x) =i gi(x) true (i : I, x : A)

which is proved by reflAigi(x).
We also have to prove that g is extensional, i.e., that

g(x) = g(y) true (x, y : A, p : x =A y) .

5

The proposition g(x) = g(y) normalizes to (∀i : I)(gi(x) =i gi(y)), which is
proved by λi.exti(p, x, y).

Finally, we need to prove uniqueness. So assume that h is another function
satisfying the properties, i.e.,

πi(h(x)) =i gi(x) true (i : I, x : A).

Then πi(h(x)) =i πi(g(x)) and by λ-abstraction we get

(∀i : I)(πi(h(x)) =i πi(g(x))) true (x : A),

which is definitionally equal to h(x) = g(x) true (x : A).

4 Colimits

The inductive limit of inductive systems is the colimit of the functor I∗ →
Setoid (or I∗ → Setoid, depending on taste). Again, the difference between
I∗ and I∗ has no effect, because the equivalence relations on the Hom-sets are
not used. Hence we stick to preorder notation also in the treatment of colimits.
This time, it is convenient to use a little more than the graph structure of
(I,≤), namely reflexivity (12), (20). This is no essential restriction since every
graph can be extended by adding an endoarrow refli for every node i; while
corresponding diagrams are extended by mapping the new arrows to substitution
maps: if (I,≤) is a set with relation (a graph), then (I, Id∨ ≤) is the reflexive
closure

(Id∨ ≤)(i, j)
def

= Id(I, i, j) ∨ i ≤ j ,

and a diagram D : (I,≤)→ Setoid, mapping p : i ≤ j to fij(p), is extended to
Id∨D : (I, Id∨ ≤)→ Setoid by letting

f ′

ij(p, a)
def

= when(p, (x) subst(x, a), (x)fij (x, a)) ,

with the usual definition subst(x, a)
def

= app(idpeel(x, (y)λz.z), a). Moreover, ev-
ery cone from D extends to a cone from Id∨D, since

idpeel(p, (x) reflA(gx(a))) : gj(subst(p, a)) =A gi(a) (i, j : I, p : Id(I, i, j), a : Ai) .

Consider the set Σ(I, A) and define on it a relation a R b as

(∃k : I, p : π`(a) ≤ k, q : π`(b) ≤ k)(fπ`(a)k(p, πr(a)) =k fπ`(b)k(q, πr(b))) ,
(37)

where πr is the right projection (z) split(z, (x, y)y).
It is obviously reflexive and symmetric, but the proof-terms are long (and

omitted). In general it is not transitive, as for instance in the construction of
the pushout.

{a}

{∗}

<<zzzz

""DD
DD

{b}

6

Therefore, let = be the transitive closure of R, defined by letting a = b
mean5

(∃n : N, s : (Σx : N)(x ≤ n)→ Σ(I, A))

(Id(Σ(I, A), a, app(s, (0, p1(n)))

∧ Id(Σ(I, A), b, app(s, (n, p2(n)))

∧ (∀k : N, p : succ(k) ≤ n)(app(s, (k, q(k, n, p))) R app(s, (succ(k), p)))) ,

where we have defined a ≤ b on natural numbers as (∃x : N)(a + x = b), and we
have p1(n) : 0 ≤ n, p2(n) : n ≤ n, and q(k, n, p) : k ≤ n (k, n : N, p : succ(k) ≤
n).

When (I,≤) is a directed preorder, R is transitive, hence equivalent to =.
This, however, needs the principle (26) of proof irrelevance, or some related
principle.6

We let lim
−→

be Σ(I, A) with equivalence relation =. We claim that it is the
colimit. We have to verify the universal property, but first let

ιi(x)
def

=(i, x) .

This defines extensional functions Ai/=i → lim
−→

: if a =i b, then ιi(a) R ιi(b),
because this means nothing but (∃k : I, p : i ≤ k, q : i ≤ k)(fik(p, x) =k

fik(q, y)), which is proved by letting k
def

= i, p
def

= q
def

= refli: then fik(p, x) =k

fik(q, y) becomes fii(refli, x) =i fii(refli, y) which is proved using (23). We

then prove ιi(a) = ιi(b) by letting n
def

= 1, s
def

= λx. natrec(π`(x), ιi(a), (y, z)ιi(b)).
The maps ιi are compatible with the functions fij :

ιj(fij(p, x)) R ιi(x) true (i, j : I, p : i ≤ j, x : Ai) . (38)

To prove this, use the definition (37) of R, replace k by j, p by reflj , q by p, and
use (20).

Now to the universal property of lim
−→

. We treat uniqueness before existence.
Assume that we have a cone from D to A/=A, i.e. a compatible family of
extensional functions gi : Ai/=i → A/=A, and an extensional function g :
lim
−→
→ A compatible with this cone:

g(ιi(x)) =A gi(x) true (i : I, x : Ai),

which is to say that

g((i, x)) =A gi(x) true (i : I, x : Ai) .

Thus g is determined up to extensionality. We define g((i, x))
def

= gi(x), or to be
precise,

g(a)
def

= split(a, (i, x)gi(x)) (39)

5Again, one could give an inductive definition, which is in many respects more natural,
but would require more explanations here.

6Per Martin-Löf pointed out to me that the principle really needed is the following one:

(∀i, j, k : I, p : i ≤ j, q : i ≤ k, x : Ai)

(∃` : I, r : j ≤ `, s : k ≤ `)(fj`(r, fij(p, x)) =` fk`(s, fik(q, x))) .

7

or, alternatively,

g(a)
def

= gπ`(a)(πr(a)) . (40)

It remains to check that g is extensional. Let us use a semi-formal style, in
the hope that it is easier to understand. So assume a = b in lim

−→
. This means

that there is a finite sequence a =Id s0 R s1 R · · · R sn =Id b. We shall prove
that g(a) =A g(b), and by transitivity it suffices to prove g(sk) =A g(sk+1) for
each k < n. We may easily do that using that we have

app(s, (k, q(k, n, p))) R app(s, (succ(k), p))

by assumption. It then remains to show that if elements are R-equal, then their
image under g are =A-equal. It suffices to consider elements in canonical form,
so assume (i, a) R (j, b) and prove g((i, a)) =A g((j, b)). Spelled out, we are
assuming there are k, p, q with

fik(p, a) =k fjk(q, b) true

and we have to prove
gi(a) =A gj(b) true .

We do that by using transitivity, proving

gi(a) =A gk(fik(p, a)) =A gk(fjk(q, b)) = gj(b) ,

where we in the first and last step use the cone-property of gi (and symmetry),
and in the middle step the extensionality of gk applied to the proof of fik(p, a) =k

fjk(q, b).

5 Products and Disjoint Unions of Setoids

In the special case when the index graph (I,≤) is a setoid, that is, when ≤ is an
equivalence relation, we use to say products and coproducts instead of limits and
colimits. In the case with setoids, it is common to say disjoint union instead of
coproduct.

It has been proposed [3, Chap. 5.2] (and earlier in [4]) that a family indexed
by a setoid should be functorial also with respect to the symmetry proofs. That
is not needed for our purposes, since our constructions do not make use of
symmetry at all.

There is also the case when no relation ≤ is present, but we have a family
of setoids indexed by a set I . We may construct products and disjoint unions
in this case too.

The construction of products is immediate, because a family indexed by
I : set is automatically a diagram from the graph (I, (i, j)⊥). Then the definition
(27) of the limit normalizes to

(Σf : Π(I, A))(∀i, j : I, p : ⊥)(fij(p, app(f, i)) =j app(f, j)) .

which, because p : ⊥ is impossible, is an improper subsetoid of Π(I, A). Thus
the product in the categorical sense amounts to what is called the ‘product’ also
in type theory, but with an equivalence relation being extensional equality.

8

In the construction of the disjoint union, we need to do as indicated in
the beginning of the section about colimits: we need to construct the reflexive
closure.

We get, using that construction, the definition i ≤ j
def

= Id(I, i, j) ∨ ⊥. It is
of course natural in this special case to omit the second (always false) disjunct,
defining ≤ to be nothing but the identity. The corresponding definition for the
functions then becomes

fij(p, a)
def

= subst(p, a) .

Now, (I,≤) is a setoid and the family of setoids under consideration is a diagram
over this setoid. The disjoint union is nothing but the colimit of this diagram.
The definition (37) of a R b becomes

(∃k : I, p : Id(I, π`(a), k), q : Id(I, π`(b), k))(subst(p, πr(a)) =k subst(q, πr(b))) .
(42)

Since we may always take k to be π`(b) and q to be id(π`(b)), we may replace
this relation by the equivalent and simpler, but less symmetric, relation

(∃p : Id(I, π`(a), π`(b)))(subst(p, πr(a)) =π`(b) πr(b)) . (43)

It is transitive, so it is equivalent with the complicated relation = which was
constructed in the previous section. Thus the disjoint union is Σ(I, A), which
is called ‘disjoint union’ also in type theory, but with equivalence relation given
by (42) or (43).

Acknowledgements

The author would like to thank Per Martin-Löf for the interesting comments,
which are found in the footnotes. Thanks also to Giovanni Curi, who suggested
some changes to the text, and thus helped improving it.

9

References

[1] V. Capretta. Abstraction and Computation, Chap. 5: Setoids. PhD thesis,
Katholieke Universiteit Nijmegen, 2002.

[2] P. Dybjer. Inductive families. Formal Aspects of Computing, 6:440–465,
1994.

[3] M. Hofmann. Extensional Concepts in Intensional Type Theory. PhD thesis,
University of Edinburgh, 1995.

[4] M. Hofmann and T. Streicher. A groupoid model refutes uniqueness of
identity proofs. In Proceedings of the 9th Annual Symposium on Logic in
Computer Science (LICS’94), Paris, France, pp. 208–212. IEEE Computer
Society Press, 1994.

[5] G. Huet and A. Säıbi. Constructive category theory. In Gordon Plotkin,
Colin Stirling, and Mads Tofte, eds., Proof, Language and Interaction: Es-
says in Honour of Robin Milner. MIT Press, 1998. Presented at CLICS-
TYPES BRA ’95.

[6] L. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic.
Cambridge University Press, 1986.

[7] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

[8] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s
Type Theory. Oxford University Press, 1990. http://www.cs.chalmers.

se/Cs/Research/Logic/book/.

[9] A. Säıbi. Théorie constructive des catégories. Unpublished draft.

10

