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Keywords: Poincaré series, derivation.

Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.math.su.se/
info@math.su.se
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Abstract

Let R be a graded k-algebra and M be a finitely generated R-module.
The Poincaré series P R

M (z) is the formal power series
�

i
dimk TorR

i (k, M)zi.
We determine the Poincaré series of the module of derivations of some
monomial rings.

MSC: 13D02; 13D07

1 Introduction

If R is a commutative k-algebra, with k a field, the module of derivations,
Derk(R) ⊆ Homk(R, R) is the set {ρ ∈ Homk(R, R) | ρ(ab) = aρ(b) + ρ(a)b
for every a, b ∈ R}. This set has a natural R-module structure by multiplication
from left by elements in R.

Let R be a graded k-algebra and M be a finitely generated R-module. The
Poincaré series P R

M (z) is the formal power series
∑

i dimk TorR
i (k, M)zi.

Our object of study in this paper is the Poincaré series of the module of
derivations of some monomial rings.

1.1 Description of the content

We now make a closer description of the paper. In Section 2 we state a theorem
which represents the starting point of our paper. Moreover we give some results
which allow us to calculate the Poincaré series of the module of derivations of
monomial rings.

In Section 3 we use results of Section 2 in order to determine the Poincaré
series of the module of derivations for some classes of example of monomial rings.
In particular we determine the Poincaré series of the module of derivations
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of complete intersection rings (cf. Subsection 3.1), of the rings of the type
k[X1, . . . , Xn]/(X1, . . . , Xn)l (cf. Subsection 3.2) and of some Stanley-Reisner
rings (cf. Subsection 3.3).

2 Preliminaries

The starting point of our paper is the following theorem due to Brumatti and
Simis in [2].

Theorem 2.1. Let I ⊆ S = k[X1, . . . , Xn] be an ideal generated by monomials
whose exponents are prime to the characteristic of k. Then

Derk(S/I) = ⊕n
i=1(I : (I : Xi)/I)∂i

where ∂i = ∂
∂Xi

.

To calculate the Poincaré series of the module of derivations of monomial
rings we use the following proposition.

Proposition 2.2. Let R be a ring and let J be an ideal in R. Then P R
J (z) =

(P R
R/J (z)− 1)/z.

Proof. This follows easily by comparing the minimal free R-resolutions of J
and R/J .

In [5], Levin introduces the idea of a large homomorphism of graded (or local)
rings as a dual notion to small homomorphism of graded rings introduced in [1].
Namely, if A and B are graded rings and f : A −→ B is a graded homomorphism
which is surjective, then f is large if f∗ : TorA(k, k) −→ TorB(k, k) is surjective.

Proposition 2.3. Let R be a monomial ring and let x1, . . . , xn be variables in
R. Then the map f : R −→ R/(x1, . . . , xn) is large.

Proof. It is enough to prove that the map f : R −→ R/(x), with x a variable
in R, is large. Let us consider the following minimal free R-resolution of k

0←− k ←− R←− Rb1 ←− · · · .

This resolution is a multigraded resolution. If we kill everything with degree
grater than zero in the variable x, we get the following minimal free R/(x)-
resolution of k

0←− k ←− R/(x)←− [R/(x)]b
′

1 ←− · · · .

Since all the vertical maps in

0 k

��

oo R

��

oo Rb1

��

oo · · ·oo

0 koo R/(x)oo [R/(x)]b
′

1oo · · ·oo
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are surjective, then the homomorphism f∗ : TorR(k, k) −→ TorR/(x)(k, k) is
surjective.

Corollary 2.4. Let R and x be as in Proposition 2.3, then

P R
R/(x)(z) =

P R
k (z)

P
R/(x)
k (z)

.

Proof. This follows by Proposition 2.3 and [5, Theorem 1.1].

3 Examples

In this section we use results in the Preliminares in order to determine the
Poincaré series of the module of derivations of some classes of example of mono-
mial rings.

3.1 The complete intersection case

Let R be a complete intersection monomial ring. Then we can suppose

R =
k[X1, . . . , Xn]

(Xn1
1 · · ·X

nm1
m1 , X

nm1+1

m1+1 · · ·X
nm2
m2 , . . . , X

nmr−1+1

mr−1+1 · · ·X
nmr
mr )

with mr ≤ n.
Let us suppose that n1, . . . , nmr

are prime to the characteristic of k. Then,
by Theorem 2.1, we get M = x1∂1 ⊕ · · · ⊕ xmr

∂mr
⊕R∂mr+1 ⊕ · · · ⊕ R∂n.

By [7, Theorem 6], Corollary 2.4 and Proposition 2.2, we have, for every
i = 1, . . . , mr, that P R

(xi)
(z) = 1/1− z.

Finally, since P R
R (z) = 1, we get

P R
M (z) =

n + (mr − n)z

1− z
.

3.2 The case of k[X1, . . . , Xn]/(X1, . . . , Xn)l

Let R = k[X1, . . . , Xn]/(X1, . . . , Xn)l = k[X1, . . . , Xn]/m
l and let us suppose

that l and char(k) are relative primes.
Since 0 : (0 : Xi) = 0 : m

l−1 = m, then, by Theorem 2.1, we get M =
m∂1 ⊕ · · · ⊕m∂n.

By Corollary 2.4 and [4, Pag 748], we get

P R
R/m

(z) = P R
k (z) =

(1 + z)n

1−
∑n

i=1

(
i+l−2
l−1

)(
n+l−1
i+l−1

)
zi+1

.

Finally, using Proposition 2.2, we get

P R
M (z) = n

(1+z)n

1− � n
i=1 (i+l−2

l−1 )(n+l−1
i+l−1)zi+1

− 1

z
.
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3.3 The case of some Stanley-Reisner rings

In this subsection we determine the Poincaré series of the module of derivations
of some Stanley-Reisner rings.

A (finite) simplicial complex consists of a finite set V of vertices and a
collection ∆ of subsets of V called faces or simplices such that
(i) If v ∈ V , then {v} ∈ ∆.
(ii) If F ∈ ∆ and G ⊆ F , then G ∈ ∆.

Let ∆ be a simplicial complex and F ∈ ∆, then the dimensions of F and
∆ are defined by dim(F ) = |F | − 1 and dim(∆) = sup{dim(F ) | F ∈ ∆}
respectively. A face of dimension q is sometimes refer to a q-face.

Let S = k[X1, . . . , Xn] be a polynomial ring over a field k and let ∆ be a
simplicial complex with vertex set V = {X1, . . . , Xn}. The Stanley-Reisner ring
k[∆] is defined as the quotient ring S/I , where

I = ({Xi1 · · ·Xir
| i1 < · · · < ir, {Xi1 · · ·Xir

} /∈ ∆}).

For a general reference to properties of simplicial complexes and of a Stanley-
Reisner ring, see [8].

To calculate Hilbert series of Stanley-Reisner rings, the following lemma is
helpful.

Lemma 3.1. [6, Theorem 2.1.4] Let fi be the number of i-dimensional faces of a

(d− 1)-dimensional simplicial complex ∆. Then Hk[∆](z) =
∑d−1

i=−1 fiz
i+1/(1−

z)i+1.

3.3.1 The graphs case

We first start to determine the Poincaré series of the module of derivations of
some Stanley-Reisner rings R of simplicial complexes of dimension one. To this
purpose we use Theorem 2.1 and Corollary 3.3 to give a method to determine
the Poincaré series of Derkk[∆] for some Stanley-Reisner ring with relations of
degree 2. Anyway, we note that this method works equally well (if char (k) 6= 2)
for all monomial rings with relations of degree 2.

Let R = k[X1, . . . , Xn]/I where I is generated by monomials of degree 2 and
let b be an ideal generated by a subset of {X1, . . . , Xn}.

In [3, Sect. 1] the authors introduce the so called Koszul filtration. It follows
from [3, Proposition 1.2] that if R and b are as above, then R has a Koszul
filtration and b has a linear free R-resolution.

The following theorem is probably well known, but we prove it for the con-
venience of the reader.

Theorem 3.2. Let R and b be as above. Then HR(z)P R
R
b

(−z) = HR
b

(−z).

Proof. Since R has a Koszul filtration, we have the following free linear
R-resolution of R/b

· · · −→ Rb3 [−3] −→ Rb2 [−2] −→ Rb1 [−1] −→ Rb0 = R −→ R/b −→ 0.
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Let R = k ⊕ R1 ⊕ R2 ⊕ · · · and R/b = k ⊕ [R/b]1 ⊕ [R/b]2 ⊕ · · · , then we
have the following graded version of the resolution above

...
...

...
...

...

⊕ ⊕ ⊕ ⊕ ⊕

0 [R/b]3oo R3
oo Rb1

2
oo Rb2

1
oo kb3oo

⊕ ⊕ ⊕ ⊕

0 [R/b]2oo R2
oo Rb1

1
oo kb2oo

⊕ ⊕ ⊕

0 [R/b]1oo R1
oo kb1oo

⊕ ⊕

0 koo koo

Hence we get the following exact sequence of vector spaces (with m > 0)

0 −→ kbm −→ R
bm−1

1 −→ R
bm−2

2 −→ . . . −→ Rb1
m−1 −→ Rm −→ [R/b]m −→ 0.

Let dimk Ri = hi and let dimk[R/b]i = ri and in particular h0 = r0 = 1.
Then, for every i ≥ 0, we have h0bi − h1bi−1 + · · ·+ (−1)ihib0 = (−1)iri, hence
(h0 + h1z + h2z

2 + · · · )(b0 − b1z + b2z
2 − · · · ) = (r0 − r1z + r2z

2 − · · · ).

Corollary 3.3. P R
b

(z) =
(
HR

b

(z)/HR(−z)− 1
)

/z.

Proof. This follows by Theorem 3.2 since P R
b

(z) = (P R
R
b

(z)− 1)/z.

From now on, if R = k[X1, . . . , Xn]/I , then R̃ will denote the ring
k[X1, . . . , Xn]/(I, X2

1 , . . . , X2
n).

Let us start to determine the Poincaré series of the module of derivations of
Stanley-Reisner rings for a cycle.

Let ∆ be a cycle with vertex set V = {X1, . . . , Xn}, n ≥ 3. If n = 3, then
R = k[∆] = k[X1, X2, X3]/(X1X2X3) is a complete intersection and P R

M (z) =
4/1− z (cf. Subsection 3.1).

Let us consider n ≥ 4. Then R = k[∆] = k[X1, . . . , Xn]/(XiXj :| i− j |≥ 2
(mod n)) = k[X1, . . . , Xn]/I .

By Theorem 2.1, we get M = x1∂1 ⊕ · · · ⊕ xn∂n.
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Then, H �R(z) = 1 + nz + (n − 1)z2 and, by Lemma 3.1, we get HR(z) =
H �R(z/1−z) = 1+(n−2)z/(1−z)2. Since H �R/(xi)

(z) = 1+(n−1)z+(n−3)z2,

for every i = 1, . . . , n, we get HR/(xi) = 1 + (n− 3)z − z2/(1− z)2.
Hence, by Corollary 3.3, for every i = 1, . . . , n, we have

P R
(xi)

(z) =
(2n− 1)− 3z − (2n− 7)z2 − z3

(1− z)2(1− (n− 2)z)
.

Finally

P R
M (z) = n

2n− 1− 3z − (2n− 7)z2 − z3

(1− z)2(1− (n− 2)z)
.

Let now ∆ be a complete bipartite graph Km,n with vertex set
V = {X1, . . . , Xm+n}.

The case kn−1,1 is treated below as a path if n = 2, 3 and as a star graph
if n ≥ 4. Moreover, since K2,2 is a cycle, we can suppose m ≥ 3 and n ≥ 2.
Then R = k[∆] = k[X1, . . . , Xm+n]/(XiXj | i 6= j; i, j ∈ {1, . . . , n}, or i, j ∈
{m + 1, . . . , m + n}) = k[X1, . . . , Xm+n]/I .

By Theorem 2.1, we get M = x1∂1 ⊕ · · · ⊕ xn∂n.
Using the same method as for the cycle case we get that HR(z) = 1 +

(m + n − 2)z + (mn − m − n + 1)z2/(1 − z)2 and, for every i = 1, . . . , m,
HR/(xi) = 1 + (m + n − 3)z + (mn + 2 − m − 2n)z2/(1 − z)2 and, for every
i = m + 1, . . . , n, HR/(xi) = 1 + (m + n− 3)z + (mn + 2− 2m− n)z2/(1− z)2.

Hence for every i = 1, . . . , m, we get

P R
(xi)

(z) =
2m + 2n− 1 + (−n− 1)z − (4mn− 2m− 4n + 1)z2 + (1− n)z3

(1− z)2(1− (m + n− 2)z + (mn−m− n + 1)z2)

and for every i = m + 1, . . . , m + n we get

P R
(xi)

(z) =
2m + 2n− 1 + (−m− 1)z − (4mn− 4m− 2n + 1)z2 + (1−m)z3

(1− z)2(1− (m + n− 2)z + (mn−m− n + 1)z2)
.

Finally

P R
M (z) =

a + bz − cz2 + dz3

(1− z)2(1− (m + n− 2)z + (mn−m− n + 1)z2)
.

with a = 2m2 + 2n2 + 4mn − m − n, b = −2mn − m − n, c = −4m2n −
4mn2 + 2m2 + 2n2 + 8mn−m− n and d = m + n− 2mn.

Let us now consider the case of a tree graph.
Let v be a vertex of a graph ∆. The degree of v, deg(v), is the number of

edges at v. We denote by N∆(v) the set of neighbours of a vertex v.
Now let ∆ be a tree. If deg(v) = 1, then v is called leaf. We call v an almost

leaf if there is a leaf w in N∆(v). Finally we call v an inner point if v is not a
leaf and no leaves are in N∆(v).
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Let R = k[X1, . . . , Xn]/I = k[∆] be the Stanley-Reisner ring of a tree ∆
with vertex set V = {X1, . . . , Xn}. It is easy to see that 0 : (0 : Xi) = Xi

whenever Xi is a leaf or an inner point and 0 : (0 : Xi) = (Xi, Xi1 , . . . , Xir
)

whenever Xi is an almost leaf and Xi1 , . . . , Xir
are the leaves in N∆(Xi).

Let ∆ and R be as above. Then HR(z) = 1 + (n− 2)z/(1− z)2.
If Xi is a leaf, then HR/(xi) = 1 + (n− 3)z/(1− z)2 and if Xi, hence

P R
(xi)

(z) =
2n− 1− 2z + (2n− 5)z2

(1− z)2(1− (n− 2)z)
.

If Xi is an inner point with N∆(Xi) = {Xi1 , . . . , Xir
}, then HR/(xi) =

1 + (n− 3)z + (1− r)z2/(1− z)2. Hence

P R
(xi)

(z) =
2n− 1 + (1− r)z + (2n− 2r − 3)z2 + (1− r)z3

(1− z)2(1− (n− 2)z)
.

Finally if Xi is an almost leaf with N∆(Xi) = {Xi1 , . . . , Xir
, Xj1 , . . . , Xjs

},
where Xi1 , . . . , Xir

are the leaves in N∆(Xi), then HR/(x1,xi1 ,...,xir ) = 1 + (n−

r − 3)z + (1− s)z2/(1− z)2. Hence

P(x1,xi1 ,...,xir )(z) =
2n− r − 1 + (−1− s− 2r)z + (2n− s− r − 3)z2 + (1− s)z3

(1− z)2(1− (n− 2)z)
.

Let us now consider some special classes of trees.

Let ∆ be a path with vertex set V = {X1, . . . , Xn}.
If n = 2, then R = k[X1, X2] and M ' R2. Hence P R

M (z) = 2.
Let us suppose n ≥ 3. Then R = k[∆] = k[X1, . . . , Xn]/(XiXj | i ∈

{1, . . . , n− 2}, j > i + 1) = k[X1, . . . , Xn]/I .
By what is written above, we get

M = x1∂1 ⊕ (x1, x2)∂2 ⊕ x3∂3 ⊕ · · · ⊕ xn−2∂n−2 ⊕ (xn−1, xn)∂n−1 ⊕ xn∂n.

Moreover

P R
(x1)

(z) = P R
(xn)(z) =

2n− 1− 2z + (2n− 5)z2

(1− z)2(1− (n− 2)z)
,

P R
(x1,x2)

(z) = P R
(xn−1,xn−2)

(z) =
2n− 2− 3z + (2n− 4)z2 + z3

(1− z)2(1− (n− 2)z)
.

and (if n ≥ 5) for i = 3, . . . , n− 2, we get

P R
(xi)

(z) =
2n− 1− 3z + (2n− 7)z2 − z3

(1− z)2(1− (n− 2)z)
.

Hence

P R
M (z) =

14− 7z + 4z2 + z3

(1− z)3
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if n = 3,

P R
M (z) =

26− 10z + 14z2 + 2z3

(1− z)2(1− 2z)

if n = 4 and

P R
M (z) =

2n2 − n− 2 + (3n− 16)z + (2n2 − 7n− 1)z2 + (4− n)z3

(1− z)2(1− (n− 2)z)

if n ≥ 5.

Let now ∆ be a star graph with vertex set V = {X1, . . . , Xn}, n ≥ 4,
and with center vertex Xn. Then R = k[∆] = k[X1, . . . , Xn]/(XiXj | i ∈
{1, . . . , n− 2}, n > j > i) = k[X1, . . . , Xn]/I .

Moreover M = x1∂1 ⊕ · · · ⊕ xn−1∂n−1 ⊕ (x1, . . . , xn)∂n and, for every i =
1, . . . , n− 1, we have

P R
(xi)

(z) =
2n− 1− 2z + (2n− 5)z2

(1− z)2(1− (n− 2)z)
.

and

P R
(x1,...,xn)(z) =

n + z

1− (n− 2)z
.

Finally

P R
M (z) =

2n2 − 2n + 1 + (3− 4n)z + (2n2 − 6n + 3)z2 + z3

(1− z)2(1− (n− 2)z)
.

By what is written above, we can find the Poincaré series of the module of
derivations of the Stanley-Reisner ring of any arbitrary binary graph. Anyway
in the case of a complete binary graph we give a general formula for the Poincaré
series.

Let ∆ be a complete binary graph with vertex set V = {X1, . . . , Xn} and t
levels (hence n = 2t+1 − 1).

If t = 1, then ∆ is a path. So we can suppose t ≥ 2. Then R = k[∆] =
k[X1, . . . , Xn]/(XiXj | i < j, j 6= 2i, 2i + 1).

By what is written above, we get

M = x1∂1 ⊕ · · · ⊕ x2t−1−1∂2t−1−1 ⊕ (x2t−1 , x2t , x2t+1)∂2t−1⊕

⊕(x2t−1+1, x2t+2, x2t+3)∂2t+1 ⊕ · · · ⊕

⊕(x2t
−1, x2t+1−2, x2t+1−1)∂2t

−1 ⊕ x2t∂2t ⊕ · · · ⊕ x2t+1−1∂2t+1−1.

Since there are 2t = (n + 1)/2 leaves, 2t−1 = (n + 1)/4 almost leaves and
2t−1 − 1 = (n− 3)/4 inner points, we get

P R
M (z) =

8n2 − 6n− 2 + (−12n− 4)z + (8n2 − 25n + 11)z2 + (6− 2n)z3

4(1− z)2(1− (n− 2)z)
.
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3.3.2 The case of skeletons of simplex

The q-skeleton of a simplicial complex ∆ is the simplicial complex ∆q consisting
of all p-faces of ∆ with p ≤ q.

A simplicial complex ∆ with vertex set V and with |V | = m is called simplex
if dim ∆ = m− 1.

In this subsection we determine the the Poincaré series of the module of
derivations for a Stanley-Reisner ring R of skeletons of simplex. We can even
think of R as the factor ring of the polynomial ring modulo all squarefree mono-
mials of a certain degree.

Let ∆q
n−1 be the q-dimensional skeleton of a (n − 1)-dimensional simplex

∆n−1.
If q = n− 1, then R = k[X1, . . . , Xn], M ' Rn and P R

M (z) = n.
Let us suppose hence that q < n− 1.
Then R = k[∆] = k[X1, . . . , Xn]/(Xm1Xm2 · · ·Xmq+2 |m1 < m2 < · · · <

mq+2).
By Theorem 2.1, we get M = x1∂1 ⊕ · · · ⊕ xn∂n.
By [8, Proposition 5.3.14], we have that R is Cohen-Macaulay. Using Lemma

3.1, we have that HR(z) =
∑n

i=0

(
n
i

)
zi/(1− z)i.

Let us now suppose that k is infinite. Then there exists a regular sequence
of linear elements of length q + 1, {a1, . . . , aq+1}.

Let us denote R/(a1, . . . , aq+1) by R′. Then the Hilbert series

HR′(z) = (1− z)q+1HR(z) =

= 1 +

(
n− (q + 1)

1

)
z +

(
n− (q + 1) + 1

2

)
z2 + · · ·+

(
n + q

q + 1

)
zq+1 = HR(z)

where R = k[Y1, . . . , Yn−(q+1)]/(Y1, . . . , Yn−(q+1))
q+2. Hence R′ ' R.

Using the result in Subsection 3.2, we get

P R
k (z) = (1 + z)q+1P R′

k (z) =
(1 + z)n

1−
∑n−(q+1)

i=1

(
i+q
q+1

)(
n+1

i+q+1

)
zi+1

.

Let xi, with i ∈ {1, . . . , n}.
Since q < n− 1, then R/(xi) is the Stanley-Reisner ring of ∆n−2

q . Using the
same argument as above, we get

P
R/(xi)
k (z) =

(1 + z)n−1

1−
∑n−(q+2)

i=1

(
i+q
q+1

)(
n

i+q+1

)
zi+1

.

Finally, using Corollary 2.4 and Proposition 2.2, we get

P R
M (z) = n

(1+z)(1− � n−(q+2)
i=1 (i+q

q+1)(
n

i+q+1)zi+1)

1− � n−(q+1)
i=1 (i+q

q+1)(
n+1

i+q+1)zi+1
− 1

z
.
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