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Abstract

We refine Gentzen’s classical sequent calculus into a classical tableau
calculus within the framework of Martin-Löf’s type theory. This cal-
culus has essentially the same inference figures as Gentzen’s classical
sequent calculus, but there are two important departures from the lat-
ter: there are no structural inference figures except cut, and categories
in the sense of Martin-Löf’s type theory replace sequents.

The classical tableau calculus admits a normalization algorithm
similar to the algorithm implicit in Gentzen’s Hauptsatz, however con-
fluent and strongly normalizing. The proof of the latter conforms with
Gandy’s technique, which in turn relies on the algorithm being weakly
normalizing, here proved along the same line of argument as Gentzen’s
Hauptsatz.

1 Introduction

Gentzen’s classical sequent calculus is in this paper refined into a classical
tableau calculus without structural inference figures except cut, and a nor-
malization algorithm similar to the algorithm implicit in Gentzen’s Haupt-
satz is developed. The normalization algorithm is confluent and strongly
normalizing as opposed to the latter.

The classical tableau calculus and the normalization algorithm grew from
an effort to extend the double negation interpretation to act on derivations
as well as formulas, where they are used to level the ground. This effort has
met with success, but is presented elsewhere [1], where also the rationale for
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the normalization algorithm can be found. This paper dwell on more formal
matter.

The mathematical framework of this paper is Martin-Löf’s type theory,
and the basic reference work on this topic is [4], but see also [6]. It is here
principally used to explain sequents, the identity of derivations, and signs
(Sect. 2), the latter in the sense of classical tableau calculus, but also to
speak about the classical connectives and quantifiers.

We shall designate the classical connectives and quantifiers by indeter-
minate constants (conjunction &, disjunction ∨, implication ⊃, negation
∼, universal quantification ∀, and existential quantification ∃) of the ap-
propriate types. This makes it possible for us to speak about the classical
connectives and quantifiers without having to explain their meaning.

2 Sequents

We shall use Martin-Löf’s type theory to interpret sequents, in intuitionistic
logic and then classical predicate logic, as categories in the sense of type
theory. Lower-case Greek letters will designate types and upper-case Latin
letters will designate sets and propositions. The indeterminate proposition
Ψ of Section 2.2 is an exception to this rule.

In type theory, to know that something is a category is to know what
its objects are and under what conditions two of its objects are equal. We
want to speak about categories of old-fashioned functions,

β(x1, ..., xm) (x1:α1, ..., xm:αm(x1, ..., xm−1)),

as metamathematical objects, or what amounts to the same thing, reflect
them as objects of some other category. Anyhow, we have to explain un-
der what conditions two categories of old-fashioned functions are equal: To
know that two categories categories of old-fashioned functions, α(...) (...)
and β(...) (...), are equal is to know that an object of α(...) (...) is also an
object of β(...) (...) and, moreover, equal objects of α(...) (...) are also equal
objects of β(...) (...), and vice versa.

Contrary to the usual practice, we will for categories of old-fashioned
functions admit expressions where each assumption may occur more than
once, e.g. expressions like β(x) (x:α, x:α), on the understanding that they
are equal to their counterparts where each assumption occur only once.
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2.1 Sequents in intuitionistic logic

Sequents and categories of old-fashioned functions have similar if not iden-
tical roles within type theory. We shall consider them to be synonymous
concepts and thus identify each sequent of the form

x1:α1, ..., xm:αm(x1, ..., xm−1) ⇒ β(x1, ..., xm)

with the corresponding category

β(x1, ..., xm) (x1:α1, ..., xm:αm(x1, ..., xm−1)).

We shall refer to categories of old-fashioned functions simply as categories.
What we mean will always by clear from the context.

We shall from now on restrict our attention to predicate logic and thus
to sequents of the form

∆, x1:α1(d1, ..., dk), ..., xm:αm(d1, ..., dk) ⇒ β(d1, ..., dk),

where ∆ is some context d1:Element(D), ..., dk :Element(D) of variables over
the set D of individuals. We shall suppress the context ∆ as well as the
variables over D and write these sequents simply as

x1:α1, ..., xm:αm ⇒ β.

2.2 Sequents in classical logic

We adopt an indeterminate proposition Ψ (from Greek ψεv́δoς) and define
the two signs of classical tableau calculus by

{

TA = Proof(A),
FA = (T(A))T(Ψ).

We can then translate each sequent A1, ..., Am → B1, ..., Bn of classical
predicate logic into a tableau sequent

x1:TA1, ..., xm:TAm, y1:FB1, ..., ym:FBn ⇒ TΨ

with distinct variables x1, ..., xm, y1, ..., yn and then interpret the classical
consequence relation accordingly. We will abbreviate tableau sequents by
expressions like

x1

TA1, ...,
xm

TAm,
y1

FB1, ...,
ym

FBn .
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The two signs are closely related to the intuitionistic concepts of truth
and falsity. These concepts are examined in great detail by Martin-Löf
in [5], where he, among other things, explains why to judge a proposition A
true carries the same meaning as to judge the corresponding type Proof(A)
inhabited, and why to judge a proposition A false carries the same meaning
as to judge the corresponding type (Proof(A))Proof(⊥) inhabited. These
two forms of judgement can be generalized to the corresponding forms of
judgement made under assumptions.

3 The calculus C1

We shall refine Gentzen’s classical sequent calculus [8] into a classical tableau
calculus within the framework of Martin-Löf’s type theory. This calculus
has essentially the same inference figures as Gentzen’s classical sequent cal-
culus, but there are two important departures from the latter: there are
no structural inference figures except cut, and tableau sequents replace se-
quents.

The inference figures of the classical tableau calculus are displayed in the
table at page 5. They are organized into two columns and we call them left
and right inference figures respectively. We furthermore call those inference
figures neither axiom nor cut by the name of logical inference figures.

3.1 Restrictions on contexts and variables

An assumption discharged by an inference must not occur in the correspond-
ing premiss context, and each assumption that occurs in a premiss context
of an inference must also occur in the corresponding conclusion context, e.g.
to be allowed to make an inference

u

TA,Γ1

x

FA,Γ2

Γ3
cut u,x

, (1)

the assumption u:TAmust not occur in the context Γ1, the assumption x:FA
must not occur in the context Γ2, and each assumption that occurs in either
Γ1 or Γ2 must also occur in Γ3.

For quantifiers we have the well known restrictions on variables. The
variable bound by the quantifier in a right ∀-inference or a left ∃-inference
must not occur free in any formula in the corresponding premiss context,
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axiom u

TA,
x

FA,Γ

u,x cut

u

TA,Γ1

x

FA,Γ2

Γ3

u,x

T&

u

TA,Γ1
w

TA&B,Γ2

1;u;w

v

TB,Γ1
w

TA&B,Γ2

2;v;w

F&

x

FA,Γ1

y

FB,Γ1
z

FA&B,Γ2

x,y;z

T∨

u

TA,Γ1

v

TB,Γ1
w

TA∨B,Γ2

u,v;w F∨

x

FA,Γ1
z

FA∨B,Γ2

1;x;z

y

FB,Γ1
z

FA∨B,Γ2

2;y;z

T⊃

x

FA,Γ1

v

TB,Γ1
w

TA⊃B,Γ2

x,v;w F⊃

u

TA,
y

FB,Γ1
z

FA⊃B,Γ2

u,y;z

T∼

x

FA,Γ1
w

T∼A,Γ2

x;w F∼

u

TA,Γ1
z

F∼A,Γ2

u;z

T∀

v

TA(t/x),Γ1
w

T(∀x)A,Γ2

v;w F∀

y

FA,Γ1
z

F(∀x)A,Γ2

y;z

T∃

v

TA,Γ1
w

T(∃x)A,Γ2

v;w F∃

y

FA(t/x),Γ1
z

F(∃x)A,Γ2

y;z

Table 1: The inference figures of the classical tableau calculus C1.
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e.g. in a right ∀-inference

y

FA,Γ1
z

F(∀x)A,Γ2

F∀ y;z

, (2)

the variable x must not occur free in any formula in the context Γ1.
The above assumption z:F(∀x)A may however occur in the context Γ2.

This is a direct consequence of the third paragraph of Section 2 and applies
to inferences in general.

3.2 On the lack of eigenvariables

Eigenvariables and their like are not only superfluous, but the lack thereof
is in agreement with type theory. Their rôle as to admit a choice of what
variable to bind in a Gentzen-styled inference like

y

FA(a)
z

F(∀x)A(x)

F∀ y;z

(3)

is here absorbed by identity of tableau sequents.
To see how this comes about, suppose that the variable u does not occur

free in the formula A of inference (2). Then, since an admissible change
of bound variables does not alter the identity of a tableau sequent, the
tableau sequent z:F(∀u)A(u/x),Γ2 equals the conclusion of inference (2),
which consequently may as well be written as

y

FA,Γ1
z

F(∀u)A(u/x),Γ2

F∀ y;z

. (4)

3.3 Weakening, contraction, and interchange

The restrictions on contexts and variables (Sect. 3.1) still permit weakening
to occur at the end of each inference, within its conclusion, much like in
natural deduction. This makes the restriction, that we only permit one
premiss context per logical inference, negligible, because each premiss is
also the conclusion of some inference, where weakening may occur.

In contrast to weakening, which depends upon our choice of inference
figures, contraction and interchange only depend upon the conditions under
which two tableau sequents are equal: To know that two tableau sequents,
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Γ1 and Γ2, are equal is, per definition, to know that an object of Γ1 is also
an object of Γ2 and, moreover, equal objects of Γ1 are also equal objects of
Γ2, and vice versa.

We can accomplish contraction in two different ways by inferences like

U
u

TA,
w′

TA&B

w

TA&B,
w′

TA&B

T& 1;u,w
w′

TA&B,
z

FA&B

axiom w′,z

w′

TA&B

cut w,z

(5)

and
U

u

TA,
w′

TA&B

w′

TA&B

T& 1;u,w′

, (6)

but only the latter depends upon identity of tableau sequents. To be precise,
the agreement of the third paragraph of Section 2 identifies tableau sequents
like w′:TA&B and w′:TA&B,w′:TA&B.

Interchange on the other hand, depends explicitly on the interpretation
of tableau sequents as categories in the sense of type theory. Note that
interchange permutes the assumptions of a tableau sequent, but does not
alter its objects, nor the conditions under which two of its objects are equal.
It therefore does not alter the tableau sequent, but only its representation,
which makes interchange unnecessary.

3.4 Identity of derivations

Given that each inference designates an object of its conclusion category in
terms of the objects of its premiss categories, we have that each derivation
inductively designates an object as well. We shall consider two derivations
within C1 of the same tableau sequent to be equal if and only if they desig-
nate syntactic equal objects up to an admissible change of bound variables.
Consequently, we have to complete each inference figure of C1 with the ad-
ditional information of how each inference of that inference figure designates
an object of its conclusion category in terms of the objects of its premiss
categories.

We shall in what follows shorten our notation and not write out contexts
of variables over the set of individuals.
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Completed with the additional information the inference figures of axiom
and cut becomes

x(u):TΨ (u:TA, x:FA,Γ)
axiom u,x

(7)

and
a:TΨ (u:TA,Γ1) b:TΨ (x:FB,Γ2)

b((u)a/x):TΨ (Γ3)
cut u,x

(8)

respectively. The substitution of the cut inference figure should be read as
an explicit substitution; for related matter on explicit substitution, see [7, 9].

To complete each logical inference figure with the necessary additional
information we have to introduce a corresponding constant T& 1, T& 2,
F&, etc. Each such constant denotes an indeterminate function that desig-
nates an object of the conclusion category in terms of abstraction and the
objects of the premiss categories. Completed with the necessary additional
information the right &-inference figure becomes

a:TΨ (x:FA,Γ1) b:TΨ (y:FB,Γ1)

F&((x)a, (y)b, z):TΨ (z:FA&B,Γ2)
F& x,y;z

. (9)

The other logical inference figure cases are similar.
We have that each derivation within the classical tableau calculus induc-

tively designates an object built up from constants and variables through
abstraction, application, and explicit substitution. It thus makes sense to
speak about the identity of derivations within C1 of a tableau sequent Γ
and, moreover, the category Γ̃ of derivations within C1 of a tableau sequent
Γ. This will be important later in Section 7.1.

3.5 Law of the excluded middle

We can derive a tableau sequent of the form z:FA∨∼A,Γ by

u

TA,
y

FA,Γ

axiom u,y

u

TA,
z

FA∨∼A,Γ

F∨ 1;y,z

x

F∼A,
z

FA∨∼A,Γ

F∼ u;x

z

FA∨∼A,Γ

F∨ 2;x,z

. (10)

According to our interpretation of Section 2.2 of the classical consequence
relation, to judge z:FA∨∼A,Γ inhabited is noting but to classically judge
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A∨∼A true under the assumptions of Γ. Consequently, derivation 10 is a
derivation of the law of the excluded middle.

Note that there are only three cut free derivations of the tableau sequent
z:FA∨∼A,Γ up to identity of derivations.

4 Decorations and decorated derivations

We shall shortly give a normalization algorithm applicable to C1, and then
later, prove it strongly normalizing. This however requires that the normal-
ization algorithm applies to certain decorated derivations. Consequently,
those derivations must be defined before we can proceed with the algorithm
itself. We make the two simultaneous definitions:

1. A decoration is a tuple of decorations and decorated derivations alike.
We shall consider two decorations to be equal if and only if they have
the same number of components and, moreover, their components are
equal in pairs.

2. A decorated derivation is a derivation within C1 where each inference
carry a decoration by juxtaposition. We shall consider two decorated
derivations of the same tableau sequent to be equal if and only if their
underlying derivations are equal and, moreover, their decorations are
equal in pairs.

It thus makes sense to speak about the category Γ̃ of decorated derivations
within C1 of a tableau sequent Γ. This will again be important later in
Section 7.1.

Note that we use the same notation to denote both categories of deriva-
tions and categories of decorated derivations. We shall also use the noun
derivation to denote both derivations and decorated derivations. What we
mean will always be clear from the context.

We will in general denote indeterminate decorations by lower-case Greek
letters.

5 Normalization

We shall describe a normalization algorithm able to replace each derivation
by a cut free derivation that ends by the same sequent. The algorithm works
for undecorated derivations as well: just ignore the decorations.
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The algorithm consists of 347 different moves divided into nine families,
but fortunately it is enough to consider one demonstrative move from each
family to grasp the principle of the other moves as well. For the sake of
clarity we will consider 14 moves: one move from each of the first eight
families and six moves from the last family.

Each move allow us to replace each derivation that fits a pattern by a
derivation determined by the move and the pattern; the derivation that we
replace can be part of another derivation and or some decoration. Each
pattern is made up of a cut and some conditions on the last inference of its
right and left premiss derivation respectively, from which the large number
of moves originate. These patterns are disjointed. Whenever we can choose
between different moves to perform, then the choice is free.

5.1 Terminology

The patterns are efficiently described using the following terminology for the
right premiss derivation cases. The left premiss derivation cases are similar.

1. If a cuts right premiss derivation does not end by another cut, then
we say that the cut is right inviting.

2. If a right inviting cuts right marked cut formula equals the marked
main formula of the cuts right premiss derivations last inference, then
we say that the right premiss derivation is active, else we say that the
right premiss derivation is passive.

3. If a right inviting cuts right marked cut formula occurs in no premiss of
the cuts right premiss derivations last inference, then we say that the
right premiss derivation is critical, else we say that the right premiss
derivation is noncritical.

Note that if a right inviting cuts right premiss derivation is an axiom, then
the right premiss derivation automatically becomes critical, and conversely,
if a right inviting cuts right premiss derivation is noncritical, then the cuts
right premiss derivation must end by a logical inference.

We shall shorten this terminology and say that a premiss has a property
even when it is the corresponding premiss derivation that has the property.

5.2 Case analysis

We shall use the following case analysis whenever we need to decide what
can be done with a given cut.
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If a cut is not right inviting, then there is no move possible. If a cut is
right inviting, then we divide the analysis into four cases depending on its
right premiss derivation:

• right premiss passive and noncritical – Since the right premiss
is noncritical, the right premiss derivation must end by a logical in-
ference, and we can shift the cut relative this logical inference, see
Section 5.3.

• right premiss passive and critical – We can eliminate the cut,
because the right cut formula belongs to the conclusion of, but to no
premiss of, the right premiss derivations last inference, see Section 5.4.

• right premiss active and noncritical – Since the right premiss
is noncritical, the right premiss derivation must end by a logical in-
ference, and we can distribute the cut over this logical inference, see
Section 5.5.

• right premiss active and critical – We need to perform further case
analysis, and therefor we summarize the conditions so far by defining
a F-cut to be a right inviting cut whose right premiss is both active
and critical.

If a F-cut is not left inviting, then there is no move possible. If a F-cut is
left inviting, then we divide the analysis into four cases depending on its left
premiss derivation:

• left premiss passive and noncritical – Since the left premiss is
noncritical, the left premiss derivation must end by a logical inference,
and we can shift the cut relative this logical inference, see Section 5.6.

• left premiss passive and critical – We can eliminate the cut, be-
cause the left cut formula belongs to the conclusion of, but to no
premiss of, the left premiss derivations last inference, see Section 5.7.

• left premiss active and noncritical – Since the left premiss is
noncritical, the left premiss derivation must end by a logical inference,
and we can distribute the cut over this logical inference, see Section 5.8.

• left premiss active and critical – We need to perform further case
analysis, and therefor we summarize the conditions so far by defining
a T-cut to be a left inviting F-cut whose left premiss is both active
and critical.

11



We divide the analysis of a T-cut into three cases depending on its left and
right premiss derivation respectively. The cases are given mnemonic but not
fully descriptive names, as opposed to the fully descriptive names used in
the previous two parts of the analysis.

• left premiss derivation an axiom – If the left premiss derivation
is an axiom, then we can eliminate the cut, see Section 5.9.

• right premiss derivation an axiom – If the left premiss derivation
ends by a logical inference and the right premiss derivation is an axiom,
then we can eliminate the cut, see Section 5.10.

• logical cut – If the left premiss derivation ends by a logical inference
and the right premiss derivation ends by a logical inference, then we
can eliminate these two inferences, see Section 5.11.

5.3 Right inviting cut, right premiss passive and noncritical

There are 14 moves possible for a right inviting cut where the right premiss
is both passive and noncritical: one move for each logical inference figure.
It is enough to consider Move 1 to understand the other moves as well.

Move 1. We are allowed to replace each derivation that fits the pattern

W
w

TA,Γ1

X ′

z

FA,
x′

FC,Γ2

Y ′

z

FA,
y′

FD,Γ2

z

FA,
z′

FC&D,Γ3

F& x′,y′;z′ β

z′

FC&D,Γ4

cut w,z γ

, (11)

where
z

FA does not occur in Γ2, by the corresponding derivation

W +X ′

x′

FC,Γ1,Γ2

W + Y ′

y′

FD,Γ1,Γ2

z′

FC&D,Γ4

F& x′,y′;z′ (W,β,γ)

, (12)

where W +X ′ and W + Y ′ denote the corresponding derivations

W
w

TA,Γ1

X ′

z

FA,
x′

FC,Γ2

x′

FC,Γ1,Γ2

cut w,z ()

(13)
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and

W
w

TA,Γ1

Y ′

z

FA,
y′

FD,Γ2

y′

FD,Γ1,Γ2

cut w,z ()

, (14)

given that neither
x′

FC nor
y′

FD occurs in Γ1, which we can guarantee through

an admissible change of bound variables.

5.4 Right inviting cut, right premiss passive and critical

There are 15 moves possible for a right inviting cut where the right premiss
is both passive and critical: one move for the axiom inference figure, and
one move for each logical inference figure. It is enough to consider Move 2
to understand the other moves as well.

Move 2. We are allowed to replace each derivation that fits the pattern

W
w

TA,Γ1

X ′

x′

FC,Γ2

Y ′

y′

FD,Γ2

z

FA,
z′

FC&D,Γ3

F& x′,y′;z′ β

z′

FC&D,Γ4

cut w,z γ

, (15)

where
z

FA does not occur in Γ2, by the corresponding derivation

X ′

x′

FC,Γ2

Y ′

y′

FD,Γ2

z′

FC&D,Γ4

F& x′,y′;z′ (W,β,γ)

. (16)

Among the above-mentioned 15 moves, consider the case when the right
premiss derivation is an axiom, by which we are allowed to replace each
derivation that fits the pattern

W
w

TA,Γ1

z

FA,
w′

TC,
z′

FC,Γ3

axiom w′,z′ β

w′

TC,
z′

FC,Γ4

cut w,z γ

(17)
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by the corresponding derivation

w′

TC,
z′

FC,Γ4

axiom w′,z′ (W,β,γ)

. (18)

We can validate this move by that the underlying derivations of deriva-
tion (17) and derivation (18) designate definitional identical objects in terms
of the axiom and cut inference figures of Section 3.4.

5.5 Right inviting cut, right premiss active and noncritical

There are seven moves possible for a right inviting cut where the right pre-
miss is both active and noncritical: one move for each right logical inference
figure. It is enough to consider Move 3 to understand the other moves as
well. Note that the cut of derivation (20) is a F-cut.

Move 3. We are allowed to replace each derivation that fits the pattern

W
w

TA&B,Γ1

X
x

FA,
z

FA&B,Γ2

Y
y

FA,
z

FA&B,Γ2
z

FA&B,Γ2

F& x,y;z β

Γ3
cut w,z γ

(19)

by the corresponding derivation

W
w

TA&B,Γ1

W +X
x

FA,Γ3

W + Y
y

FA,Γ3
z

FA&B,Γ3

F& x,y;z β

Γ3
cut w,z γ

, (20)

where W +X and W + Y denote the corresponding derivations

W
w

TA&B,Γ1

X
x

FA,
z

FA&B,Γ2
x

FA,Γ3

cut w,z ()

(21)

and
W

w

TA&B,Γ1

Y
y

FB,
z

FA&B,Γ2
x

FA,Γ3

cut w,z ()

, (22)

given that neither
x

FA nor
y

FB occurs in Γ1, which we can guarantee through

an admissible change of bound variables.
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5.6 Left inviting F-cut, left premiss passive and noncritical

There are 14 × 8 = 112 moves possible for a left inviting F-cut where the
left premiss is both passive and noncritical: one move for each pair of a
logical inference figure and either the axiom inference figure, or a right logical
inference figure. It is enough to consider Move 4 to understand the other
moves as well.

Move 4. We are allowed to replace each derivation that fits the pattern

U ′

w

TA&B,
u′

TC,Γ1

w

TA&B,
w′

TC&D,Γ2

T& 1;u′;w′ α

X
x

FA,Γ3

Y
y

FB,Γ3
z

FA&B,Γ4

F& x,y;z β

w′

TC&D,Γ5

cut w,z γ

, (23)

where
w

TA&B does not occur in Γ1, by the corresponding derivation

U ′ + Z
u′

TC,Γ1,Γ4

w′

TC&D,Γ5

T& 1;u′;w′ (α,β,γ)

, (24)

where U ′ + Z denotes the corresponding derivation

U ′

w

TA&B,
u′

TC,Γ1

X
x

FA,Γ3

Y
y

FB,Γ3
z

FA&B,Γ4

F& x,y;z β

u′

TC,Γ1,Γ4

cut w,z ()

, (25)

given that
u′

TC does not occur in Γ4, which we can guarantee through an

admissible change of bound variables.

5.7 Left inviting F-cut, left premiss passive and critical

There are 15×8 = 120 moves possible for a left inviting F-cut where the left
premiss is both passive and critical: one move for each pair of an inference
figure, except cut, and either the axiom inference figure, or a right logical
inference figure. It is enough to consider Move 5 to understand the other
moves as well.
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Move 5. We are allowed to replace each derivation that fits the pattern

U ′

u′

TC,Γ1

w

TA&B,
w′

TC&D,Γ2

T& 1;u′;w′ α

X
x

FA,Γ3

Y
y

FB,Γ3
z

FA&B,Γ4

F& x,y;z β

w′

TC&D,Γ5

cut w,z γ

, (26)

where
w

TA&B does not occur in Γ1, by the corresponding derivation

U ′

u′

TC,Γ1

w′

TC&D,Γ5

T& 1;u′;w′ (α,X,Y,β,γ)

. (27)

5.8 Left inviting F-cut, left premiss active and noncritical

There are 7 × 8 = 56 moves possible for a left inviting F-cut where the
left premiss is both active and noncritical: one move for each pair of a
left logical inference figure and either the axiom inference figure, or a right
logical inference figure. It is enough to consider Move 6 to understand the
other moves as well. Note that the cut of derivation (29) is a T-cut.

Move 6. We are allowed to replace each derivation that fits the pattern

U
u

TA,
w

TA&B,Γ1
w

TA&B,Γ1

T& 1;u;w α

X
x

FA,Γ2

Y
y

FB,Γ2
z

FA&B,Γ2

F& x,y;z β

Γ3
cut w,z γ

(28)

by the corresponding derivation

U + Z
u

TA,Γ3
w

TA&B,Γ3

T& 1;u;w α

X
x

FA,Γ2

Y
y

FB,Γ2
z

FA&B,Γ2

F& x,y;z β

Γ3
cut w,z γ

(29)
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where U + Z denotes the corresponding derivation

U
u

TA,
w

TA&B,Γ1

X
x

FA,Γ2

Y
y

FB,Γ2
z

FA&B,Γ2

F& x,y;z β

u

TA,Γ3

cut w,z ()

, (30)

given that
u

TA does not occur in Γ2, which we can guarantee through an

admissible change of bound variables.

5.9 T-cut, left premiss derivation an axiom

There are eight moves possible for a T-cut where the left premiss derivation
is an axiom: one move for the axiom inference figure, and one move for each
right logical inference figure. It is enough to consider Move 7 to understand
the other moves as well.

Move 7. We are allowed to replace each derivation that fits the pattern

w

TA&B,
z′

FA&B,Γ1

axiom w,z′ α

X
x

FA,Γ2

Y
y

FB,Γ2
z

FA&B,Γ2

F& x,y;z β

z′

FA&B,Γ3

cut w,z γ

(31)

by the corresponding derivation

X
x

FA,Γ2

Y
y

FB,Γ2

z′

FA&B,Γ3

F& x,y;z′ (α,β,γ)

. (32)

We can understand the corresponding move, when the right premiss
derivation is an axiom, in the same manner as we understood the corre-
sponding move of Section 5.4.

5.10 T-cut, right premiss derivation an axiom

There are seven moves possible for a T-cut where the left premiss derivation
ends by a logical inference and the right premiss derivation is an axiom: one
move for each left logical inference figure. It is enough to consider Move 8
to understand the other moves as well.
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Move 8. We are allowed to replace each derivation that fits the pattern

U
u

TA,Γ1
w

TA&B,Γ1

T& 1;u;w α
w′

TA&B,
z

FA&B,Γ2

axiom w′,z β

w′

TA&B,Γ3

cut w,z γ

(33)

by the corresponding derivation

U
u

TA,Γ1

w′

TA&B,Γ3

T& 1;u;w′ (α,β,γ)

(34)

We could extend this family of moves, and allow the left premiss deriva-
tion to be an axiom, because the corresponding move would be in agreement
with Section 5.9.

5.11 Logical cut

There are eight moves possible for a T-cut where the left premiss derivation
ends by a logical inference and the right premiss derivation ends by a logical
inference: one move for each pair of a left logical inference figure and a
corresponding right logical inference figure. It is enough to consider Move 9-
14 to understand the other moves as well.

Move 9 (&-reduction). We are allowed to replace each derivation that

fits the pattern

U
u

TA,Γ1
w

TA&B,Γ2

T& 1;u;w α

X
x

FA,Γ3

Y
y

FB,Γ3
z

FA&B,Γ4

F& x,y;z β

Γ5
cut w,z γ

(35)

by the corresponding derivation

U
u

TA,Γ1

X
x

FA,Γ3

Γ5
cut u,x (α,Y,β,γ)

. (36)
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Move 10 (∨-reduction). We are allowed to replace each derivation that

fits the pattern

U
u

TA,Γ1

V
v

TB,Γ1
w

TA∨B,Γ2

T∨ u,v;w α

X
x

FA,Γ3
z

FA∨B,Γ4

F∨ 1;x;z β

Γ5
cut w,z γ

(37)

by the corresponding derivation

U
u

TA,Γ1

X
x

FA,Γ3

Γ5
cut u,x (V,α,β,γ)

. (38)

Move 11 (⊃-reduction). We are allowed to replace each derivation that

fits the pattern

X
x

FA,Γ1

V
v

TB,Γ1
w

TA⊃B,Γ2

T⊃ x,v;w α

UY
u

TA,
y

FB,Γ3
z

FA⊃B,Γ4

F⊃ u,y;z β

Γ5
cut w,z γ

(39)

by the corresponding derivation

V
v

TB,Γ1

UY
u

TA,
y

FB,Γ3
u

TA,Γ1,Γ3

cut v,y () X
x

FA,Γ1

Γ5
cut u,x (α,β,γ)

. (40)

Move 12 (∼-reduction). We are allowed to replace each derivation that

fits the pattern

X
x

FA,Γ1
w

T∼A,Γ2

T∼ x;w α

U
u

TA,Γ3
z

F∼A,Γ4

F∼ u;z β

Γ5
cut w,z γ

(41)

by the corresponding derivation

U
u

TA,Γ1

X
x

FA,Γ3

Γ5
cut u,x (α,β,γ)

. (42)
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Move 13 (∀-reduction). We are allowed to replace each derivation that

fits the pattern

V
v

TA(t/x),Γ1
w

T(∀x)A,Γ2

T∀ v;w α

Y
y

FA,Γ3
z

F(∀x)A,Γ4

F∀ y;z β

Γ5
cut w,z γ

(43)

by the corresponding derivation

V
v

TA(t/x),Γ1

Y (t/x)
y

FA(t/x),Γ3

Γ5
cut v,y (α,β,γ)

. (44)

Move 14 (∃-reduction). We are allowed to replace each derivation that

fits the pattern

V
v

TA,Γ1
w

T(∃x)A,Γ2

T∃ v;w α

Y
y

FA(t/x),Γ3
z

F(∃x)A,Γ4

F∃ y;z β

Γ5
cut w,z γ

(45)

by the corresponding derivation

V (t/x)
v

TA(t/x),Γ1

Y
y

FA(t/x),Γ3

Γ5
cut v,y (α,β,γ)

. (46)

6 A comparison with Gentzen’s Hauptsatz

Let us, to gain some hands-on experience, apply both the algorithm implicit
in Gentzen’s Hauptsatz and the algorithm of Section 5 without decorations
to a derivation of the form

U
u

TA,
w

TA&B,Γ
w

TA&B,Γ

T& 1;u;w

X
x

FA,
z

FA&B,Γ

Y
y

FB,
z

FA&B,Γ
z

FA&B,Γ

F& x,y;z

Γ
cut w,z

. (47)
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6.1 Normalization according to Gentzen’s Hauptsatz

We now reduce derivation (47) according to the algorithm implicit in Gentzen’s
Hauptsatz. First, replace it by the derivation

U + Z
u

TA,Γ
w

TA&B,Γ

T& 1;u;w

W +X
x

FA,Γ

W + Y
y

FB,Γ
z

FA&B,Γ

F& x,y;z

Γ
cut w,z

, (48)

where U + Z, W +X, and W + Y are the derivations

U
u

TA,
w

TA&B,Γ

X
x

FA,
z

FA&B,Γ

Y
y

FB,
z

FA&B,Γ
z

FA&B,Γ

F& x,y;z

u

TA,Γ

cut w,z

, (49)

U
u

TA,
w

TA&B,Γ
w

TA&B,Γ

T& 1;u;w X
x

FA,
z

FA&B,Γ
x

FA,Γ

cut w,z

, (50)

U
u

TA,
w

TA&B,Γ
w

TA&B,Γ

T& 1;u;w Y
y

FB,
z

FA&B,Γ
y

FB,Γ

cut w,z

. (51)

Second, apply Move 9 and replace derivation (48) by the derivation

U + Z
u

TA,Γ

W +X
x

FA,Γ

Γ
cut u,x

. (52)

Expansion of U + Z gives

U
u

TA,
w

TA&B,Γ

Z
z

FA&B,Γ
u

TA,Γ

cut w,z W +X
x

FA,Γ

Γ
cut u,x

, (53)
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where Z is the derivation

X
x

FA,
z

FA&B,Γ

Y
y

FB,
z

FA&B,Γ
z

FA&B,Γ

F& x,y;z

. (54)

6.2 Normalization according to Section 5

We now reduce derivation (47) according to the algorithm of Section 5.
First, apply Move 3 and replace it by the derivation

U
u

TA,
w

TA&B,Γ
w

TA&B,Γ

T& 1;u;w

W +X
x

FA,Γ

W + Y
y

FB,Γ
z

FA&B,Γ

F& x,y;z

Γ
cut w,z

, (55)

where W +X and W +Y coincide with the derivations (50) and (51) respec-
tively. Second, apply Move 6 and replace derivation (55) by the derivation

U + Z ′

u

TA,Γ
w

TA&B,Γ

T& 1;u;w

W +X
x

FA,Γ

W + Y
y

FB,Γ
z

FA&B,Γ

F& x,y;z

Γ
cut w,z

, (56)

where U + Z ′ is the derivation

U
u

TA,
w

TA&B,Γ

W +X
x

FA,Γ

W + Y
y

FB,Γ
z

FA&B,Γ

F& x,y;z

u

TA,Γ

cut w,z

. (57)

Third, apply Move 9 and replace derivation (56) by the derivation

U + Z ′

u

TA,Γ

W +X
x

FA,Γ

Γ
cut u,x

. (58)
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Expansion of U + Z ′ gives

U
u

TA,
w

TA&B,Γ

Z ′

z

FA&B,Γ
u

TA,Γ

cut w,z W +X
x

FA,Γ

Γ
cut u,x

, (59)

where Z ′ is the derivation

W +X
x

FA,Γ

W + Y
y

FB,Γ
z

FA&B,Γ

F& x,y;z

. (60)

Derivation (59) should be compared to derivation (53).

6.3 Remark

The difference between derivation (54) and derivation (60) arises only be-
cause the two premiss derivations of the cut of the initial derivation (47)
both end by a contraction. If we change derivation (47) to either

U
u

TA,Γ
w

TA&B,Γ

T& 1;u;w

X
x

FA,
z

FA&B,Γ

Y
y

FB,
z

FA&B,Γ
z

FA&B,Γ

F& x,y;z

Γ
cut w,z

(61)

or
U

u

TA,
w

TA&B,Γ
w

TA&B,Γ

T& 1;u;w

X
x

FA,Γ

Y
y

FB,Γ
z

FA&B,Γ

F& x,y;z

Γ
cut w,z

, (62)

then the algorithm implicit in Gentzen’s Hauptsatz and the algorithm of Sec-
tion 5 agree, and the difference disappears. The two algorithms furthermore
agree on logical cuts (Sect. 5.11).

7 Normalization theorems

We shall prove that the algorithm of Section 5 is both confluent (Sect. 7.1)
and strongly normalizing (Sect. 7.3). The proof of the latter conforms with
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Gandy’s technique [2], which the author learned from [3], and it relies on the
algorithm being weakly normalizing (Sect. 7.2). The latter is proved along
the same line of argument as Gentzen’s Hauptsatz.

These normalization theorems are all formulated and proved up to iden-
tity of decorated derivations, but they all apply to undecorated derivations
as well.

7.1 Confluence

We shall prove that the algorithm of Section 5 is confluent. This result
amounts to Theorem 1.

Let Γ be a tableau sequent. At the end of Section 3.4 we defined the
category Γ̃ of derivations within the classical tableau calculus of Γ. We
can evidently consider the category Γ̃ as a type. Hereby each inference of
Γn+1 from Γ1, ...,Γn becomes an inference function from Γ̃1 × · · · × Γ̃n into
Γ̃n+1. We define a derivation function to be a possibly empty composition of
inference functions linear in its arguments. We can extend this terminology
to decorated derivations as well and shall henceforth take this extended
terminology for granted. Note that even the decorations of a give derivation
function may depend upon its arguments.

We furthermore extend the terminology of Section 5 and say that a cut
of a given derivation or inference is inviting whenever there exists a move
applicable to the cut. Since the patterns of Section 5 are disjointed an
inviting cut uniquely determines its move.

Let X be a derivation such that X = f(X1, ..., Xn) where X1, ..., Xn

are derivations and f is a derivation function. For each j = 1, ..., n suppose
that Xj ends by an inviting cut by which it reduces to another derivation
Yj . We then say that X reduces to f(Y1, ..., Yn) in one n-block, or simply in

one block, leaving out the number of involved cuts.
We immediately have

Lemma 1. Let X be a derivation such that X = f(X1, ..., Xn) where X1,

..., Xn are derivations and f is a derivation function. For each j = 1, ..., n
suppose that Xj reduces to another derivation Yj in one block. Then X
reduces to f(Y1, ..., Yn) in one block.

We now continue from before the above lemma. Suppose that X ends by
an inviting cut C and note that the pattern of its move does not involve any
other cut than C. Since for each j = 1, ..., n the derivation Xj ends by a cut,
the move applicable to C allows us to replace f by a corresponding function
f̄ which the move dictates independent of the arguments of f , that is, the
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move applicable to C allows us to replace f(X1, ..., Xn) by f̄(X1, ..., Xn)
independent of X1, ..., Xn.

We immediately have

Lemma 2. With use of the above notation, we can reduce f̄(X1, ..., Xn) and

f(Y1, ..., Yn) to one joint derivation f̄(Y1, ..., Yn) in one block each.

The next lemma contains the essential part that we need to prove con-
fluence for the classical tableau calculus. It is simplified by the following
terminology: Let X be a derivation. If a given cut of X is either part of
one of the two premiss derivations of another given cut of X or part of its
decoration, then we say that the first cut is above the second cut.

Lemma 3. If we can reduce one derivation X to two derivations F and G
in one blocks each, then we can reduce F and G to one joint derivation in

one block each.

Proof. We have X = f(X1, ..., Xm) and X = g(Xm+1, ..., Xn) and similarly
F = f(Y1, ..., Ym) and G = g(Ym+1, ..., Yn), where f and g are derivation
functions and for each j = 1, ..., n the derivation Xj ends by an inviting cut
Cj by which it reduces to the derivation Yj. We can without loss of generality
assume that C1, ..., Cm−p, Cm+1, ..., Cn−p are distinct but Cm−k = Cn−k for
k = 1, ..., p.

Let M = {1, ...,m − p}, N = {m + 1, ..., n − p}, and L = M ∪ N . For
each j ∈ L let Lj = {i ∈ L|Ci is above Cj} and denote its elements by
lj(1), ..., lj(|Lj |). Note that if j ∈ N then Lj ⊂ M and vice versa. Finally
let

K = L \
⋃

j∈L

Lj

and denote its elements by k(1), ..., k(|K|).
It follows from the above definitions that for each k ∈ K there exists a

derivation function hk such that Xk = hk(Xlk(1), ..., Xlk(|Lk |)) and, moreover,
that there exists a derivation function h such that

X = h(Xk(1), ..., Xk(|K|), Xn−p, ..., Xn).

We can without loss of generality assume thatK∩M = {k(1), ..., k(|K∩M |)}
and K ∩N = {k(|K ∩M | + 1), ..., k(|K|)}. We then have

F = h(Yk(1), ..., Yk(|K∩M |), Zk(|K∩M |+1), ..., Zk(|K|), Yn−p, ..., Yn),

G = h(Zk(1), ..., Zk(|K∩M |), Yk(|K∩M |+1), ..., Yk(|K|), Yn−p, ..., Yn),

where Zk = hk(Ylk(1), ..., Ylk(|Lk|)). The result then follows by Lemma 1 and
Lemma 2.
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Let X be a derivation that reduces to another derivation Y in one m-
block. If m ≥ 1 then we say that X reduces to Y in one strict block. We
shall not have to use the concept of strictness until Section 7.3, but then in
the form of a strict reduction sequence.

We define a (strict) reduction sequence from a derivation X1 to a deriva-
tion Xn+1 to be a sequence of n+ 1 derivations X1, ..., Xn+1 such that Xj

reduces to Xj+1 in one (strict) block for each j = 1, ..., n.
In terms of the above reduction sequence, we furthermore say that X1

reduces to Xn+1 in n blocks. We can then formulate and prove

Theorem 1 (Church, Rosser). The algorithm of Section 5 is confluent,

that is, if we can reduce one derivation to two derivations F and G in m and

n blocks respectively, then we can reduce F and G to one joint derivation in

n and m blocks respectively.

Proof. We can prove Theorem 1 by mathematical induction over m and n
with Lemma 3 part of the induction.

7.2 Weak normalization

We shall prove that the algorithm of Section 5 is weakly normalizing. This
result amounts to Theorem 2.

The proof of Theorem 2 uses Gentzen’s concept of the degree of a cut.
The degree of a formula is defined to be the number of logical connectives
and quantifiers occurring in it. By the cut formula of a cut

U
u

TA,Γ1

X
x

FA,Γ2

Γ3
cut u,x α

(63)

we mean the formula A. The degree of a cut C is defined to be the degree
of its cut formula, which we shall denote by d(C). We inspect the algorithm
of Section 5 and conclude that

Claim 1. Let X be a derivation that ends by a T-cut cut C. Then C is

inviting and each cut C ′ that originates from the move applicable to C fulfill

d(C ′) < d(C).

The proof of Theorem 2 follows the same line of argument as Gentzen’s
proof of his Hauptsatz, but uses a refined measure of height only applicable
to cuts. It is defined in terms of the usual measure of height.
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Definition 1. The height of a derivation X whose last inference has the

premiss derivations X1, ..., Xn is defined by

h(X) = 1 + max[h(X1), ...,h(Xn)].

Definition 2. The relevant height of a cut C that has left premiss derivation

X1 and right premiss derivation X2 is defined by







rh(C) = h(X1) + h(X2) if C is not a F-cut,

rh(C) = h(X1) if C is a F-cut but not a T-cut,

rh(C) = 0 if C is a T-cut.

We inspect the algorithm of Section 5 and conclude that

Claim 2. Let X be a derivation that ends by an inviting cut C. If C is

not a T-cut, then each cut C ′ that originates from the move applicable to C
fulfill d(C ′) = d(C) and rh(C ′) < rh(C).

Lemma 4. Let X be a derivation that ends by a cut with cut free premiss

derivations. Then we can reduce X to a cut free derivation, which we shall

denote by nf(X).

Proof. Let C denote the above-mentioned cut. We can prove Lemma 4 by
mathematical induction over d(C) and rh(C) with Claim 1 and Claim 2 part
of the induction. Just note that since the cut is both left and right inviting
it is inviting as well.

Theorem 2 (Gentzen). The algorithm of Section 5 is weakly normalizing,

that is, we can reduce each derivation X to a cut free derivation, which we

shall denote by nf(X).

Proof. We can prove Theorem 1 by mathematical induction over the number
of cuts of X with Lemma 4 part of the induction.

7.3 Strong normalization

We shall prove that the algorithm of Section 5 is strongly normalizing. This
result amounts to Theorem 3.

The proof of Theorem 3 makes use of a functions that measures the size
of a derivation, which corresponds to the measure of [3].

Definition 3. The size of a derivation X whose last inference has the pre-

miss derivations X1, ..., Xn and carry the decoration α is defined by

|X| = |X1| + ...+ |Xn| + |α|,
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where the size of the decoration α = (α1, ..., αm) is defined by

|α| = |α1| + ...+ |αm| + 1.

We inspect the algorithm of Section 5 and conclude that

Claim 3. Let X be a derivation that reduces to another derivation Y in one

strict block. Then |X| < |Y |.

Theorem 3 (Gandy). The algorithm of Section 5 is strongly normalizing,

or more precisely, for each strict reduction sequence X1, ..., Xn+1 its length

n is bounded by a function of X1.

Proof. We can compute nf(X1) and nf(Xn+1) by Theorem 2. We have

|X1| < |X2| < ... < |Xn+1| ≤ |nf(Xn+1)|

by Claim 3, whence n ≤ |nf(Xn+1)|. We furthermore have nf(Xn+1) =
nf(X1) by Theorem 1. Hence n ≤ |nf(X1)|.

8 Conclusion

We have refined Gentzen’s classical sequent calculus into a classical tableau
calculus within the framework of Martin-Löf’s type theory. This calculus
has essentially the same inference figures as Gentzen’s classical sequent cal-
culus, but no structural inference figures except cut. Furthermore, it admits
a normalization algorithm similar to the algorithm implicit in Gentzen’s
Hauptsatz, however confluent and strongly normalizing. The proof of the
latter conforms with Gandy’s technique, which in turn relies on the algo-
rithm being weakly normalizing, which was proved along the same line of
argument as Gentzen’s Hauptsatz.

The relative simplicity of the algorithm springs from a careful choice of
inference figures with respect to their contexts and, moreover, the identity
of tableau sequents, which in turn intimately depends on the interpretation
of sequents as categories in the sense of type theory. Together they make
structural inference figures and moves for their propagation redundant.

The variables that mark the assumptions of sequents are analogous to the
marks used to discharge assumptions in natural deduction, granted that they
are placed upon an assumption even before that assumption is discharged.
Thus they can be thought of as a book keeping device separate from type
theory. On the other hand, the identity of tableau sequents and likewise

28



derivations have, according to the author, their natural explanations within
type theory, and should be considered within that framework.

The use of decorations makes it possible to adapt Gandy’s technique into
a form applicable to sequent calculi. It however remains an open question
whether this technique can be extended to proofs incorporating a rule of
induction.
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