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Abstract

We give, in a geometric setting, a general method for construct-
ing differential operators with finite dimensional invariant spaces - the
generalised Bochner problem [Tur94] is to characterise such. Con-
versely we also show that given a differential operator preserving a
finite-dimensional vector space V , it comes (under some restrictions
on V and the order of the differential operator) from the global sec-
tions of a line bundle. The methods are primarily taken from algebraic
geometry, and includes a study of the principal bundle to simplify some
proofs in the local study of this problem done in [KMO00]. Finally we
show that several of the published examples of results characterising
this type of differential operators come from our setup.

1 Introduction

In [Tur92] Turbiner had the sophisticated idea of finding solutions to the
Schrödinger equation in the following way. Start with a second order dif-
ferential equation (preferably with parameters) with a large set of solutions
and transform it by gauge a transformation, change of coordinates, and spe-
cialisation of the parameters, to reveal a hidden underlying Lie algebraic
structure. The validity of this approach was demonstrated by him in sev-
eral cases (see the survey [GLKO94] and the introduction to [KMO00]). As
part of this programme he posed the problem to find vector spaces of func-
tions and differential operators preserving them (the generalised Bochner
problem [Tur94] - Bochner was interested in finding eigenfunctions). This is
the problem that we will be concerned with here. In a way it was generally
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solved by [KMO00]. They proved in the setting of (real-valued) real-analytic
functions A on a domain of some Rn that the algebra of differential oper-
ators DV

A preserving a finite-dimensional vector space V ⊂ A always acts
irreducibly on V . We give below (section 2) a simpler commutative algebra
argument for this theorem, in our algebraic or analytic setting, instead of
using the Hodge operation, and relate it to the simplicity of the structure
sheaf of a variety under the sheaf of differential operators. The technique is
to use the bundle of principal parts, to analyse differential operators.

Some mystery remains, however, and several connections to other areas
of mathematics are left to be explored. In particular, few higher dimensional
examples have been studied [GLKO94]. In this paper we will show that many
examples can be found by using geometrical constructions.

The enlightening example is the space Vk of monomials in n variables of
degree less than a number k, which by computation was found to have a large
subring of differential operators that preserve them [Tur94, Tur88]. This
sub-algebra is generated by a Lie algebra isomorphic to sl(n,C). In their
local classification of finite-dimensional Lie algebras of first order differential
operators on the complex plane C2, acting transitively on a Zariski open
subset, it was noted in [GLHKO93] that this example has a geometric origin:
Vk is the restriction of the global sections of the line bundle O(k) on Pn to the
affine cell, and sl(n,C) is the restriction of the Lie algebra of global (twisted )
vector fields on O(k). These authors also found two other kinds of projective
rational surfaces -Hirzebruch surfaces and P1 × P1 that corresponded to
known examples.

The example of Vk and Pn is also well-known in representation theory of
Lie algebras. In a development starting with among others Gelfand, several
authors have by means of sheaves of twisted rings of differential operators on
homogeneous spaces, managed to give a geometric classification of all highest
weight representations of complex simple Lie algebras(see[BlB81, BGK+87]).
Central to this theory was the theory of modules over rings of differential
operators. Here the whole algebra of differential operators is used, not only
the first order ones, and plays a central role, as a mediator between geometry
and representation theory. Using this formalism it is easy to again recognise
Turbiner’s description of the differential operators (on An) that preserve Vk,
as the ring of globally defined O(k)-twisted differential operators on Pn.

This suggests that there is a rich geometric source of examples of so-
lutions to the generalised Bochner problem. We describe the construction:
Suppose that X ⊂ X is an affine open sub-variety of a projective complex
algebraic variety, and that L is a line bundle on X. There is a map

ρ : Γ(X,L) → Γ(X,OX ) =: A, s 7→ s/s0 (1.1)

induced by choosing any non-vanishing local section s0 : A ∼= L|X . Hence

we may identify the k vector space of global sections Γ(X,L) with a finite-
dimensional vector subspace of the ring A. Let DX̄(L) denote the sheaf
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differential operators on L (as OX̄ ×OX̄ -bimodule we have DX̄(L) ∼= L⊗OX̄

DX̄ ⊗OX̄
L−1), and DX the sheaf of differential operators on X. We have

an induced isomorphism

η : Γ(X,DX̄(L))|X ∼= DX ⊂ HomC(A,A), (1.2)

defined by η(P ) ∗ f = s−1
0 (P ∗ s0f), if P ∈ Γ(X,DX̄(L)) and f ∈ OX = A.

We also have an obvious map

θ : Γ(X,DX̄(L)) → EndC(Γ(X,L)).

These maps are clearly compatible.

Thus whenever we have a ring of global differential operators on a line
bundle on a compactification of an affine variety X, we will get a finite-
dimensional vector space of functions on X that is preserved by a ring of
differential operators. Of course we have to see that this gives us non-trivial
examples, i.e. that there actually are examples of large algebras of global dif-
ferential operators in Γ(X,DX̄(L)). Preferably, ‘large’ means that Γ(X̄,L)
is simple as Γ(X̄,DX̄(L))-module. But there are several classes of compact
varieties for which this is known: in addition to homogeneous spaces [BlB81],
mentioned above, we also have toric varieties [MVdB98, Jon94, Mus94]. In
these cases the ring of global differential operators will even act irreducibly
on the global sections V , and will thus enable us to describe all local differ-
ential operators that preserve V modulo the annihilator ideal (Th. 3.2). We
have complemented the results of the investigations cited on these varieties
with a study of the bundle of principal parts, exemplifying the concepts
which we have made use of (see sections 5,6). Taking restrictions to various
open affine sub-varieties, of either toric or homogeneous varieties, thus pro-
duces a natural and abundant source of interesting examples, and we suggest
that the presence of them may be viewed as a an explanation of the “signifi-
cant mystery [that] is the connection [of the algebraic approach of[KMO00]]
with the Lie algebraic approach of [Tur94] to quasi-exactly solvable mod-
ules” [KMO00, p.316]. As a strengthening of this suggestion in another way,
we exemplify a partial converse in Proposition 7.2, where we give conditions
on V , to ensure that it comes from a homogeneous space, by the above
procedure.

These finite-dimensional vector space examples in themselves stem from
a geometric context, but they do not in an immediately obvious way exhibit
this geometric structure. For example, given the space of monomials Vk,
where is Pn? But there is a basic algebraic geometric technique, known
to the ancients, to construct a projective algebraic variety XV from an m-
dimensional vector space of polynomials V ⊂ A = C[x1, . . . , xn], with a basis
f0, . . . , fm. Define maps j : X = An → P(V ∗) by j(x) := [f0(x); . . . ; fm(x)].
This is a well-defined map if the functions f0, . . . , fm have no common zero,
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or are basepoint free. Assume for simplicity that f0 = 1. Then j maps X
to Am, and this map is given on rings by

C[y1, . . . , ym] → C[x1, . . . , xn], yi 7→ fi, i = 1, 2, 3, . . . ,m

Hence j will be a closed inclusion, i e the ring morphism is surjective, if and
only if V generates A as a C-algebra. Furthermore let X̄V := j(X). It is a
closed, possibly singular sub-variety of P(V ∗). Denote O(1)|X by LV . Since
the composed map

V ∼= Γ(P(V ∗),O(1)) → Γ(X,O(1)) → A

(where the first isomorphism is standard, the second map is the restriction,
the third is by choosing the local section s0 = 1) just is the inclusion V ⊂ A,
we get that V ⊂ Γ(X,LV ). Hence we have a situation similar to the previous
setup. Observe that this construction is coordinate and gauge-invariant. It
has the property that it unites many differing choices of embeddings of
finite-dimensional vector spaces in affine rings.

To use these two constructions, restriction and completions, is the main
idea of the present study, beside drawing attention to the examples described
above. We hope that it will provide a framework for disparate results on
quasi exactly solvable differential operators, with an emphasis on detecting
possible underlying “hidden”geometry, as well as “hidden symmetries”.

We introduce two numerical constants associated to V , ninj and n1
surj,

that express properties of V relative to its Taylor expansion. These con-
ditions are on the one hand similar to the ones used by [KMO00], and on
the other hand similar to the notions of k-jet ampleness [BS95]. In terms
of these invariants it is possible to give numerically calculable conditions on
the order of a local differential operator P that ensure that it comes from a
global differential operator on L(see Section 5), as well as study the action
of differential operators on V .

All algebraic-geometric terminology conforms to the use in [Har85]. By
a variety (X/k,OX ) over a field k we mean a separated integral scheme of
finite type; we assume that the field k is infinite. Points in X are always
rational over k, and by the normalisation theorem the points are dense in
X. We do most of the time not need any restrictions on the characteristic of
the ground field or the algebraic closedness — except when describing the
generators of rings of global differential operators in particular examples—
but the reader may profitably think of the ground field as C or R, if so
inclined.
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2 Wronskians

2.1 Generalities

General references for the following material in this section are [Gro67,
LT95]. Let (X/k,OX ) be a variety and M be a locally free OX -module.
Let V be a finite-dimensional k-subspace of the space of global sections
Γ(X,M). Let ∆ : X → X×kX, x 7→ (x, x), be the diagonal map, I∆ be the
kernel if the mapping ∆∗(OX×kX) → OX , and put, for each integer n ≥ 0,
Pn

X := Pn
X/k = ∆∗(OX×kX)/In+1

∆ . The sheaf of (OX ,OX)-bimodules Pn
X is

the sheaf of nth order principal parts. Put also Pn
X(M) = Pn

X⊗OX
M . There

is a mapping dn : M → Pn
X(M), m 7→ 1 ⊗ m, which is injective since M

is locally free, and composing it with the injective map V → M (V is here
regarded as a constant sheaf) we get an injective map dn

V : V → Pn
X(M).

Extending the scalars VX = OX ⊗k V we get a same noted map dn
V : VX

dn

−→
Pn

X(M), φ⊗ v 7→ φ⊗ v mod In+1
∆ ; this map need not be injective. Let Kn

and Cn be the kernel and cokernel, respectively, of dn
V , so we have the exact

sequence (the Wronskian sequence)

0 → Kn → VX
dn

V−−→ Pn
X(M) → Cn → 0. (2.1)

Varying the integer n one gets different exact sequences (2.1), forming an
inverse system. Then P∞

X (M) := proj limn→∞Pn
X(M) is provided with the

I∆-adic topology which is used to define the sheaf of rings of differential oper-
ators DX(M) onM as the bimodule of continuous mapsHomOX ,cont(P

∞
X (M),M).

The differential operators of order n is Dn
X(M) = HomOX

(Pn
X(M),M). One

may notice that DX(M) is ‘matrix-valued’ when the rank of M is > 1. The
fibre of the sheaf of principal parts at a rational point x in X is

k ⊗Ox Pn(M)x ∼= Mx/m
n+1
x Mx ([Gro67, 16.4.11]). (2.2)

and if X is regular, so Pn
X(M) is locally free, then the fibre k⊗Ox D

n
x(M) =

(Mx/m
n+1
x Mx)∗.

The map of fibres

dn
V (x) : V → k ⊗Ox Pn(M)x

is the nth Taylor expansion map at x of the vectors in V .

Proposition 2.1. Let x be a point in X. Then

(1) the map of stalks dn
V,x : Vx → Pn

x (M) is injective when n � 1 and if
Chark = 0, then it is injective when n ≥ dimV − 1;

(2) the map of fibres dn
V (x) is injective when n � 1 and the function

x 7→ ninj(x) is lower semi-continuous.

5



Proof. The first part of (2) follows from (2.2) since ∩∞
n=1m

n
xMx = 0 by

Krull’s theorem and that V injects in Mx since M is locally free. Since
the kernel Kn of dn

V is coherent, its support will be closed, implying the
semi-continuity of the function ninj(x). We now prove (1). The locus Un

of points where the fibre map dn
V (x) is injective is open and non-empty by

(2). One has Un ⊂ Un+1 and since X is a noetherian topological space
there exists an integer n0 such that U = Un0 = Un when n ≥ n0. Then
X \ U is a proper closed subset. Since k is infinite the (rational) points are
dense in X \ U (by the normalisation theorem), hence by (2) we must have
U = X. Then a section s of Ker(dn

V ) will belong to mxMx when n ≥ n0 and
all points x in X. Since the rational points are dense in X and VX is locally
free we get s = 0. This proves that dn

V is injective when n � 1. We refer
to [LT95] for the remaining assertion that it suffices that n ≥ dimV − 1 in
characteristic 0. �

Definition 2.2. Let Ninj (≤ dimV −1) be the smallest integer such that dn
V

is injective and ninj(x) be the smallest integer such that dn
V (x) is injective

when n ≥ ninj(x) (injectivity order at x). Define also ninj = sup{ninj(x) :
x ∈ X} (injectivity order).

That ninj < ∞ follows since X is quasi-compact and the function x 7→
ninj(x) is lower semi-continuous. In the language of [KMO00] V is a “regu-
lar” subspace of M .

In local coordinates, and if Char k = 0, the map dn
V,x is described by the

matrix with rows (∂α(mi)), if the mi form a basis of V . If ninj(x) < Ninj

then x can be regarded as a “Weierstrass point” on X for V . These are
points where there exists a vectors v in V such that DNinj (M)x(v) ⊂ mxMx.

Definition 2.3. Let nsurj(x) be the largest integer such that n ≤ nsurj(x)
implies that dn

V (x) is surjective (so Cn
x = 0). The integer nsurj(x) is the jet

ampleness degree of V at x. Define nsurj = inf{nsurj(x) : x ∈ X}

Evidently, nsurj(x) is less than the biggest integer n such that dimMx/m
n+1
x Mx ≤

dimV .
We will have use for the following well-known splitting criterion.

Proposition 2.4. Let φ : F → G be an injective map of locally free OX-
modules. Then the following are equivalent at a point x in X:

(1) the map of fibres φ(x) : k ⊗Ox Fx → k ⊗Ox Gx is injective;

(2) the map of stalks φx : Fx → Gx is split injective.

Proof. That (2) ⇒ (1) is evident. (1) ⇒ (2): Since F and G are locally
free one can reduce to the case when F = OX and GX = ⊕mOX . Let
φ : OX → ⊕mOX send 1 to (a1, . . . , am). (1) implies that one of the ai is a
unit, assume it is a1. A split is then given by (r1, . . . , rm) 7→ r1/a1. �
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That a surjective map F → G → 0 is locally split when G is locally free
is clear, and this split holds in affine subsets of X, by Serre’s theorem. In
[KMO00] they describe a nice way, using Hodge calculus, of choosing a split
when F and G are free over the sheaf of real-valued analytic functions in
open domains of Rn.

Proposition 2.5. Let A : On
X → Or

X → 0 be a surjective homomorphism.
Let ω = v1 ∧ · · · ∧ vr ∈

∧r
k O

n
X , where {v1, . . . , vr} ⊂ OX(X)n are the row

vectors of the matrix A(X). Assume that ‖ω‖2 = ∗(ω ∧ ∗ω) is a unit in
OX(X) (alt. ω ∧ ∗ω = φe1 ∧ · · · ∧ en, where ei is the standard basis of
OX(X)n, and φ is a unit in OX(X)). Then the mapping of global sections
is also surjective, A(X) : OX(X)n → OX(X)r → 0.

In particular, if k is an ordered infinite field, then ‖ω‖2 is a unit and the
map A(X) is surjective.

We first recall the Hodge *- operation. Let M be a free OX -module
of rank n. Let {v1, . . . , vn} be free generators. Define ∗(vi1 ∧ · · · vip) =

1
n−pεi1···ipip+1···invip+1

∧ · · · ∧ vin and extend by linearity to a map
∧pM →

∧n−pM . Then ∗ ∗ ω = (−1)p(n−p)ω. We have A(h) = (∗(v1 ∧ ∗h), ∗(v2 ∧
∗h), · · · ∗ (vr ∧ ∗h)) ∈ OX(X)r, this follows since v · w = ∗(v ∧ ∗w).

Proof. Since ∗(ω ∧ ∗ω) is a unit, given ei = (0, 0, . . . , 1, 0, . . . , 0) ∈
OX(X)r , the equations Ahi = ei have the solution hi = ∗(v1 ∧ · · · ∧ vi−1 ∧
vi+1 ∧ · · · vr ∧ ∗ω)/ ∗ (ω ∧ ∗ω) ∈ OX(X)n.

Assume now that k is an ordered infinite field. Let x be a point in X.
Then ‖ω‖2(x) ∈ k = Ox/mx is a sum of non-zero squares, hence since k is
ordered, this sum is non-zero. Since the rational points in the zero locus of
‖ω‖2 are dense, this zero locus must be empty, so ‖ω‖2 is a unit. �

The following lemma is well-known.

Lemma 2.6. (k is alg. closed) Assume that A is strongly quasi-projective
where M is an invertible sheaf. Then if M is very ample it follows that in
each point x in X we have nsurj(x) ≥ 1.

For the proof, see [Har85]

2.2 M is simple as DX(M)-module when X is regular

Let n ≥ Ninj, so Kn = 0 and dn
V is injective. Applying HomOX

(·,M) to
the Wronskian sequence (2.1) we get an exact sequence

0 → HomOX
(Cn,M) → Dn(M)

W n

−−→ HomOX
(VX ,M) →

→ Ext1OX
(Cn,M) → Ext1OX

(Pn
X(M),M) → (2.3)

We can identify HomOX
(Cn,M) with the annihilator Annn(V ) = {P ∈

Dn(M)|P · V = 0}. Let DV = {P ∈ DX |P · V ⊂ V } = (W ∗
n)−1(Endk(V ))
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(this is a sheaf of k-algebras). Notice thatHomOX
(VX ,M) = Homk(V,M) =

V ∗ ⊗k M , where V ∗ = Homk(V, k), and Endk(V ) ⊂
HomOX

(V,M).

Proposition 2.7. Let X/k be a regular variety, M be a locally free OX-
module and DX(M) its ring of differential operators. Then

(1) Let x be a point in X and V be a finite-dimensional sub-space of the
stalk Mx. The mapping of stalks

W n
x : Dn

x → HomOx(Vx,Mx) = Homk(V,Mx)

is surjective when n� 1.

(2) The DX(M)-module M is simple.

Proof. (1): SinceX is regular andM is locally free it follows that Pn
X(M)

is locally free. By Propositions 2.1 and 2.4 there exists an integer ninj(x)
(Def. 2.2) such that dn

x is split injective, so Cn
x is free; hence, since Cn is

coherent, Ext1OX
(Cn,M)x = Ext1Ox

(Cn
x ,Mx) = 0.

(2): the DX(M)-module M is simple of all its stalks are simple. Let
mx ∈Mx and put V = kmx. Therefore (2) follows from (1). �

Remark 2.8. If X is not regular it is well-known that OX need not be a
simple DX = DX(OX)-module. Notice that (1) follows from the density
theorem knowing that Mx is simple over Dx(M); if k is not algebraically
closed we need that Mx is absolutely simple. Thus we have a counterpart
of (1) also for simple coherent DX(M)-modules that need not be coherent
over OX .

Definition 2.9. Let s(x) be the smallest integer such that W n
x is surjective

when n ≥ s(x). Define also s = sup{s(x) : x ∈ X}. The integer s(x) is the
differential order of V at x and s is its differential order (on X).

Again we can think of points x where s(x) < s as “Weierstrass point”
for V .

We state a result whose proof can be seen from the proof of Proposi-
tion 2.7.

Proposition 2.10. If M is locally free, then ninj(x) ≥ s(x), so ninj ≥ s.
If n ≥ ninj, then one has a locally split short exact sequence

0 → Annn V → Dn
X(M) → V ∗ ⊗k M → 0. (2.4)
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3 The sheaf DV (M)

Letting n be an integer ≥ s, one gets the short exact sequences (2.10). We
have Endk(V ) = V ∗⊗k V ⊂ V ∗⊗kM , so one can push out (2.3)to the short
exact sequence

0 → Annn V → DV,n(M)
W ∗

n−−→ Endk(V ) → 0. (3.1)

Assuming moreover that n ≥ ninj, then this sequence is locally split, so let
us describe explicitly a splitting. Put r = dimV and let {L̂i} be a basis of
Endk(V ). Then select Li

x ∈ DV,n
x (M) such that W ∗

n(Li
x) = L̂i and define a

local splitting DV,n
x (M) → Annn V , Px 7→ Px−

∑
i αiL

i
x (the sum contains r2

terms), where the coefficients αi ∈ k satisfy the equation
∑

i αiL̂
i = W ∗

n(Px)
in Endk(V ). Notice that the same αi = αi(W

∗
n(Px)) works for all x in affine

subsets of X; see the proof of Theorem 3.1 below. We need to compute
r2 differential operators Li

x to define a split. In [KMO00]) another better
choice of split is used when M = OX , using a basis {v1, . . . , vr} for V . By
(Prop. 2.10) one can choose Ri

x ∈ Dn
x , i = 1, . . . , r, so that Ri

x(vj) = δij , and
one defines a split by Px 7→ Px−

∑r
i=1 Px(vi)R

i
x. In [loc. cit.] the differential

operators {R1
x, dots,R

r
x} are called a dual basis for the basis {v1, . . . , vr}.

We collect our results in a theorem about splittings of global sections.
It was proven in [loc. cit., Th. 4.8] when M is the sheaf of real-valued
real-analytic functions on arbitrary open connected subsets of some Rn

(contained in (2) below). The following is a tiny extension of their result to
our algebraic situation.

Theorem 3.1. Let X/k be regular and M be a locally free OX -module.
Then we have a split short exact sequence

0 → Annn(M)(X) → Dn,V (X) → Endk(V ) → 0 (3.2)

and hence a split exact sequence

0 → Ann(M)(X) → DV (X) → Endk(V ) → 0. (3.3)

in the following cases:

(1) X is affine;

(2) M is free and X/k satisfies the assumptions in the last part of Propo-
sition 2.5.

Proof. (1): By Proposition 2.10 the sequence (2.4) is locally split, hence
if X is affine also globally split by Serre’s vanishing cohomology theorem.
Therefore the push-out (3.2) is also split exact. We get (3.3), since a split
Endk(V ) → Dn,V (X) also gives a split Endk(V ) → DV (X).

(2): By Proposition 2.5 the mapping W n(X) is surjective and split. �
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In general it is difficult to decide when V is simple as DV (X)-module.
Still there are interesting cases when one can prove simplicity. It is for exam-
ple true both for toric varieties [MVdB98] and homogeneous spaces. Since
in the case where the ground-field is algebraically closed, this is equivalent,
by the density theorem, to θ being surjective we can describe the differential
operators on X that preserve V , in an obvious way:

Proposition 3.2. Let M be a quasi-coherent OX -module and V be a sub-
space of V ⊂ Γ(X,M) that is simple as Γ(X,DV

X (M))-module. Then DV
X(M) =

Γ(X,DV
X (M)) + AnnDX(M)(V) (equality of sheaves, where Γ(X,DV

X (M)) is

regarded as the constant sheaf of global sections of DV
X(M))

Lemma 3.3. If V is a subspace of V̄ such that V̄ is simple over DV̄ , then
V is simple over DV̄ ,V = DV ∩ DV̄ , the sub-sheaf of DV̄

X(M) consisting of
sections that preserve V .

We leave out its immediate proof.
Next two propositions exemplify the situation when V is simple as DV (X)-

module. The first proves Theorem 3.1 in the case when X = An with a
simple geometric argument.

Proposition 3.4. Suppose that V ⊂ OAn is a non-zero finite-dimensional
vector space. Then V ⊂ OAn(An) is simple as DV -module, and furthermore
V is contained in a subspace V̄ such that (An,OAn , V̄ ⊂ OAn(An),OAn) is
quasi-projective with completion (An ⊂ Pn,OPn ,OPn(m)) for some positive
integer m.

Proof. Embed V in some Vm =<
∏n

i=1 x
ki

i , 0 ≤ ki ≤ m >. Then X̄V = Pn

and LV = O(m). It is known that the enveloping algebra U(sl(n, k)) [BlB81]
gives naturally global differential operators on O(m) that makes Vn an ir-
reducible module. Hence U(sl(n, k)) maps surjectively by θ to Endk(Vn).
A choice of a vector space complement K such that Vn = V ⊕K, gives an
inclusion Endk(V ) ⊂ Endk(Vn). Then SV := θ−1(Endk(V ))

It is often the case that Annn V = 0 for small values of n. This is illus-
trated in the following result, using a well-know description of Γ(Pn

k ,D(m)),
where D(m) is the ring of differential operators on O(m) [BGK+87].

Proposition 3.5. [Tur94] Any differential operator that has order less than
m and preserves the vector space Vm of polynomials of degree less than m, is
a polynomial in the differential operators ∂xl

, xk∂xl
, k, l = 1, . . . , n together

with −
∑n

i=1 xixk∂xi
+mxk, k = 1, . . . , n.

Proof. Since Pn is a homogeneous space there is a map β : U(sln) →
Γ(X,D(L))([Jan87]) and taking the global sections V is the traditional way
to construct (some of the) finite-dimensional irreducible U(sln)-modules.
Hence V is also irreducible as a Γ(X,D(L))-module, so θ will be surjective,
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and Proposition 3.2 applies. Since AnnDU
(V) is the left ideal generated by

the derivations ∂α = Π∂αi
xi

, where α = (α1, . . . , α)n, and
∑n

1 αi ≥ n+ 1, the
result follows. In this case, by the way, β is also surjective.

4 Completions

To fix our situation we define two categories C1 and C2 as follows.

An object in C1 consists of the datum (X,OX , V
i
−→ Γ(X,M),M) where

(X,OX ) is a variety over the field k, V is a finite-dimensional vector space
over k and i is a k-linear map to the global sections Γ(X,M) of a locally

free module M . In practice i will be an inclusion. Let A = (X,OX , V
i
−→

Γ(X,M),M) and B = (X ′,OX′ , V ′ i′
−→ Γ(X,M ′),M ′) be objects in C1.

A morphism J : A → B is a morphism of k-varieties j : X → X ′, an
isomorphism of OX -modules ψ : φ∗(M ′) → M , and a surjective map of
linear spaces F : V ′ → V , requiring that the pair (ψ, F ) forms a commutative
diagram with (i, i′) in the natural way.

The category C2 consists of morphisms J : A → B where A,B ∈ C1.
Morphisms J1 → J2 in C2 are given by obvious commutative diagrams. We
will mostly be interested in cases when j is an open immersion.

We have an evident “restriction” functor

R : C2 → C1,

(J : A→ B) 7→ A.

Definition 4.1. An object A = (X,OX , i : V → Γ(X,M),M) is strongly
quasi-projective if there exists an object J in C2 such that R(J) = A, and

(1) j : X → X ′ is an open immersion into a projective variety X ′;

(2) i′ : V ′ → Γ(X ′,M ′) is an isomorphism;

(3) F : V ′ → V is an isomorphism.

We say that J is a completion of A.

If it is clear from the situation what J is we also say that B is a com-
pletion of A. Thus a completion is a simultaneous extension of X to a
projective variety and a locally free extension M̄ of M , with the condition
that Γ(X ′,M ′) ∼= V .

It is in general difficult to see when completions exists, but below we
show how standard methods give completions when M = OX and X is
affine in certain cases.

We will in fact only consider objects in C1 of the form A = (X,OX , V ⊂
Γ(X,OX),OX ) where X is an affine open subset of a variety of finite type
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over k; to be reasonably certain of a good supply of global differential op-
erators it is even natural to let X be an open affine subset of some affine
space Ar, but here we do not need this assumption. The family of such
affine objects A form a sub-category Caff

1 of C1. Let Cc
2 be the sub-category

in C2 of completions J , i.e. J satisfies (1-3) in Definition 4.1, such that

R(J) ∈ Caff
1 . We will study the possibility of defining a left adjoint of R,

which then can be thought of as a “completion” functor C : Caff
1 → Cc

2,
so that Hom

Caff
1

(A,R(J)) = HomC2
(C(A), J); thus the object C(A) ∈ Cc

2

should represent the functor

CA : C2 → Set, J 7→ Hom
Caff
1

(A,R(J)). (4.1)

However, to represent this functor we need that certain extra conditions are
satisfied for A (I-III below), so we are unable to find a functor defined an

all of Caff
1 .

To determine C(A) we will use some facts from [Har85, GD61], and we
also follow their notations for constructions pertaining to projective schemes.

Let Proj A be the projective scheme of a graded ring A. If V is a vector
space over a field k and S[V ] its symmetric algebra, then Proj S[V ] = Pn−1

k ,
if n = dimV . The grading of the polynomial ring S[V ][t] with coefficients in
S[V ] gives Proj S[V ][t] = SpecS(V ) = An; its closed points can be identified
with the dual space V ∗ (if k is algebraically closed). If X is any scheme we
have a map i : X → An induced by S[V ] → OX(X).

Let R be a k-algebra so that X = SpecR. Then i is a closed embedding
if R is generated by the k-subspace V .

Definition 4.2. Let V ⊂ R be a finite-dimensional vector sub-space.

γ : S[V ][t] → R[t].

Let BV be the sub-algebra of S[V ][t] that is generated by tV and denote by
AV the image under γ of BV . Then Proj BV = Pn(= P(V ∗)), if n = dimk V
and Proj S[V ][t] is the affine space An. Define

XV := Proj AV

and let LV = OXV
(1) be the associated line bundle.

Example 4.3. Consider x := An and V =<
∏n

i=1 x
ki

i , 0 ≤ ki ≤ m >. we
get X̄V = Pn and LV = O(m). For another example, let V =< 1, x, x3 >.
Then AV = k[t, tx, tx3] ∼= k[u, v, w]/(u2w− v3). This is a cusp; on the open
set w 6= 0, it is k[u, v]/(u2 − v3).

We have a map i : X → An induced by the homogeneous map S[V ][t] →
R[t]. Put XV = {x ∈ X|V * mx}, the base-point free locus for V in X, so
XV = X means that V is base-point free on X. Then we have a map

XV → XV

12



and a commutative diagram

XV �

� i0
//

j

��

An

��

XV
�

� φ
// Pn

(4.2)

where i0 is the restriction of i. Here the horizontal arrows are closed immer-
sions and the right vertical arrow is an open immersion. Let V1 ⊂ V2 be an
inclusion of finite-dimensional sub-spaces of R. Put V V1

V2
= {x ∈ XV2

| V1 *
mx}, the base-point free locus of V1 in XV2

. Then the natural homogeneous
map AV1

→ AV2
induces a map XV1

V2
→ XV1

. Notice that V is base-point
free on XV .

(I) Our first condition on A is that V is base-point free in X, so XV = X.
Then put C(A) = JA, where JA : A→ B, and

B = (XV ,OXV
,Γ(XV , LV ),LV ).

It should be clear what are the morphisms (j, φ, F ). For C(A) to satisfy
(1) in Definition 4.1 we need a condition that the map j : X → XV be an
open immersion. Such conditions are well-known and we will use only a very
simple one (II).

Proposition 4.4. [Gro61, Chap 2,3.8.5] Let X = SpecR be affine, and
V ⊂ R a finite-dimensional vector space such that the map of algebras γ :
S[V ] → R is surjective. A sufficient condition that j : X → XV be an open
immersion is that

((AV )tv)0 = Rv, (4.3)

for a set of sections v = vi, i = 1, . . . , r. In particular, if V contains a unit
of R (so X = XV ), then this criterion is true.

The validity of the proposition is easily checked since Proj AV is con-
structed by glueing together the affine spaces Spec((AV )tv)0 ∼= γ(S[V v−1]),
for all sections tv ∈ tV ⊂ AV . If v ∈ V is a unit in R, it is clear that the
subjectivity of γ implies that ((AV )tv)0 = R, and hence X is isomorphic to
an open set of X̄V .

There is now a last problem. In general the object C(A) will not be a
completion of A since we only have V ⊂ Γ(XV ,OXV

(1)), and not equality.
Putting V̄ = Γ(XV ,OXV

(1)) we have a natural injective map i : V → V̄
and inclusions AV ⊆ AV̄ ⊂ R[t]. We can now iterate, V̄ ⊂ Γ(XV̄ ,OXV̄

(1))
and so on. We do not know if this process stabilises. One condition (III) to
ensure V = V̄ is that AV be a normal ring (one then says that the embedding
of XV in P(V ∗) is projectively normal) because then the stronger assertion
AV = Γ∗(XV ,OXV

) := ⊕∞
i=0Γ(X̄,Li

V )ti holds.
Let now J : A → B be a completion, where B = (X̄,OX̄ ,Γ(XV ,L),L).

Does it follow that B ∼= (XV ,OXV
,Γ(XV ,LV ),LV )?

13



Definition 4.5. The object B ∈ C1 is projectively normal if L is very
ample and its associated immersion i : X̄ → Pl

k is projectively normal, i.e.
its homogeneous coordinate ring S(X̄) is normal.

Proposition 4.6. If J : A→ B is a completion such that B is projectively
normal, then B ∼= (XV ,OXV

,Γ(XV ,LV ),LV ).

Proof. See also [Har85, II.5.16]. It suffices to prove AV
∼= S(X̄). Ob-

serve first that R[t] ∼= ⊕∞
i=1Γ(X,Li)ti, using the isomorphism ψ : j∗(L) →

OX , and that the restriction map hence gives an injection Γ∗(X̄,OX̄) ⊂
R[t], compatible with multiplication. Projective normality implies that
Γ∗(X̄,OX̄) ∼= S(X̄) and also that the natural map

S(X̄) ∼= Γ∗(P
n,OPn) → Γ∗(X̄,OX̄ ).

is surjective. Composing this map with the injection S(X̄) ∼= Γ∗(X̄,OX̄) ⊂
R[t] we get AV . Therefore AV = S(X̄). �

Assuming (I-III) we now prove that C(A) = JA represents the functor
CA (4.1) on a sub-category of Cc

2. Denote by Cpc
2 the sub-category of objects

J ∈ Cc
2, where J : A1 → B1, A1 = (X1 = SpecR1, i1 : V1 → Γ(X1,L),L),

and B1 = (X̄1, i2 : V̄ ∼= Γ(X̄1, L̄1), L̄1) is projectively normal.

Proposition 4.7. Assume that A satisfies (I-III). Then C(A) is a comple-
tion of A and it represents the restriction of CA to Cpc

2 .

Proof. Let G = (φ1, ψ1, F ) be a morphism A → R(J). We need to
complement G to a morphism Gc : C(A) → J . By Proposition 4.6 the
homogeneous coordinate ring of X̄ for the embedding determined by L̄1 is
AV1

. The map j : R1 → R therefore induces a surjective map AV1
→ AV ,

and since F : V1 → V is surjective, V1 has no base-points in XV , so one gets
a map j̄ : XV → (X1)V = X̄ . We leave out the remaining details to see that
this gives us a morphism Gc. �

5 Extending differential operators

Proposition 5.1. Let J : A → B be a completion, where A = (X,OX , i :
V → Γ(X,M),M) and B = (X̄,OX , ī : V̄ ∼= Γ(X̄, M̄), M̄ ). If codim suppCn ≥
1, then the restriction mapping

rX,X0
: Dn(X) → Dn,V (X0)

is injective. Assume that dn
V is surjective at points of height 1. Then rX,X0

is surjective.

The surjectivity condition at points of height 1 can equivalently be
phrased as codim suppCn ≥ 2.
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Proof. Apply HomOX̄
(·, M̄ ) to the sequence (2.10). Since C is a torsion

sheaf and M is torsion free the injectivity of rX̄,X follows. Assume now
that M has depth ≥ 2 (e.g. M is locally free) and that dn

V is surjective
at all points of height 1. An element P in Dn,V (X) gives an element P̃ in
HomOX̄

(VX̄ , M̄ ) = Homk(V, M̄ )). The fact that P̃ comes from P implies

that generically the kernel Kn of dn
V belongs to the kernel of P̃ , but since VX̄

and M are locally free, this gives Kn ⊂ Ker P̃ . Hence P̃ gives an element P̂
in HomOX̄

(Imdn
V , M̄ ). Since dn

V is surjective at points of height 1, P̂ induces

a mapping P̂x : Pn(M̄)x → M̄x at points x of height 1. Since M̄ has depth
≥ 2 at all points if height ≥ 2, the map P̂x in fact gives an element P n in
HomOX̄

(Pn
X̄

(M̄), M̄ )) = Dn
X̄

(M̄)(X̄). �

Definition 5.2. Let n1
s be the largest integer k such that dn

V is surjective
at points of height 1.

Thus if P is a differential operators on M , defined in X and preserving
V , then it has an extension to a global differential operator on X̄ . A similar
condition to that of dn

V being surjective (not just that codimCoker dn
V ≥ 2)

for a line bundle M , has been studied, under the name of k-jet ampleness
[DR99, BS95, Dem96].

Remark 5.3. If X is a regular curve and X0 a Zariski open subset, then
rX,X0

is always surjective. If X is a non-regular curve this no longer holds.

Example 5.4. Consider An ⊂ Pn and Consider Vm =<
∏n

i=1 x
ki

i , 0 ≤ ki ≤
m >. Then n1

s = m. and hence the above result obtains. To see that dk
Vm

is
surjective if k ≤ m we use the fact that both P k

Pn(O(m)) and OPn ⊗ V are
SL(n, k)-linearised sheaves(see [Jan87]) and hence the map will be surjective
if it is surjective in one point; this is clearly true if k ≤ m for any point in
An. This can of course seen directly. Here we have a very symmetrical
situation:

n1
surj = nsurj = ninj

6 Toric varieties

If V ⊂ k[x1, . . . , xn] is a finite-dimensional vector space generated by mono-
mials, XV will be a toric variety. Differential operators that preserve such V
have been considered in an affine situation by [PT95], [Tur88], and [FK98],
without using toric varieties. In this section we will calculate ninj and nsurj

for toric varieties, and describe the structure and behaviour of the ring
of differential operators in some special cases. The point is to emphasise
the importance of the completions, and the work that has been done on
rings of differential operators in that context, by Musson [Mus94](see also
[Jon94],[MVdB98]). We exemplify by the following result. By the work of
Musson [Mus94](see also [Jon94],[MVdB98]), it is known that there are al-
ways lots of differential operators on an invertible sheaf on a toric variety. If
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the variety X is projective, Γ(X,L) is simple as a R = Γ(X,DL)-module, by
[Mus94], hence the following proposition is a consequence of Proposition 3.2;
it means that every differential operator preserving V may be decomposed
as the sum of an annihilator and a global differential operator.

Proposition 6.1. Assume that V = ⊕m∈P∩Mkx
m, P is a convex polytope

(see below), satisfying the very ampleness condition at the end of this section.
Then V = Γ(XV ,LV ). The map Γ(X,DL) → DV is surjective.

Musson describes the ring of global differential operators explicitly as a
quotient of a ring of invariants of differential operators on an open subset of
the affine space. In particular it is easy to give examples of smooth varieties
where the global ring of differential operators is not generated by first order
differential operators. These toric constructions corresponding to invariant
V with a basis of monomials, do not seem to have been used before, even
though Gonzalez-Lopez et al. [GLKO97] study Hirzebruch surfaces; this
gives representations of the Lie algebra of global vector fields on a very
ample line bundle that is the semi-direct product of sl2 with an abelian Lie
algebra.

Recall the construction of toric varieties, cf. [Ful93] for details. Suppose
that M = Zn is a lattice. If m = (m1, . . . ,mn) ∈M define

xm = xm1

1 . . . xmn
n ∈ k[x1, x

−1
1 , ., . . . , xn, x

−1
1 ] = k[T ].

The torus in the nomenclature is Speck[T ]. We will constantly go back and
forth between elements inM and monomials in k[T ]. The construction ofXV

described before, works well, if V is the vector space generated by monomials
xm, such that m belongs to a strictly convex polytope P ⊂M . Then XV is
usually called X(P ) and the associated line bundle L(P ), cf. [Ful93, Section
1.5]. The construction is easily described the following way, streamlined to
the monomial situation. Suppose that mi is a vertex of P and let Mi ⊂ M
be the semigroup generated by < p − mi|p ∈ P > (or the elements of M
that lie in the corresponding angle bounded by the codimension 1 faces of
the polytope Fj , j ∈ Ii that meet at mi). Then define k[Mi] ⊂ k[T ] as the
algebra generated by xm m ∈Mi and Ui = Speck[Mi]. Furthermore define
Li as k[Mi]x

mi ⊂ k[T ], with an obvious inclusion P → Li. These local
data Ui and Li now glue in a way that is uniquely determined by the given
inclusions into k[T ], and this completes the construction. We also have that
V = ⊕m∈P∩Mkx

m = H0(X(P ), L(P )) ([Ful93, 3.4]). This line bundle will
be very ample if the following condition is satisfied:

The polyhedron P is the convex hull of the points mi, and for each i the
semigroup generated by < p−mi|p ∈ P > is saturated([loc.cit.]).
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6.1 An example: Pn

We will now further exemplify the uses of toric varieties, and describe the
ring of differential operators on Pn, as an example of Musson’s [Mus94]
description of the twisted differential operators on an arbitrary toric variety.

Let y0, y1, . . . , yn be coordinates of kn+1, and consider Y = Cn+1 − {0}.
If T = k∗ acts on Y by multiplication, then Pn = Y//T . Hence yi are the
homogeneous coordinates on Pn. Suppose that L = O(m), where m > 0.
Then V = Γ(Pn,L) is the vector space of homogeneous polynomials of
degree m, in the homogeneous coordinates. Choose the section s0 = ym

0 of
L. Then xi := yi/y0, i = 1, 2, . . . , n gives an isomorphism between the open
set X = {y0 6= 0} ⊂ Pn and An. The map ρ in (1.1) maps V to the subset
of polynomials of degree at most m of A = k[x1, . . . , xn], by p 7→ p/yn

0 .
Consider the ring of differential operators

An+1 = k[y0, y1, . . . , yn, ∂y0
, . . . , ∂yn ]

on kn+1. We use multi-index notation yα∂β for monomials in the generators
of An+1. The action of the torus T on An+1 is given by

tyα∂β = λ<1,α−β>yα∂β ,

where 1 = (1, 1, . . . , 1) ∈ Zn+1 and the scalar product is the usual one. The
torus itself induces the Euler vector field e := y0∂y0

+ · · · + yn∂yn . Then

Γ(Pn,DPn) ∼= AT
n+1/(e).

This is easily modified to the case of an arbitrary line bundle:

Γ(Pn,D(O(m))) ∼= AT
n+1/(e−m).

The ring of invariants AT
n+1, consists of all homogeneous differential opera-

tors of degree 0. Hence it is clear how they induce differential operators on
Pn. It is also easy to see that AT

n+1 as well as its quotients, is generated as
an algebra by the vector fields yk∂yl

.
We will now describe the restriction map η, which shows how these vector

fields act on A = k[x1, . . . , xn]. The function xi corresponds to the global
section yiy

n−1
0 , and hence, if k, l 6= 0,

η(yk∂yl
) ∗ xi = δlixk

so that η(yk∂yl
) = xk∂xl

. Similarly it is easy to see that

η(y0∂yl
) = ∂xl

,

and

η(yk∂y0
) = −

n∑

i=1

xkxi∂xi
+mxk,
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and

η(y0∂y0
) = −

n∑

i=1

xi∂xi
+m.

Hence we get from the proposition of the preceding section the following
result on differential operators with polynomial coefficients, that preserve
certain finite-dimensional vector spaces. It was first proved by Turbiner
[Tur94] by algebraic means, and our proof serves as an illustration of the
idea of the present exposition, that there is a “hidden” geometry in the
situation. A variant, where the differential operators where identified with
U(sl(n, k)), was given earlier.

Proposition 6.2. [Tur94]The differential operators DV0
that preserve V0 =

〈xm |
∑n

i=1mi ≤ m〉, is the ring

Γ(Pn,D(O(m)) = k[xk∂xl
, ∂xk

, xk(π −m)|i, k = 1, . . . , n],

where π =
∑n

i=1 xi∂xi
together with AnnV . Also AnnV ∩Γ(Pn,Dr(O(m)) =

0, if r < m.

The last result of the proposition follows from the fact that all differential
operators of order less than m, may be extended globally since nsurj = m.
But if P ∈ Annr V, r < m then also k[x1, . . . , xn]P ⊂ Annr V , and all
these may not be extended to global sections, since they form an infinite-
dimensional vector space, while the global differential operators of order less
than m is a finite-dimensional vector space. It is of course easy to describe
AnnV = (∂m

i | i = 1, . . . , n).

6.2 Calculation of ninj and nsurj for toric varieties in the

smooth case

In the case that a toric variety is smooth and proper, Di Rocco [DR99], has
studied the Wronskian, with the purpose to give criteria for k-jet-ampleness
(a generally stronger, but similar condition to the surjectivity of the Wron-
skian.) In particular, she has given an easily calculated numerical criterion
that implies that

αk : OX ⊗k H
0(X,L) → Pk

X(L)

is surjective. The criterion is almost evident in the situation we are most
interested in, namely when we start with a convex polytope P , and consider
the associated toric variety X(P ) and line bundle LP . It is formulated in
terms of the geometry of the polytope.

Definition 6.3. [DR99] Assume that P ⊂M is a strictly convex polytope,
that is the convex hull of the finite number of points mi, i ∈ I. Along
each edge Eij of the polytope, connecting two vertices mi and mj , choose
a minimal element eij ∈ M . If mi −mj = lijeij , the positive integer lij is
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called the length of the edge Eij . The polytope P is said to be k-convex if
the length of each edge of the polytope is larger than or equal to k. Denote
by k(P ) the maximal k such that P is k-convex (i.e. the minimal length of
an edge).

Di Rocco’s result is that P is k-convex if and only if L(P ) is k-jet ample,
in the case when X(P ) is smooth. We will find that this is also equivalent
to nsurj = k Hence nsurj = k(P ) in this case. Her method is to use Cox’s
homogeneous coordinate ring; this is necessary for k-jet ampleness, but not
in our simpler case, whence we present a proof.

That X(P ) is smooth is equivalent to the fact that any semigroup
Mi is generated by a basis of M ([Ful93]). Since the eij will be pre-
cisely the generators of Mi , we get that there are n of them and that
k[Mi] ∼= k[x1, . . . , xn]. It is furthermore clear, by sophomore analysis,that
locally the principal bundle may be described easily as OAn ⊗ V

∼
−→ Pk

An ,
where V is the vector space generated by all xI , with I = (i1, i2, . . . , in)
with 0 ≤

∑n
j=1 ij ≤ k, and the map is the generalised Wronskian. Let

Si := {
∑

j aijeij , αij ∈ N}, and let P k
i := Si/(S(k)i) be the quotient by

S(k)i := {
∑

j aijeij , αij ∈ N,
∑

j aij ≥ k+ 1}. Hence the generalised wron-
skian map

k[Mi] ⊗ 〈xp, p ∈ P 〉 → Pn
Ui

(L(P ))

may be described in M , by the effect on the basis p ∈ P as

Wk : p 7→
∑

j

aij(p−mi)eij ∈ P k
i .

By ordinary convexity of P , this map is clearly surjective if P is k-
convex, since then any sum

∑
j aijeij , αij ∈ N,

∑
j aij ≤ k ∈ P . Conversely,

assuming that the wronskian is surjective and tensoring with k[Mi]/(x
eij ),

we obtain that P → P k
i is surjective, which is possible only if reij +mi ∈ P

for r = 1, . . . , k, so that P is k-convex. Hence we get that Di Rocco’s
criterion, for jet ampleness also characterises nsurj.

We may also similarly study the injectivity of the generalised Wronskian
map. It suffices to study this at the special closed and T -invariant point
piin each open affine set Ui, since the set {x ∈ X(P ) | rankn(x) < |P |}
consists of T -orbits and is closed. This point is defined by the maximal ideal
generated by Mi ⊂ k[Mi]. Clearly, ninj will then be the least k such that P
is contained in the set Sk

i := {
∑

j aijeij | aij ∈ N,
∑

j aij ≤ k} +mi. It is
enough to check this for the vertices mj, j 6= i.

Hence we have proved the following proposition.

Proposition 6.4. Suppose that P ⊂ OAn is a k-convex polytope, with ver-
tices mi, i ∈ I, and that that X(P ) is smooth and proper. Then

ninj = n(P )inj := Max{Min{k : P ⊂ Sk
i }, i ∈ I},
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and

nsurj ≤ n(P )totalsurj := Min{Max{k : Sk
i ⊂ P}, i ∈ I}.

6.2.1 Pn revisited

Let us calculate the integers of the preceding section for Pn
k . Suppose that

m ≥ 0 is an integer and consider M = Zn and the polytope given by P (m) =
{b = (b1, . . . bn)|bi ≥ 0,

∑n
i=1 bi ≤ m}. This is the convex hull of the points

mi = (0, . . . , 0,m, 0, . . . , 0), and the minimal distance between two vertices is
clearly m. Hence P (m) is exactly m-convex, and hence also nsurj = m. Also
clearly ninj = m. The toric variety X(P (m)) will be Pn and the associated
line bundle is O(m). In local coordinates, it follows from the considerations
of the preceding section that the Wronskian OPn ⊗ P (m) → Pk

Pn ⊗ O(m)
actually is an isomorphism for k = m, and has a cokernel with support
outside codimension 2 if k < m.

6.3 Calculation of n
1
surj on general projective toric varieties

We next will consider the condition of surjectivity in codimension 2. In
this case, smoothness will not be essential and we will describe a procedure
below. The Wronskian (6.2) is a homogeneous homomorphism between T -
homogeneous sheaves (on an open subset Ui this just means that there are
natural gradings on the restrictions and that the homomorphism respect
these gradings), and so the support of the cokernel and kernel will be unions
of closures of orbits under the torus T . Hence to check the surjectivity in
codimension 2, it suffices to check surjectivity at the orbits of codimension
0 or 1 orbits. (We refer to [Ful93] for information on orbits.) The orbits
correspond to the faces F of the polytope, and each orbit O(F ) is generated
by a well-defined and easily described point p(F ); codimension 1 orbits
correspond to codimension 1 faces. In fact, it suffices to prove surjectivity
for all orbits of codimension precisely 1, since the support is closed and the
only open orbit T contains all codimension 1 orbits in its closure. Hence
it suffices to check surjectivity at the point p(F ). Use the notation of the
next to last section, that is: P is a strictly convex polytope with vertices at
mi, i ∈ I, and X = X(P ). Let F be a codimension 1 face of P , and suppose
that mi is a vertex of the polytope, that is contained in F . The affine open
set that corresponds to mi is Ui = Speck[Mi]. The codimension 1 face F of
the polytope, defines a hyperplane HF through origo parallel with F . The
point p(F ) ⊂ Ui is defined by the map p : Mi → k given by p(x) = 0, if
x /∈ HF , and p(x) = 1, if x ∈ HF . These points are smooth points in UσF

,
since any toric variety is normal, and these points are generic with respect
to the torus action on O(F ).

Hence it suffices to compute the Taylor expansions in a system of local
coordinates at these points. This gives us a finite number of mappings

20



αk,F : V → OUi
/mk+1

p(F ). For each face F let n1(F ) be the maximal k such
that αk,F is surjective, for some i such that the vertex mi is contained in F .

Proposition 6.5. n1
X(P ) = Min{n1(F )| F a codimension 1 face of P}.

It should also be noted that it is possible to estimate s, using the pro-
cedure described in [Jon94] to calculate the generators of the ring of global
differential operators(see the example below).

6.4 Hirzebruch surfaces

Consider the finite-dimensional vector space of polynomials V r
kl := {xiyj , 0 ≤

i + rj ≤ k, 0 ≤ j ≤ l}, where r, k, l are non-zero integers and r ≥ 1. We
will restrict ourselves to the truncated case k − lr ≥ 0. As noted already in
[GLHKO93], this vector space is the restriction of the global sections of the
line-bundle OΣr(k, l) on the Hirzebruch surface Σr to the affine A2 ⊂ Σr.
The differential operators of order 1 that preserve the vector space are de-
scribed in [loc.cit], and in [FK98] a graphic method is given to calculate the
higher order differential operators that preserve V . This graphic method is
just a use of the obvious bigrading, and as such a special case of the much
more powerful methods of Jones/Musson. Even in this special case, the
methods of the latter authors give fuller information on the whole ring of
differential operators.

In particular it is known that DV r
kl is not generated by differential opera-

tors of order less than 1. Let us see what the preceding theory and the liter-
ature on toric varieties tells us. Firstly, we may for this compute ninj(V

r
kl),

and nsurj(V
r
kl). The vertices of the polytope are (k, 0), (0, 0), (0, l), (k− lr, l);

denote the face between the first two vertices by F1, between the second and
third by F2, and so on, cyclically. The length of the edges are k, l, k − lr,
and hence by Proposition 6.4, nsurj(V

r
kl) = Min{l, k − lr}.

Similarly ninj(V
r
kl) = k, under the condition that k − lr ≥ 0. Hence, by

the general theory, locally there are differential operators of order less than
k, that preserve V , and have the effect Lab(x

mi) = δaix
mb , for a, b ∈ P .

Now consider n1
surj(V

r
kl). At the edge from (0, 0) to (k, 0) F1, local coor-

dinates are x = x(1,0) and y = x(0,1), and p(F1) is defined by x = 1, y = 0. It
is easy to see that V r

kl → k[x, y]/(x−1, y)s+1 is surjective if and only if s ≤ l,
since in this case ys must be in the image. In the same way n1(F2) = l,
n1(F3) = l and n1(F4) = k − lr. Hence n1 = nsurj(V

r
kl) = Min{l, k − lr}.

Moreover, since this is a toric situation, we know by Musson that V := V r
kl

is an irreducible module over the finitely generated and Noetherian alge-
bra of differential operators Γ(XV ,DL). However we want a more explicit
description and estimates of the order of the involved differential operators
giving Endk(V ). In [Jon94] the restriction to U1 = Speck[x, y] of the global
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differential operators on the structure sheaf L = OΣr are calculated to be

R = Γ(Σr,D(L))

= k[∂x, x
j∂y, xπ, ∂

j
xy(∇y)π(π+1) . . . (π+a−j−1), x∂x, y∂y|j = 0, 1 . . . , r].

(6.1)

Here π := x∂x + ry∂y and ∇y = y∂y. One may either repeat his calculations
for an arbitrary line-bundle — in his and Musson’s framework this is an
easy, if laborious exercise — or one may use [Jon94, Theorem 4.9], to see
that redefining π := x∂x +ry∂y −k, and also ∇y := y∂y − l in the expression

P (j) = ∂j
xy(∇y)π(π+1) . . . (π+a−j−1), will give that the above expression

for the ring of differential operators is valid for any line-bundle L = LV r
kl

.
This follows since after redefinition the differential operators on the right
hand side are easily seen to act on L, and the associated graded rings to
the filtration by differential operator order are equal. We also note that
the method of [Mus94] makes it easy to describe what differential operators
there are in each multi-degree (not only the generators).

We may now estimate the global s, indirectly. Consider the bigrading
giving xiyj the degree (i, j). The degree-vectors of the elements in the alge-
bra R0 = k[∂x, x

j∂y, xπ, x∂x, y∂y|j = 0, 1 . . . , r] all have non-positive second
coordinate, and hence there is a non-trivial filtration FtV

r
kl = {

∑
kijx

iyj | j ≤
t}. This filtration is preserved by R0. In particular V r

kl is not an irreducible
module. Using this filtration, and the extra elements in R, it is easy to give,
at least a naive estimate of the order of a differential operator in R0 that will
correspond to any matrix with only one non-zero entry, namely s ≤ 3k+ lr.

Proposition 6.6. Let k − lr ≥ 0. Then

X = XV r
kl

= Σr = P(OP1 ⊕OP1(r))

and  LV r
kl

= O(l, k), see [DR99]. Furthermore nsurj(X) = n1
surj(X) =

Min{l, k − lr} and ninj(V
r
kl) = k. Also DV r

kl is given up to AnnV r
kl

by (6.1).

7 Hidden Lie algebras

In this section we will consider the situation when V ⊂ A = OX0
is invariant

under a reductive Lie algebra of differential operators in D1
X0

. General
references for representation theory and homogeneous spaces are [Jan87]
and [Hum75].

Consider first representations of a reductive connected and simply-con-
nected (not really necessary) group. Each irreducible representation is con-
structed as V = Γ(G/B,L) for some ample line bundle on the Borel variety
G/B, and is associated to an unique integral and dominant character λ of the
torus T ⊂ B. We write L = L(λ). The Borel variety G/B contains an open
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cell U that is a B-orbit, which is isomorphic to some An, and hence there is
an inclusion V ⊂ OU = k[x1, . . . , xn] =: R. Actually it is covered by affine
cells gU , all isomorphic to An and there are many possible embeddings of V
in k[x1, . . . , xn]. If λ− ρ is integral, dominant, and regular, the line bundle
is very ample and the procedure is invertible and XV

∼= G/B and LV
∼= L.

Hence also Γ(XV ,LV ) = V . If λ is integral dominant, but not regular,
there are simple roots α such that < λ, α̌i >= 0, i ∈ I, and they define a
parabolic group PI . Furthermore V = Γ(G/B, π∗(L))

∼
−→ V = Γ(G/P,L),

for a certain line-bundle L. In this case XV = G/P , even if we start with
V ⊂ OU , the structure sheaf of a open cell in G/B. Note how the proper
variety G/B unites many different possible choices of open sub-varieties and
different vector spaces V .

Since g will act as derivations on OU , and V is irreducible as g-module,
the situation of Proposition 3.2 obtains. It is also well-known what the ring
of global differential operators of L(λ) is, see [BlB81]. Hence the following
is well-known.

Proposition 7.1. Suppose that V |U ⊂ OU is the restriction of V = Γ(G/B,L(λ)).
Then Γ(G/B,DL(λ)) ∼= U(g)/(mλ), where mλ ⊂ Z is a maximal ideal of the
center Z of U(g). Furthermore this ring maps surjectively onto End(V ),
so that any differential operator P on U , that preserves V , may be written
P = P1 + P2, where P1 ∈ U(g)/(mλ and P2 ∈ AnnV .

It is also easy to calculate ninj and nsurj, depending on the observa-
tion that the Wronskian sequence (2.1) is a sequence of G-linearised vector
bundles on G/B (since any invertible sheaf is G-linearised on G/B for a
simply-connected group.) Hence it suffices to check injectivity and surjec-
tivity at a single point, so take x = B ∈ G/B, and assume that is defined
by xi = 0, i = 1, . . . , n) in U ∼= U−, the unipotent group contained in the
opposite Borel group B−. Then the Wronskian sequence becomes

V →M = k[x1, . . . , xn]/(xn+1
i |i = 1, . . . , n)tλ,

where tλ has weight λ, and the map is now T -homogeneous, and also com-
patible with the action of U(u−). hence for surjectivity, it is enough that∏n

i=1 x
n
i which has weight λ − 2nρ, is contained in the image, since this

element generates M . There is a unique element w in the Weyl group, such
that w(λ − 2nρ) is dominant. By [Hum78, 13.4 Lemma B], the Wronskian
above will be surjective if w(λ − 2nρ) < λ, in the partial ordering induced
by positive roots. For example for P1, we see that kρ satisfies this crite-
rion for n = k, since in this case w will just be multiplication by −1, and
−(kρ−2kρ) = kρ < kρ. As for the injectivity, it is easy to see that it suffices
to consider the lowest weight of V , and that the criterion is that this lowest
weight w0(λ) > λ− 2nρ.
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Let us now consider the problem whether the above situation is in some
sense the only case. We have the following result, which might be epis-
temologically interpreted as strengthening our general philosophy that the
construction XV is worthwhile to pursue since it (under some conditions, of
course) detects hidden geometry, in this case the underlying homogeneous
space.

Proposition 7.2. Given a finite-dimensional V ⊂ A with affine A = OX0
,

such that X0 ⊂ XV ⊂ P(V ∗). Assume that g ⊂ D1
X0

is a reductive Lie alge-
bra. Then the action of g on V may be integrated to an action of an algebraic
group G, whose associated Lie algebra is g. This action may be canonically
extended to XV , in such a way that LV is an equivariant invertible sheaf.
Furthermore, g ⊂ Γ(XV ,DXV

), and V ⊂ Γ(XV ,LV ). In the special case
that g is locally transitive on X0 and there is a point x0 ∈ X0, such that the
kernel of g → (DX0

)x0
is a parabolic sub-algebra, we have XV

∼= G/P for
some parabolic subgroup P ⊂ G and LV = O(λ) for some dominant weight.

Proof. (Sketch)The action on V may be integrated to an action of an simply-
connected algebraic group G. The fact that g ⊂ DV , implies that this action
may be extended to a compatible and homogeneous action on AV . This
means that there is an action of G on XV . This gives the first part of the
theorem. By choosing a point x0 ⊂ X0, we get a map G → XV , and the
kernel hence has to be a parabolic subgroup P of G. Hence we have a series
of closed immersions φ : G/P → XV → Pn. The local transitivity implies
that there is an open subset U ⊂ X0 that is in the image of φ, and hence φ is
an isomorphism. Since V is a subset of the irreducible G-module Γ(XV ,LV ),
it must equal the last module, and we are in the situation described in the
beginning of the section.
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