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Abstract

It is not possible to determine from the Hilbert series whether a graded
Noetherian algebra is a complete intersection. Nevertheless, such Hilbert
series satisfy very stringent conditions and we define a concept CI-type for
formal power series, that embodies some of these necessary properties. This
definition works for algebras that are not standard i. e. not generated in
degree 1. For the class of formal power series that occur as the Hilbert
series of Noetherian Cohen-Macualay algebras, the main result is a criterion
for a series to be of CI-type, that is formulated in terms of properties of
truncated power series. Hence it can be used as the basis for an algorithm
that provides in a finite number of steps either a rational function expression
of the formal power series, or the information that the truncated power series
is not of CI-type. Also sample computations using this algorithm on some
non-standard graded invariant algebras are described.



1 Introduction

The present study is motivated by the problem how to recognize whether a
ring is a complete intersection or not, in terms of computable invariants of
the ring. There has been several similar studies e. g. Avramov-Herzog [3],
characterizing complete intersections in homological terms, as well as work
done with classes of special types of rings, e. g. rings of invariants [12], and
semi-group rings [7].

We take a different approach; in the spirit of Macaulay and Stanley, we
make our starting point the Hilbert series of a graded algebra. If the algebra
is Noetherian the Hilbert series may be expressed as a rational function.
Stanley showed for example that the condition of a standard algebra (i. e. all
generators in degree 1) being Gorenstein, could be determined from the
knowledge of its Hilbert series. Macaulay characterized Cohen-Macaulay
algebras in a similar way, also in the case of standard algebras. Other
authors have pursued this theme, both in order to characterize different
properties of a ring in terms of their Hilbert series – e. g. integrality is
discussed in [16], as well as the related problem of which formal power series
occur as Hilbert series of certain types of rings [8].

As noted already by Stanley [15, Example 3.7 ], it is not possible to
decide whether an algebra is a complete intersection only by considering its
Hilbert series. But on the positive side Stanley showed that it is possible, for
standard algebras, to describe completely which formal power series occur
as Hilbert series of complete intersections [15, Theorems 3.5-6]. The possible
Hilbert series will belong to a very restricted class of formal power series.
Knowledge whether a Hilbert series belongs to this class, is then a strong
necessary condition on an algebra for it to be a complete intersection.

However, many naturally occurring commutative algebras are not gen-
erated in degree 1, for example invariant rings or algebras that arise in
algebraic geometry as section rings associated to line bundles. Hence it is
important to see what can be done in the more general case.

We define a concept CI-type in this more general situation. It is for-
mulated in terms of the existence of a special kind of rational function ex-
pression of a formal power series, and it embodies the most easily visible
consequences for the Hilbert series of the fact that a graded algebra is a
complete intersection. That the Hilbert series is CI-type is thus a necessary
condition for a ring to be a CI, but not sufficient.

There is however a practical problem with the definition, in that it as-
sumes the full knowledge of the Hilbert series as a rational function. In
many calculations what is given is a partial knowledge of the Hilbert series,
as a truncated series, and hence what is needed is a method for using this
partial information effectively.

Complete intersections are always Cohen-Macaulay algebras, and this
class of algebras has Hilbert series that have a precise description (see below)
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so we consider only this class of formal power series, called CM-type. Our
main result is a characterization of CI-type CM-type formal power series in
terms of their truncated Hilbert series. This is algorithmic in character and
we formulate it below as an algorithm. In practice, its use will be to prove
that a particular graded algebra cannot be a complete intersection, and as
such we have illustrated its use on rings of invariants.

We will now give a more precise description of the contents of the paper.
Suppose we have a truncated Hilbert series

H(z) = 1 + a1z + a2z
2 + . . . , ai ∈ N,

of a noetherian graded algebra. It is natural to try to naively use our partial
information to construct an expression of the series as a rational function
by starting with

H1(z) := (1 − z)−a1 = 1 + a1z +

(

−a1

2

)

z2 + . . . ,

which equals the given Hilbert series up to degree 1, and then continuing
with

H2(z) = (1 − z)−a1(1 − z2)(
−a1

2
)−a2 = 1 + a1z + a2z

2 + . . . ,

which is equal to H(z) up to degree 2, and so on. This gives an algorithmic
construction of a formal power series

Hn(z) :=

n
∏

j=1

(1 − zj)δj , δj ∈ Z ,

which equals H(z) up to degree n. In the limit this uniquely expresses H(z)
as an infinite product (well-defined as a formal power series)

H(z) =

∞
∏

j=1

(1 − zj)δj , δj ∈ Z .

For a general series, this product is infinite, but if the Hilbert series stems
from a (graded) complete intersection, only a finite product is needed, and
the method produces a rational expression in a finite number of steps. There
are strict restrictions on the finite products that can occur for a complete
intersection R. Namely, in a presentation of R, the number of relations up
to an arbitrary degree n must be less than the number of generators up to
the same degree n. We give a name to the class of formal power series that
satisfy a slightly more sophisticated version of this restriction.

Definition 1. For an infinite product

H(z) =

∞
∏

j=1

(1 − zj)δj , δj ∈ Z,
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define ∆n(H) as the sum

∆n(H) :=
n

∑

j=1

δj , n = 1, 2, . . . .

Definition 2. A formal power series H(z) with integer coefficients that is
a finite product

H(z) =
∏

(1 − zj)δj , δj ∈ Z

and such that each sum ∆n(H) is non-positive, is said to be a power series
of CI-type.

We emphasize that these conditions do not characterize Hilbert series of
complete intersections, but that they are interesting as necessary criterions.

The characterization of CI-type series, in terms of the formal power
series, is as follows. First we give a definition. Formal power series of
CM-type are precisely those that arise as the Hilbert series of some graded
Cohen-Macaulay ring (see Lemma 4). They can be characterized in the
following way.

Definition 3. A formal power series H(z) with integer coefficients that is
a finite product

H(z) =
p(z)

∏

(1 − zj)γj
=

p(z)

q(z)
, γj ∈ N ,

where p(z) is a polynomial with non-negative integer coefficients, is said to
be a power series of CM-type.

The following theorem is proved using elementary algebraic number the-
ory and some analysis.

Theorem 1. If H(z) is of CM-type, then either H(z) is of CI-type or there
is some ∆n(H) > 0.

This theorem justifies the following algorithm that will, in a finite num-
ber of steps, either find a rational CI-type expression of the formal power
series, or recognize that the series is not of CI-type:

Algorithm 1.

Input: A formal power series H(z) with coefficients in N.
Output: The sequence Hn(z), or the statement that H(z) is not of CI-type.
Compute in each step Hn(z) and ∆n.
If ∆n > 0 then state that H(z) is not of CI-type and stop
Else print Hn(z) and let n → n + 1.
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The behaviour of the algorithm is then the following: on input a CI-type
formal power series it will after a finite number of steps produce a non-
changing output consisting of a rational function expression of the series,
while on input a non-CI-type formal power series it will in a finite number
of steps state that this series is non-CI. It might be considered as a defect of
the above algorithm that it will, on input a CI-type formal power series, just
continue to give constant output. It is possible to remedy this (assuming
that the degree of the denominator and numerator of a rational function
expression of the series is bounded), so that the algorithm will in this case
also finish after a finite number of steps . We have in Algorithm 3 constructed
a modified procedure that will in a finite number of steps, decide whether
a formal power series is of CI-type or not. This works irrespective of any
hypothesis of CM-type, and the proof is independent of the proof of the
validity of Algorithm 1, but uses the bound above in an essential way.

In practice, however, the interesting use of the algorithm seems to be to
show that algebras are not CI in a situation where bounds on the degree
of the denominator and numerator of a rational function expression of the
series are unrealistically large, as for example is the case with invariant rings,
so these modifications are less relevant.

It seems possible to show that Algorithm 1 is effective in the following
sense. Assume that there is given an a priori bound N of the degrees of p(z)
and q(z), where H(z) = p(z)/q(z). Then there is a number E = E(N), such
that the above algorithm will have stated that H(z) is not of CI-type, before
step E, if this is true, or else stated that H(z) = HE(z) is of CI-type. The
reason why one might expect this is that the asymptotic expression of ∆i

that is obtained below depends on the maximum value M(p) = max{|α−1|}
of the roots α of p(z) = 0. This value is always larger than 1, if the series
is of non CI-type (and 1 if the series is of CI-type). If it is close to 1, we
expect that the algorithm will have to work for a long time, while if it is
large it should produce a negative answer quickly. Considering the set of
non-cyclotomic polynomials of degree less than N , with integer coefficients
and constant term 1, it is easy to see that there is a constant cN such that
M(p) ≥ cN > 1. In particular cN represents the slowest convergence.

There are however other parts to the asymptotic expressions, in partic-
ular the use of the van der Monde determinant will give trouble [9], and
anyhow, E(N) will be unusably large; in fact if we take the bound seri-
ously there are other algorithms that are more suitable. For example, in
the case where the Hilbert series stems from an Artinian ring, implying
that it is a polynomial p(z), we want to check whether a polynomial of
bounded degree is cyclotomic, and that we can of course do by evaluating
the polynomial on all possible roots of unity. However this will clearly in-
volve much computation, and misses the chance to decide the issue already
by using the initial coefficients of the polyomial. For example the polyno-
mial p(z) = 1 + 3z + 2z2 + . . . + zn can never represent the Hilbert series of
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a complete intersection, since ∆2 = 1 > 0. Here we have used only the two
first coefficients, and do not need to use n-th roots of unity.

Hence we have not pursued the question of global effective bounds, and
have instead given some sample calculations on Hilbert series of invariant
rings of classical groups. Here the degrees of generators and relations grow
very quickly; but the algorithm above detects rings that are not complete
intersections quickly, at least for some small representations.

We would like to express thanks to Ralf Fröberg, and Clas Löfwall for
useful information on Hilbert series, and Mathematica, respectively.

2 Product decompositions of formal power series

We lack a reference for the following well known and easily proved result:

Proposition 1. Every formal power series

S(z) = 1 +

∞
∑

j=1

ajz
j , aj ∈ Z ,

may be written in an unique way as an infinite rational function

S(z) =

∞
∏

j=0

(1 − zj)δj , δj ∈ Z .

The rational function

Sn(z) :=

n
∏

j=0

(1 − zj)δj , δj ∈ Z , n ∈ N (1)

is uniquely determined by the condition that Sn(z) = S(z) + O(zn+1).

Proof. Use induction: Let S0(z) = 1 and assume that

Si−1(z) =

i−1
∏

j=1

(1 − zj)δj = 1 + b1z + b2z
2 + · · · + bi−1z

i−1 + · · ·

is a rational function that is identical with S(z) up to the power i − 1. Let
δi = ai − bi be the coefficient of zi in S(z) − Si−1(z), and define Si(z) =
Si−1(z) · (1 − zi)δi . Then Si(z) equals S(z) up to the power i, because

Si(z) = Si−1(z) · (1 − zi)ai−bi

=
[

1 + b1z + · · · + biz
i + O(zi+1)

][

1 + (ai − bi)z
i + O(zi+1)

]

= 1 + b1z + · · · + bi−1z
i−1 + aiz

i + O(zi+1) .

The limit S(z) = limi→∞ Si(z) gives a well defined product decomposition
of S(z).

5



If r(z) is a rational function of the type in the proposition, we will sometimes
for clarity, denote by Hn(r, z) the approximation r(z) = Hn(r, z)+O(zn+1),
given by the proposition. The following lemma is clear.

Lemma 1. If HK(z) is the product of the two formal power series H(z)
and K(z) of the type considered in the preceding proposition, then

Hn(z)Kn(z) = (HK)n(z).

2.1 A criterion on the formal power series for having H(z) =
Hn(z)

Suppose we start the process of the preceding section with a series expression
of a rational function, and that we after a while get Hn(z) = Hn+1(z) = . . . .
When can we conclude that actually H(z) = Hn(z)? Clearly it is necessary
to first have a known bound of the complexity of the involved power series
in some way. In the following result we have assumed that the degree of the
denominator and numerator of a rational function expression of the series
is bounded. We will use this bound to construct an algorithm that has the
complementary property of Algorithm 1, i. e. it will on input a formal power
series of CI-type, in a finite number of steps state that this series is of CI-
type, or else continue calculating forever. Combining this algorithm with
Algorithm 1, we will in the next section solve the CI-type decision problem
for formal power series, n. b. for a priori bounded formal power series.

Proposition 2. Assume that there is given an a priori bound N of the
degrees of p(z) and q(z), where H(z) = p(z)/q(z). In each step n of the
calculation of Hn(z) = Pn(z)/Qn(z), define M(n) := Max{degPn,degQn},
where Pn(z) and Qn(z) are relatively prime. If we, for some n on, get
the constant repetition of the same result Hn(z) = Hn+1(z) = . . . , then it
suffices to check that

Hn(z) = . . . = HM(n)+N (z),

in order to conclude that H(z) = Hn(z). Conversely, if H(z) = p(z)/q(z)
where degp ≤ N, degq ≤ N , and there is an n such that H(z) = Hn(z).
Then H(z) = Hφ−1(N)(z) where φ−1(N) = Max{M : φ(M) ≤ N}.

Proof. The first part is just calculating degrees. Since H(z) − Hn(z) =
zM(n)+N+1k(z), we have that pQn − Pnq = zM(n)+N+1k(z)qQn, and this
is, by reasons of degree, possible only if pQn − Pnq = 0. The second part
follows by noting that, by assumption, each irreducible (over the rationals)
factor p1(z) of p(z) is a cyclotomic polynomial, of degree N1 ≤ N . Hence it
belongs to a primitive M1:th root of unity, for some M1, such that (Euler’s)
φ(M1) = N1, and p1(z) = HM1

p1, z) (see the explicit formula in [13]). Doing
this for all irreducible factors, and multiplying together the result (using the
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lemma of the preceding section), gives p(z) = Hφ−1(N)(p, z), and since we
know that q−1(z) = HN (q−1, z) = Hφ−1(N)(q

−1, z), we get the result by
multiplication.

In the interval from 1 to the product of the first k prime numbers N =
p1 . . . pk, φ−1(N) ≤

∏k
i=1(1 − p−1

i )−1N , so this function will not grow very
fast compared with N (an asymptotic description is given in [10, 18.4]). But
this is unfortunately not true of the other term M(n).

For clarity let us formulate the corresponding algorithm. The algorithm
will on input a formal power series H(z) of the type that H(z) = Hn(z) for
some n, find the least such n and stop after a finite number of step with a
proof of this fact. Else it will run forever.

Algorithm 2.

Input: A formal power series H(z) = p(z)/q(z) with coefficients in N, where
the degrees of p(z) and q(z) are bounded by N .
Output: The statement that H(z) = Hn(z).
Compute in each step Hn(z) and M(n).
If there is k < n such that n = M(k) + N and Hn(z) = Hk(z) state that
H(z) = Hk(z) and stop.
Else let n → n + 1.

2.2 A formal power series algorithm that decides whether a

formal power series is of CI-type

Using a known bound N on the degrees of p(z) and q(z) for a formal power
series H(z) = p(z)/q(z), as in the preceding section enables us to easily
construct an algorithm that (in an unspecified finite number of steps) decides
whether a formal power series is of CI-type or not. Compared to Algorithm
1, this procedure will have the great advantage that it works without the
hypothesis of having a CM-type formal power series. However, it has the
drawback that a bound must be known, and in realistic applications– as for
example rings of invariants– this means having bounds on the degrees of
relations and generators, and these grow very quickly with the dimension of
the representation, cf. [14]. Algorithm 1 is thus the part that we consider
most useful.

We will now describe the procedure. We start by combining the two al-
gorithms. Once we have passed step φ−1(N), we have the additional knowl-
edge, by the preceding proposition, that each change Hn(z) 6= Hφ−1(N)(z)
implies that H(z) is not CI. So we add a check of this to the procedure,
and then we only have to continue calculation until at most step K :=
M(φ−1(N)) + N . If HK(z) = Hφ−1(N)(z), we may by the preceding propo-
sition conclude that H(z) = Hφ−1(N)(z), and if also all ∆k ≤ 0, for k ≤ K,
then H(z) is of CI-type. Hence we are done in a finite number of steps.
Again we formulate this in pseudo-code.
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Algorithm 3.

Input: A formal power series H(z) = p(z)/q(z) with coefficients in N, where
the degrees of p(z) and q(z) are bounded by N > 1.
Output: Either the statement that H(z) is of CI-type and a rational function
expression of H(z), or the statement that it is not of CI-type.
Compute in each step Hn(z), ∆n and M(n).
If ∆n > 0 or if n > φ−1(N) and Hn(z) 6= Hn−1(z)
then state that H(z) is not of CI-type and stop.
Else
If there is k < n such that n = M(k) + N and Hn(z) = Hk(z)
then state that H(z) = Hk(z) is of CI-type and stop.
Else let n → n + 1.

3 Hilbert series of complete intersections

Our main object of interest in this note is the Hilbert series of a graded ring
R =

⊕∞
d=0 Rd, defined as the generating function

H(R, z) =
∞

∑

d=0

dim(Rd) · z
d.

A standard reference is [15]. We want to give conditions on Hilbert series
which are necessarily satisfied when the ring is a complete intersection. If
the ring is factored by a non-zero divisor x of degree β, the effect on the
Hilbert series is easy to describe (cf.[6],[15]). There is the following exact
sequence of graded vectorspaces. (Note that the second map has degree β,
while the rest have degree 0.)

0 → R → R → R/xR → 0.

By adding dimensions of vectorspaces we get

dim((R/xR)d+β) + dim(Rd) = dim(Rd+β).

This translates into the following well-known relation between Hilbert series.

Lemma 2. If x is a homogeneous non-zero divisor of degree β in R, then

H(R/xR, z) = H(R, z)(1 − zβ).

Let now R = C[x1, . . . , xn] be a free polynomial ring over the field C,
with a minimal set {x1, . . . , xn}, deg(xi) = αi, 1 ≤ i ≤ n, of homogeneous
generators. The Hilbert series of R is given by

H(R, z) =

n
∏

i=1

(1 − zαi)−1
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Let furthermore P = {y1, . . . , ym}, deg(yi) = βi, 1 ≤ i ≤ m, be a set of
homogeneous elements in R that generates an ideal 〈P 〉 in R. If P is a
regular sequence in R, so that the quotient ring Q = R/〈P 〉 is a complete
intersection (CI), then the Hilbert series H(Q, z) may, by iterated use of
Lemma 2, be expressed as a rational function [15].

H(Q, z) =

∏m
i=1(1 − zβi)

∏n
i=1(1 − zαi)

. (2)

Collecting together factors of the same degree in (2) and letting

δj = |{yi; βi = j}| − |{xi; αi = j}|

and ω := max(αi, βj), i ≤ n, j ≤ m, we have

H(Q, z) =

ω
∏

j=1

(1 − zj)δj . (3)

Important for us is that, when Q is a CI, we must have ∆ω(H(Q, z)) =
∑ω

j=1 δj ≤ 0. This just says that the length of the regular sequence y1, . . . , ym

can be at most equal to the dimension n of the ring in which it is contained
[6, 15]. In fact, it is possible to squeeze out more information on the be-
haviour of Hilbert series of complete intersections:

Proposition 3. Let Q be a CI, with Hilbert series H(Q, z) and assume that

H(Q, z) =
ω

∏

j=1

(1 − zj)δj .

Then each element in the sequence ∆k(H(Q, z)) =
∑k

j=1 δj , k = 1, 2, . . . , ω
is non-positive.

For the proof we need the following easy lemma:

Lemma 3. Let R = C[x1, . . . , xn] be a free polynomial ring over the field C,
with a minimal set {x1, . . . , xn}, deg(xi) = αi, 1 ≤ i ≤ n, of homogeneous
generators. Let P = {y1, . . . , ym}, deg(yi) = βi, 1 ≤ i ≤ m, be a set of
homogeneous elements in the subring Rl = C[xi; deg(xi) ≤ l] ⊂ R. Then if
P is a regular sequence in R, it is also a regular sequence of the subring Rl.

Proof. This follows from the fact that the inclusion Rl ⊂ R is faithfully
flat(with respect to the grading).

Proof of the proposition Let Qk = Rk/〈yi|deg(yi) ≤ k〉, which by the lemma
is a CI. Then

H(Qk, z) =

∏

βj≤k(1 − zβj )
∏

αj≤k(1 − zαj )
=

k
∏

j=1

(1 − zj)δj ,
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and hence H(Qk, z) equals Hk(Q, z) (defined in Proposition 1). Since Qk is
a CI, we have that ∆k(H(Q, z)) = ∆k(H(Qk, z)) =

∑k
j=1 δj must be non-

positive.

This motivates the definition, given in the introduction, that a formal power
series of the form (3) that satisfies the necessary condition of Proposition 3
is said to be a series of CI-type.

Note that solely an equality like (3), where δj ∈ Z, ω ∈ N, does not imply
that Q is a CI, as is seen in the following example. So it is impossible to use
the Hilbert series to decide whether the ring is a CI. (This is well known,
e.g. it has been analyzed what rings have the Hilbert series 1/(1 − z) [2].)
We give an example below, cf. also [15, Example 3.8], which is an example
which is a ring of invariants, hence integral.

Example: The polynomial ring C[x] (generator in degree one) has the
Hilbert series H(C[x], z) = 1/(1 − z). Consider the rings A = C[x]/〈x2〉
and B = C[x2, x3] ⊂ C[x]. Then B equals C[x]i, i 6= 1, i.e. it contains all
homogeneous elements in C[x] except those of degree 1, and thus has the
Hilbert series H(B, z) = 1 + z2 + z3 + z4 + · · · . The ring A obviously has
the Hilbert series H(A, z) = 1 + z. The example is the ring M ⊂ A ⊕ B
where we define M0 := C(1, 1) and Mi := Ai ⊕ Bi, i > 0. Now M has the
Hilbert series H(M, z) = 1 + z + z2 + · · · = 1/(1 − z) = H(C[x], z), but it is
easy to see that M is not a CI, since it has too many relations. In fact it is
C[x, y, z]/(x2, xy, xz, y3 − z2). Hence it is not possible even to see from the
Hilbert series whether a ring has syzygies or not.

4 CM-type formal power series

Finally, we note that any polynomial p(z) = 1 + a1z + . . . + anzn will occur
as the Hilbert series of an Artinian ring. Take a graded vector space V =
⊕n

d=1Vd, such that dim(Vd) = ad, d ≥ 1 , and consider the ring R = C ⊕ V ,
with multiplication given by V V = 0. Then HR(z) = p(z). By taking
the free polynomial algebra S = R[x], where degx = β we get the Hilbert
series p(z)/(1 − zβ). By adjoining more free variables it is clear that any
Hilbert series of CM-type occurs, as the Hilbert series of some graded Cohen-
Macaulay ring. Conversely, in a graded CM-ring, there is an ideal I, which
is generated by a homogeneous regular sequence, such that S/I is a finite-
dimensional vector space. By Lemma 2, this means that the Hilbert series
of S/I is of CM-type. We state this as a proposition.

Proposition 4. The set of CM-type formal power series is precisely the set
of Hilbert series of graded Cohen-Macaulay rings.

It should be noted that already Macaulay characterized Cohen-Macaulay
rings, through their Hilbert series, in the much less trivial case of standard
algebras[15].
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5 The Main Theorem

The following is a more precise version of the theorem given in the introduc-
tion. It has as a corollary that if H(z) is a Hilbert series of CM-type, and if
H(z) is not of CI-type, then this will be detected by Algorithm 1 described
in the introduction in a finite number of steps.

Theorem 2. Let H(z) = 1 + · · · + anzn + . . . , ai ∈ N. Assume that H(z)
is of CM-type. According to proposition 1, H(z) may be written as

H(z) =

∞
∏

j=1

(1 − zj)δj ,

where δj ∈ Z. If the number of the δj’s such that δj 6= 0 is infinite, then

lim sup
m→∞

m
∑

j=1

δj = +∞ ,

lim inf
m→∞

m
∑

j=1

δj = −∞ .

The proof is contained in a series of lemmas and occupies the rest of
this section. Start by noting that we may restrict ourselves to the study of
polynomials with integer coefficients. This is seen as follows: Since H(z) is
of CM-type, then, by definition 3,

H(z) =

∞
∏

j=1

(1 − zj)δj =
p(z)

∏r
j=1(1 − zj)γj

,

where p(z) is a polynomial with non-negative integer coefficients. Hence

p(z) = H(z) ·
r

∏

j=1

(1 − zj)γj

=

∞
∏

j=1

(1 − zj)δj ·

r
∏

j=1

(1 − zj)γj ,

which implies that ∆k(p(z)) and ∆k(H(z)) differs only by a constant if k is
large enough, and thus we have

lim sup
k→∞

∆k(H(z)) = +∞ ⇔ lim sup
k→∞

∆k(p(z)) = +∞,

lim inf
k→∞

∆k(H(z)) = −∞ ⇔ lim inf
k→∞

∆k(p(z)) = −∞.

This means that we may study the polynomial p(z) instead of H(z).
First we make some observations on the polynomial p(z). Let α1, . . . , αn

be the roots of p(z) = 0, let α̂i := 1/αi and let M :=max|α̂i|, i = 1, 2, . . . , n.

11



Lemma 4. A polynomial h with roots βj, j = 1, 2, . . . , n, may be factored
as

h(z) =
n

∏

i=1

(1 − zi)δi , δi ∈ Z if and only if |βi| = 1, i = 1, . . . , n.

Proof. (⇒) is trivial. For the converse, assume that β is one of the roots.
The minimal polynomial q(z) (with rational coefficients) of β then has all
its roots among the βi’s, and hence all its roots have absolute value 1. The
celebrated theorem on units of Dirichlet then implies that β must be a root
of 1 − zk = 0 for some k ∈ N and that hence q(z) divides 1 − zk [4, p.105].
This means that q(z) is a cyclotomic polynomial and it is wellknown [4] that
this implies that q(z) may be written as a quotient of products of factors of
the type 1 − zi. Hence h(z) is a product of the desired form.

Lemma 5. If p(z) =
∏n

i=1(1 − α̂iz) does not equal a finite product

∏

(1 − zj)δj , δj ∈ Z,

then the maximum M = max|α̂i| > 1.

Proof. Consider

p(z) =

n
∏

i=1

(1 − α̂iz) = 1 + a1z + · · · + anzn ⇒ an = (−1)n
n

∏

i=1

α̂i.

If |α̂i| ≤ 1 for all i, then |an| =
∏

|α̂i| ≤ 1. Since an is a non-zero integer, we
have

∏

|α̂i| = 1 and hence all |α̂i| = 1. This is a contradiction by Lemma
4, so we must have |α̂i| > 1 for some i.

Lemma 6. If αi ∈ Z, then αj < 0.

Proof. This is clear since the coefficients of

p(z) = 1 + a1z + · · · + anzn

are non-negative.

We shall now find an expression of ∆k(p(z)) in terms of the αi’s. We
have

p(z) =

∞
∏

j=1

(1 − zj)δj =

n
∏

i=1

(1 − α̂iz).

12



The logarithmic derivatives of these two expressions are

d

dz

[

log

∞
∏

j=1

(1 − zj)δj

]

=

∞
∑

j=1

−jδjz
j−1

1 − zj
and

d

dz

[

log
n

∏

i=1

(1 − α̂iz)

]

=
n

∑

i=1

−α̂i

1 − α̂iz

⇒
∞

∑

j=1

jδjz
j

1 − zj
=

n
∑

i=1

α̂iz

1 − α̂iz
.

When both sides of the last equality are expanded in power series, we get
∞

∑

j=1

jδj(z
j + z2j + z3j + · · · ) =

∞
∑

k=1

( n
∑

i=1

α̂k
i

)

zk

⇔

∑

j|k

jδj =

n
∑

i=1

α̂k
i .

Apply Moebius inversion to get the δj ’s [11, p. 20]: Let qk :=
∑n

i=1 α̂k
i .

Then

kδk =
∑

d|k

µ(d)qk/d

and so
m

∑

k=1

δk =

m
∑

k=1

(

∑

d|k

µ(d)qk/d

k

)

=

m
∑

k=1

qk

k
+ Rm,

where

Rm =

m
∑

k=1

(

∑

d|k
d6=1

µ(d)qk/d

k

)

.

The remainder Rm is easy to estimate. Recall that M = max|α̂i|, note that
k/d ≤ m/2 for every k/d in Rm, and that the number of divisors d such
that d|k is less than or equal to k. Then

|qk| ≤

n
∑

i=1

∣

∣α̂i

∣

∣

k
≤ nMk

⇒

|Rm| ≤
m

∑

k=1

(

∑

d|k
d6=1

|qk/d|

k

)

≤
m

∑

k=1

knMm/2

k
≤ nmMm/2.
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Thus the following result has been proved:

Proposition 5. Assume that

p(z) =
∞
∏

k=1

(1 − zk)δk =
n

∏

i=1

(

1 − α̂iz
)

,

is a polynomial with non-negative integer coefficients. Then

m
∑

k=1

δk =
n

∑

i=1

m
∑

k=1

α̂k
i

k
+ Rm, (4)

where |Rm| ≤ nmMm/2.

Next we will estimate the magnitude of the dominating term in (4).
Accepting a helpful hint by Mathematica, we have

m
∑

k=1

zk

k
=

−zm+1

m + 1
2F1(1, 1 + m, 2 + m, z) − log(1 − z), (5)

where z ∈ C and 2F1 is the hypergeometric function that is defined by
analytic continuation from the series

2F1(1, 1 + m, 2 + m, z) =
∞
∑

n=0

m + 1

n + m + 1
zn,

to the complex plane, cut along the real interval [1,∞[.(More seriously,
the identity is clear, by considering power series expansions of the involved
functions for z = 0 and then using analytic continuation.) The log function
is cut along the real negative axis, and is bounded for z = α̂i since the roots
of the polynomial are non-positive (Lemma 6). We did not find the precise
result we needed, and so have done some elementary calculations with the
hypergeometric function.

Lemma 7. Let z ∈ C\[1,∞[. Then

lim
m→∞

2F1(1, 1 + m, 2 + m, z) =
1

1 − z
.

Proof. We have the identities [1, p. 68]

2F1(1 + m, 1, 2 + m, z) =
1

1 − z
2F1(1, 1, 2 + m,

z

z − 1
)

and [1, p. 65]

2F1(1, 1, 2 + m, z) = (m + 1)

∫ 1

0

(1 − t)m

1 − zt
dt.

14



Thus we need to prove

lim
m→∞

(m + 1)

∫ 1

0

(1 − t)m

1 − zt
dt = 1.

We have

(m + 1)

∫ 1

0

(1 − t)m

1 − zt
dt − 1

= (m + 1)

∫ 1

0

(1 − t)m

1 − zt
− (1 − t)mdt

= (m + 1)

∫ 1

0
(1 − t)m zt

zt − 1
dt

In the last integral, the function z/(zt − 1) will be bounded for a fixed z
outside the real interval [1,∞[ and t ∈ [0, 1], so that |zt/(zt − 1)| ≤ rt for
some r ∈ R

+ and t ∈ [0, 1]. Thus

∣

∣

∣

∣

(m + 1)

∫ 1

0
(1 − t)m zt

zt − 1
dt

∣

∣

∣

∣

≤ (m + 1)

∫ 1

0
rt(1 − t)mdt =

r

m + 2
.

Since r/(m + 2) → 0 as m → ∞, the lemma is proved.

By lemma 7 it is clear that, for any ε > 0, it is possible to choose some
m0 such that m > m0 implies

2F1(1 + m, 1, 2 + m, α̂i) =
1

1 − α̂i
+ ε(α̂i,m),

where ε(α̂i,m) depends on α̂i and m, and |ε(α̂i,m)| < ε. Hence lemma 7
together with (4) and (5) implies

Lemma 8. For any ε > 0, there exists m0 ∈ N such that m > m0 implies

∆m(p) =

m
∑

k=1

δk =

n
∑

i=1

m
∑

k=1

α̂k
i

k
+ Rm =

n
∑

i=1

−α̂m+1
i

(m + 1)

(

1

1 − α̂i
+ ε(α̂i,m)

)

+ Rm + c,

where
∑n

i=1 |ε(α̂i,m)| < ε, and the constant c = −
∑n

i=1 log(1 − α̂i) only
denpends on the roots of the polynomial p.

We can now state a final result on the asymptotic behaviour of ∆k(p).
Simply multiply both sides of the equation in lemma 8 by (m + 1)/M m+1

and take the limit, to obtain
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Proposition 6. For any ε > 0, there exists m0 ∈ N such that m > m0

implies
∣

∣

∣

∣

∣

m + 1

Mm+1
∆m(p) −

1

Mm+1

n
∑

i=1

−α̂m+1
i

1 − α̂i

∣

∣

∣

∣

∣

< ε

Proof. By lemma 8
∣

∣

∣

∣

∣

m + 1

Mm+1
∆m(p) −

1

Mm+1

n
∑

i=1

−α̂m+1
i

1 − α̂i

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

Mm+1

n
∑

i=1

−α̂m+1
i · ε(α̂i,m) +

m + 1

Mm+1
(Rm + c)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

Mm+1

n
∑

i=1

α̂m+1
i · ε(α̂i,m)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

m + 1

Mm+1
(Rm + c)

∣

∣

∣

∣

Consider the two terms in the last expression. We have
∣

∣

∣

∣

∣

1

Mm+1

n
∑

i=1

α̂m+1
i · ε(α̂i,m)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

Mm+1

n
∑

i=1

Mm+1 · ε(α̂i,m)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=1

ε(α̂i,m)

∣

∣

∣

∣

∣

which, by lemma 8, can be made arbitrarily small. The second term, by
proposition 5,

∣

∣

∣

∣

m + 1

Mm+1
(Rm + c)

∣

∣

∣

∣

≤

∣

∣

∣

∣

m + 1

Mm+1
· nmMm/2

∣

∣

∣

∣

+

∣

∣

∣

∣

m + 1

Mm+1
· c

∣

∣

∣

∣

obviously tends to zero as m becomes large. Thus the proposition is proved.

Now the following lemma will finish the proof of Theorem 2.

Lemma 9. There exists a subsequence {mj} in N such that

lim
mj→∞

(

1

Mmj

n
∑

i=1

−α̂i
mj

(1 − α̂i)

)

=

{

x1 > 0 if j is even
x2 < 0 if j is odd

Proof. It is of course just a question of finding two subsequences that con-
verge to strictly positive and negative real numbers respectively. (Note that
the left hand expression in the lemma above is a rational number, since it
is invariant under each Galois-transformation of the polynomial p.)

The polynomial

f(z) := znp(1/z) = zn + a1z
n−1 + · · · + an−1z + an,
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has α̂i as roots. Hence

α̂n
i = −(a1α̂

n−1
i + · · · + an−1α̂i + an)

⇔

α̂m+n
i

1 − α̂i
= −

(

a1
α̂m+n−1

i

1 − α̂i
+ · · · an−1

α̂m+1
i

1 − α̂i
+ an

α̂m
i

1 − α̂i

)

for all m ∈ N. Let

fm =

n
∑

i=1

α̂m
i

1 − α̂i
.

Then we have the nice recursion formula

fm+n

Mm+n
= −

(

a1

M

fm+n−1

Mm+n−1
+ · · · +

an−1

Mn−1

fm+1

Mm+1
+

an

Mn

fm

Mm

)

, (6)

By the hypothesis that p(z) is of CM-type we know that all coefficients
in the formula are non-negative real numbers. Note that fm

Mm is uniformly
bounded for all m, and that hence the sequence

a(m) :=

(

fm+n−1

Mm+n−1
,

fm+n−2

Mm+n−2
, . . . ,

fm

Mm

)

, m = 1, 2, . . .

lies in a compact subset of R
n, and so must have a convergent subsequence

a(mk) that converges to some point (x1, . . . , xn) as m → ∞. There are
three possibilities:

(i) xi > 0 for some i and xj < 0 for some j.
(ii) xi ≥ 0 for all i and some xi > 0, or xi ≤ 0 for all i and some xi < 0.
(iii) The whole sequence converges to (0, . . . , 0).

If (i) is the case, then fmk+n−i/M
mk+n−i and fmk+n−j/M

mk+n−j fulfill the
requirements.

If (ii), consider the equation (6). If all xi ≥ 0, with strict inequality for some
i, then the recursion formula (6) for fmk+n/Mmk+n shows that it converges
to a strictly negative real number, since the coefficients in the recursion for-
mula are negative. Hence there are subsequences whose real values converge
to both strictly positive and negative numbers. The argument in the case
when the limit point has coordinates with negative real value is entirely
similar.

The final case (iii) will be proven to not occur. First we have to take account
of possible multiple roots of f . Therefore, let α̂1, . . . , α̂r be the inverses of
a set of distinct representatives of all the roots. Let kj be the multiplicity
of αj . Then

fm

Mm
=

r
∑

j=1

1

1 − α̂j
·
kjα̂

m
j

Mm
and by assumption lim

m→∞

fm

Mm
= 0.
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Consider the matrix

F :=













1
1−α̂1

1
1−α̂2

· · · 1
1−α̂r

α̂1

(1−α̂1)M
α̂2

(1−α̂2)M · · · α̂r

(1−α̂3)M
...

...
. . .

...
α̂n−1

1

(1−α̂1)Mn−1

α̂n−1

2

(1−α̂2)Mn−1 · · · α̂n−1
r

(1−α̂r)Mn−1













This matrix defines a map F : C
r → C

n, that is continuous and injective
since the first r rows of the matrix form a Vandermonde matrix. Hence
there is a right inverse G : C

n → C
r such that G ◦ F = id. Then

lim
m→∞

F

(

k1α̂
m
1

Mm
,
k2α̂

m
2

Mm
, . . . ,

krα̂
m
r

Mm

)

= lim
m→∞

(
fm

Mm
, . . . ,

fm+n−1

Mm+n−1
) = (0, . . . , 0)

⇒

lim
m→∞

G ◦ F

(

k1α̂
m
1

Mm
,
k2α̂

m
2

Mm
, . . . ,

krα̂
m
r

Mm

)

=

lim
m→∞

(

k1α̂
m
1

Mm
,
k2α̂

m
2

Mm
, . . . ,

krα̂
m
r

Mm

)

= (0, . . . , 0).

But this is a contradiction; since M = max|α̂i|, we must have |kiα̂
m
i /Mm| =

ki 6= 0 for some i and all m. Hence case (iii) cannot occur and the proof of
the lemma is finished.

Proof of Theorem 2: By the preceding lemma 9 and proposition 6, limes
superior of (m + 1)M−m∆m(p) is strictly positive and limes inferior strictly
negative. This clearly implies that limes superior and limes inferior of ∆m(p)
is +∞ and −∞, respectively, since M > 1. This is the conclusion of the
theorem.

6 Some calculations with invariant rings

The algorithm will now be applied to the Hilbert series of certain invariant
rings. The truncated Hilbert series have been calculated by the algorithms
in [5, section 4.6] and [17].

Let SdC
2 denote the vector space of homogeneous polynomials of degree

d in two variables. Let G := SL2(C) and let C[SdC
2]G denote the invariant

ring under the action of G.
We get the following by computing the Hilbert series up to a hundred

terms (in Mathematica). As an example the Hilbert series of C[S7C
2]G has

H30(C[S7C
2]G, z)

=
(1 − z20)(1 − z24)10(1 − z26)25(1 − z28)20

(1 − z4)(1 − z8)3(1 − z12)6(1 − z14)4(1 − z16)2(1 − z18)9(1 − z22)
.
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Here ∆26 = 10, so this is clearly not a CI.

In the table below are stated the results of computations for d ≤ 7.

H100(C[S2C
2]G, z) =

1

1 − z2

H100(C[S3C
2]G, z) =

1

1 − z4

H100(C[S4C
2]G, z) =

1

(1 − z2)(1 − z3)

H100(C[S5C
2]G, z) =

1 − z36

(1 − z4)(1 − z8)(1 − z12)(1 − z18)

H100(C[S6C
2]G, z) =

1 − z30

(1 − z2)(1 − z4)(1 − z6)(1 − z10)(1 − z15)

H100(C[S7C
2]G, z) ∆26 = 10

The results on the rings that are not CI are in precise accord with Popov
[14], who proves that C[SdC

2]G is a CI iff d ≤ 6. The given Hilbert series
are those tabled e. g. in [5].

Nakajima [12] states complete results for representations of simple groups.
The case of representations of semi-simple groups is still not clarified but
it is known (but apparently not published) that only a finite number of
representations of this kind have invariant rings that are CI.

We calculate some of the invariant rings of K := SL2(C) × SL2(C).

H100(C[S1C
2 ⊗ S1C

2]K , z) =
1

(1 − z2)

H100(C[S2C
2 ⊗ S1C

2]K , z) =
1

(1 − z4)

H100(C[S3C
2 ⊗ S1C

2]K , z) =
1

(1 − z2)(1 − z6)

H100(C[S4C
2 ⊗ S1C

2]K , z) =
1 − z36

(1 − z4)2(1 − z8)(1 − z12)(1 − z18)

H100(C[S5C
2 ⊗ S1C

2]K , z) ∆72 = 8

H100(C[S6C
2 ⊗ S1C

2]K , z) ∆24 = 109

H100(C[S2C
2 ⊗ S2C

2]K , z) =
1

(1 − z2)(1 − z3)(1 − z4)

H100(C[S3C
2 ⊗ S2C

2]K , z) ∆26 = 1

H100(C[S4C
2 ⊗ S2C

2]K , z) ∆21 = 64

These results are also displayed in the diagram below, where a plus sign
indicates a probable CI and a minus sign indicates a non-CI.
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-

6

S1

S2

S1 S2 S3 S4 S5 S6

+ + + + − −

+ − − −

7 Appendix

The following is an unsophisticated Mathematica program that implements
the algorithm. We start by determining a value of r such that all compu-
tations are made mod zr+1. Furthermore, for simplicity, we determine the
number of iterations it =; we will use in the loop of the program(more clever
would have been to build this into the program). This should be less than
r.

Input is a (truncated) formal power series j, mod zr+1 Output is a ra-
tional function n =

∏

(1 − tj)δj , such that n = j(modzr+1) and the graph
DDelta of the function ∆k. The formal power series m is the series expan-
sion of n and is introduced, since Mathematica calculates faster with power
series, than with rational functions.
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r =;

it =;

m = 1;

n = 1;

Delta = 0;

DDelta = {};

Do[BB = (j −m)[[3]][[1]],

DD = Part[j −m,−3]/Last[j],

m = Series[m ∗ (1− tDD)ˆ(−BB), {t,0, r}],

n = n ∗ (1 − tDD)ˆ(−BB),

Delta = Delta−BB,

DDelta = Append[DDelta, {DD,Delta}], {it}]

n

DDelta
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