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Vincenzo Micale

Research Reports in Mathematics

Number 3, 2003

Department of Mathematics

Stockholm University



Electronic versions of this document are available at
http://www.math.su.se/reports/2003/3

Date of publication: April 14, 2003
2000 Mathematics Subject Classification: Primary 13D02, Secondary 13D07.
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Abstract

Let A be a graded k-algebra and M be a finitely generated A-module.
The Poincaré series P A

M (z) is the formal power series
�

i
dimk TorA

i (k, M)zi.
We study the Poincaré series of Derkk[S], the module of derivations of a
numerical semigroup ring k[S], and we relate it to the Poincaré series of k

over k[S] and to the type of S. We then use this in order to determine the
Poincaré series of Derkk[S] or, at least, its rationality, for some classes of

example. We finally give an example of non-rational P
k[S]

Derkk[S]
(z).

MSC: 13D02; 13D07

1 Introduction

If A is a commutative k-algebra, with k a field, the module of derivations,
Derk(A) ⊆ homk(A, A) is the set {ρ ∈ homk(A, A) | ρ(ab) = aρ(b) + ρ(a)b
for every a, b ∈ A}. This set has a natural A-module structure by multiplication
from left by elements in A.

Let A be a graded k-algebra and M be a finitely generated A-module. The
Poincaré series P A

M (z) is the formal power series
∑

i dimk TorA
i (k, M)zi.

A graded k-algebra, A = ⊕i≥0Ai, is called a Koszul algebra if the minimal
graded A-resolution of k is linear, i.e., if (TorA

i (k, k))j = 0 if i 6= j. If A is
a Koszul algebra, then P A

k (z) = 1/HA(−z), where HA(z) is the Hilbert series
∑

i≥0 dimk Aiz
i of A (cf. [12]).

1.1 Description of the content

We now make a closer description of the paper. In Section 2 we give some
definitions and fundamentals about numerical semigroups S and we introduce
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k[S], the numerical semigroup ring. Furthermore we give a minimal set of

generators of Der
k[S]
k as a left k[S]-module (cf. Proposition 2.1) which represents

the starting point of our paper.

In Section 3 we find the minimal free resolution of Der
k[S]
k for the class of

two-generated numerical semigroups S.
In Section 4 we relate the Poincaré series of Derkk[S] to the Poincaré series

of k over k[S] and to the type of S (cf. Theorem 4.4).
In Section 5, we use Theorem 4.4 in order to determine (or just proving the

rationality of) the Poincaré series of Derkk[S] for some classes of example. We

finally give an example of non-rational P
k[S]
Derkk[S](z).

2 Preliminaries

Our object of study in this paper is the Poincaré series of the module of deriva-
tions on affine monomial curves, that is on numerical semigroup rings. Therefore
we start with some definitions and fundamentals of numerical semigroups. For
a general reference to properties of numerical semigroups and semigroup rings,
see [4].

Let N be the set of natural numbers (including zero). A subset S ⊆ N

that contains zero and is closed under addition is called a numerical semigroup.
Every non-zero numerical semigroup is isomorphic to a numerical semigroup
with finite complement to N. Given such a numerical semigroup we always find a
unique minimal finite set of generators {g1, g2, . . . , gm} with g1 < · · · < gm. The
numbers g1 and m are called the multiplicity and the embedding dimension of S
respectively. We will use the notation S = 〈g1, g2, . . . , gm〉 = {n1g1+· · ·+nmgm |
n1, . . . , nm ∈ N}. Now the semigroup ring associated to S over a field k is
k[S] = k[tg1 , . . . , tgm ] ⊆ k[t].

One of the most important invariants of a numerical semigroup S is the
Frobenius number g(S), that is the max{n ∈ Z | n /∈ S}.

A numerical semigroup is called symmetric if for each n ∈ Z, we have n ∈ S
or g(S) − n ∈ S.

The type of S is |T (S)| where T (S) = {n ∈ Z \ S | n + s ∈ S for every s ∈
S \{0}} (of course g(S) ∈ T (S) for every S). The type of S equals the CM-type
of k[S]. An equivalent condition for a numerical semigroup to be symmetric is
that T (S) = {g(S)}, hence a numerical semigroup is symmetric if and only if
its type is one. Thus k[S] is Gorenstein if and only if S is symmetric.

In general there is no formula for the Frobenius number in terms of the
generators. However if the semigroup is 2-generated, say S = 〈g1, g2〉, then the
Frobenius number is g(S) = g1g2 − g1 − g2 and S is symmetric.

Throughout the rest of the paper we always assume that S 6= N and that
the characteristic of the field k is zero.

The starting point of our paper is the following proposition due to Eriksson
in [10] and independently to Eriksen, see [9].
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Proposition 2.1. Let S be a numerical semigroup with S 6= N and T (S) =
{a1, a2, . . . , ah}. Then the module of derivations of the numerical semigroup
ring k[S], Derkk[S], is the left k[S]-module minimally generated by

{t∂} ∪ {tai+1∂, i = 1, . . . , h}

where ∂ = ∂
∂t . In particular the number of minimal generators are |T (S)| + 1.

3 The 2-generated case

The aim of this paper is to calculate the Poincaré series of Derkk[S] for some
classes of examples. To this purpose we will use the Theorem 4.4 below. For the
class of 2-generated numerical semigroups S we don’t need to use that theorem
as we are able to give the minimal free resolution of Derkk[S].

Proposition 3.1. Let S = 〈a, b〉 be a 2-generated numerical semigroup and let
A = k[S]. Then the left A-module M = DerkA has the following minimal free
resolution:

· · ·
φ3
−→ A2 φ2

−→ A2 φ1
−→ A2 φ1

−→ A2 φ0
−→ M

where

φ0 =
(

t∂ tab−a−b+1∂
)

, φ2q+1 =

(

t(a−1)b ta(b−1)

−ta −tb

)

,

φ2r =

(

tb ta(b−1)

−ta −t(a−1)b

)

,

with q ≥ 0 and r ≥ 1. In particular the Poincaré series P A
M (z) = 2

1−z .

Proof. We know by Proposition 2.1 that M is a left A-module minimally
generated by {t∂, tab−a−b∂}.

Let φ0 : A2 −→ M with φ0(e1) = t∂ and φ0(e2) = tab−a−b∂ and {e1, e2}
the canonical base for A2. In order to determine the kernel of φ0, we look for
elements f(t) and g(t) in A such that f(t)e1 + g(t)e2 = 0. Since A is graded,
kerφ0 is also graded. Furthermore kerφ0 is 1-dimensional in each degree, hence
a generator of kerφ0 must be of the form (ts+ab−a−b,−ts) with s ∈ S. The
two smallest values of s in order to obtain two independent generators are
s = a and s = b which give ((t(a−1)b,−ta), (ta(b−1,−tb)) ⊆ kerφ0. Furthermore,
these two elements generate the kernel since a and b generate S. We also get

φ1 =

(

t(a−1)b ta(b−1)

−ta −tb

)

.

Now a generator for kerφ1 must be of the form (ts+b−a,−ts). Let us consider
max{l | lb /∈ aN}. Since gcd(a, b) = 1, then this number is a − 1. Now the two
smallest values of s in order to obtain two independent generators are s = a and
s = (a − 1)b. Therefore ((tb,−ta), (ta(b−1),−t(a−1)b)) ⊆ kerφ1. These elements
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generate kerφ1. Indeed, if (ts+b−a,−ts) ∈ kerφ1, then s = a + s′ for some

s′ ∈ S, or s = lb with l ≥ a − 1. We also get φ2 =

(

tb ta(b−1)

−ta −t(a−1)b

)

.

Let us consider kerφ2. We look for generators of the form (ts+ab−a−b,−ts).
From s = a and s = b, we get, as above, kerφ2 = ((t(a−1)b,−ta), (ta(b−1),−tb))

and φ3 =

(

t(a−1)b ta(b−1)

−ta −tb

)

.

Using induction we have φ2r =

(

tb tab−a

−ta −t(a−1)b

)

with r ≥ 1 and

φ2q+1 =

(

t(a−1)b tab−a

−ta −tb

)

for every q ≥ 0.

By construction the built complex is a free resolution of M . Furthermore,
since the entries in the matrixes are in the graded maximal ideal of A, the
resolution is minimal.

4 The main theorem

In this section we will prove a theorem which allows us to determine the Poincaré
series of Derkk[S] over k[S], whenever we know the Poincaré series of k over k[S]
and the type of S.

Lemma 4.1. Let S = 〈g1, g2, . . . , gm〉 be a numerical semigroup with T (S) =

{a1, a2, . . . , ah} and let A = k[S] and Ā = k[S]
(tg1 )k[S] = k[t̄g2 , . . . , t̄gm ]. Then

SocĀ = {t̄a1+g1 , . . . , t̄ah+g1}.

Proof. Let t̄s ∈ SocĀ with t̄s 6= 0̄ (hence s /∈ g1 + S). By the definition of
socle, t̄st̄gi = 0̄ for every i = 2, . . . , m and this implies that s + gi ∈ g1 + S for
every i = 1, . . . , m. Since s ∈ S, s − g1 /∈ S and (s − g1) + gi ∈ S for every
i = 1, . . . , m, then s − g1 ∈ T (S). Hence s − g1 = aj for some j = 1, . . . , h and
SocĀ ⊆ {t̄a1+g1 , . . . , t̄ah+g1}.

Let us consider now t̄ai+g1 with i ∈ {1, . . . , h}. Since ai ∈ T (S), we get
ai + gj ∈ S for every j = 1, . . . , m and ai + gj + g1 ∈ g1 + S. So t̄ai+g1 t̄gj = 0̄
for every j = 1, . . . , m, that is t̄ai+g1 ∈ SocĀ.

In [20], Levin introduces the idea of a large homomorphism of graded (or
local) rings as a dual notion to small homomorphism of graded rings introduced
in [1]. Namely if A and B are graded rings and f : A −→ B is a graded homo-
morphism which is surjective, then f is large if f∗ : TorA(k, k) −→ TorB(k, k)
is surjective.

If S, A and Ā are as in Lemma 4.1, then, as a particular case of [20, Theorem
2.1], we get that the homomorphism A −→ Ā = A

(tg1 )A is large.

Hence using [20, Theorem 1.1], we have the following lemma.

Lemma 4.2. Let S, A, and Ā be as in Lemma 4.1 and let M be a finitely
generated left A-module such that (tg1)M = 0. Then P A

M (z) = P Ā
M (z)P A

Ā
(z).
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Lemma 4.3. Let S be a numerical semigroup with T (S) = {a1, a2, . . . , ah}.
Then Derkk[S] is isomorphic as a left k[S]-module to the ideal (tg1 , ta1+g1 , . . . ,
tah+g1) in k[S].

Proof. By Proposition 2.1, Derkk[S] is minimally generated as left k[S]-
module by (t∂, ta1+1∂, . . . , tah+1∂). Since, in our context, ∂ is just a symbol, we
can delete it, and since ti ∈ S if i � 0, we have

(t, ta1+1, . . . , tah+1) w tL−1(t, ta1+1, . . . , tah+1) =

= (tL, ta1+L, . . . , tah+L) = tL−g1(tg1 , ta1+g1 , . . . , tah+g1) w

w (tg1 , ta1+g1 , . . . , tah+g1).

Theorem 4.4. Let S = 〈g1, g2, . . . , gm〉 be a numerical semigroup with T (S) =
{a1, a2, . . . , ah} and let A = k[S]. Then P A

DerkA(z) = 1 + hP A
k (z). In particular

P A
DerkA(z) is rational if and only if P A

k (z) is rational.

Proof. By Lemma 4.3, we can replace DerkA with I = (tg1 , ta1+g1 , . . . , tah+g1)
in A and use the equality P A

DerkA(z) = P A
I (z). We finally note that, by Lemma

4.1, Ī , the image of I in Ā = k[S]
(tg1 )k[S] , is the Socle of Ā and that P A

A/I(z) =

1 + zP A
I (z).

We note that A
I and Ā

Ī
are isomorphic as Ā-modules, hence, using Lemma

4.2 with M = A/I , we have the following

P A
I (z) =

P A
A/I(z) − 1

z
=

(1 + z)P Ā
Ā/Ī

(z) − 1

z
=

(1 + z)(1 + zP Ā
Ī

(z)) − 1

z
.

We note that the kernel of the homomorphism ϕ : Āh −→ Ī = SocĀ, with
ϕ(ei) = t̄ai+g1 and {e1, . . . , eh} the canonical base for Āh, is m̄

⊕

· · ·
⊕

m̄ (with
h summands) where m̄ is the graded maximal ideal of Ā. Since the minimal
resolution of a direct sum is the sum of the minimal resolutions of the summands,
we have

(1 + z)(1 + zP Ā
Ī

(z)) − 1

z
=

(1 + z)(1 + z(h + zP Ā
m̄ � ··· � m̄

(z))) − 1

z
=

=
(1 + z)(1 + z(h + hzP Ā

m̄
(z))) − 1

z
=

(1 + z)(1 + z(h + h(P Ā
k (z) − 1))) − 1

z
.

Now we can use e.g. Lemma 4.2 to get P Ā
k (z) =

P A
k (z)
1+z . Thus we get

(1 + z)(1 + z(h + h(P Ā
k (z) − 1))) − 1

z
=

(1 + z)(1 + z(h + h(
P A

k (z)
1+z − 1))) − 1

z

=
(1 + z)(1 +

zhP A
k (z)

1+z ) − 1

z
= 1 + hP A

k (z).
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5 Examples

In this section we will use Theorem 4.4 in order to determine the Poincaré series
of Derkk[S] for some classes of examples.

5.1 The 3-generated case

Let us start with considering the class of rings A = k[S] where S = 〈g1, g2, g3〉
is a 3-generated numerical semigroup. Then Ā = A

(tg1 )A has embedding di-

mension 2, and Ā is either a complete intersection or a Golod ring (c.f. [22,
Satz 9]). If Ā is a complete intersection, we have P Ā

k (z) = 1/(1 − z)2 (cf. [23,

Theorem 6]), so P A
DerkA(z) = 2−z+z2

(1−z)2 since the type is one. Otherwise Ā =

k[x1, x2]/(f1, f2, f3) (c.f. [17, Theorem 3.7]), which gives P Ā
k (z) = (1+z)2

1−3z2−2z3

(cf. [22]), so P A
DerkA(z) = 3+6z+3z2

1−3z2−2z3 , since the type equals 2.

5.2 The case S = 〈a, a + 1, . . . , a + d〉

Let us now consider the class of ring A = k[S] with S = 〈a, a + 1, . . . , a + d〉
with 2d ≥ a − 1. Let N := S \ {0} (the so called maximal ideal of S).

Lemma 5.1. Let S = 〈a, a+1, . . . , a+d〉 with 2d ≥ a−1. Then 3N = a+2N .

Proof. By 2d ≥ a − 1, we get that 3a + 2d ≥ 4a − 1. This implies that
{3a, 3a + 1, . . . , 4a− 1} ⊆ a + {2a, 2a + 1, . . . , 2a + d}, which gives the proof.

Let Ā = A/taA. Then Ā has an induced t-grading from A, and Ā exists (and
is 1-dimensional) only in degrees S\(a+S). We can regard Ā as k[x1, . . . , xd]/I ,
where I is the kernel of the epimorphism which sends xi to t̄a+i, so t deg(xi) =
a + i. We thus have xixj ∈ I if (a + i) + (a + j) ∈ a + S, xixj − xkxl ∈ I if
i+j = k+l, and, by Lemma 5.1, (x1, ..., xd)

3 ⊆ I . Let H = {d+1, d+2, ..., a−1},
F = {xixj | i + j /∈ H} ∪ {xixj − xn−dxd | i + j = n ∈ H}, and B̄ =
k[x1, ..., xd]/(F ).

Lemma 5.2. Let Ā = k[x1, . . . , xd]/I. Then I = (F ) + (x1, . . . , xd)
3. Thus Ā

is a standard graded algebra (deg xi = 1 for each i) with Hilbert series 1 + dz +
(a − (d − 1))z2.

Proof. This follows since S = {0, a, a+1, . . . , a+d, 2a,−→} and since, using
Lemma 5.1, S \ (a + S) = {0, a + 1, . . . , a + d, 2a + d + 1, . . . , 3a− 1}.

We will now show that the set F is a Gröbner basis of (F ) in Degrevlex.
We will prove it considering two different cases. We recall that a− 1 ≤ 2d. We
start to consider the case a − 1 < 2d.

Lemma 5.3. Let a − 1 < 2d. Then I = (F ) and F is a Gröbner Bases of (F )
(hence of I) in Degrevlex.
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Proof. Let us denote the elements of F by f1, . . . , fr (in no special order), the

Gröbner basis of (F ) by G(F ), the initial term of fi by in(fi) and k[x1,...,xd]
(in(f1),...,in(fr))

by C̄.
Since HĀ(z) ≤ HB̄(z) = H k[x1,...,xd]

G(I2)

(z) ≤ HC̄(z) (coefficientwise), we only

need is to show that HĀ(z) = HC̄(z).
By Lemma 5.2, we know that HĀ(z) = 1+dz+(a−(d+1))z2. Since in(xixj−

xn−dxd) = xixj (as we use Degrevlex), we get that the only monomials in C̄
different from zero in degree less than or equal two are 1, x̄1, . . . , x̄d, x̄2x̄d, . . . ,
x̄(3a−1)−(2a+d+1)+1x̄d = x̄a−(d+1)x̄d.

The only possible nonzero monomials of degree three are x̄i · x̄j x̄d with
1 ≤ i ≤ d and 2 ≤ j ≤ a − (d − 1). Since a − 1 < 2d we have j < d. If i = d we
get x̄ix̄d = 0, if i < d we get x̄ix̄j = 0, hence all monomials of degree three are
0. Hence HC̄(z) = 1 + dz + (a − (d + 1))z2 = HĀ(z).

Corollary 5.4. Let a − 1 < 2d. Then P Ā
k (z) = 1

1−dz+(a−(d+1))z2 .

Proof. By Lemma 5.3 and [7, Theorem 2.2], Ā is a Koszul algebra.

Theorem 5.5. Let S = 〈a, a+1, . . . , a+d〉 with 2d > a−1 and A = k[S]. Then

P A
DerkA(z) = a−d+(a−2d−1)z+(a+1−d)z2

1−dz+(a−d−1)z2 if d < a − 1 and P A
DerkA(z) = a+(1−a)z

1−(a−1)z if

d = a − 1.

Proof. By [15, Corollary 3.4.2 (ii)], P A
k (z) = (1+z)P Ā

k (z) = 1+z
1−dz+(a−(d+1))z2 .

We note that for this kind of semigroups S, we have T (S) = {a+d+1, . . . 2a−
1} (hence h = |T (S)| = a − (d + 1)) if d < a − 1 and T (S) = {1, . . . , a − 1}
(hence h = |T (S)| = a − 1) if d = a − 1. Using Theorem 4.4, we get

P A
DerkA(z) = 1 + (a − (d + 1))P A

k (z) =
a + (a − 1)z + (a + 1 − d)z2

1 − dz + (a − d − 1)z2

if d < a − 1 and

P A
DerkA(z) = 1 + (a − 1)P A

k (z) =
a

1 − (a − 1)z

if d = a − 1.

Let us consider now the remaininig case a − 1 = 2d. In this case we cannot
use the proof of Lemma 5.3 to show that the set F is a Gröbner basis as Ā and
B̄ have not the same Hilbert series (and, in particular, I 6= (F )). This is the
case, for example, for S = 〈13, 14, 15, 16, 17, 18, 19〉, where HĀ(z) = 1+6z+6z2

(cf. Lemma 5.2) and HB̄(z) = 1 + 6z + 6z2 + 6z3 + · · · = 1+5z
1−z .

Lemma 5.6. Let a − 1 = 2d. Then F is a Gröbner basis of in Degrevlex. In
particular B̄ = k[x1, . . . , xd]/(F ) is a Koszul algebra.

Proof. We note that in this case H = {d + 1, . . . , 2d}. As in Lemma 5.3, let
us denote the elements of F by f1, . . . , fr and the initial term of a polynomial

7



f by inf . We need to show that the S-polynomials Si,j of each pair (fi, fj) of
the elements from F is zero modulo F .

Since this happens whenever fi, fj are both monomials or gcd(infi, infj) = 1,
without loss of generality, we can restrict to consider only two cases, that is
fi = xixl, fj = xixj − xn−dxd (with i + l /∈ H and i + j = n ∈ H) and
fi = xixj −xn1−dxd, fj = xixj −xn2−dxd (with i+ l = n1 ∈ H, i+ j = n2 ∈ H).

In the first case, Si,j = xj(xixl) − xl(xixj − xn−dxd) = xlxn−dxd. Since
i + l /∈ H and i, l ≤ d, then i + l < d + 1. By j ≤ d, we get i + l + j < 2d + 1,
that is l + (n − d) < d + 1. This implies l + (n − d) /∈ H and xlxn−d ∈ F .

Let us now consider the second case. Here we have

Si,j = xl(xixj − xn1−dxd) − xj(xixl − xn2−dxd) = −xlxn1−dxd + xjxn2−dxd.

By i + j = n1 and i + l = n2, we get l + n1 = n2 − i + i + j = n2 + j. Hence
x̄lx̄n1−dx̄d = x̄j x̄n2−dx̄d modulo F as B̄ is graded and one-dimensional in each
degree.

The second part of the lemma follows by [7, Theorem 2.2].

Lemma 5.7. Let a − 1 = 2d and B̄ be as above. Then the Hilbert series
HB̄(z) = 1+(d−1)z

1−z .

Proof. We first note that |H | = |{d + 1, . . . , 2d}| = d.
Since, by Lemma 5.6, F if a Gröbner basis in Degrevlex, then HB̄(z) =

HC̄(z). Moreover in(xixj − xn−dxd) = xixj , hence the only elements in C̄ of
degree two different from zero are of the kind x̄n−dx̄d with n ∈ H .

Using induction it is easy to see that the only elements in C̄ of degree i
different from zero are of the kind x̄n−dx̄

i−1
d with n ∈ H .

This gives HB̄(z) = HC̄(z) = 1 + dz + dz2 + dz3 + · · · = 1+(d−1)z
1−z .

Theorem 5.8. Let S = 〈a, a + 1, . . . , a + d〉 with 2d = a − 1 and A = k[S].
Then P A

DerkA(z) = 1+d
1−dz

Proof. Since B̄ is a Koszul algebra (cf. Lemma 5.6) and Ā = k[x1,...,xd]
(F )+m

3 ,

where m = (x1, . . . , xd), we get, as a particular case of [20, Theorem 1.5],

P Ā
k (−z) =

z

(z − 1)HB̄(z) + HĀ(z)
=

z

(z − 1) 1+(d−1)z
1−z + 1 + dz + dz2

=
1

1 + dz
.

Finally, by [15, Corollary 3.4.2 (ii)], h = |T (S)| = a − (d + 1) = d and
Theorem 4.4, we have

P A
DerkA(z) = 1 + dP k

A(z) = 1 + d
1 + z

1 − dz
=

1 + d

1 − dz
.

Remark 5.9. Let S1 = 〈a, a + 1, . . . , a + d〉 and Sl = 〈a, a + l, . . . , a + ld〉 with
2d ≥ a − 1, l ≥ 1 and gcd(a, l) = 1.

Since k[S1]
(ta)k[S1] = Ā = k[Sl]

(ta)k[Sl]
, then Theorems 5.5 and 5.8 hold for S = Sl.
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5.3 The case of multiplicity less than or equal 7

In [18] there is a classification of all possible algebras Ā, for A = k[S] of multi-
plicity at most 7. We will show that P A

DerkA(z) is rational in all these cases.

Since P R
k (z) is rational for all rings R of embedding dimension at most

3 (c.f. [24, Corollary 4.4]), we get that P A
k (z), and thus P A

DerkA(z), is ra-
tional for all A = k[S], where S has at most 4 generators. This takes care
of all Ā for semigroups of multiplicity at most 5, except one for which Ā =
k[x1, . . . , x5]/(xixj , 1 ≤ i, j ≤ 5), which is a Koszul algebra (cf. [11]).

If A has multiplicity 6, there are 5 different Ā of embedding dimension 4 or
5. All these have relations of degree 2 which constitute a Gröbner basis, so they
are Koszul algebras (c.f. [7, Theorem 2.2]).

Finally, if A has multiplicity 7, there are 25 (out of 55) Ā of embedding
dimension larger than 3. They are all of the form k[x1, . . . , xn]/I , with I =
I2 + J , where I2 (the part of the ideal in degree 2) is a Gröbner basis in all
cases and J = 0 (so the ring is Koszul), or J = (x1, . . . , xn)3, or (in one case)
J = (x1, . . . , xn)4. In the first case Ā is a Koszul algebra, so P Ā

k (z), and thus
P A

DerkA(z), is rational. For the last two cases we can use [20, Theorem 1.5] to

conclude that P Ā
k (z), and thus P A

DerkA(z), is rational.

5.4 The case of maximal embedding dimension, maximal

length, or the almost maximal length

A one-dimensional ring is of maximal embedding dimension if its embedding
dimension equals its multiplicity (the same definition holds for the numerical
semigroups and S is of maximal embedding dimension if and only if k[S] is of
maximal embedding dimension). Let S = 〈g1, . . . , gm〉. If k[S] is of maximal
embedding dimension, then Ā = k[x1, . . . , xm−1]/(x1, . . . , xm−1)

2, which is a
Koszul algebra, so P Ā

k (z) = 1
1−(m−1)z , and thus P A

DerkA(z) = m
1−(m−1)z since

the type is m − 1.
For a one-dimensional ring R we have the inequality l(R̄/R) ≤ l(R/C)t(R),

where R̄ is the integral closure of R in its field of fraction, C is the conductor,
and t(R) the CM-type (c.f. [13, Theorem 34]). The ring R is called of maximal
length if there is equality, and it is called of almost maximal length if l(R̄/R) =
l(R/C)t(R) − 1.

If k[S] is of maximal length it is either Gorenstein or of maximal embedding
dimension (c.f. [5] or [6]) thus, rings of maximal embedding dimension and with
type at least two have rational P A

DerkA(z).
If k[S] is of almost maximal length, then S = 〈4, 5, 11〉, S = 〈4, 7, 13〉,

S = 〈3, 3d+2, 3d+4〉 for some d ≥ 1, or S = 〈p, dp+1, dp+2, . . . , dp+p−1〉 for
some p ≥ 3 and d ≥ 1 (c.f. [5, Theorems 3 and 4]). For the first three examples

Ā is a Golod ring, so P A
DerkA(z) = 3+6z+3z2

1−3z2−2z3 (see Subsection 5.1). The last class
is of maximal embedding dimension.
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5.5 The case of monomial semigroups

Let R be a one-dimensional Noetherian domain with k ⊂ R ⊆ k[[t]] and v be
the natural valuation for nonzero elements of k((t)). Then v(R) is a numerical
semigroup. If S = 〈g1, . . . , gm〉, then by k[[tS ]] we mean k[[tg1 , . . . , tgm ]]. An
equivalent definition of semigroup ring for this kind of rings R is that R = k[[xS ]]
for some x ∈ (t) \ (t2). In general if S is fixed and we consider all rings R as
above with v(R) = S, it is not true that all these rings are semigroup rings.

A numerical semigroup S is called monomial if each ring R with v(R) = S
is a semigroup ring.

If S is a monomial semigroup then S is one from the following list: (i) S is
such that the only elements smaller than the Frobenius number are multiples of
g1, (ii) l /∈ S only for one l > g1, (iii) g1 ≥ 3 and the only elements greater than
g1 that are not in S are g1 + 1 and 2g1 + 1 (cf [21, Theorem 3.12]).

The first class is of maximal embedding dimension.
Let us consider the second class. In this case S = {0, g1, . . . , g1 + α− 1, g1 +

α + 1,−→}. If α = 1, then S is of maximal embedding dimension. If α = 2,

then Ā = k[x1,...,xm−1]
I = k[x1,...,xm−1]

I2+m̃
3 , where I2 is the part of I in degree two

and k[x1,...,xm−1]
I2

is a Koszul algebra. Using the same argument as in the proof

of Theorem 5.5, we get P A
DerA(z). Finally for α > 2, I = I2 and even in this

case, using the same argument as in the proof of Theorem 5.8, we get P A
DerA(z).

Finally, let S be in the third class. If g1 = 3, then S is two-generated. If
g1 > 3, then I = I2 and Ā is Koszul.

5.6 Further rational cases

There are some more classes of semigroups for which we can say that P A
DerkA(z)

is rational. If k[S] is a complete intersection, then P A
k (z), and thus P A

DerkA(z),
is rational (cf. [23]). Semigroups defining complete intersections are classified
in [8].

Gorenstein rings R of codimension at most 4 have rational Poincaré series
P R

k (z) (c.f. [16]). They treat the case char(k) 6= 2, the general case is in
[2]. Thus symmetric semigroups with at most 5 generators have rational series
P A

DerkA(z).
In [2] also other classes of rings are shown to have rational series, e.g. almost

complete intersections of codimension 4. Thus, if S has 5 generators and k[S]
(or Ā) 5 relations, then P A

DerkA(z) is rational. Also if Ā has monomial relations,
the series are rational, c.f. [3].

5.7 An example of non-rational P
k[S]
Derkk[S](z)

If S = 〈18, 24, 25, 26, 28, 30, 33〉, it is shown in [14] that P
k[S]
k (z) is not rational.

Thus P
k[S]
Derkk[S](z) is not rational.
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[18] E. Kunz, Über die Klassifikation numerischer Halbgruppen, Regens-
burger Mathematische Schriften 11, Universität Regensburg, Fach-
bereich Mathematik, Regensburg (1987).

[19] G. Levin, Large Homomorphisms of Local Rings, Math. Scand. 46

(1980), 209–215.
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