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Abstract

In this paper we consider families of polynomial eigenfunctions of the

hypergeometric type operator TQ = (αz + β) d
dz

+ (γz + δ) d2

dz2 where
α, β, γ, δ ∈

�
. The object is to study the location of the zeros of these

polynomials and to say something about the asymptotic zero distribu-
tion. The classical Laguerre polynomials will appear as a special case,
and some well-known results about these will therefore be recovered and
generalized.

1 Introduction

Let Q0, . . . , Qk be polynomials in one complex variable satisfying deg Qj ≤ j
∀j. Consider the differential operator

TQ(f) =
k

∑

j=0

Qjf
(j)

where f (j) denotes the jth derivative of f . We will be interested in the eigen-
value problem TQ(pn) = λnpn and we call pn the nth degree polynomial eigen-
function of the operator TQ. The case with deg Qk < k, which will be referred to
as the degenerate case, turns out to be much more complicated than the generic
case with deg Qk = k, which has previously been studied in [3], where it was
proved that for sufficiently large integers n there is a unique constant λn and a
unique monic polynomial pn of degree n satisfying TQ(pn) = λnpn. Also it was
proved that asymptotically as n → ∞, the zeros of pn are distributed according
to a certain probability measure which depends only on the leading polynomial
Qk.
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In this paper we will be interested in the eigenvalue problem TQ(pn) = λnpn

with deg Qj ≤ 1 ∀j with equality when j = 1. We first prove that TQ as defined
above and with these restrictions on the Qj has a unique eigenvalue λn and a
unique monic polynomial eigenfunction pn for every value of n, see Corollary 1.
This is actually true for an even wider class of operators which includes this TQ,
see Theorem 1. The main goal of this paper is to study the simplest degenerate
case. Below we restrict our study to the operator

TQ = (αz + β)
d

dz
+ (γz + δ)

d2

dz2

where α, β, γ, δ ∈ C and α, γ 6= 0. Obviously by an appropriate affine transfor-
mation of z any such operator can be rewritten as

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

; δ, κ ∈ C

and throughout our paper this form of TQ will be used. Then our eigenvalue
equation TQ(pn) = λnpn becomes a confluent hypergeometric equation 1. More
precisely, our eigenpolynomials pn will be particular solutions to what is known
as Kummer’s hypergeometric equation, which is given by

zy
′′

+ (α + 1 − z)y
′ − βy = 0

with α, β ∈ C, see [23] or [19]. Observe that this equation has a degree n
polynomial solution if and only if β = n. Below we will study the sequence
of polynomials {pn} being solutions to the above equation as β ∈ N and α ∈
C. For certain choices of the parameter α (α ∈ R with α > −1) we get the
Laguerre polynomials as solutions 2. One of the most important properties
of the Laguerre polynomials is that they constitute an orthogonal polynomial
system with respect to the weight function e−xxα on the interval [0,∞). It
is well-known that the Laguerre polynomials are all hyperbolic (i.e. all their
roots are real) and that they have interlacing roots. For other choices of the
complex parameter α in Kummer’s equation the sequence {pn} is in general not
an orthogonal system of polynomials, and it can therefore not be studied by
means of the theory known for such systems.

One of the results in this paper is the characterization of the exact choices
on α for which TQ has hyperbolic polynomial eigenfunctions. Namely,

Theorem 2. The following two conditions are equivalent:
(i) there exists a real affine transformation z → az + b such that our operator
can be written as

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

1Various familiar functions of mathematical analysis, such as the Hermite polynomials,
the Laguerre polynomials, the Whittaker functions, the Bessel functions and the cylinder
functions, are special cases of the confluent hypergeometric functions, i.e. solutions of the
confluent hypergeometric equations.

2With the same conditions on α, but with β not necessarily an integer, we obtain the
Laguerre functions.
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where δ ∈ C and κ ∈ R with κ > −1,
(ii) TQ has hyperbolic polynomial eigenfunctions pn for all n.

Remark. Each pn is actually strictly hyperbolic here, i.e. has all its roots
real and simple (see Corollary 3). Note that (i)⇒(ii) for κ > 0 also follows
from the general theory of orthogonal polynomial systems, the pn being nor-
malized 3 Laguerre polynomials. By definition the Laguerre polynomials satisfy
the following differential equation:

zy
′′

+ (α + 1 − z)y
′

+ ny = 0

where α ∈ R, α > −1 and n ∈ N. Making the transformation z → −z
it is easy to see that this equation corresponds to our eigenvalue equation
zp

′′

n+(z+κ)p
′

n−λnpn = 0 where λn = n (see Corollary 1) and κ ∈ R with κ > 0.

Theorem 2
′

. The following two conditions are equivalent:
(i)

′

there exists a real affine transformation z → az + b such that our operator
can be written as

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

with δ ∈ C and κ ∈ R with κ > −1 or κ = −1,−2,−3, . . . ,−(n − 1),
(ii)

′

the polynomial eigenfunction pn of TQ is hyperbolic.

Remark. Thus if κ is a negative integer, then all pn with n > |κ| are hy-
perbolic. Note that in the limit as n → ∞, pn is hyperbolic for all negative
integer values of κ.

These results imply the following corollaries:

Corollary 2. The following two conditions are equivalent:
(i) there exists a complex affine transformation z → αz +β such that our oper-
ator can be written as

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C and κ ∈ R with κ > −1,
(ii) the roots of the polynomial eigenfunction pn of TQ lie on a straight line in
C for all n.

Corollary 2
′

. The following two conditions are equivalent:
(i)

′

there exists a complex affine transformation z → αz + β such that our
operator can be written as

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

3The nth degree Laguerre polynomial becomes monic when multiplied by n!(−1)n.
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where δ ∈ C and κ ∈ R with κ > −1 or κ = −1,−2,−3, . . . ,−(n − 1),
(ii)

′

the roots of the polynomial eigenfunction pn of TQ lie on a straight line in C.

Remark. Thus if κ is a negative integer, then the roots of all pn with n > |κ|
lie on straight lines in C.

It is moreover possible to count the exact number of real and complex roots
respectively for any real value of κ. We prove the following theorems:

Theorem 5. Let

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

with δ ∈ C and κ ∈ R such that κ < −(n−1). Then the polynomial eigenfunction
pn of TQ has no real roots if n is even, and it has exactly one real root if n is odd.

Theorem 6. Let

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

with δ ∈ C and κ ∈ R such that −(n−1) < κ < −1, and κ is not an integer. Let
[κ] denote the integer part of κ. Then the number of real roots of the polynomial

eigenfunction pn of TQ equals

{

n + [κ] + 1 if [κ] is odd
n + [κ] if [κ] is even.

Next we prove the interlacing property :

Theorem 7. Assume that our operator, after some complex affine transforma-
tion, can be written as

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

with δ, κ ∈ C. Then the roots of two consecutive polynomial eigenfunctions pn

and pn+1 are interlacing if κ ∈ R with κ = 0,−1,−2, . . . ,−(n − 1). If the
eigenfunctions are hyperbolic then the meaning of this is obvious, while if they
are not hyperbolic the roots are interlacing along the straight line on which they
lie (see Corollary 2

′

).

Remark. For κ > 0 our polynomial eigenfunctions coincide with the Laguerre
polynomials, whose interlacing property is classical.

The final part of this paper deals with the asymptotic zero distribution.
When suitably scaled, it is possible to find a limiting expansion (as n → ∞) for
the polynomial eigenfunctions that is closely related to a Bessel function. Be-
cause of the scaling however, the convergence to this Bessel function only gives
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information about the asymptotic behaviour of the polynomial eigenfunctions
in an infinitesimal neighbourhood of the origin. Although other methods must
be used to get information elsewhere, it is interesting that on the infinitesimal
scale, our polynomial eigenfunctions mimic the global behaviour of this partic-
ular Bessel function. Or, letting z/n = w in Theorem 8 below, we can also
say that the asymptotic behaviour of our polynomial eigenfunctions reflects the
behaviour of the Bessel function at infinity. We have the following theorem,
where Jκ−1 denotes the Bessel function of the first kind of order (κ − 1):

Theorem 8. Let pn(κ, z) be a monic polynomial eigenfunction of the
operator

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ, κ ∈ C and κ is not a negative integer. We then have the following limit
formula:

lim
n→∞

n1−κ

n!
pn(κ, z/n) = (−z)(1−κ)/2Jκ−1(2i

√
z),

the convergence holding for all z ∈ C and uniformly on compact z-sets.

From Theorem 8 we have the following corollary:

Corollary 4. Let

Fκ(z) := lim
n→∞

n1−κ

n!
pn(κ, z/n).

Suppose that Fκ(ζ) = 0 for some nonzero complex ζ = reit and denote by lζ the
ray connecting the origin and ζ, as illustrated in the picture below, where the
origin is located at the vertex of the angle.

Then, for every ε > 0, all except possibly a finite number of the pn vanish
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in the domain Dε(t) := {z : t − ε < arg z < t + ε, |z| < ε}.

Some history. In this paper the Laguerre polynomials appear normalized
as polynomial eigenfunctions of a confluent hypergeometric type operator. The
classical Laguerre polynomials are defined as

Ln(z, α) ≡ zαez dn

dzn
[e−zzn+α]

where α ∈ R with α > −1. They satisfy the orthogonality relation

∫ ∞

0

e−zzαLn(z)Lm(z)dz = 0; m, n = 0, 1, . . . , m 6= n,

from which it can be shown that all the zeros of the functions Ln(z, α) are real,
distinct and lie inside (0,∞). The following differential equation for Ln(z, α) is
well-known:

zL
′′

n(z, α) + (α + 1 − z)L
′

n(z, α) + nLn(z, α) = 0

and still holds if α ≤ −1. In this case, however, the orthogonality relations do
not hold since the integrals involved do not exist. When α is arbitrary and real,
the polynomials Ln(z, α) are referred to as generalized Laguerre polynomials.
Some properties of the zeros when α ≤ −1 have been studied in [18]. In [23]
the same results, and several others, are derived by considering the Laguerre
polynomials as a limiting case of the Jacobi polynomials. In this paper we
recover some of these results by yet another method.

The asymptotic zero distributions for the generalized Laguerre (and several
other) polynomials with real and degree dependent parameter αn (αn/n → ∞)
have been found in [6] using a continued fraction technique; the same results are
derived in [11] via a differential equation approach. It is known that the zeros
of Ln(z, α) for α ≤ −1 accumulate along certain contours in the complex plane.
More recent results on this can be found in [14], where a Riemann-Hilbert
formulation for the Laguerre polynomials together with the steepest descent
method (introduced in [6]), is used to obtain asymptotics for the polynomials,
from which the zero behaviour follows. The asymptotic location of the zeros
depends on A = limn→∞ −αn

n > 0, and the results show a great sensitivity
of the zeros to αn’s proximity to the integers. For A > 1 the contour is an
open arc. For 0 < A < 1 the contour consists of a closed loop together with an
interval on the positive real axis. In the intermediate case A = 1 the contour is a
simple closed contour. The case A > 1 is well-understood (see [21]), and uniform
asymptotics for the Laguerre polynomials as A > 1 were obtained more recently,
see [9], [15] and [26]. For fixed n and decreasing α ≤ −1, the dynamics of the
zeros of Ln(z, α) is similar to the dynamics of the zeros of certain hypergeometric
polynomials studied recently in [7] and [8]. In this paper we obtain some results
on the asymptotic zero distribution for any complex α.
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2 Proofs.

We start with the following general statement:

Theorem 1. Let

TQ = Qk
dk

dzk
+ Qk−1

dk−1

dzk−1
+ . . . + Q1

d

dz
+ Q0

be such that deg Q0 = 0, deg Qj = j for exactly one j ∈ [1, k] and deg Qm < m
∀m 6= 0, j. Then, for every value of n there exists a unique polynomial solution
to the eigenvalue equation TQ(pn) = λnpn with pn monic. Also, using the
notation Qm =

∑m
j=0 qm,jz

j , we have

lim
n→∞

λn

n(n − 1) . . . (n − j + 1)
= qj,j .

Proof. In [3] we proved the following lemma for the above operator TQ with
the weaker restriction deg Qj ≤ j ∀j ∈ [0, n]:

Lemma 1. For n ≥ 1 the coefficient vector X of pn=(an,0, an,1, . . . , an,n−1)
satisfies the linear system MX = Y , where Y is a vector and M is an upper
triangular matrix, both with entries expressible in the coefficients qm,j .

This lemma is obviously also valid for our operator TQ as defined in Theo-
rem 1. Moreover, in [3] we computed the matrix M with respect to the basis of
monomials 1, z, z2, . . . . A diagonal element Mi+1,i+1 at the position (i+1, i+1)
in M , where 0 ≤ i ≤ n − 1, is given by

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!

(i − m)!
− λn

where

λn =

k
∑

m=0

qm,m · n!

(n − m)!
,

where Qm =
∑m

j=0 qm,jz
j . For our operator TQ as defined in Theorem 1 we

have deg Qm < m ∀m 6= 0, j and so we get qm,m = 0 ∀m 6= 0, j. Inserting this
in the expression for λn we obtain

λn =
k

∑

m=0

qm,m · n!

(n − m)!
= q0,0 + qj,j ·

n!

(n − j)!
=

= q0,0 + qj,j · n(n − 1) . . . (n − j + 1)

whence

lim
n→∞

λn

n(n − 1) . . . (n − j + 1)
= lim

n→∞

(

q0,0

n(n − 1) . . . (n − j + 1)
+ qj,j

)

= qj,j .
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For the uniqueness of a monic polynomial solution we consider the determi-
nant of the matrix M in the system MX = Y corresponding to our eigenvalue
equation TQ(pn) = λnpn. Since the matrix is upper triangular by Lemma 1,
its determinant equals the product of the diagonal elements. Thus, if we prove
that all diagonal elements are nonzero, then M is invertible for every n and
the system MX = Y has a unique solution for every n. Inserting qm,m = 0
∀m 6= 0, j in the expression Mi+1,i+1 for a diagonal element we get

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!

(i − m)!
− λn =

=
∑

0≤m≤min(i,k)

qm,m · i!

(i − m)!
−

(

q0,0 + qj,j ·
n!

(n − j)!

)

=

= qj,j ·
(

i!

(i − j)!
− n!

(n − j)!

)

6= 0

since qj,j 6= 0 and i < n. For i < j one sets i!/(i − j)! = 0. �

Corollary 1. Consider the operator

TQ = Qk
dk

dzk
+ Qk−1

dk−1

dzk−1
+ . . . + Q1

d

dz
+ Q0

with deg Q0 = 0 and deg Qm ≤ 1 ∀m > 0 with equality when m = 1. Then, for
every value of n there exists a unique polynomial solution to TQ(pn) = λnpn

with pn monic. Also, using the same notations as in Theorem 1, we have

lim
n→∞

λn

n
= q1,1.

Proof. This operator corresponds to the operator in Theorem 1 with j = 1.
We have

λn = q0,0 + q1,1 · n,

whence

lim
n→∞

λn

n
= lim

n→∞

(

q0,0

n
+ q1,1

)

= q1,1.

To show uniqueness we use the result from Theorem 1, according to which the
diagonal elements of M are nonzero for all n. Explicitly we have

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!

(i − m)!
− λn =

= q0,0 + q1,1 ·
i!

(i − 1)!
− q0,0 − q1,1 · n = q1,1 · (i − n) 6= 0
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since qm,m = 0 ∀m 6= 0, 1, q1,1 6= 0 and i < n. The determinant is thus given by

det M = qn
1,1

n−1
∏

i=0

(i − n) 6= 0.

�

From now on we restrict our study to the operator with k = 2 and deg Q1 =
deg Q2 = 1. We first prove that our operator can be written in a more conve-
nient form after some suitable transformations4.

Lemma 2. Any operator

TQ = (αz + γ)
d

dz
+ (βz + δ)

d2

dz2

with α, β, γ, δ ∈ C can be transformed to an operator of the form

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

with δ, κ ∈ C.

Proof. Dividing TQ = (αz + γ) d
dz + (βz + δ) d2

dz2 by β we obtain

T ∗
Q = TQ/β =

(

α

β
z +

γ

β

)

d

dz
+

(

z +
δ

β

)

d2

dz2

and making the translation z̃ = z + δ
β we have

T ∗

Q̃
=

(

α

β

(

z̃ − δ

β

)

+
γ

β

)

d

dz̃
+

(

z̃ − δ

β
+

δ

β

)

d2

dz̃2
=

=

(

α

β
z̃ − αδ

β2
+

γ

β

)

d

dz̃
+ z̃

d2

dz̃2
.

Finally with ˜̃z = α
β z̃ ⇔ z̃ = β

α
˜̃z we have d˜̃z/dz̃ = α/β and so







d
dz̃ = α

β
d
d˜̃z

d2

dz̃2 = d
d˜̃z

(

d
dz̃

)

d˜̃z
dz̃ = d

d˜̃z

(

α
β

d
d˜̃z

)

α
β = α2

β2

d2

d˜̃z
2

and we get

T ∗
˜̃Q

=

(

α

β
z̃ − αδ

β2
+

γ

β

)

d

dz̃
+ z̃

d2

dz̃2
=

=

(

α

β
· β

α
˜̃z − αδ

β2
+

γ

β

)

α

β

d

d˜̃z
+

β

α
˜̃z · α2

β2

d2

d˜̃z
2 =

=
α

β

[(

˜̃z − αδ

β2
+

γ

β

)

d

d˜̃z
+ ˜̃z

d

d˜̃z
2

]

= δ

[

(˜̃z + κ)
d

d˜̃z
+ ˜̃z

d

d˜̃z
2

]

4compare [10] p. 249
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where δ = α
β and κ = −αδ

β2 + γ
β . �

Clearly any such operator with all coefficients real can transformed to

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

with δ, κ ∈ R.

We will now study hyperbolicity of the polynomial eigenfunctions of our

operator TQ = (αz + γ) d
dz + (βz + δ) d2

dz2 in all details. Note that performing
the transformations above with real coefficients does not affect hyperbolicity of
the polynomial eigenfunctions and so we can apply Lemma 2 in the proof of
Theorems 2 and 2

′

below.

Proof of Theorems 2 and 2
′

. Theorems 2 and 2
′

are proved using the
following corollary (see [2]):

Corollary of Sturm’s Theorem. All roots of a monic and real polynomial are
real if and only if the nonzero polynomials in its Sturm sequence have positive
leading coefficients.

Here the Sturm sequence is defined as follows. Let p = p0 be a given real
polynomial. Define p1 = p

′

(the derivative of p) and choose the pi to satisfy

p0 = p1q1 − p2, deg p2 < deg p1

p1 = p2q2 − p3, deg p3 < deg p2

p2 = p3q3 − p4, deg p4 < deg p3

...

where the qi are polynomials, and so on until a zero remainder is reached. That
is, for each i ≥ 2, pi is the negative of the remainder when pi−2 is divided by
pi−1. Then the sequence (p0, p1, p2, . . . ) is called the Sturm sequence of the
polynomial p.

We now calculate the Sturm sequence for a monic and real polynomial eigen-

function pn = p of the operator TQ = δ

[

(z + κ) d
dz + z d2

dz2

]

, where δ ∈ C and

κ ∈ R. Note that p is real if κ ∈ R and any two operators differing by a complex
constant have identical polynomial eigenfunctions. Since our eigenpolynomials
by assumption are monic, the first two elements in the Sturm sequence, p and
p

′

, clearly have positive leading coefficients 1 and n. Define R(i) = pi+1 in the
Sturm sequence above. Then R(1) is the negative of the remainder when p is
divided by p

′

. With deg p = n we have deg R(i) = n− i−1. The last element in
the Sturm sequence (if it has not already stopped) will be the constant R(n−1).
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We claim that for every n and every i ≥ 1 we have

{

R(i) = A
∑n−i−1

j=0

(

n−i−1
j

) (κ+n−i−1)!
(κ+j)! zj if i is odd

R(i) = B
∑n−i−1

j=0

(

n−i−1
j

) (κ+n−i−1)!
(κ+j)! zj if i is even

(1)

where
{

A = (n − 1)(κ + n − 1)(n − 3)(κ + n − 3) . . . (n − i)(κ + n − i),
B = n(n − 2)(κ + n − 2)(n − 4)(κ + n − 4) . . . (n − i)(κ + n − i).

It is obvious that with κ = 0 the leading coefficients of all the R(i) are
positive and p will be hyperbolic. For κ ∈ R and κ 6= 0 we have the following
conditions for the leading coefficients R(i)lc of the R(i) to be positive:















































R(1)lc > 0 ⇒ κ > 1− n
R(2)lc > 0 ⇒ κ > 2− n
R(3)lc > 0 ⇒ κ > 3− n
...
R(i)lc > 0 ⇒ κ > i − n
...
R(n − 1)lc > 0 ⇒ κ > −1

and these conditions together yield κ > −1. But we must also consider the
equality case, since if some factor (κ + n − j) = 0, then not only the leading
coefficient is zero, but the whole polynomial R(i) equals zero. So for κ = j − n
with j ∈ [1, n − 1] we also get hyperbolic pn, since the Sturm sequence by
definition stops when a zero remainder is reached, and it is easy to see that the
leading coefficients of the previous components of the Sturm sequence will be
positive. Thus, by the corollary of Sturm’s Theorem, pn is hyperbolic for all
n if and only if κ > −1, and pn is hyperbolic for a particular n if and only if
κ > −1 or κ = −1,−2, . . . ,−(n − 1).

We prove by induction that the Sturm sequence polynomials are of the form
claimed in (1). For detailed calculations see Appendix.

It is obvious that if the roots of some pn lie on a straight line, then they can
be transformed to the real axis by some complex affine transformation, and the
operator TQ must then be on the form claimed by Theorems 2 or 2

′

, and so

Corollaries 2 and 2
′

follow easily from Theorems 2 and 2
′

respectively.

From now on we adopt the notational convention Γ(n+κ) = (n+κ− 1)! for
κ ∈ C, where Γ is the Gamma function5.

5see e.g. [19]
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Lemma 3. Let pn =
∑n

j=0 an,jz
j be the nth degree monic polynomial eigen-

function of the operator TQ = δ

[

(z + κ) d
dz + z d2

dz2

]

with δ, κ ∈ C. Note that TQ

and δTQ have identical polynomial eigenfunctions pn. Then the coefficients an,j

of pn are given by

an,j =

(

n

j

)

(κ + n − 1)!

(κ + j − 1)!
, ∀j ∈ [0, n].

Proof. Inserting pn =
∑n

j=0 an,jz
j in our eigenvalue equation we have

TQ(pn) = λnpn

⇔
(z + κ)p

′

n + zp
′′

n = npn

⇔

(z + κ)

n
∑

j=1

jan,jz
j−1 + z

n
∑

j=2

j(j − 1)an,jz
j−2 = n

n
∑

j=0

an,jz
j

⇔
n

∑

j=1

jan,jz
j +

n
∑

j=1

κjan,jz
j−1 +

n
∑

j=2

j(j − 1)an,jz
j−1 =

n
∑

j=0

nan,jz
j

⇔
n

∑

j=1

jan,jz
j +

n−1
∑

j=0

κ(j + 1)an,j+1z
j +

n−1
∑

j=1

j(j + 1)an,j+1z
j =

n
∑

j=0

nan,jz
j .

Comparing coefficients we get

jan,j + κ(j + 1)an,j+1 + j(j + 1)an,j+1 = nan,j

⇔

an,j =
(j + 1)(κ + j)

(n − j)
· an,j+1

Applying this iteratively and using an,n = 1 (by the monicity of pn) we arrive
at

an,j =

(

n

j

)

(κ + n − 1)!

(κ + j − 1)!
, ∀j ∈ [0, n].

�

Proposition 1. Let pn(κ, z) denote the nth degree monic polynomial eigen-
function of the operator

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

13



where δ, κ ∈ C. Then, using the explicit representation of pn in Lemma 3, we
derive the following identity :

p(m)
n (κ, z) =

n!

(n − m)!
pn−m(κ + m, z), n = 0, 1, . . . ; m = 1, 2, . . .

and the following recurrence formula:

pn(κ, z) = (z + 2n + κ − 2)pn−1(κ, z) − (n − 1)(n + κ − 2)pn−2(κ, z),

where p0(κ, z) = 1 and p1(κ, z) = z + κ.

Theorem 3. Let

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

; δ, κ ∈ C.

Then the roots of every polynomial eigenfunction pn of TQ are all simple, unless
κ ∈ R with κ = −1,−2, . . . ,−(n − 1).

Proof. Let α 6= 0 be a root of pn that is not simple. Then, by repeatedly
differentiating our eigenvalue equation zp

′′

n + (z + κ)p
′

n = npn and inserting
z = α, we get pj

n(α) = 0 ∀j, and the multiplicity of α would be infinite, which
is absurd. Thus, for all κ ∈ C, any root α 6= 0 of pn is simple 6.

It remains to prove that if κ 6= −1,−2, . . . ,−(n − 1) and if α = 0 is a
root of pn then it must be simple too. Let α = 0 be a root of pn of multi-
plicity m and write pn(z) = zmq(z) where α = 0 is not a root of q(z). Then

p
(1)
n (z) = mzm−1q(z)+zmq

′

(z) and p
(2)
n (z) = m(m−1)zm−2q(z)+mzm−1q

′

(z)+
mzm−1q

′

(z) + zmq
′′

(z). Inserting this in our eigenvalue equation we obtain

λnpn(z) =zp
′′

n(z) + (z + κ)p
′

n(z)

⇔
zm−1[λnzq(z)] =m(m − 1)zm−1q(z) + mzmq

′

(z)

+mzmq
′

(z) + zm+1q
′′

(z) + mzmq(z) + zm+1q
′

(z)

+κmzm−1q(z) + κzmq
′

(z)

=zm−1[m(m − 1)q(z) + mzq
′

(z) + mzq
′

(z)

+z2q
′′

(z) + mzq(z) + z2q
′

(z) + κmq(z) + κzq
′

(z)].

Equating the expressions in the brackets and setting z = 0 we arrive at the
relation m(m − 1)q(0) + κmq(0) = 0 ⇔ m(m − 1 + κ) = 0. Thus m = 0 or
m = 1 − κ for the multiplicity m of the root α = 0. But if m = 0 then α = 0 is
not a root of pn whence all roots of pn will be simple and we are done. If κ = 0
then m = 0 or m = 1 (it will soon be proved that the latter is true, see below),

6This also follows from the uniqueness theorem for a second order differential equation.
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and so either we have no root at all at the origin or we have a simple root at
the origin for κ = 0.

Now let κ 6= 0,−1,−2 . . . ,−(n− 1). Then either m = 0 and we are done, or
m = 1 − κ. But we have m ∈ Z and m > 0, since m is the multiplicity of the
root, and therefore m = 1− κ is impossible if κ > −1 and κ 6= 0. Thus α = 0 is
not a root at all, i.e. m = 0, for any pn if κ > −1 and κ 6= 0. Also, m = 1−κ is
absurd if κ 6∈ Z. Thus m = 0 for κ 6∈ Z. The cases κ = −1,−2, ..,−(n− 1), i.e.
κ ∈ Z with −n < κ < 0, will be treated in Theorem 4, and so here it remains to
consider the cases κ ∈ Z with κ ≤ −n. From our relation we have either m = 0
or m = 1 − κ. By Lemma 3 the constant term an,0 of pn equals

an,0 =
(κ − 1 + n)!

(κ − 1)!
= (κ − 1 + n)(κ − 2 + n)(κ − 3 + n) . . . (κ + 2)(κ + 1)κ.

But this cannot be equal to zero if κ ∈ Z and κ ≤ −n, and therefore m = 0.
Thus all roots of pn are simple for all κ ∈ C r {−1,−2, . . . ,−(n − 1)}. �

Note that if κ = 0, then from the relation m(m − 1 + κ) = 0 we have ei-
ther m = 0 or m = 1. But κ = 0 ⇒ an,0 = 0 by Lemma 3 and therefore m = 1
for κ = 0.

Corollary 3. The polynomial eigenfunctions pn of TQ are strictly hyperbolic
(all roots are real and simple) for all n if and only if there exists a real affine
transformation z → az + b such that our operator can be written as

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

with δ ∈ C and κ ∈ R with κ > −1.

Proof. Hyperbolicity follows from Theorem 2 and simplicity of the roots fol-
lows from Theorem 3. �

Theorem 4. Let

TQ = δ

[

(z + κ)
d

dz
+ z

d2

dz2

]

where δ ∈ C and κ ∈ R with κ = 0,−1,−2, . . . ,−(n−1). Then the eigenpolyno-
mial pn has (n + κ) distinct roots, all of which are simple except one root which
lies at the origin and has multiplicity (1 − κ). Note that for κ = 0 all roots are
simple.

Proof. Let pn be a polynomial eigenfunction of the operator TQ with no re-
strictions on κ. By the proof of Theorem 3 all nonzero roots of pn are simple,
and for the root at the origin we have the relation m(m − 1 + κ) = 0, where m
is the multiplicity of the root. Now if m 6= 0 then m = 1 − κ and we are done.
Thus we have to prove that m 6= 0, i.e that we do have a root at the origin for

15



κ = 0,−1,−2, . . . ,−(n − 1). But this is only possible if the constant term an,0

equals zero. By Lemma 3 we have

an,0 = (κ − 1 + n)(κ − 2 + n)(κ − 3 + n) . . . (κ + 2)(κ + 1)κ,

and obviously an,0 = 0 if κ = 0,−1,−2, . . . ,−(n−1). Thus m 6= 0 and therefore
m = 1−κ for κ = 0,−1,−2, . . . ,−(n− 1). We have a total of n roots of pn, all
of which are simple except for the root at the origin which has multiplicity 1−κ.
We thus have n−(1−κ)+1 = n+κ distinct roots for κ = 0,−1,−2, . . . ,−(n−1)
respectively. �

As stated in Theorems 5 and 6, it is possible to count the exact number of
real and complex roots respectively of a polynomial eigenfunction of TQ for any
real value of κ. With Sturm’s Theorem it is possible to count the number of
real roots in any interval. We have (see [2]):

Sturm’s Theorem. Let (p0(t), p1(t), p2(t), . . . ) be the Sturm sequence of a
polynomial p(t) (as defined in the proof of Theorems 2 and 2

′

). Let u < v be
real numbers. Suppose that U is the number of sign changes in the sequence
(p0(u), p1(u), p2(u), . . . ) and that V is the number of sign changes in the se-
quence (p0(v), p1(v), p2(v), . . . ). Then the number of real roots of p(t) between
u and v (with each multiple root counted exactly once) is exactly U − V .

Remark. Combining Sturm’s Theorem with Theorems 3 and 4 it is possi-
ble to recover Theorems 2 and 2

′

in the directions (i) ⇒ (ii) and (i)
′ ⇒ (ii)

′

.
Namely, let κ > −1 and let pn be the nth degree monic polynomial eigenfunc-
tion of TQ. Then the Sturm sequence of pn has (n + 1) nonzero elements, all
with positive leading coefficients. With u = −∞ and v = ∞ we then have
U = n and V = 0, and therefore the number of real roots of pn is U − V = n,
whence pn is hyperbolic (Theorem 2).

Now let κ = −1,−2, . . . ,−(n − 1). Since the Sturm sequence stops as soon
as the zero remainder is reached, it has (n + κ + 1) nonzero elements, all with
positive leading coefficients. Therefore, with u = −∞ and v = ∞, we have
U = n + κ and V = 0. By Theorem 4 all roots of pn are simple except the
root at the origin which has multiplicity 1 − κ. Thus, counted with multiplic-
ity, pn has U−V +(−κ) = n real roots and is therefore hyperbolic (Theorem 2

′

) .

We already know that if κ 6= −1,−2, . . . ,−(n − 1), then all roots of pn are
simple and no element in the Sturm sequence of pn is identically zero. The
leading coefficients of the elements of the Sturm sequence are, by the proof of
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Theorems 2 and 2
′

, given by



































































plc = 1

p
′

lc = n
R(1)lc = (n − 1)(κ + n − 1)
R(2)lc = n(n − 2)(κ + n − 2)
R(3)lc = (n − 1)(κ + n − 1)(n − 3)(κ + n − 3)
R(4)lc = n(n − 2)(κ + n − 2)(n − 4)(κ + n − 4)
R(3)lc = (n − 1)(κ + n − 1)(n − 3)(κ + n − 3)(n − 5)(κ + n − 5)
R(4)lc = n(n − 2)(κ + n − 2)(n − 4)(κ + n − 4)(n − 6)(κ + n − 6)
...
R(n − 1)lc = . . .

We now use Sturm’s Theorem to prove Theorems 5 and 6:

Proof of Theorem 5. Let pn be a monic polynomial eigenfunction of the
operator TQ where κ ∈ R. We have κ < −(n−1) ⇔ κ+n−1 < 0, and therefore
κ + n − j < 0 for every j ≥ 1. Thus we have, for the leading coefficients of the
Sturm sequence elements,



























































plc = 1 > 0

p
′

lc = n > 0
R(1)lc < 0
R(2)lc < 0
R(3)lc > 0
R(4)lc > 0
R(5)lc < 0
R(6)lc < 0
...

and this pattern continues up to the last element R(n − 1) of the sequence.
Inserting v = ∞ in the Sturm sequence of pn we find that there is a sign change
at every R(i) where i is odd. Therefore the number of sign changes V in this
sequence equals the number of R(i) where i is odd. Thus

V =

{

n
2 if n is even,
n−1

2 if n is odd.

Inserting u = −∞ in the Sturm sequence we find that there is a sign change
between the first two elements in the sequence and then at every R(i) where i
is even. Therefore the number of sign changes U equals 1+ [the number of R(i)
where i is even]. Thus

U =

{

n−2
2 + 1 = n

2 if n is even
n−1

2 + 1 = n+1
2 if n is odd.
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From Theorem 3 all roots of pn are simple and thus the number of real roots of

pn equals U − V =

{

0 if n is even,
1 if n is odd.

�

Proof of Theorem 6. Let pn be a monic polynomial eigenfunction of the
operator TQ where κ ∈ R and j−n < κ < j−n+1 for some j ∈ [1, n−2]. Then
(κ+n−j) > 0, (κ+n−j−1) < 0 and [κ] = j−n. Again we consider the leading
coefficients in the Sturm sequence of pn. Clearly plc = 1 > 0, p

′

lc = n > 0 and
R(i)lc > 0 ∀i ∈ [1, j]. For the remaining leading coefficients we have











































R(j + 1)lc < 0
R(j + 2)lc < 0
R(j + 3)lc > 0
R(j + 4)lc > 0
R(j + 5)lc < 0
R(j + 6)lc < 0

...

and this pattern continues up to the last element R(n − 1) in the sequence.
Consider the sequence we obtain by inserting v = ∞ in this Sturm sequence.
We have sign changes at every R(j + l) where l is odd. Our last element is
R(n−1) = R(j+(n−j−1)). Also note that if n−j−1 = n−n−[κ]−1 = −[κ]−1
is even then [κ] is odd, and if n− j−1 is odd then [κ] is even. Thus the number
of sign changes V in this sequence is

V =

{ n−j−1
2 if [κ] is odd,

n−j
2 if [κ] is even.

Now insert u = −∞ in the Sturm sequence. The number of sign changes from
the first element p in the sequence till the element R(j) is (1 + j). For the
remaining n− j − 1 elements of this sequence we have a change of sign at every
R(j + l) where l is even. Thus the number of sign changes is (n − j − 1)/2 if
(n− j − 1) is even ⇔ [κ] is odd, and the number of sign changes is (n− j − 2)/2
if (n− j − 1) is odd ⇔ [κ] is even. Thus for the total number of sign changes U
in this sequence we get

U =

{

(1 + j) + n−j−1
2 = n+j+1

2 if [κ] is odd

(1 + j) + n−j−2
2 = n+j

2 if [κ] is even.

Therefore the number of real roots U − V of pn, counted with multiplicity, is
precisely

U − V =

{ n+j+1
2 − n−j−1

2 = j + 1 = n + [κ] + 1 if [κ] is odd
n+j

2 − n−j
2 = j = n + [κ] if [κ] is even.

since all roots of pn are simple by Theorem 3. �

Proof of Theorem 7. The proof of the interlacing property consists of a
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sequence of five lemmas. Lemmas 4 and 8 are well-known. Lemmas 4,5 and 6
are used in the proof of Lemma 7, which is proved using an idea of S. Shadrin
in [20]. The five lemmas used in the proof of Theorem 7 are the following:

Lemma 4. If Rn and Rn+1 are strictly hyperbolic polynomials of degrees n
and n + 1 respectively, then Rn + εRn+1 is hyperbolic for any sufficiently small
ε.

Lemma 5. Let pn and pn+1 be two polynomial eigenfunctions of the opera-

tor TQ = (z + κ) d
dz + z d2

dz2 with κ = 0,−1,−2, . . . ,−(n − 1). Then pn + εpn+1

is hyperbolic for any sufficiently small ε.

Proof of Lemma 5. By Theorem 4 we have that pn and pn+1 have all their
roots simple except for the root at the origin which for both polynomials has
multiplicity 1 − κ. Thus we can write pn + εpn+1 = z1−κ(Rn+κ−1 + εRn+κ),
where Rn+κ−1 and Rn+κ are strictly hyperbolic polynomials of degrees n+κ−1
and n + κ respectively. By Lemma 4, Rn+κ−1 + εRn+κ is hyperbolic for any
sufficiently small ε, and then clearly z1−κ(Rn+κ−1 +εRn+κ) = pn +εpn+1 is also
hyperbolic for any sufficiently small ε. �

Lemma 6. Let TQ = κ + (z + κ) d
dz + z d2

dz2 with κ = 0,−1,−2, . . . ,−(n − 1),
and let pn and pn+1 be two consecutive polynomial eigenfunctions of TQ. Then
the application of TQ to any linear combination αpn +βpn+1 with α, β ∈ R that
is hyperbolic (i.e. has all its roots real) results in a hyperbolic polynomial.

Proof of Lemma 6. Note that the operators TQ = κ + (z + κ) d
dz + z d2

dz2 and

TQ = (z+κ) d
dz +z d2

dz2 have identical eigenpolynomials. Let f = αpn +βpn+1 be
a hyperbolic linear combination with real coefficients of two consecutive polyno-
mial eigenfunctions of TQ. Then f

′

is a hyperbolic polynomial by Gauss-Lucas

Theorem. By Rolle’s Theorem f and f
′

have interlacing roots and so by the
well-known Lemma 8 below, (f + f

′

) is a hyperbolic polynomial. By Theo-
rem 4 both pn and pn+1 have a root at the origin of multiplicity 1 − κ. Thus
f = αpn + βpn+1 has a root at the origin of multiplicity at least 1 − κ, and
f

′

has a root at the origin of multiplicity at least −κ. Thus the polynomial
(f + f

′

) has a root at the origin of multiplicity at least (−κ) and we can write
(f + f

′

) = z−κg for some hyperbolic polynomial g. Now zκ(f + f
′

) = g is a
hyperbolic polynomial. But D[zκ(f + f

′

)] = κzκ−1(f + f
′

) + zκ(f
′

+ f
′′

) =
zκ−1[κf + (z + κ)f

′

+ zf
′′

] = zκ−1TQ(f) where TQ(f) = κf + (z + κ)f
′

+ zf
′′

.

By Gauss-Lucas Theorem one has that D[zκ(f +f
′

)] is a hyperbolic polynomial
and therefore TQ(f) = z1−kD[zκ(f + f

′

)] is a hyperbolic polynomial. �

Lemma 7. Let TQ = κ + (z + κ) d
dz + z d2

dz2 . Any linear combination αpn +
βpn+1 with real coefficients of the polynomial eigenfunctions of TQ with κ =
0,−1,−2, . . . ,−(n − 1) is a hyperbolic polynomial.
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Proof of Lemma 7. Applying to αpn + βpn+1 some high power T−N
Q of

the inverse operator one gets

T−N
Q (αpn + βpn+1) =

α

λN
n

pn +
β

λN
n+1

pn+1 =

=
α

λN
n

(pn + εpn+1),

where ε is arbitrarily small for the appropriate choice of N (since 0 < λn <
λn+1). Thus, by Lemma 5, the polynomial T−N

Q (αpn + βpn+1) is hyperbolic
for sufficiently big N . Assume that αpn + βpn+1 is nonhyperbolic and take the
largest N0 for which RN0

= T−N0

Q (αpn + βpn+1) is still nonhyperbolic. Then

RN0
= TQ(RN0+1) where RN0+1 = T−N0−1

Q (αpn + βpn+1). Note that RN0+1 is
hyperbolic and that if κ = 0,−1,−2, . . . ,−(n − 1) then the application of TQ

to any hyperbolic linear combination αpn + βpn+1 with real coefficients results
in a hyperbolic polynomial by Lemma 6. Contradiction. �

Lemma 8. If Rn and Rn+1 are any real polynomials of degrees n and n + 1,
respectively, then saying that every linear combination αRn + βRn+1 with real
coefficients is hyperbolic is equivalent to saying that
(i) both Rn and Rn+1 are hyperbolic, and
(ii) their roots are interlacing.

We now prove Theorem 7. Consider the operator TQ = (z + κ) d
dz + z d2

dz2 where
κ ∈ R with κ = 0,−1,−2, . . . ,−(n − 1), and let pn and pn+1 be two consecu-
tive polynomial eigenfunctions of this operator. (Recall that by Corollary 2

′

the
roots of these polynomial eigenfunctions lie on straight lines in C.) By Lemma
5 the linear combination pn + εpn+1 is hyperbolic for any sufficiently small ε.
Using Lemmas 5 and 6 we can therefore apply Lemma 7 which says that any
linear combination αpn + βpn+1 with real coefficients α and β is a hyperbolic
polynomial. By Lemma 8 this implies that the roots of pn and pn+1 are inter-
lacing and we are done. �

Remark. Note that we recover the interlacing property of the Laguerre poly-
nomials using the same proof as in Theorem 7, but with a small modification
of Lemma 6. Namely, if κ > 0, then the application of TQ to any hyperbolic
polynomial results in a hyperbolic polynomial. For if f is a hyperbolic polyno-
mial, then f

′

is hyperbolic by Gauss-Lucas Theorem, f and f
′

have interlacing
roots by Rolle’s Theorem, and by the well-known Lemma 8 the linear combi-
nation (f + f

′

), and therefore zκ(f + f
′

), is a hyperbolic polynomial. Finally
D[zκ(f + f

′

)] = zκ−1TQ(f) is hyperbolic by Gauss-Lucas Theorem.

In the analysis leading to Theorem 8 we rule out the case when κ is a negative
integer. We begin by introducing the Bessel function of the first kind of order
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κ, which is defined by the series

Jκ(z) ≡
∞
∑

ν=0

(−1)ν(z/2)κ+2ν

ν!Γ(κ + ν + 1)

where z, κ ∈ C and |z| < ∞. Clearly z−κJκ(z) is an entire analytic function
for all z ∈ C if κ is not a negative integer. This Bessel function is a solution
to Bessel’s equation 7 of order κ, which is the second-order linear differential
equation given by

z2 d2y

dz2
+ z

dy

dz
+ (z2 − κ2)y = 0.

In order to prove Theorem 8, we will need the following technical lemma:

Lemma 9.

lim
n→∞

(

n + κ − 1

n − ν

)

n1−κ−ν =
1

Γ(κ + ν)

where n, ν ∈ R and κ ∈ C \ {−1,−2, . . .}.

Proof. Using the following well-known asymptotic formula:

Corollary of the Stirling formula. 8

lim
n→∞

Γ(n + α)

Γ(n)
n−α = 1

where α ∈ C and n ∈ R,

we get

lim
n→∞

(

n + κ − 1

n − ν

)

n1−κ−ν =
1

Γ(κ + ν)
lim

n→∞

Γ(n + κ)

Γ(n − ν + 1)
n1−κ−ν

=
1

Γ(κ + ν)
lim

n→∞

Γ(n + κ)

Γ(n)
n−κ lim

n→∞

Γ(n)

Γ(n − ν + 1)
n1−ν

=
1

Γ(κ + ν)
.

Proof of Theorem 8. By Lemma 3 our polynomial eigenfunctions have the
explicit representation

pn(κ, z) =

n
∑

ν=0

(

n

ν

)

(κ + n − 1)!

(κ + ν − 1)!
zν =

n
∑

ν=0

(

n + κ − 1

n − ν

)

n!

ν!
zν

7Bessel’s equation is encountered in the study of boundary value problems in potential
theory for cylindrical domains. The solutions to Bessel’s equation are referred to as cylinder

functions, of which the Bessel functions are a special kind.
8see e.g.[25]
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where κ ∈ C.

Thus, with the scaling z → z/n and using Lemma 9, we get

lim
n→∞

n1−κ

n!
pn(κ, z/n) = lim

n→∞

n
∑

ν=0

(

n + κ − 1

n − ν

)

n1−κ 1

ν!

(

z

n

)ν

= lim
n→∞

n
∑

ν=0

(

n + κ − 1

n − ν

)

n1−κ−ν zν

ν!

=

∞
∑

ν=0

zν

Γ(κ + ν)ν!
= (−z)(1−κ)/2Jκ−1(2i

√
z).

�

Remark. It is easy to prove that the power series
∑∞

ν=0
zν

Γ(κ+ν)ν! does indeed

satisfy the differential equation zu
′′

+ κu
′ − u = 0, which arises by the limiting

procedure n → ∞ from our eigenvalue equation zu
′′

+ (z + κ)u
′ − nu = 0, after

scaling the variables.

Proof of Corollary 4. We will need the following well-known theorem 9:

Hurwitz’s Theorem: Let f1, f2, . . . ∈ A(U), fn → f uniformly on compact
subsets of U . Suppose that D̄(z0, r) ⊂ U and f is not zero on {z : |z − z0| = r}.
Then there is a positive integer N such that for n ≥ N , fn and f have the same
number of zeros in D(z0, r).

Fix ε > 0. Let 4 denote the open disc centered at ζ and lying inside the
wedge {t − ε < arg z < t + ε}. For z ∈ 4, z/n ∈ Dε(t) for large enough n.
Therefore, if there is an infinite sequence ni → ∞ such that pni

does not vanish
at any point of Dε(t), the corresponding functions pni

(z/ni), for large i, are
zero-free when z is in 4 (because of the factor 1

ni

→ 0) and consequently Fκ(ζ)
must be different from zero, contradiction. �

9see [1] p. 162
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Appendix: Proof of (1) in Section 2.

Note that we have adopted the notational convention Γ(n+κ) = (n+κ−1)! for κ ∈ � , where
Γ denotes the Gamma function. I start by calculating R(1) and R(2) and so the hypothesis
(actually there are two hypotheses, one for even i and one for odd i) is true for one case of
even i and one case of odd i. With the nth degree eigenpolynomial pn = � n

j=0
an,jzj we

have by Lemma 3 that

an,j = � n

j � (κ + n − 1)!

(κ + j − 1)!
⇒ pn =

n�
j=0

� n

j � (κ + n − 1)!

(κ + j − 1)!
zj .

Calculation of R(1) = [the negative of the remainder when the eigenpolynomial pn is divided

by p
′

n]:

z

n
+

(n − 1 + κ)

n

n�
j=1

j � n

j � (κ + n − 1)!

(κ + j − 1)!
zj−1

n�
j=0

� n

j � (κ + n − 1)!

(κ + j − 1)!
zj

− � n�
j=1

j

n
� n

j � (κ + n − 1)!

(κ + j − 1)!
zj �

=

n−1�
j=0

� n

j � (κ + n − 1)!

(κ + j − 1)!
� 1 −

j

n

� zj

− � n−1�
j=0

j + 1

n
� n

j + 1 � (κ + n − 1)
(κ + n − 1)!

(κ + j)!
zj �

=

n−2�
j=0

� � n

j � (κ + n − 1)!

(κ + j − 1)! � 1 −
j

n � −
(j + 1)

n
� n

j + 1 � (κ + n − 1)
(κ + n − 1)!

(κ + j)!
� zj

and it remains to prove that the negative of this remainder equals

R(1) = (n − 1)(κ + n − 1)

n−2�
j=0

� n − 2

j � (κ + n − 2)!

(κ + j)!
zj .
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Developing the coefficient in front of zj in our remainder we obtain

� n

j � (κ + n − 1)!

(κ + j − 1)! � 1 −
j

n � −
(j + 1)

n
� n

j + 1 � (κ + n − 1)
(κ + n − 1)!

(κ + j)!

=
n!

(n − j)!j!

(κ + n − 1)!

(κ + j − 1)!
−

n!

(n − j)!j!

j

n

(κ + n − 1)!

(κ + j − 1)!
−

(j + 1)

n

n!(κ + n − 1)

(j + 1)!(n − j − 1)!

(κ + n − 1)!

(κ + j)!

=
n(n − 1)(n − 2)!

(n − j − 2)!(n − j − 1)(n − j)j!

(κ + n − 2)!(κ + n − 1)(κ + j)

(κ + j)!

−
(n − 1)(n − 2)!(κ + n − 2)!(κ + n − 1)j(κ + j)

(n − j − 2)!(n − j − 1)(n − j)(κ + j)!j!
−

(n − 1)(n − 2)!(κ + n − 1)2(κ + n − 2)!

j!(n − j − 2)!(n − j − 1)(κ + j)!

= (n − 1)(κ + n − 1)
(n − 2)!

j!(n − j − 2)!

(κ + n − 2)!

(κ + j)!
� n(κ + j)

(n − j − 1)(n − j)
−

j(κ + j)

(n − j − 1)(n − j)

−
(κ + n − 1)(n − j)

(n − j − 1)(n − j)
�

= (n − 1)(κ + n − 1) � n − 2

j � (κ + n − 2)!

(κ + j)!
� nκ + nj − jκ − j2

− κn + κj − n2 + nj + n − j

n2 − nj − nj + j2 − n + j

�
= −(n − 1)(κ + n − 1) � n − 2

j � (κ + n − 2)!

(κ + j)!
,

and we are done.
Calculation of R(2) = [the negative of the remainder when p

′

n is divided by R(1)]:

nz

(n − 1)(κ + n − 1)
+

n(2n − 3 + κ)

(n − 1)(κ + n − 1)

n−2�
j=0

� n − 2

j � (κ + n − 2)!

(κ + j)!
(n − 1)(κ + n − 1)zj

n−1�
j=0

(j + 1) � n

j + 1 � (κ + n − 1)!

(κ + j)!
zj

− � n−1�
j=1

n � n − 2

j − 1 � (κ + n − 2)!

(κ + j − 1)!
zj �

=

n−2�
j=0

� (j + 1) � n

j + 1 � (κ + n − 1)!

(κ + j)!
− n � n − 2

j − 1 � (κ + n − 2)!

(κ + j − 1)!
� zj

− � n−2�
j=0

� n − 2

j � (κ + n − 2)!

(κ + j)!
n(2n−3+κ)zj �

=

n−3�
j=0

� (κ + n − 2)!

(κ + j − 1)! � (j + 1) � n

j + 1 � (κ + n − 1)!

(κ + j)!
− n � n − 2

j − 1 � � − n(2n − 3 + κ) � n − 2

j � (κ + n − 2)!

(κ + j)!
� zj

and it remains to prove that the negative of this remainder equals

R(2) = n(n − 2)(κ + n − 2)

n−3�
j=0

� n − 3

j � (κ + n − 3)!

(κ + j)!
zj .
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Developing the coefficient in front of zj in our remainder we have

(κ + n − 2)!

(κ + j − 1)!
(j + 1) � n

j + 1 � (κ + n − 1)

(κ + j)
−

(κ + n − 2)!

(κ + j − 1)!
n � n − 2

j − 1 � −
(κ + n − 2)!

(κ + j)!
� n − 2

j � n(2n − 3 + κ)

=
(κ + n − 2)!

(κ + j − 1)!

n!

j!(n − j − 1)!

(κ + n − 1)

(κ + j)
−

(κ + n − 2)!

(κ + j − 1)!

n(n − 2)!

(j − 1)!(n − j − 1)!

−
(κ + n − 2)!

(κ + j)!

(n − 2)!

(j!(n − j − 2)!
n(2n − 3 + κ)

=
(κ + n − 3)!(κ + n − 2)(n − 3)!(n − 2)(n − 1)n(κ + n − 1)

(κ + j)!j!(n − j − 3)!(n − j − 2)(n − j − 1)

−
(κ + n − 3)!(κ + n − 2)n(n − 2)(n − 3)!j(κ + j)

j!(n − j − 3)!(n − j − 2)(n − j − 1)(κ + j)!

−
(κ + n − 3)!(κ + n − 2)(n − 2)(n − 3)!n(2n − 3 + κ)

(κ + j)!j!(n − j − 2)(n − j − 3)!

=
(κ + n − 3)!(n − 3)!

(κ + j)!j!(n − j − 3)!
n(n − 2)(κ + n − 2) � (n − 1)(κ + n − 1)

(n − j − 2)(n − j − 1)

−
j(κ + j)

(n − j − 2)(n − j − 1)
−

(2n − 3 + κ)(n − j − 1)

(n − j − 2)(n − j − 1)
�

= n(n − 2)(κ + n − 2) � n − 3

j � (κ + n − 3)!

(κ + j)!
� −n2 + nj + n + nj − j2

− j + 2n − 2j − 2

n2 − nj − n − nj + j2 + j − 2n + 2j + 2
�

= −n(n − 2)(κ + n − 2) � n − 3

j � (κ + n − 3)!

(κ + j)!
,

and we are done.

To prove the induction hypotheses we divide R(i) by R(i + 1) to obtain R(i + 2). Here
it is assumed that i is odd. The proof with even i differs only in small details from this proof
and is therefore omitted here. For simplicity we use the notations�

A = (n − 1)(κ + n − 1)(n − 3)(κ + n − 3) . . . (n − i)(κ + n − i),
B = n(n − 2)(κ + n − 2)(n − 4)(κ + n − 4) . . . (n − i)(κ + n − i).

Dividing R(i) by R(i + 1):

A

B
z +

A

B
(2n − 2i − 3 + κ)

B

n−i−2�
j=0

� n − i − 2

j � (κ + n − i − 2)!

(κ + j)!
zj

A

n−i−1�
j=0

� n − i − 1

j � (κ + n − i − 1)!

(κ + j)!
zj

− � A n−i−1�
j=1

� n − i − 2

j − 1 � (κ + n − i − 2)!

(κ + j − 1)!
zj �

= A

n−i−2�
j=0

� � n − i − 1

j � (κ + n − i − 1)!

(κ + j)!
− � n − i − 2

j − 1 � (κ + n − i − 2)!

(κ + j − 1)!
� zj

− � A n−i−2�
j=0

(2n−2i−3+κ) � n − i − 2

j � (κ + n − i − 2)!

(κ + j)!
zj �

= A

n−i−3�
j=0

� � n − i − 1

j � (κ + n − i − 1)!

(κ + j)!
− � n − i − 2

j − 1 � (κ + n − i − 2)!

(κ + j − 1)!
− (2n − 2i − 3 + κ) � n − i − 2

j � (κ + n − i − 2)!

(κ + j)!
� zj
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and it remains to prove that the negative of this remainder equals the excpected (by hypoth-
esis)

R(i + 2) = A(n − i − 2)(κ + n − i − 2)

n−i−3�
j=0

� n − i − 3

j � (κ + n − i − 3)!

(κ + j)!
zj ,

i.e. we have to prove the following equality:

� n − i − 1

j � (κ + n − i − 1)!

(κ + j)!
− � n − i − 2

j − 1 � (κ + n − i − 2)!

(κ + j − 1)!
− (2n − 2i − 3 + κ) � n − i − 2

j � (κ + n − i − 2)!

(κ + j)!

= −(n − i − 2)(κ + n − i − 2) � n − i − 3

j � (κ + n − i − 3)!

(κ + j)!
.

But

� n − i − 1

j � (κ + n − i − 1)!

(κ + j)!
− � n − i − 2

j − 1 � (κ + n − i − 2)!

(κ + j − 1)!
− (2n − 2i − 3 + κ) � n − i − 2

j � (κ + n − i − 2)!

(κ + j)!

=
(n − i − 1)!

j!(n − i − j − 1)!

(κ + n − i − 1)!

(κ + j)!
−

(n − i − 2)!

(j − 1)!(n − i − j − 1)!

(κ + n − i − 2)!

(κ + j − 1)!

− (2n − 2i − 3 + κ)
(n − i − 2)!

j!(n − i − j − 2)!

(κ + n − i − 2)!

(κ + j)!

=
(n − i − 3)!(n − i − 2)(n − i − 1)(κ + n − i − 3)!(κ + n − i − 2)(κ + n − i − 1)

j!(n − i − j − 1)(n − i − j − 2)(n − i − j − 3)!(κ + j)!

−
(n − i − 3)!(n − i − 2)j(κ + n − i − 3)!(κ + n − i − 2)(c + j)

j!(n − i − j − 3)!(n − i − j − 2)(n − i − j − 1)(κ + j)!

− (2n − 2i − 3 + κ)
(n − i − 3)!(n − i − 2)(κ + n − i − 3)!(κ + n − i − 2)

j!(n − i − j − 3)!(n − i − j − 2)(κ + j)!

= (n − i − 2)(κ + n − i − 2)
(n − i − 3)!

j!(n − i − j − 3)!

(κ + n − i − 3)!

(κ + j)!

· � (n − i − 1)(κ + n − i − 1) − j(κ + j) − (2n − 2i − 3 + κ)(n − i − j − 1)

(n − i − j − 1)(n − i − j − 2)
�

= (n − i − 2)(κ + n − i − 2)
(n − i − 3)!

j!(n − i − j − 3)!

(κ + n − i − 3)!

(κ + j)!
(−1)

= −(n − i − 2)(κ + n − i − 2) � n − i − 3

j � (κ + n − i − 3)!

(κ + j)!
.

�
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