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Abstract

We consider the semilinear Schrödinger equation −∆Au + V (x)u = Q(x)|u|2
∗

−2u. Assum-
ing that V changes sign, we establish the existence of a solution u 6= 0 in the Sobolev space
H1

A,V +(RN ). The solution is obtained by a min - max type argument based on a topological
linking. We also establish certain regularity properties of solutions for a rather general class of
equations involving the operator −∆A.

1 Introduction

In this paper we consider the semilinear Schrödinger equation

−∆Au+ V (x)u = Q(x)|u|2
∗−2u, u ∈ H1

A,V (RN ),(1.1)

where −∆A =
(

−i∇+A
)2

, u : R
N → C, N ≥ 3, 2∗ := 2N/(N −2) is the critical Sobolev exponent.

The coefficient V is the scalar (or electric) potential and A = (A1, . . . , AN ) : R
N → R

N the vector

(or magnetic) potential. Throughout this paper we assume that A ∈ L2
loc(R

N ), V ∈ L1
loc(R

N ) and

V − ∈ L
N
2 (RN ). Here V − is the negative part of V , that is V −(x) = max

(

−V (x), 0
)

. It is assumed

that the coefficient Q is positive, continuous and bounded on R
N . Further assumptions on Q will

be formulated later.

We now define some Sobolev spaces. By D1,2
A (RN ) we denote the Sobolev space defined by

D1,2
A (RN ) = {u; u ∈ L2∗(RN ), ∇Au ∈ L2(RN )},

where ∇A =
(

∇ + iA
)

. The space D1,2
A (RN ) is a Hilbert space with the inner product

∫

�
N

∇Au∇Av dx.

It is known that the space C∞
0 (RN ) is dense in D1,2

A (RN ) [8]. Equivalently D1,2
A (RN ) can be defined

as the closure of C∞
0 (RN ) with respect to the norm

‖u‖2
D1,2

A

=

∫

�
N

|∇Au|
2 dx.
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By H1
A,V +(RN ) we denote the Sobolev space obtained as the closure of C∞

0 (RN ) with respect to

the norm

‖u‖2
H1

A,V +
=

∫

�
N

(

|∇Au|
2 + V +(x)|u|2

)

dx,

where V +(x) = max(V (x), 0). H1
A,V +(RN ) is a Hilbert space with the inner product

∫

�
N

(

∇Au∇Av + V +(x)uv̄
)

dx.

Obviously, we have a continuous embedding H1
A,V +(RN ) ⊂ D1,2

A (RN ).

We shall frequently use in this paper the diamagnetic inequality (see [11])

|∇|u|| ≤ |∇Au| a.e. in R
N .(1.2)

This inequality implies that if u ∈ H1
A,V +(RN ), then |u| ∈ D1,2(RN ), where D1,2(RN ) is the usual

Sobolev space of real valued functions defined by

D1,2(RN ) = {u; ∇u ∈ L2(RN ) and u ∈ L2∗(RN )}.

Therefore, as a consequence of the Sobolev inequality, we see that |u| ∈ L2∗(RN ).

Solutions of (1.1) will be sought in the Sobolev space H 1
A,V +(RN ) as critical points of the

functional

J(u) =
1

2

∫

�
N

(

|∇Au|
2 + V (x)|u|2

)

dx−
1

2∗

∫

�
N

Q(x)|u|2
∗

dx.

It is easy to see that J is a C1 - functional on H1
A,V +(RN ).

The paper is organized as follows. Section 2 is devoted to the regularity properties of solutions

of (1.1). We show that solutions in H1
A,V +(RN ) are bounded and decay to 0 at infinity. In Section 3

we establish the Palais - Smale condition for the variational functional J . The existence results for

(1.1) are given in Section 4. First we solve a weighted linear eigenvalue problem for the operator

−∆A + V +. If the first eigenvalue µ1 > 1, then a solution is obtained through a constrained

minimization. This situation has already been envisaged in the paper [1]. If µ1 ≤ 1 we employ a

topological linking argument.

Problem (1.1) with A = 0 has an extensive literature. However, the interest in the case A 6= 0

has arisen recently ([1], [7], [8], [10], [14]). The importance of problem (1.1) in physics has been

discussed in the paper [1].

In this paper we use standard notations. In a given Banach space X weak convergence is

denoted by ” ⇀ ” and strong convergence by ” → ”.
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2 The regularity of solutions involving the operator ∆A

Let V be a nonnegative function in L1
loc(R

N ). We commence by establishing the integrability

properties of solutions of the equation

−∆Au+ V u = g(x)u in R
N .(2.1)

It is assumed that g : R
N → R is a measurable function satisfying

|g(x)| ≤ a+ b(x) on R
N ,

where a ≥ 0 is a constant and b is a nonnegative function in L
N
2 (RN ).

Let φ(x) = η(x)2u(x)min
(

|u(x)|β−1, L
)

, where β > 1 and L > 0 are constants, u ∈ H1
A,V (RN )

and η is a C1- real valued function which is bounded together with its derivatives.

In what follows, χΩ denotes the characteristic function of the set Ω. By straightforward com-

putations we have

∇Aφ = 2η∇ηūmin
(

|u|β−1, L
)

+ η2∇Aumin
(

|u|β−1, L
)

+ (β − 1)η2ū|u|β−2∇|u|χ{|u|β−1<L}

and

∇Au∇Aφ = |∇Au|
2η2 min

(

|u|β−1, L
)

+ 2η∇ηūmin
(

|u|β−1, L
)

∇Au

+ (β − 1)η2ū|u|β−2∇|u|χ{|u|β−1<L}∇Au.

We now observe that

Re (ū∇Au) = Re
(

∇u+ iAu
)

ū = Re (ū∇u) = |u|Re
( ū

|u|
∇u

)

= |u|∇|u|.

Taking the real part of ∇Au∇Aφ we obtain the following inequality:

Re (∇Au∇Aφ) = |∇Au|
2η2 min

(

|u|β−1, L
)

+ 2η∇η∇|u||u|min
(

|u|β−1, L
)

(2.2)

+ (β − 1)η2|u|β−1|∇|u||2χ{|u|β−1<L}

≥ |∇Au|
2η2 min

(

|u|β−1, L
)

+ 2η∇η∇|u||u|min
(

|u|β−1, L
)

.

Lemma 2.1 Solutions of equation (2.1) in H1
A,V (RN ) belong to Lp(RN ) for every p ∈ [2∗,+∞).

Proof We adapt to our case an argument which may be found e.g. in [16, Appendix B]. We test

equation (2.1) with φ = umin
(

|u|β−1, L
)

. It then follows from inequality (2.2), with η = 1, that

for every constant K > 0 we have
∫

�
N

|∇Au|
2 min

(

|u|β−1, L
)

dx ≤ a

∫

�
N

|u|2 min
(

|u|β−1, L
)

dx(2.3)

+ K

∫

b(x)≤K
|u|2 min

(

|u|β−1, L
)

dx

+

(
∫

b(x)>K
b(x)

N
2 dx

)
2
N

(
∫

�
N

(

|u|min
(

|u|
β−1

2 , L
1
2
)

)2∗

dx

)
N−2

N

≤ (a+K)

∫

�
N

|u|2 min
(

|u|β−1, L
)

dx

+

(
∫

b(x)>K
b(x)

N
2 dx

)
2
N

(
∫

�
N

(

|u|min
(

|u|
β−1

2 , L
1
2
)

)2∗

dx

)
N−2

N

.
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On the other hand, by the diamagnetic inequality we have
∫

�
N

|∇|u||2 min
(

|u|β−1, L
)

dx ≤

∫

�
N

|∇Au|
2 min

(

|u|β−1, L
)

dx.(2.4)

We also have
∫

�
N

|∇
(

|u|min
(

|u|
β−1

2 , L
1
2
))

|2 dx ≤ 2

∫

�
N

|∇|u||2 min
(

|u|β−1, L
)

dx(2.5)

+
(β − 1)2

2

∫

�
N

|∇|u||2|u|β−1χ{|u|β−1<L} dx

≤
(

2 +
(β − 1)2

2

)

∫

�
N

|∇|u||2 min
(

|u|β−1, L
)

dx.

Combining (2.3), (2.4) and (2.5) we obtain

∫

�
N

|∇
(

|u|min
(

|u|
β−1

2 , L
1
2
))

|2 dx ≤ (a+K)
(

2 +
(β − 1)2

2

)

∫

�
N

|u|2 min
(

|u|β−1, L
)

dx

+
(

2 +
(β − 1)2

2

)

(
∫

b(x)>K
b(x)

N
2 dx

)
2
N

(
∫

�
N

(

|u|min
(

|u|
β−1

2 , L
1
2

)

)2∗

dx

)
N−2

N

.

Since
∫

b(x)>K b(x)
N
2 dx → 0 as K → ∞, taking K sufficiently large and applying the Sobolev

inequality to the left-hand side above, we obtain

(
∫

�
N

(

|u|min
(

|u|
β−1

2 , L
1
2
)

)2∗

dx

)
2
2∗

≤ C1(K,β)

∫

�
N

|u|2 min
(

|u|β−1, L
)

dx(2.6)

for some constant C1(K,β) > 0. We now set β+1 = 2∗. Letting L→ ∞ we derive from the above

inequality that

(
∫

�
N

|u|
2∗N
N−2 dx

)
2
2∗

≤ C1(K, 2
∗)

∫

�
N

|u|2
∗

dx

and thus u ∈ L
2∗N
N−2 (RN ). A standard application of a boot - strap argument to (2.6) completes the

proof. 2

Proposition 2.2 If u ∈ H1
A,V (RN ) is a solution of (2.1), then u ∈ L∞(RN ) and lim|x|→∞ u(x) = 0.

Proof We follow some ideas from the proof of Theorem 8.17 in [9] (in particular, we use Moser’s

iteration technique). Let η be a C1-function in R
N with a compact support. Testing (2.1) with

φ = η2umin
(

|u|β−1, L
)

and using inequality (2.2) we obtain the estimate

∫

�
N

|∇Au|
2η2 min

(

|u|β−1, L
)

dx+ 2

∫

�
N

η∇η∇|u||u|min
(

|u|β−1, L
)

dx

≤

∫

�
N

b|u|2η2 min
(

|u|β−1, L
)

dx+ a

∫

�
N

|u|2η2 min
(

|u|β−1, L
)

dx.

Hence by the diamagnetic inequality and since

1

2
η2|∇|u||2 − 2|u|2|∇η|2 ≤ η2|∇|u||2 + 2η|u|∇|u|∇η,
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we get

1

2

∫

�
N

|∇|u||2η2 min
(

|u|β−1, L
)

dx ≤

∫

�
N

b|u|2η2 min
(

|u|β−1, L
)

dx

+2

∫

�
N

|∇η|2|u|2 min
(

|u|β−1, L
)

dx+ a

∫

�
N

|u|2η2 min
(

|u|β−1, L
)

dx.

Letting L→ ∞ we obtain

1

2

∫

�
N

|∇|u||2η2|u|β−1 dx ≤

∫

�
N

b|u|β+1η2 dx+ 2

∫

�
N

|∇η|2|u|β+1 dx

+ a

∫

�
N

|u|β+1η2 dx.

Substituting w = |u|
β+1

2 in this inequality, we obtain

2

(β + 1)2

∫

�
N

|∇w|2η2 dx ≤

∫

�
N

bw2η2 dx+ 2

∫

�
N

|∇η|2w2 dx(2.7)

+ a

∫

�
N

w2η2 dx.

We now observe that
∫

�
N

|∇(wη)|2 dx ≤ 2

∫

�
N

|∇w|2η2 dx+ 2

∫

�
N

|∇η|2w2 dx,

which combined with (2.7) gives
∫

�
N

|∇(wη)|2 dx ≤ (β + 1)2
∫

�
N

bw2η2 dx+ 2
(

(β + 1)2 + 1
)

∫

�
N

|∇η|2w2 dx

+ (β + 1)2a

∫

�
N

η2w2 dx.

It then follows from the Hölder and Sobolev inequalities that

S

(
∫

�
N

(wη)2
∗

dx

)
N−2

N

≤ (β + 1)2
(

∫

�
N

b
N
2 dx

)
2
N

(
∫

�
N

(wη)2
∗

dx

)
N−2

N

(2.8)

+ 2
(

(β + 1)2 + 1
)

∫

�
N

|∇η|2w2 dx+ a(β + 1)2
∫

�
N

η2w2 dx,

where S = inf{
∫

�
N |∇u|2 dx; u ∈ C∞

◦ (RN ),
∫

�
N |u|2

∗

dx = 1} is the Sobolev constant. To proceed

further we choose R > 0 so that

(β + 1)2
(

∫

|x|>R
b

N
2 dx

)
2
N

≤
S

2
.

Assuming that supp η ⊂ (|x| > R) we derive from (2.8) that

S

(
∫

�
N

(wη)2
∗

dx

)
N−2

N

≤ 4
(

(β + 1)2 + 1
)

∫

�
N

|∇η|2w2 dx(2.9)

+ 2a(β + 1)2
∫

�
N

η2w2 dx.

5



We now make a more specific choice of η: η ∈ C1(RN , [0, 1]), η(x) = 1 in B(x0, r1), η(x) = 0 in

R
N −B(x0, r2), |∇η(x)| ≤

2
r2−r1

in R
N , 1 ≤ r1 < r2 ≤ 2. It is also assumed that B(x0, r2) ⊂ (|x| >

R). It then follows from (2.9) that

(
∫

B(x0,r1)
w2∗ dx

)
1
2∗

≤
A(β + 1)

r2 − r1

(
∫

B(x0,r2)
w2 dx

)
1
2

,

where A is an absolute constant. Setting γ = β + 1 = 2∗, χ = N
N−2 we get

(
∫

B(x0,r1)
|u|γχ dx

)
1

γχ

≤

(

Aγ

r2 − r1

)
2
γ
(

∫

B(x0,r2)
|u|γ dx

)
1
γ

.

To iterate this inequality (which holds for any γ ≥ 2∗), we take sm = 1 + 2−m, r1 = sm, r2 = sm−1

and replace γ = 2∗ by γχm−1, m = 1, 2, . . . . Then we get

(
∫

B(x0 ,sm)
|u|χ

mγ dx

)
1

γχm

≤

(

Aγχm−1

sm−1 − sm

)
2

γχm−1
(

∫

B(x0 ,sm−1)
|u|χ

m−1γ dx

)
1

γχm−1

= (Aγ)
2

γχm−1 2
2m

γχm−1 χ
2(m−1)

γχm−1

(
∫

B(x0,sm−1)
|u|χ

m−1γ dx

)
1

γχm−1

,

and by induction,

(
∫

B(x0,sm)
|u|χ

mγ dx

)
1

γχm

≤ (Aγ)
2
γ

� m−1
j=0

1

χj 2
2
γ

� m−1
j=0

j+1

χj χ
2
γ

� m−1
j=0

j

χj

(
∫

B(x0,s0)
|u|γ dx

)
1
γ

for each m > 1. Since s0 = 2 and sm → 1, we deduce the following estimate by letting m → ∞ :

there exist constants R > 0 and C > 0 such that for every B(x0, 2) ⊂ (|x| > R) we have

sup
B(x0,1)

|u(x)| ≤ C

(
∫

B(x0,2)
|u|γ dx

)
1
γ

.

This inequality yields lim|x|→∞ |u(x)| = 0. To prove the boundedness of u in the ball B(0, R) we

fix x̄ ∈ B(0, R), choose r > 0 so that

(β + 1)2
(

∫

B(x̄,r)
b

N
2 dx

)
2
N

≤
S

2
,

and then let η have support in B(x̄, r). We now repeat the previous argument with a suitable

rescaling in the ball B(x̄, r) to obtain the boundedness of u in B(x̄, r
2). By a standard compactness

argument we show that u is bounded in B(0, R). This combined with the first part of the proof

shows that u ∈ L∞. 2

We now observe that any solution u ∈ H1
A,V +(RN ) of the equation

−∆Au+ V (x)u = f(x, |u|)u,(2.10)

where |f(x, |u|)| ≤ c(1 + |u|2
∗−2), satisfies

−∆Au+ V +(x)u =
(

V −(x) + f(x, |u|)
)

u ≡ g(x)u.(2.11)

Since |g(x)| ≤ c+ (V −(x) + c|u(x)|2
∗−2) and V − ∈ L

N
2 (RN ), |u|2

∗−2 ∈ L
2∗

2∗−2 (RN ) = L
N
2 (RN ), we

can state the following result:
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Corollary 2.3 Let u ∈ H1
A,V +(RN ), N ≥ 3, be a solution of (2.10). Then u ∈ L∞(RN ) and

lim|x|→∞ u(x) = 0 (in the sense that limR→∞ ‖u‖L∞(
�

N−B(0,R)) = 0).

Remark 2.4 Let N = 2. If u ∈ H1
A,V +(R2) ∩ L2(R2), then u ∈ Lp(R2) for all p ∈ [2,+∞)

by the diamagnetic inequality and the Sobolev embedding theorem. Suppose g(x) in (2.1) is such

that b ∈ Lq(R2) for some q ∈ (1, 2) and u ∈ H1
A,V +(R2) ∩ L2(R2) is a solution of (2.1). Then

the conclusion of Proposition 2.2 remains valid. Indeed, the argument employed there applies

except that the L2∗ -norm in (2.8) should be replaced by the Lq′-norm, where q′ = q
q−1 , and one

needs to take γ = β + 1 = q′, χ = q′

2 . Also the conclusion of Corollary 2.3 remains valid if

u ∈ H1
A,V +(R2) ∩ L2(R2), V − ∈ Lq(R2) and |f(x, |u|)| ≤ c(1 + |u|r) for some q ∈ (1, 2) and r > 0.

Note in particular that Corollary 2.3 (or Remark 2.4 if N = 2) applies to all solutions found in

[1], [8] as well as to the solutions found in Theorems 4.1, 4.2 and Corollary 4.3 below.

As an application of Corollary 2.3 and Remark 2.4 we establish an exponential decay of solutions

of (2.10). However, we need additional assumptions on V and f .

Proposition 2.5 Suppose that f ≥ 0, f(x, 0) = 0, V + ∈ Lp
loc(R

N ) and V − ∈ Lp(RN ) for some

p > N
2 . Moreover, assume that there exist constants a > 0 and R > 0 such that V (x) ≥ a for

|x| ≥ R. If u ∈ H1
A,V +(RN ) is a solution of (2.10), then

|u(x)| ≤ Ce−α|x| a.e. in R
N ,

where α2 = a
2 .

Proof Since V ≥ a for |x| ≥ R, it is easy to see that u ∈ L2(RN ), and hence u ∈ Lq(RN ) for all

2 ≤ q ≤ +∞ according to Corollary 2.3 (or Remark 2.4). Therefore there exists a unique solution

v ∈ H1(RN ) of the equation

−∆v + V +(x)v =
(

V −(x) + f(x, |u|)
)

|u|,

and by standard regularity theory and the maximum principle v is continuous and ≥ 0. Moreover,

it follows from (2.11) and Theorem B.13.2 in [15] that |u| ≤ v a.e. (more precisely, one obtains this

inequality by integrating (B41) of [15] from t = 0 to t = +∞; the hypothesis that p > N
2 is used

in order to have v continuous and V + ∈ K loc
N , V − ∈ KN in the notation of [15]). Now it remains

to establish the exponential decay of v. We follow the argument used in Proposition 4.4 from [17].

Since v satisfies

−∆v + V +(x)v ≤
(

V −(x) + f(x, |u|)
)

v in R
N ,

we have

−∆v ≤
(

−V (x) + f(x, |u|)
)

v ≤ −
a

2
v for |x| ≥ R

by taking R larger if necessary. Let

W (x) = Me−α(|x|−R) and Ω(L) = {x; R < |x| < L and v(x) > W (x)},
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where a constant M > 0 is chosen so that v(x) ≤W (x) for |x| = R. If α2 = a
2 , we get

∆(W − v) =
(

α2 −
α(N − 1)

|x|

)

W − ∆v ≤ α2(W − v) ≤ 0

on Ω(L). By the maximum principle

W (x) − v(x) ≥ min
x∈∂Ω(L)

(W − v) ≥ min
(

0, min
|x|=L

(W − v)
)

.

Since lim|x|→∞ v(x) = lim|x|→∞W (x) = 0, letting L→ ∞, we deduce that

v(x) ≤W (x) = Me−α(|x|−R)

for |x| ≥ R. 2

3 Palais-Smale sequences

The following result is well-known, but we include it for the sake of completeness:

Lemma 3.1 Let {um} ⊂ H1
A,V +(RN ) be a sequence such that

J ′(um) → 0 in H−1
A,V +(RN ) and J(um) → c.

Then {um} is bounded in H1
A,V +(RN ).

Proof Arguing by contradiction, assume that {um} is unbounded in H1
A,V +(RN ). We set vm =

um

‖um‖
H1

A,V +

. We may assume that vm ⇀ v in H1
A,V +(RN ) and vm → v in Lp

loc(R
N ) for each

2 ≤ p < 2∗ and a.e. on R
N . For every φ ∈ H1

A,V +(RN ) we have

1

‖um‖2∗−2
H1

A,V +

∫

�
N

(

∇Avm∇Aφ+ V vmφ̄
)

dx =

∫

�
N

Q|vm|2
∗−2vmφ̄ dx+ o(1).(3.1)

Hence
∫

�
N

Q|v|2
∗−2vφ̄ dx = 0

for every φ ∈ H1
A,V +(RN ) and consequently v = 0 a.e. on R

N (recall Q > 0). Since V − ∈ L
N
2 (RN )

we see that limm→∞

∫

�
N V

−|vm|2 dx = 0. Therefore substituting φ = vm in (3.1) we get

‖vm‖2
H1

A,V +
≡

∫

�
N

(

|∇Avm|2 + V +|vm|2
)

dx = ‖um‖2∗−2
H1

A,V +

∫

�
N

Q|vm|2
∗

dx+ o(1).

Since J(um) → c, we also have

1

2
‖vm‖2

H1
A,V +

≡
1

2

∫

�
N

(

|∇Avm|2 + V +|vm|2
)

dx =

‖um‖2∗−2
H1

A,V +

2∗

∫

�
N

Q|vm|2
∗

dx+ o(1).

8



The last two relations imply that ‖vm‖H1
A,V +

→ 0, which is impossible. 2

In Proposition 3.2 below we determine the energy level of the functional J below which the

Palais - Smale condition holds. Let

Q̃ = sup
x∈

�
N

Q(x).

Proposition 3.2 Let a sequence {um} ⊂ H1
A,V +(RN ) be such that

J(um) → c <
S

N
2

NQ̃
N−2

2

and J ′(um) → 0 in H−1
A,V +(RN ).

Then {um} is relatively compact in H1
A,V +(RN ).

Proof By Lemma 3.1 {um} is bounded. Therefore we may assume um ⇀ u in H1
A,V +(RN ) and

um → u a.e. Let um = vm + u. Then
∫

�
N

(

|∇Aum|2 + V +|um|2
)

dx =

∫

�
N

(

|∇Avm|2 + V +|vm|2
)

dx+

∫

�
N

(

|∇Au|
2 + V +|u|2

)

dx+ o(1),

∫

�
N

V −|um|2 dx =

∫

�
N

V −|vm|2 dx+

∫

�
N

V −|u|2 dx+ o(1) =

∫

�
N

V −|u|2 dx+ o(1)

and by the Brézis-Lieb lemma [2], [18],
∫

�
N

Q|um|2
∗

dx =

∫

�
N

Q|vm|2
∗

dx+

∫

�
N

Q|u|2
∗

dx+ o(1).

As u is a solution of (1.1), it follows that

o(1) = 〈J ′(um), um〉 = 〈J ′(vm), vm〉 + 〈J ′(u), u〉 + o(1) = 〈J ′(vm), vm〉 + o(1),

and thus

lim
m→∞

∫

�
N

(

|∇Avm|2 + V +|vm|2
)

dx = lim
m→∞

∫

�
N

Q|vm|2
∗

dx = l(3.2)

after passing to a subsequence. It remains to show that l = 0. We have J(u) = J(u)− 1
2〈J

′(u), u〉 =
1
N

∫

�
N Q|u|2

∗

dx ≥ 0 and

c = J(um) + o(1) = J(vm) + J(u) + o(1) ≥ J(vm) + o(1).

Hence using (3.2),

l

N
=

(1

2
−

1

2∗
)

l ≤ c <
S

N
2

NQ̃
N−2

2

.(3.3)

By the Sobolev and the diamagnetic inequalities,

(
∫

�
N

Q|vm|2
∗

dx

)
2
2∗

≤ Q̃
2
2∗

(
∫

�
N

|vm|2
∗

dx

)
2
2∗

≤ S−1Q̃
2
2∗

∫

�
N

(

|∇Avm|2 + V +|vm|2
)

dx.

9



Letting m→ ∞ we get

l
2
2∗ ≤ S−1Q̃

2
2∗ l,

so either

l ≥
S

N
2

Q̃
N−2

2

which contradicts (3.3) or l = 0. 2

4 Existence results - linking

First we study the linear eigenvalue problem

−∆Au+ V +(x)u = µV −(x)u in R
N .(4.1)

We assume that V − 6= 0. Since the functional u 7→
∫

�
N V

−|u|2 dx is weakly continuous in

H1
A,V +(RN ), problem (4.1) has a sequence of eigenvalues µ1 < µ2 ≤ µ3 ≤ . . . µn → ∞. Let us

denote the corresponding orthonormal system of eigenfunctions by e1(x), e2(x), . . . . The sequence

is complete in H1
A,V +(RN ). Since the first eigenvalue is defined by the Rayleigh quotient

µ1 = inf
u∈H1

A,V +(
�

N )−{0}

∫

�
N

(

|∇Au|
2 + V +|u|2

)

dx
∫

�
N V −|u|2 dx

,

we see that µ1 > 0. Indeed, the denominator is weakly continuous, so the infimum is attained at

some ū 6= 0. It follows from Proposition 2.2 that ei ∈ L∞(RN ) and lim|x|→∞ ei(x) = 0, i = 1, 2, . . . .

Following the paper [6] we distinguish two cases: (i) µ1 > 1 and (ii) 0 < µ1 ≤ . . . ≤ µn−1 ≤ 1 <

µn ≤ . . . .

In the proofs of the existence results in both cases, we shall use a family of instantons

Uε,y(x) = ε−
N−2

2 U
(x− y

ε

)

, ε > 0, y ∈ R
N , where U(x) =

(

N(N − 2)
)

N−2
4

(

1 + |x|2
)

N−2
2

.

It is known [18] that

−∆U = U2∗−1 in R
N .

Moreover, we have
∫

�
N |∇U |2 dx =

∫

�
N U

2∗ dx = S
N
2 .

Let ψ be a C1-function such that ψ(x) = 1 for |x − y| ≤ δ
2 and ψ(x) = 0 for |x − y| > δ. We

need the following asymptotic relations for wε,y = ψUε,y:

‖wε,y‖
2∗

2∗ = S
N
2 +O

(

εN
)

, ‖∇wε,y‖
2
2 = S

N
2 +O

(

εN−2
)

, ‖wε,y‖
2∗−1
2∗−1 = O

(

ε
N−2

2

)

.(4.2)
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Since V − ∈ L
N
2 (RN ), we also have

∫

�
N

V −wε,y dx = O
(

ε
N−2

2 | log ε|
N−2

N

)

.(4.3)

Indeed,
∣

∣

∫

�
N V

−wε,y dx
∣

∣ ≤ ‖V −‖N/2‖wε,y‖N/(N−2) and

‖wε,y‖
N/(N−2)
N/(N−2) =

∫

�
N

|wε,y|
N

N−2 dx

≤ c1

∫

B(0,δ)

ε
N
2

(ε2 + |x|2)
N
2

dx = c1ε
N
2

∫

B(0,δ/ε)

1

(1 + |x|2)
N
2

dx ≤ c2ε
N
2 | log ε|.

In case (i)

(

∫

�
N

(

|∇Au|
2 + V |u|2

)

dx

)
1
2

is an equivalent norm in H1
A,V +(RN ). Indeed, we have

∫

�
N

(

|∇Au|
2 + V +|u|2

)

dx ≥

∫

�
N

(

|∇Au|
2 + V |u|2

)

dx

≥
(

1 −
1

µ1

)

∫

�
N

(

|∇Au|
2 + V +|u|2

)

dx.

In this case the spectrum of the operator −∆A + V is contained in (0,∞). So we can obtain a

solution of (1.1) as a multiple of a minimizer of the constrained minimization problem

SQ = inf
u∈H1

A,V +(
�

N )−{0}

∫

�
N

(

|∇Au|
2 + V |u|2

)

dx
(

∫

�
N Q(x)|u|2∗ dx

)
N−2

N

.(4.4)

In fact, we have the following existence result:

Theorem 4.1 Let N ≥ 4 and µ1 > 1. Suppose that there exists an x̄ ∈ R
N such that Q(x̄) = Q̃,

V (x) < −c < 0 in some neighbourhood of x̄, A is continuous at x̄ and

|Q(x) −Q(x̄)| = o
(

|x− x̄|2
)

for x close to x̄. Then the infimum of (4.4) is attained at some u ∈ H 1
A,V +(RN ) (and a multiple of

u is a solution of (1.1)).

Proof First, we claim that

SQ <
S

Q̃
N−2

N

.

Without loss of generality we may assume that x̄ = 0. Let ϑ(x) = −
∑N

j=1Aj(0)xj . Then
(

A +

∇ϑ
)

(0) = 0 and by the continuity |
(

A + ∇ϑ
)

(x)|2 ≤ c′ < c for all |x| < δ and sufficiently small δ.

Let uε(x) = wε,0(x)e
iϑ(x). Letting Uε = Uε,0 and using (4.2) we obtain

∫

�
N

(

|∇Auε|
2 + V |uε|

2
)

dx ≤

∫

�
N

(

|∇(ψUε)|
2 + ψ2U2

ε |∇ϑ+A|2 − cψ2U2
ε

)

dx

≤ S
N
2 + (c′ − c)

∫

B(0,δ/2)
U2

ε dx+O
(

εN−2
)

.
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It follows from the assumption on Q that

∫

�
N

Qw2∗
ε dx =

∫

�
N

Q|uε|
2∗ dx = S

N
2 Q̃+ o

(

ε2
)

,(4.5)

where wε = wε,0. For small ε > 0 we have

∫

B(0,δ/2)
U2

ε dx ≥

{

Cε2| log ε| if N = 4
Cε2 if N ≥ 5.

(4.6)

Combining the last three relations our claim easily follows. Let {um} be a minimizing sequence

for SQ such that
∫

�
N Q|um|2

∗

dx = 1. Let vm = S
N−2

4
Q um. The rescaled sequence {vm} is a Palais

- Smale sequence for the functional J at the level c = 1
N S

N
2

Q < S
N
2

NQ̃
N−2

2

(cf. Theorem 2.1 in [13] or

Lemma 8.2.1 in [3]). By Proposition 3.2 {vm} is relatively compact in H1
A,V +(RN ) and the result

easily follows. 2

Therefore, it remains to consider the case (ii). In this case we use the topological linking. Let

Y = span
(

e1, e2, . . . , en−1

)

, Z = Y ⊥ and let z ∈ Z−{0}. Obviously, we have H1
A,V +(RN ) = Y ⊕Z.

Define

M = {u = y + λz; y ∈ Y, ‖u‖H1
A,V +

≤ R, λ ≥ 0},

M◦ = {u = y + λz; y ∈ Y, ‖u‖H1
A,V +

= R, λ ≥ 0} ∪ {u ∈ Y ; ‖u‖H1
A,V +

≤ R},

N = {u ∈ Z; ‖u‖H1
A,V +

= r}.

First we check that

max
u∈M◦

J(u) = 0 < inf
u∈N

J(u)(4.7)

provided 0 < r < R are suitably chosen. To show (4.7) we note that on Z

J(u) ≥
(

1 − µ−1
n

)

∫

�
N

(

|∇Au|
2 + V +|u|2

)

dx−
1

2∗

∫

�
N

Q(x)|u|2
∗

dx

≥
1

2

(

1 − µ−1
n

)

‖u‖2
H1

A,V +
−
S− 2∗

2

2∗
Q̃‖u‖2∗

H1
A,V +

.

Taking r > 0 sufficiently small we get

inf{J(u); ‖u‖H1
A,V +

= r, u ∈ Z} > 0.

Since Y ⊕Rz is finite dimensional and 2∗ > 2, it is easy to see that J(u) → −∞ as ‖u‖H1
A,V +

→ ∞,

u ∈ Y ⊕ Rz. We choose R > 0 so that maxu∈M◦
J(u) = 0.

We now state and prove the existence theorem for problem (1.1) in case (ii).

12



Theorem 4.2 Suppose that supx∈
�

N Q(x) = Q(x̄) for some x̄ ∈ R
N and Q(x)−Q(x̄) = o

(

|x− x̄|2
)

for x close to x̄. Further assume that V (x) ≤ −c < 0 in some neighbourhood of x̄ and that A is

continuous at x̄.

(i) If µn−1 = 1, then problem (1.1) has a solution for N ≥ 7,

(ii) If µn−1 < 1, then problem (1.1) has a solution for N ≥ 5,

(iii) If µn−1 < 1 and V − ∈ L
N
2 (RN ) ∩Lq(B(x̄, δ)) for some q > N

2 and δ > 0, then problem (1.1)

has a solution for N = 4.

Proof Without loss of generality we assume that Q̃ = Q(0), that is, x̄ = 0. Let

c = min
γ∈Γ

max
u∈M

J(γ(u)),

where

Γ = {γ; γ ∈ C
(

M,H1
A,V +(RN )

)

, γ |M◦
= id}.

According to (4.7) and the linking theorem [18], c > 0 and there exists a Palais - Smale sequence

for J at the level c. So by Proposition 3.2 it suffices to show that

c <
S

N
2

NQ̃
N−2

2

.(4.8)

We follow a modified argument from pp. 51 - 52 in [18] and from [5]. For u ∈ H 1
A,V +(RN ) with

∫

�
N

(

|∇Au|
2 + V |u|2

)

dx > 0, we have

max
s≥0

J(su) =
1

N

(

∫

�
N

(

|∇Au|
2 + V |u|2

)

dx

)
N
2

(

∫

�
N Q|u|2∗ dx

)
N−2

2

.(4.9)

As in the proof of Theorem 4.1, let ϑ(x) = −
∑N

j=1Aj(0)xj . Then V (x) ≤ −c and |(A+∇ϑ)(x)|2 ≤

c′ < c for |x| < δ, if δ > 0 is sufficiently small. Let uε be the function introduced in the proof of

Theorem 4.1 and take z = u+
ε in the definition of the set M , where u+

ε is the projection of uε on

Z. Then Y ⊕ Ruε = Y ⊕ Ru+
ε . According to (4.9) it is enough to show that

max
u∈Y ⊕

� +uε���
N Q|u|2

∗

dx=1

∫

�
N

(

|∇Au|
2 + V |u|2

)

dx <
S

Q̃
N−2

N

.(4.10)

Suppose that the maximum above is attained at u = y + tuε = ỹ + tu+
ε . It is clear that t > 0, and

since Y is finite dimensional and ei ∈ L∞(RN ), all Lp-norms on Y are equivalent for 2 ≤ p ≤ ∞.

Therefore ‖u−ε ‖2∗ ≤ c1‖u
−
ε ‖2 ≤ c1‖uε‖2 → 0, so ‖u+

ε ‖
2∗
2∗ → S

N
2 as ε → 0. Moreover, since Q is

bounded away from 0 on compact sets and suppuε ⊂ B(0, δ), c2‖u‖
2∗
2∗ ≤

∫

�
N Q|u|2

∗

dx ≤ c3‖u‖
2∗
2∗

for all u ∈ Y ⊕ Ru+
ε and all ε > 0. Using the inequality ‖ỹ‖2∗ ≤ c4‖u‖2∗ it is now easy to see
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that
∫

�
N Q|y|2

∗

dx and t are bounded, uniformly in ε. Since y ∈ Y , we have y =
∑n−1

i=1 αiei and by

straightforward computations we get

∫

�
N

(

|∇Au|
2 + V |u|2

)

dx =

∫

�
N

(

|∇Ay|
2 + V |y|2

)

dx+

∫

�
N

(

|∇A(tuε)|
2 + V |tuε|

2
)

dx(4.11)

+ 2Re

(
∫

�
N

(

∇Ay∇A(tuε) + V ytuε

)

dx

)

≤
(

1 − µ−1
n−1

)

∫

�
N

(

|∇Ay|
2 + V +|y|2

)

dx

+

∫

�
N

(

|∇A(tuε)|
2 + V |tuε|

2
)

dx

+ O
(

ε
N−2

2 | log ε|
N−2

N

)

‖y‖H1
A,V +

.

In estimating the last term on the right-hand side of the equality above we have used the identity

∫

�
N

(∇Aei∇Auε + V +eiūε) dx = µi

∫

�
N

V −eiūε dx,

the fact that the L∞- and the H1
A,V +-norms are equivalent on Y and (4.3). Recalling that uε =

wεe
iϑ(x), we see that

∫

�
N

(|∇Auε|
2 + V |uε|

2) dx ≤

∫

�
N

(|∇wε|
2 + w2

ε |∇ϑ+A|2 − cw2
ε ) dx(4.12)

≤ S
N
2 + (c′ − c)

∫

�
N

w2
ε dx+O(εN−2).

Combining (4.11) and (4.12) we get

∫

�
N

(

|∇Au|
2 + V |u|2

)

dx ≤ (1 − µ−1
n−1)‖y‖

2
H1

A,V +
+ t2S

N
2 + t2(c′ − c)

∫

�
N

w2
ε dx(4.13)

+ O(ε
N−2

2 | log ε|
N−2

N )‖y‖H1
A,V +

.

Moreover, by the convexity of the mapping s 7→ |sy + tuε|
2∗ ,

1 =

∫

�
N

Q|u|2
∗

dx ≥

∫

�
N

Q(twε)
2∗ dx− 2∗

∫

�
N

Q|y|(twε)
2∗−1 dx

≥

∫

�
N

Q(twε)
2∗ dx−O(ε

N−2
2 )‖y‖H1

A,V +
,

and hence, using (4.2), (4.5) and (4.6),

t2S
N
2 + t2(c′ − c)

∫

�
N

w2
ε dx =

(

SN/2 + (c′ − c)
∫

�
N w

2
ε dx

)(∫

�
N Q(twε)

2∗ dx
)2/2∗

(∫

�
N Qw2∗

ε dx
)2/2∗

(4.14)

≤

(

SN/2 + (c′ − c)
∫

�
N w

2
ε dx

)(

1 +O(ε(N−2)/2))‖y‖H1
A,V +

)

(

SN/2Q̃+ o(ε2)
)2/2∗

=
S

Q̃(N−2)/N
− d

∫

�
N

w2
ε dx+ o(ε2) +O(ε

N−2
2 )‖y‖H1

A,V +
,
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where d > 0. If µn−1 ≤ 1 and N ≥ 7, the conclusion easily follows from (4.13), (4.14) and (4.6).

Suppose µn−1 < 1. Since

(1 − µ−1
n−1)‖y‖

2
H1

A,V +
+O(ε

N−2
2 | log ε|

N−2
N )‖y‖H1

A,V +
≤ O(εN−2| log ε|

2(N−2)
N )(4.15)

in this case, the conclusion remains valid forN = 5 and 6. IfN = 4 and V − ∈ L
N
2 (RN )∩Lq(B(0, δ)),

then
∫

�
N V

−uε dx = O(ε
N−2

2 ) = O(ε) by an argument similar to that of (4.3), so the right-hand

side above is O(ε2) and the conclusion follows again. 2

We remark that if µn−1 < 1 and N = 4 in Theorem 4.2, then we may assume Q(x) −Q(x̄) =

O(|x− x̄|2) because in this case it suffices to have O(ε2) instead of o(ε2) in (4.14).

Corollary 4.3 Suppose that supx∈
�

N Q(x) = Q(x̄) for some x̄ ∈ R
N and Q(x)−Q(x̄) = O

(

|x−x̄|2
)

for x close to x̄. Further assume that there are α > 0, c > 0 such that V −(x) ≥ c
|x−x̄|α in a

neighbourhood of x̄ and A is continuous at x̄. Then problem (1.1) has a solution u 6= 0 in each of

the following cases:

(i) µn−1 = 1, N ≥ 6 and 0 < α < 2,

(ii) µn−1 = 1, N = 3, 4 or 5 and 6−N
2 < α < 2,

(iii) µn−1 < 1, N ≥ 4 and 0 < α < 2,

(iv) µn−1 < 1, N = 3 and 1 ≤ α < 2.

Note that since V − ∈ L
N
2 (RN ), 0 < α < 2.

Proof We may asssume x̄ = 0. A small change is needed in the argument of Theorem 4.2. Now

in (4.12) we have

∫

�
N

(|∇Auε|
2 + V |uε|

2) dx ≤ S
N
2 −

c

2

∫

�
N

w2
ε

|x|α
dx+O(εN−2).(4.16)

Moreover,

∫

�
N

w2
ε

|x|α
dx ≥

∫

B(0,δ/2)

U2
ε

|x|α
dx ≥

{

c1ε
2−α + c2ε

N−2 if N 6= 3 or α 6= 1
c1ε| log ε| if N = 3 and α = 1.

(4.17)

So the conclusion follows using (4.13), (4.14), (4.15) and taking into account the changes prompted

by (4.16), (4.17). Note that since Q(x) −Q(0) = O(|x|2), o(ε2) is replaced by O(ε2) in (4.14). 2

As a final remark we would like to mention that combining the above estimates with those

appearing in [4], it is possible to show the existence of a nontrivial solution of (1.1) also if Q̃ =

lim|x|→∞Q(x) and Q(x) < Q̃ for all x ∈ R
N . However, since the assumptions we would need to

make on V , Q, A and the dimension N are rather restrictive (in particular, we need A globally

Lipschitzian and V −(x) ≥ c
|x|α for some α > 2 and all large |x|), we omit the details.
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401–449.

[9] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Springer, Second Edition, 1983.

[10] K. Kurata, Existence and semi-classical limit of the least energy solution to a nonlinear

Schrödinger equation with electromagnetic fields, Nonlinear Analysis 41 (2000), 763–778.

[11] E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics 14, AMS (1997).

[12] P.L. Lions, The concentration - compactness principle in the calculus of variations. The limit

case, Revista Mat. Iberoamericana 1 (1985), 145–201.

[13] Wen-Ching Lien, Shyuh-Yaur Tzeng and Hwai-Chiuan Wang, Existence of solutions of semi-

linear elliptic problems in unbounded domains, Differential Integral Equ. 6 (1993), 1281–1298.

[14] A.A. Pankov, On nontrivial solutions of nonlinear Schrödinger equation with external mag-

netic field, preprint.

[15] B. Simon, Schrödinger semigroups, Bull. Am. Math. Soc. 7(3) (1982), 447–526.

[16] M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990.

16



[17] C.A. Stuart, Bifurcation in Lp(RN ) for a semilinear elliptic equation, Proc. London Math.

Soc. 3(57) (1988), 511–541.

[18] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
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