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ON A SEMILINEAR SCHRÖDINGER EQUATION WITH

CRITICAL SOBOLEV EXPONENT

JAN CHABROWSKI AND ANDRZEJ SZULKIN∗

Abstract. We consider the semilinear Schrödinger equation −∆u +

V (x)u = K(x)|u|2
∗
−2u + g(x, u), u ∈ W 1,2(RN ), where N ≥ 4, V, K, g

are periodic in xj for 1 ≤ j ≤ N , K > 0, g is of subcritical growth
and 0 is in a gap of the spectrum of −∆ + V . We show that under
suitable hypotheses this equation has a solution u 6= 0. In particular,
such solution exists if K ≡ 1 and g ≡ 0.

1. Introduction and statement of the main result

In this paper we shall be concerned with the semilinear Schrödinger equa-
tion

−∆u+ V (x)u = K(x)|u|2
∗−2u+ g(x, u), u ∈W 1,2(RN ),(1.1)

where N ≥ 4, 2∗ := 2N/(N − 2) is the critical Sobolev exponent and g is of
subcritical growth. More precisely, we make the following assumptions:

(A1): V,K ∈ C(RN ), g ∈ C(RN ×R,R), K(x) > 0 in RN and V,K, g
are 1-periodic in xj for j = 1, . . . , N .

(A2): |g(x, u)| ≤ c0(1+|u|p−1) on RN×R for some c0 > 0 and p ∈ (2, 2∗).
(A3): g(x, u)/u→ 0 uniformly in x as u→ 0.
(A4): 0 ≤ 2G(x, u) ≤ ug(x, u) on RN×R, whereG(x, u) :=

∫ u
0 g(x, s) ds.

(A5): 0 /∈ σ(−∆ + V ) and σ(−∆ + V ) ∩ (−∞, 0) 6= ∅, where σ denotes
the spectrum in L2(RN ).

Note that we do not exclude the case of g ≡ 0. It is well-known that under
our hypotheses on V the spectrum of −∆ + V in L2(RN ) is bounded below
and is the union of disjoint closed intervals, see e.g. p. 161 and Theorem
4.5.9 in [12]. So (A5) is equivalent to 0 being in a spectral gap of −∆ + V .
According to (A3), g(x, 0) ≡ 0. Hence u = 0 is necessarily a solution of (1.1).

Our main result is the following

Theorem 1.1. Suppose that conditions (A1)–(A5) are satisfied, N ≥ 4
and K(x0) = maxRN K(x). If K(x)−K(x0) = o(|x − x0|

2) as x→ x0 and
V (x0) < 0, then equation (1.1) has a solution u 6= 0.

1991 Mathematics Subject Classification. 35B33, 35J65, 35Q55.
Key words and phrases. Semilinear Schrödinger equation, critical Sobolev exponent,

linking.
∗Supported in part by the Swedish Natural Science Research Council.

1



2 J. CHABROWSKI AND A. SZULKIN

Remark 1.2. (i) If N = 4, then it suffices that K(x)−K(x0) = O(|x−x0|
2)

as x → x0 (see the comment at the end of Section 4). This condition is
obviously satisfied if K is of class C2.

(ii) The flatness condition K(x)−K(x0) = o(|x−x0|
2) has been imposed

by several authors, see e.g. [7].

As an immediate consequence of Theorem 1.1 we obtain the following

Corollary 1.3. If conditions (A1)–(A5) are satisfied, N ≥ 4 and K(x) ≡
K is a positive constant, then equation (1.1) has a solution u 6= 0.

Equation (1.1) with K ≡ 0 and V, g satisfying (A1)–(A3), (A5) and a
stronger version of (A4) (the subcritical case) has been considered by several
authors, see e.g. [1, 3, 5, 9, 11, 13, 16, 17, 18] and the references there.
Equation (1.1) under conditions similar to (A1)–(A5) was discussed in [6],
and our Theorem 1.1 is an extension of the main result there. We also
note that when g ≡ 0, (A5) cannot be replaced by the hypothesis that 0 /∈
σ(−∆ + V ). Indeed, as was observed in [4], equation −∆u+ λu = |u|2

∗−2u,
where λ 6= 0, has only the trivial solution u = 0 in W 1,2(RN ).

Recall [19] that there is a one-to-one correspondence between solutions of
(1.1) and critical points of the functional

J(u) :=
1

2

∫

RN

(|∇u|2 + V u2) dx−
1

2∗

∫

RN

K|u|2
∗

dx−

∫

RN

G(x, u) dx.

Moreover, J ∈ C1(E,R), where E := W 1,2(RN ). Later we shall see that
the functional J has the so-called linking geometry.

In what follows we shall usually abbreviate Lp(RN ) by Lp and the Sobolev
space Wm,p(RN ) by Wm,p. The norms will be respectively denoted by ‖ ‖p

and ‖ ‖m,p. The open ball centered at a and having radius r will be denoted
by B(a, r). The spaces Lp and Wm,p are real except in Section 2 where they
are complex.

The second author would like to thank P. Kurasov for helpful discussions
on the topic of Section 2.

2. The linear operator

Let Lq : D(Lq) ⊂ Lq(RN ) → Lq(RN ), 2 ≤ q <∞, be the operator given
by Lqu := −∆u+ V (x)u. If q = 2, we shall write L instead of L2. In this
section we assume that V ∈ L∞(RN ), N ≥ 1, and we do not require V to
be periodic.

Lemma 2.1. Lq is a closed operator with domain D(Lq) = W 2,q(RN ).

Proof. The operator u 7→ (V (x)−1)u is bounded in Lq. Therefore it suffices
to prove the above statement for −∆ + 1. However, this is an immediate
consequence of the fact that (−∆+ 1)−1 is an isomorphism of Lq onto W 2,q
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(a property of the Bessel potentials, see formula (41) and Theorem 3 of
Chap. V in [14]).

Recall that in this section the spaces Lp and Wm,p are complex. By a
result of Hempel and Voigt [8], see also Arendt [2, Example 5.3], σ(Lq) =
σ(L) and (Lq − λ)−1|Lq∩L2 = (L− λ)−1|Lq∩L2 for all complex λ /∈ σ(L).

Let (E(λ))λ∈R
be the spectral family of L. Then for a fixed µ, E(µ)L2 is

the subspace of L2 corresponding to λ ≤ µ.

Proposition 2.2. If V ∈ L∞(RN ) satisfies (A5), then ‖u‖1,∞ ≤ c0‖u‖2

for some constant c0 > 0 and all u ∈ E(0)L2.

Proof. Let Γ be a positively oriented smooth Jordan curve (in C) containing
σ(L)∩ (−∞, 0) in its interior and the remaining part of σ(L) in its exterior.
Since L is a closed operator,

E(0) = −
1

2πi

∫

Γ
(−∆ + V − λ)−1 dλ(2.1)

according to formula (III.6.19) in [10]. So

u = −
1

2πi

∫

Γ
(−∆ + V − λ)−1u dλ(2.2)

whenever u ∈ E(0)L2. Since Γ is compact and −∆ + V − λ is invertible for
each λ ∈ Γ (as an operator fromD(L) into L2), it is easy to see from (2.2) and
the Sobolev embedding theorem that ‖u‖q1 ≤ c1‖u‖2,2 ≤ c2‖u‖2, where q1 =
2N/(N − 4) if N > 4 and q1 may be chosen arbitrarily large if N ≤ 4 (here
and in what follows c1, c2, etc. denote positive constants whose numerical
values are immaterial). Keeping in mind that Lq is closed and Lq − λ is
invertible on Γ for all q, we may employ the usual bootstrap argument: we
get ‖u‖q2 ≤ c3‖u‖2,q1 ≤ c4‖u‖q1 ≤ c5‖u‖2, where q2 = 2N/(N − 8); after
a finite number of iterations qk > N and by (2.2) again, ‖u‖2,qk

≤ c̃‖u‖2.
Now the conclusion follows by the Sobolev embedding W 2,qk ↪→W 1,∞.

Proposition 2.3. (Troestler [17]) If V ∈ L∞(RN ) satisfies (A5) and q ∈
(2,∞), then E(0)|L2∩Lq is Lq-continuous. In particular, E(0) and I −E(0)
extend to continuous projections of Lq onto the complementary subspaces
clLq

(

E(0)L2
)

and clLq

(

(I −E(0))L2
)

(cl denotes the closure).

Proof. By (2.1), ‖E(0)u‖q ≤ ‖E(0)u‖2,q ≤ c0‖u‖q for all u ∈ L2 ∩ Lq and
some c0 > 0. Hence E(0) and I − E(0) may be extended to continuous
projections of Lq onto the complementary subspaces as required.

Proposition 2.4. If V ∈ L∞(RN ), then for each µ ∈ R there exist con-
stants c1 and c2 = c2(µ) such that ‖u‖q ≤ c1‖u‖2,2 ≤ c2‖u‖2 whenever
u ∈ E(µ)L2. Here q = 2N/(N − 4) if N > 4, q may be taken arbitrarily
large if N = 4 and q = ∞ if N < 4.

Proof. The operator Lµ := L|E(µ)L2 : E(µ)L2 → E(µ)L2 is bounded. Let Γ
be a positively oriented smooth Jordan curve enclosing the spectrum of Lµ.
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Then (2.2) still holds for all u ∈ E(µ)L2 (with (−∆ + V − λ)−1 replaced by
(Lµ − λ)−1). Therefore ‖u‖q ≤ c1‖u‖2,2 ≤ c2‖u‖2.

3. Existence of a Palais-Smale sequence

In this section we assume that the hypotheses (A1)–(A5) are satisfied. Re-
call E = W 1,2(RN ) and let E− := E(0)L2 ∩E and E+ := (I −E(0))L2 ∩E
(E(λ) is as in the preceding section). Then the quadratic form

∫

RN (|∇u|2 +

V u2) dx is positive definite on E+ and negative definite on E− [15, Sections 8
and 9]. Hence we may introduce a new inner product 〈 , 〉 in E such that the
corresponding norm ‖ ‖ is equivalent to ‖ ‖1,2 and

∫

RN (|∇u|2 + V u2) dx =

‖u+‖2 − ‖u−‖2, where u± ∈ E±. Set ψ(u) := (2∗)−1
∫

RN K|u|2
∗

dx +
∫

RN G(x, u) dx; then

(3.1)

J(u) =
1

2

∫

RN

(|∇u|2 + V u2) dx−
1

2∗

∫

RN

K|u|2
∗

dx−

∫

RN

G(x, u) dx

=
1

2
‖u+‖2 −

1

2
‖u−‖2 − ψ(u).

Let z0 ∈ E
+ \ {0},

M := {u = u− + sz0 : u− ∈ E−, s ≥ 0 and ‖u‖ ≤ R}

and denote the boundary of M in E− ⊕ Rz0 by ∂M . We summarize the
properties of J in the following

Proposition 3.1. (i) There exist α, ρ > 0 and R > ρ (R depending on z0)
such that J(u) ≥ α for all u ∈ E+ ∩ ∂B(0, ρ) and J(u) ≤ 0 for all u ∈ ∂M .
(ii) ψ ≥ 0, ψ is weakly sequentially lower semicontinuous and ψ ′ is weakly
sequentially continuous.

Functionals satisfying (i) above are said to have the linking geometry.

Proof. (i) See e.g. [11, 18, 19]. The proofs given there are for nonlinearities
of subcritical growth but the argument remains unchanged in our case (the
part showing J |∂M ≤ 0 is in fact somewhat simpler here; observe only that
(2∗)−1K(x)|u|2

∗

+G(x, u) ≥ c0|u|
2∗ for some c0 > 0).

(ii) It is obvious that ψ ≥ 0. Let un ⇀ u. Then un → u a.e. in RN ,
possibly after passing to a subsequence. Hence it follows from the Fatou
lemma that ψ is weakly sequentially lower semicontinuous. Moreover, since
un → u in Lp

loc, it is easy to see from (A2) and (A3) that
∫

RN

g(x, un)v dx→

∫

RN

g(x, u)v dx for each v ∈ E.

Finally, un → u in L
(N+2)/(N−2)
loc ; therefore K|un|

2∗−2un → K|u|2
∗−2u in

L1
loc and

∫

RN

K|un|
2∗−2unϕdx→

∫

RN

K|u|2
∗−2uϕdx whenever ϕ ∈ C∞

0 .
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Taking into account that the sequence (K|un|
2∗−1) is bounded in L2N/(N+2),

we may replace ϕ by v ∈ E. This completes the proof.

Proposition 3.2. If J is a functional of the form appearing in the second
line of (3.1) and if (i), (ii) of Proposition 3.1 are satisfied, then there exists
a Palais-Smale sequence (un) for J such that J(un) → c ∈ [α, supM J ].

This is a special case of Theorem 3.4 in [11], see also Theorem 6.10 in [19].
We have thus shown that the functional J associated with (1.1) possesses

a Palais-Smale sequence (un) with J(un) → c.

Proposition 3.3. The Palais-Smale sequence above is bounded.

Proof. It follows from (A2)–(A3) that for each ε > 0 there exists c1(ε) such
that |g(x, u)| ≤ ε|u|+ c1(ε)|u|

2∗−1. By (A4),

c+ 1 + ‖un‖ ≥ J(un)−
1

2
〈J ′(un), un〉 ≥

1

N

∫

RN

K|un|
2∗ dx

for almost all n, and since K(x) is bounded below by a positive constant,

‖un‖
2∗

2∗ ≤ c2 + c3‖un‖.(3.2)

Using the Hölder and Sobolev inequalities we obtain, for large n,

‖u+
n ‖

2 = 〈J ′(un), u+
n 〉+

∫

RN

K|un|
2∗−2unu

+
n dx+

∫

RN

g(x, un)u+
n dx

≤ ‖u+
n ‖+ c4‖un‖

2∗−1
2∗ ‖u+

n ‖+ c5(ε‖un‖+ c1(ε)‖un‖
2∗−1
2∗ )‖u+

n ‖.

Hence by (3.2),

‖u+
n ‖ ≤ c6(ε) + c7(ε)‖un‖

(2∗−1)/2∗ + c5ε‖un‖,

and a similar inequality holds for ‖u−n ‖. Choosing ε sufficiently small, we
see that (un) must be bounded.

4. Proof of Theorem 1.1

In the preceding section we have shown that there exists a bounded Palais-
Smale sequence (un) such that J(un) → c ∈ [α, supM J ]. Clearly, (un) is
either

(i) Vanishing: For each r > 0, lim
n→∞

sup
y∈RN

∫

B(y,r)
u2

n dx = 0, or

(ii) Non-vanishing: There exist r, η > 0 and a sequence (yn) ⊂ RN such
that

lim sup
n→∞

∫

B(yn,r)
u2

n dx ≥ η.

In (ii) we may assume yn ∈ ZN by taking a larger r if necessary. Suppose
(ii) holds and let ũn(x) := un(x + yn). Since J is invariant with respect to
the translation of x by elements of ZN (i.e. J(u(.)) = J(u(.+ y)) whenever
y ∈ ZN ), ‖ũn‖ = ‖un‖ and ‖J ′(ũn)‖ = ‖J ′(un)‖. Hence ũn ⇀ ũ after
passing to a subsequence, J ′(ũ) = 0 and since lim supn→∞

∫

B(0,r) ũ
2
n dx ≥ η,
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ũ 6= 0. So ũ is a nontrivial solution of (1.1). To complete the proof of
Theorem 1.1 it remains therefore to show that vanishing cannot occur. This
will be done in the following two propositions. Let

S := inf
u∈E\{0}

‖∇u‖2

‖u‖2
2∗
.(4.1)

Proposition 4.1. If 0 < c < c∗ :=
SN/2

N‖K‖
(N−2)/2
∞

, then (un) cannot be

vanishing.

Proof. If (un) is vanishing, then it follows from P.L. Lions’ lemma [19,
Lemma 1.21] that un → 0 in Lr whenever 2 < r < 2∗. Let (zn) be a
bounded sequence in E. Since for each ε > 0 there is c1(ε) such that
|g(x, u)| ≤ ε|u|+ c1(ε)|u|

p−1,
∫

RN

|g(x, un)| |zn| dx ≤ c2ε‖un‖ ‖zn‖+ c3(ε)‖un‖
p−1
p ‖zn‖.

Using this and a similar argument for G we see that
∫

RN

g(x, un)zn dx→ 0 and

∫

RN

G(x, un) dx→ 0.(4.2)

Hence

J(un)−
1

2
〈J ′(un), un〉 =

1

N

∫

RN

K|un|
2∗ dx+ o(1) → c.(4.3)

Recall (E(λ))λ∈R
is the spectral family of −∆ + V in L2. Let u = u+ +

u− ∈ E+⊕E− and write u+ = w+ z, where w ∈ E(µ)L2, z ∈ (I−E(µ))L2,
µ > 0 large (to be determined). By Proposition 2.4, w ∈ E, hence also z ∈
E; moreover, ‖u−n ‖q ≤ c4‖u

−
n ‖2 ≤ c5‖un‖ and ‖wn‖q ≤ c4‖wn‖2 ≤ c5‖un‖,

where q = 2N/(N − 4) if N > 4 and q may be taken arbitrarily large if
N = 4. Let r be such that (2∗ − 1)/r + 1/q = 1. Then 2 < r < 2∗ (for
N = 4, q needs to be larger than 4). Since ‖u−n ‖q is bounded and un → 0 in
Lr, we obtain using (4.2) and the Hölder inequality that

‖u−n ‖
2 = −〈J ′(un), u−n 〉 −

∫

RN

K|un|
2∗−2unu

−
n dx−

∫

RN

g(x, un)u−n dx

≤ ‖K‖∞‖un‖
2∗−1
r ‖u−n ‖q + o(1) → 0.

Similarly,

‖wn‖
2 =

∫

RN

K|un|
2∗−2unwn dx+ o(1) → 0.

Hence

un − zn = wn + u−n → 0,(4.4)
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and therefore

‖zn‖
2 =

∫

RN

(|∇zn|
2 + V z2

n) dx =

∫

RN

K|un|
2∗−2unzn dx+ o(1)

=

∫

RN

K|un|
2∗ dx+ o(1).

(4.5)

Furthermore, for each δ > 0 we may find µ > 0 such that

(1− δ)

∫

RN

|∇zn|
2 dx ≤

∫

RN

(|∇zn|
2 + V z2

n) dx.(4.6)

Indeed, since zn ∈ (I−E(µ))L2∩E, we have
∫

RN (|∇zn|
2+V z2

n) dx ≥ µ‖zn‖
2
2

and

δ

∫

RN

|∇zn|
2 dx ≥ δ(µ − ‖V ‖∞)‖zn‖

2
2 ≥ −

∫

RN

V z2
n dx

whenever µ is large enough. Combining (4.4), (4.1), (4.6) and (4.5) gives

(1− δ)S‖K‖−2/2∗
∞

(
∫

RN

K|un|
2∗ dx

)2/2∗

≤ (1− δ)S‖un‖
2
2∗

= (1− δ)S‖zn‖
2
2∗ + o(1) ≤ (1− δ)

∫

RN

|∇zn|
2 dx+ o(1)

≤

∫

RN

K|un|
2∗ dx+ o(1).

Passing to the limit and using (4.3) we obtain

(1− δ)S‖K‖−2/2∗
∞ (cN)2/2∗ ≤ cN ;

hence either c = 0 which is impossible or (1− δ)N/2c∗ ≤ c < c∗ which is also
impossible because δ may be chosen arbitrarily small.

Let

ϕε(x) :=
cNψ(x)ε(N−2)/2

(ε2 + |x|2)(N−2)/2
,

where cN = (N(N − 2))(N−2)/4, ε > 0 and ψ ∈ C∞
0 (RN , [0, 1]) is such that

ψ(x) = 1 for |x| ≤ r/2 and ψ(x) = 0 for |x| ≥ r (r to be determined). We
shall need the following asymptotic estimates as ε → 0+ (see e.g. pp. 35
and 52 in [19]):

‖∇ϕε‖
2
2 = SN/2 +O(εN−2), ‖∇ϕε‖1 = O(ε(N−2)/2),

‖ϕε‖
2∗
2∗ = SN/2 +O(εN ), ‖ϕε‖

2∗−1
2∗−1 = O(ε(N−2)/2), ‖ϕε‖1 = O(ε(N−2)/2)

(4.7)

and

‖ϕε‖
2
2 =

{

bε2| log ε|+O(ε2) if N = 4,
bε2 +O(εN−2) if N ≥ 5,

(4.8)

where b is a positive constant. Finally, let

Zε := E− ⊕Rϕε ≡ E− ⊕Rϕ+
ε .
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We may assume without loss of generality that K(0) = ‖K‖∞ and V (0) < 0.
Moreover, r in the definition of ϕε may be chosen so that V (x) ≤ −β for
some β > 0 and all x with |x| ≤ r.

Proposition 4.2. If ε > 0 is small enough, then supZε
J < c∗. So in

particular, if z0 = ϕ+
ε with ε small enough, then c ≤ supM J < c∗.

Proof. Let

I(u) :=
1

2
‖u+‖2 −

1

2
‖u−‖2 −

1

2∗

∫

RN

K|u|2
∗

dx.

Since I(u) ≥ J(u) for all u, it suffices to show that supZε
I < c∗.

In what follows we adapt the argument on pp. 52-53 in [19]. If u 6= 0,
then

max
t≥0

I(tu) =
1

N

(∫

RN (|∇u|2 + V u2) dx
)N/2

(∫

RN K|u|2
∗ dx

)(N−2)/2
(4.9)

whenever the integral in the numerator above is positive, and the maximum
is 0 otherwise. Let ‖u‖2∗

2∗,K :=
∫

RN K|u|2
∗

dx. It is easy to see from (4.9)
that if

mε := sup
u∈Zε

‖u‖2∗,K=1

∫

RN

(|∇u|2 + V u2) dx <
S

‖K‖
(N−2)/N
∞

,(4.10)

then supZε
J ≤ supZε

I < c∗. So it remains to show (4.10) is satisfied for all
small ε > 0.

Below we shall repeatedly use (4.7) and (4.8). Since
∫

RN (|∇ϕ−ε |
2 +

V (ϕ−ε )2) dx ≤ 0,
∫

RN |∇ϕ−ε |
2 dx ≤ c1‖ϕ

−
ε ‖

2
2 ≤ c1‖ϕε‖

2
2 → 0 as ε → 0;

therefore ‖ϕ−ε ‖2∗ ≤ c2‖ϕ
−
ε ‖ → 0 and ‖ϕ+

ε ‖
2∗
2∗ → SN/2. Suppose ‖u‖2∗,K = 1

and write u = u−+sϕε = (u−+sϕ−ε )+sϕ+
ε . It follows from Proposition 2.3

and the argument above that ‖u−‖2∗ ≤ c3 and |s| ≤ c3 for some constant c3
independent of ε. By Proposition 2.2 and convexity of ‖ ‖2∗,K we obtain

1 = ‖u‖2∗
2∗,K ≥ ‖sϕε‖

2∗
2∗,K + 2∗

∫

RN

(sϕε)
2∗−1u− dx(4.11)

≥ ‖sϕε‖
2∗
2∗,K − c4‖ϕε‖

2∗−1
2∗−1‖u

−‖2.

Moreover, by Proposition 2.2 again,
∫

RN

(∇ϕε · ∇u
− + V ϕεu

−) dx ≤ c5(‖∇ϕε‖1 + ‖ϕε‖1)‖u
−‖2(4.12)

= O(ε(N−2)/2)‖u−‖2.

Since V (x) ≤ −β < 0 for x ∈ suppϕε and K(x)−K(0) = o(|x|2) as x→ 0,
∫

RN

V ϕ2
ε dx ≤

{

−dε2 if N ≥ 5,
−dε2| log ε| if N = 4

(4.13)
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for some d > 0 and

‖ϕε‖
2∗

2∗,K = ‖K‖∞

∫

RN

ϕ2∗

ε dx+

∫

RN

(K(x)−K(0))ϕ2∗

ε dx(4.14)

= ‖K‖∞S
N/2 + o(ε2).

Let N ≥ 5. Using (4.12), (4.14), (4.11), (4.13) and the fact that

−‖u−‖2
2 +O(ε(N−2)/2)‖u−‖2 ≤ O(εN−2),

we obtain

mε ≤ −‖u−‖2 +

∫

RN (|∇ϕε|
2 + V ϕ2

ε) dx

‖ϕε‖2
2∗,K

‖sϕε‖
2
2∗,K +O(ε(N−2)/2)‖u−‖2

≤ − c6‖u
−‖2

2 +

∫

RN (|∇ϕε|
2 + V ϕ2

ε) dx

‖K‖
(N−2)/N
∞ S(N−2)/2 + o(ε2)

(1 + c4‖ϕε‖
2∗−1
2∗−1‖u

−‖2)
2/2∗

+O(ε(N−2)/2)‖u−‖2

= − c6‖u
−‖2

2 +
SN/2 − dε2 +O(εN−2)

‖K‖
(N−2)/N
∞ S(N−2)/2 + o(ε2)

+O(ε(N−2)/2))‖u−‖2

≤
S

‖K‖
(N−2)/N
∞

− d0ε
2 + o(ε2),

where d0 > 0. If N = 4, then in a similar way,

mε ≤
S

‖K‖
(N−2)/N
∞

− d0ε
2| log ε|+ o(ε2).

Hence (4.10) holds provided ε is sufficiently small.

Note that if K(x) − K(0) = O(|x|2) as x → 0, then (4.14) holds with
O(ε2) replacing o(ε2). This does not affect the estimate of mε if N = 4.
Hence for such N the conclusion of Theorem 1.1 remains valid under the
weaker hypothesis on K as in Remark 1.2(i).
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[13] A.A. Pankov and K. Pflüger, On a semilinear Schrödinger equation with periodic

potential, Nonl. Anal. TMA 33 (1998), 593–609.
[14] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton

University Press, Princeton, 1970.
[15] C.A. Stuart, Bifurcation into spectral gaps, Bull. Belg. Math. Soc., Supplement, 1995.
[16] A. Szulkin and W. Zou, Homoclinic orbits for asymptotically linear Hamiltonian sys-

tems, Preprint.
[17] C. Troestler, Bifurcation into spectral gaps for a noncompat semilinear Schrödinger

equation with nonconvex potential, Preprint.
[18] C. Troestler and M. Willem, Nontrivial solution of a semilinear Schrödinger equation,

Comm. P.D.E. 21 (1996), 1431–1449.
[19] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
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