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Krein’s formula and perturbation theory

P. Kurasov and S.T.Kuroda

Abstract. Krein’s formula and its modification are discussed from the view-
point that they describe all selfadjoint operators in relation to a given unper-
turbed operator. A direct proof of Krein’s formula is also given for the case
when the restricted operator is not necessarily densely defined and possibly
has infinite deficiency indices.

1. Introduction

In the present paper we shall take another look at Krein’s formula in the the-
ory of selfadjoint extensions of a symmetric operator. Krein’s formula describes
the relation between the resolvents of two selfadjoint extensions H0 and H of one
symmetric operator H00. Usually, one fixes H00 and regards Krein’s formula as a
formula describing an arbitrary extension of H00 in relation to a particular exten-
sion H0. If we change the viewpoint and allow H00 to vary, H0 being fixed, then
Krein’s formula can be regarded as a formula describing all selfadjoint operators H
in relation to a given selfadjoint operatorH0. In this respect Krein’s formula may be
considered as a formula in the perturbation theory. In fact in the the present paper
we prove a counterpart of Krein’s formula in the operator theory and reexamine
Krein’s formula in the extension theory from the operator view point.

The original Krein’s formula was derived by M.Krein and M.Naimark for the
case whereH00 has deficiency indices (1, 1) [7, 8, 9, 12]. It was generalized later for
arbitrary (including infinite) deficiency indices by S.N.Saakjan [14]. See also recent
paper [4] where Saakjan’s result is discussed. We shall write down below what we
consider the most general form of Krein’s formula in the extension situation. (We
do not deal with the so-called non-orthogonal extensions.)

Let H0 be a selfadjoint extension of a closed symmetric operator H00. Let

M = [(H00 − i)D (H00)]
⊥ be the deficiency subspace of H00 at i and let PM be the

orthogonal projection onto M. (D (A) stands for the domain of A.) Then, Krein’s
formula can be written as

1

H − z
=

1

H0 − z
−
H0 + i

H0 − z

1

γ +Q(z)
PM

H0 − i

H0 − z
,(1.1)
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2 P.KURASOV AND S.T.KURODA

where Q(z) is given by

Q(z) = PM

1 + zH0

H0 − z
PM ,(1.2)

for z ∈ ρ(H0), and γ is a selfadjoint operator in M. The operator Q(z) is a gen-
eralization of Krein’s Q-function. In the original papers by M.Krein [7, 8, 9] the
Q-function was defined up to a certain real parameter. We find it more convenient
to fix the Q-operator using (1.2). Krein’s formula is valid for H such that H and
H0 are relatively prime extensions of H00 and under an additional condition on γ,
which we call the admissibility condition. But we shall not dwell on these details
here. We only note that for z = i (1.1) takes a simple form that

1

H − i
=

1

H0 − i
−
H0 + i

H0 − i

1

γ + i
PM .(1.3)

We now change the viewpoint. We fix H0 and consider an arbitrary selfadjoint
operator H . Let us denote by H ∧ H0 the maximal common restriction of the
operators H and H0, i.e. the restriction to the domain

D (H ∧H0) := {u ∈ D (H) ∩D(H0) |Hu = H0u}.(1.4)

Then the operators H and H0 are two relatively prime extensions of the Hermitian

operator H ∧H0 and (1.1) applies with M = [(H0 − i)D (H ∧H0)]
⊥

. We also see
that with varyingH all subspacesM will appear. Thus, we expect that with a fixed
H0 and with varying M and γ (1.1) or (1.3) will describe all selfadjoint operators
H. This is a perturbation theoretical aspect of Krein’s formula.

In Section 2 we shall in fact prove that, given H0, relation (1.3) gives a bijective
correspondence between the set of all selfadjoint operatorsH and the set of all pairs
{M,γ} of a closed subspace M and a selfadjoint operator γ in M satisfying the
condition

Ker

{

1

H0 + i
−

1

γ + i
PM

}

= 0.(1.5)

We call condition (1.5) the admissibility condition. This will be done in Theorem
1. (1.3) relates the resolvents of H and H0 only at z = i. In Section 3 we shall
prove formula (1.1) for general z (Theorem 2) and also discuss the relation to the
extension theory. In this way we recapture the original Krein’s formula in the
extension situation (Theorem 3). It might be said that our approach would provide
a transparent proof of Krein’s formula.

It should be noted that Krein’s formula (1.1) itself does not provide direct
estimate on the difference of the resolvents. This is related to the fact that the
operator γ appearing in (1.1) cannot be considered as a perturbation operator
because the difference of the resolvent decreases if the norm of γ increases (see
Theorem 6). In this connection we shall derive a modification of Krein’s formula.
Like in (1.3) H is described by a closed subspace L and a selfadjoint operator β in
L. The modified formula reads

1

H − i
=

1

H0 − i
+
H0 + i

H0 − i

(

i+
1

β + i
PM

)

.(1.6)

With this β we can estimate the difference of the resolvents (see (5.1)).
In order to deal with (1.3) and (1.6) in one stroke we introduce a parameter θ ∈

[0, 2π) and consider in Theorem 1 a family of correspondence {M,γ} ↔ H(M,γ; θ)
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distinguished by the value of θ. θ = 0 and θ = π corresponds to (1.3) and (1.6)
respectively.

Some comments on the perturbation theory are due. In [10, 11] H.Nagatani
and the second author proved a resolvent formula (for general z ) which relates
all selfadjoint operators to a given H0. Originally, the formula was written in the
framework of what is called “H−2 resolvent construction” in [10]. There, the results
were expressed using the language of a scale of Hilbert spaces associated to H0. The
same results can be presented using only operators in the original Hilbert space. In
this form, given H0, the results of [10, 11] give a bijective correspondence between
the set of all selfadjoint operators H in H and the set of all normal operators τ
satisfying certain additional conditions. The correspondence is given by

1

H − z
−

1

H0 − z
=
H0 + i

H0 − z

1

1 + (z − i)τ H0+i
H0−z

τ
H0 − i

H0 − z
.(1.7)

In particular, with z = i (1.7) becomes

1

H − i
−

1

H0 − i
=
H0 + i

H0 − i
τ.(1.8)

The similarity between (1.3) (or (1.6)) and (1.8) is evident. Thus, by taking τ
properly, it is expected that results obtained in the H−2 perturbation theory can
be converted to {M,γ} situation. In particular, in the case of (1.3) we can recap-
ture (1.1) from (1.7) and in the case of (1.6) we can derive a resolvent expression
for general z from (1.7) (see (4.4) ). Unfortunately, however, (4.4) has a rather
complicated appearance.

Notations. Throughout the present paper we shall use the following notations.
We shall work in a fixed Hilbert space H. For brevity of the exposition we put

Csa(H) = {the set of all selfadjoint operators in H},(1.9)

M = {the set of all closed subspaces of H}.(1.10)

For M ∈ M we denote by M⊥ the orthogonal complement of M and by PM the
orthogonal projection on M .

For a closed operator A in H the resolvent set of A is denoted by ρ(A). As
we already did we denote the resolvent and related operators by the fractions:

(H − z)−1 =
1

H − z
; (H −w)(H − z)−1 =

H − w

H − z
. We also note that the following

simple relation is rather useful in our discussion:

H + i

H − i
= 1 +

2i

H − i
.(1.11)

2. General correspondence

In this section we fix θ ∈ [0, 2π) and let H0 ∈ Csa(H). For M ∈ M and
γ ∈ Csa(M) we introduce the condition

Ker

{

1−
2i

γ + i
PM − e

iθH0 − i

H0 + i

}

= {0},(2.1)

and call it admissibility condition. We also call a pair {M,γ} satisfying condition
(2.1) an admissible pair. See Section 6 where the admissibility condition is studied
in the case θ = 0.

The main result in this section is the following theorem.
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Theorem 1. Let θ and H0 be as above. Then, for any H ∈ Csa(H) their exists

an admissible pair {M,γ} such that the following equivalent relations (2.2)–(2.5)
hold

H + i

H − i
= e−iθH0 + i

H0 − i

(

1−
2i

γ + i
PM

)

(2.2)

= e−iθH0 + i

H0 − i

(

PM⊥ +
γ − i

γ + i
PM

)

,(2.3)

1

H − i
−

1

H0 − i
=

H0 + i

H0 − i

(

e−iθ − 1

2i
−
e−iθ

γ + i
PM

)

(2.4)

=
H0 + i

H0 − i

(

e−iθ − 1

2i
PM⊥ +

1

2i

[

e−iθ γ − i

γ + i
− 1

]

PM

)

.(2.5)

The correspondence H ←→ {M,γ} is a bijection between Csa(H) and the set of all

admissible pairs {M,γ}.

Remark. With θ = 0 formula (2.4) coincides with (1.3), and with θ = π it is
(1.6) (β = γ).

Proof. (i) The equivalence of (2.2) and (2.3) (or (2.4) and (2.5)) is a result of
simple manipulations. To see that (2.2) is equivalent to (2.4) we use (1.11) on the
left hand side of (2.2) and see that (2.2) is equivalent to

2i

H − i
= e−iθH0 + i

H0 − i

(

1−
2i

γ + i
PM

)

− 1

=
H0 + i

H0 − i
− 1 + e−iθH0 + i

H0 − i

(

1− eiθ −
2i

γ + i
PM

)

.

Applying (1.11) to H0 and dividing by 2i, we see that this is equivalent to (2.4).
(ii) Given H ∈ Csa(H), we put

U = eiθH0 − i

H0 + i

H + i

H − i
,(2.6)

which is the ratio of the Cayley transforms of H0 and H multiplied by eiθ. U is
a unitary operators in H. Let K = {ψ ∈ H |Uψ = ψ} be the eigenspace of U
corresponding to the eigenvalue 1 and put M = K⊥. Then, K and M reduce U
and the part U |M of U in M is a unitary operator in M which does not have 1
as an eigenvalue. Hence, by the theory of Cayley transforms there exists a unique

γ ∈ Csa(M) such that U |M =
γ − i

γ + i
. Equation (2.3) follows from this observation

and (2.6).
It is not difficult to see that M and γ given above satisfy (2.1). Indeed, the

operator on the left hand side of (2.2) does not have 1 as an eigenvalue. Hence, by

multiplying the right hand side of (2.2) by eiθH0 − i

H0 + i
, we see that

Ker

{

1−
2i

γ + i
PM − e

iθH0 − i

H0 + i

}

= {0}.(2.7)

This is equivalent to (2.1).
(iii) The uniqueness of the pair {M,γ} satisfying (2.3) is verified as follows. Let

M ′ and γ′ satisfy (2.3) with M and γ replaced by M ′ and γ′, respectively. Then,

it is clear that M ′⊥ ⊂ K = {ψ ∈ H |Uψ = ψ}. If M ′⊥ does not exhaust K, then
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there exists a non-zero ψ ∈M ′ such that Uψ = ψ. Furthermore, (2.3) implies that

U |M ′ =
γ′ − i

γ′ + i
. This means that

γ′ − i

γ′ + i
ψ = ψ, ψ 6= 0, which is impossible because

γ′ is selfadjoint in M ′. Hence, M ′ = M. Then, the Cayley transform of γ and γ ′

are both equal to U |M . Hence, γ′ = γ.
(iv) Conversely, given a pair {M,γ} ∈ M, the right hand side of (2.3) defines

a unitary operator in H. As is mentioned above, the admissibility condition (2.1) is
equivalent to (2.7), which in turn implies that the operator on the right hand side
of (2.2) does not have 1 as an eigenvalue. Hence, there exist H ∈ Csa(H) such that

(2.3) holds. This establishes that the correspondence H 7−→ {M,γ} is onto.

Example 1. Among all correspondences indexed by θ the cases θ = 0 and

θ = π are particularly interesting. We reproduce formulas (2.1), (2.2)–(2.5) for

these cases.

(i) The case θ = 0. The admissibility condition (2.1) takes the form

Ker

{

1

H0 + i
−

1

γ + i
PM

}

= {0}(2.8)

and equations (2.2)–(2.5) read

H + i

H − i
=
H0 + i

H0 − i

(

1−
2i

γ + i
PM

)

=
H0 + i

H0 − i

(

PM⊥ +
γ − i

γ + i
PM

)

,(2.9)

1

H − i
−

1

H0 − i
= −

H0 + i

H0 − i

1

γ + i
PM .(2.10)

(ii) The case θ = π. The admissibility condition (2.1) takes the form

Ker

{

H0

H0 + i
−

i

γ + i
PM

}

= {0}(2.11)

and equations (2.2)–(2.5) read

H + i

H − i
= −

H0 + i

H0 − i

(

1−
2i

γ + i
PM

)

= −
H0 + i

H0 − i

(

PM⊥ +
γ − i

γ + i
PM

)

,(2.12)

1

H − i
−

1

H0 − i
=
H0 + i

H0 − i

(

i+
1

γ + i
PM

)

=
H0 + i

H0 − i

(

iPM⊥ + i
γ

γ + i
PM

)

.

(2.13)

We just mention that in the case that θ = 0 H0 itself corresponds to the pair

({0}, 0), where 0 is the zero operator with the domain {0}, while in the case that

θ = π H0 corresponds to the pair (H, 0), where 0 is the zero operator with the

domain H.

Sometimes it is convenient to show the dependence of H on {M,γ} explicitly.
For this purpose we use H(M,γ; θ) to denote the operator determined by {M,γ}
in the correspondence with θ. When we use the notation H(M,γ; θ), it is tacitly
assumed that the pair {M,γ} satisfy the admissibility condition (2.1).
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3. Krein’s formula

3.1. The resolvent formula. In this section we are concerned with the case
θ = 0. In the previous section we established a bijective correspondence H ↔
{M,γ} by using only the resolvent at z = i. The next problem is to derive (1.1) at
general z. We say that a bounded operator A in M is boundedly invertible in M if
A has an everywhere defined bounded inverse.

Theorem 2. Let H0 be fixed. Then for any selfadjoint operator H exists

unique admissible pair {M,γ}, such that the resolvent of H is given by

1

H(M,γ; 0)− z
=

1

H0 − z
−
H0 + i

H0 − z

1

γ +Q(z)
PM

H0 − i

H0 − z
, z ∈ ρ(H) ∩ ρ(H0),

(3.1)

where Q(z) = PM

1 + zH0

H0 − z
PM for z ∈ ρ(H0). Here z ∈ ρ(H) ∩ ρ(H0) if and only if

the operator γ +Q(z) in M is boundedly invertible.

Proof. Consider any complex z, =z 6= 0. Let us denote by R(z) the right hand
side of formula (3.1)

R(z) :=
1

H0 − z
−
H0 + i

H0 − z

1

γ +Q(z)
PM

H0 − i

H0 − z
.

Let us prove that R(z) is a resolvent of a certain selfadjoint operator. Following [11]
direct proof of the theorem can be carried out using the following two propositions.

Proposition 1. The family R(z) satisfies the resolvent equation

R(z)−R(w) = (z − w)R(z)R(w).(3.2)

Proof. Observe first that

Q(z)−Q(w) = PM (H0 − i)

(

1

H0 − z
−

1

H0 − w

)

(H0 + i)PM ,(3.3)

since the operator Q(z) can be written in the form:

Q(z) = PM (H0 − i)

(

1

H0 − z
−

H0

H2
0 + 1

)

(H0 + i)PM .

It follows that

1

γ +Q(z)
−

1

γ +Q(w)

=
1

γ +Q(z)
PM (H0 − i)

(

1

H0 − w
−

1

H0 − z

)

(H0 + i)PM

1

γ +Q(w)
.

(3.4)

Then formula (3.2) can be proven directly using the resolvent identity for the op-
erator H0

(z − w)
1

H0 − z

1

H0 − w
=

1

H0 − z
−

1

H0 − w
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and (3.4) as follows

(z − w)R(z)R(w)−R(z) +R(w)

= (z − w)
1

H0 − z

1

H0 − w
− (z − w)

H0 + i

H0 − z

1

γ +Q(z)
PM

H0 − i

H0 − z

1

H0 − w

−(z − w)
1

H0 − z

H0 + i

H0 − w

1

γ +Q(w)
PM

H0 − i

H0 − w

+(z − w)
H0 + i

H0 − z

1

γ +Q(z)
PM

H0 − i

H0 − z

H0 + i

H0 − w

1

γ +Q(w)
PM

H0 − i

H0 − w

−
1

H0 − z
+
H0 + i

H0 − z

1

γ +Q(z)
PM

H0 − i

H0 − z

+
1

H0 − w
−

H0 + i

H0 − w

1

γ +Q(w)
PM

H0 − i

H0 − w

=
H0 + i

H0 − z

{

1

γ +Q(z)
−

1

γ +Q(w)

+
1

γ +Q(z)
PM (H0 − i)

(

1

H0 − z
−

1

H0 − w

)

(H0 + i)PM

1

γ +Q(w)

}

PM

H0 − i

H0 − w

= 0.

This proposition implies in particular that the kernel of the operator R(z) does
not depend on z.

Proposition 2. The kernel of the “resolvent” operator R(z) is trivial if and

only if

Ker

(

1

H0 + i
−

1

γ + i
PM

)

= {0}.(3.5)

Proof. Since the kernel of R(z) is independent of z, consider point z = i. Then

R(i) =
H0 + i

H0 − i

(

1

H0 + i
−

1

γ − i
PM

)

implies that the kernel of the operator R(i) coincides with the kernel of the operator
1

H0+i
− 1

γ+i
PM . The proposition is proven.

Condition (3.5) coincides with the admissibility condition (2.8) and therefore is
satisfied for the pair {M,γ}. It follows that R(z) is a resolvent of a certain selfadjoint
operator in H. Considering the point z = i we conclude that this operator coincides
with the operatorH(M,γ; 0) determined by Theorem 1. Therefore (3.1) must hold.
It has been already proven that the correspondence H ↔ {M,γ} is a bijection.
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Formula (3.1) established for all non real z /∈ R can be written as follows

−
H0 − z

H0 + i

(

1

H(M,γ; 0)− z
−

1

H0 − z

)

H0 − z

H0 − i
=

1

γ +Q(z)
PM .(3.6)

It follows that, provided z ∈ ρ(H0), the operator γ +Q(z) is boundedly invertible
whenever the operator H − z is boundedly invertible, i.e. for all z ∈ ρ(H)∩ ρ(H0).

The theorem is proven.
We remark that the theorem can also be verified as a consequence of results in

the H−2-theory given in [10, 11] (see Section 4). Formula (3.1) is obtained using
operator analysis and to prove it no knowledge of the extension theory is needed.
This is the main difference between formula (3.1) and classical Krein’s formula
appearing in the extension theory.

3.2. Krein’s formula. In the case θ = 0 the approach described above is
nicely related to the extension theory. We shall explain it and rewrite Theorems 1
and 2 in the situation of extension theory. Two selfadjoint extensions H and H0

of a closed Hermitian operator H00 are called relatively prime if the operator H00

coincides with the maximal common restriction of the operators H and H0. Using
(1.4) the extensions H and H0 can be shown to be relatively prime if

H00 = H ∧H0.(3.7)

We make a simple observation that

Ker

(

1

H − i
−

1

H0 − i

)

= (H0 − i)D (H ∧H0).(3.8)

If H = H(M,γ; 0) in (3.8), then the left hand side of (3.8) is equal to M⊥ by (2.10).
This and (3.8) imply that

M = [(H0 − i)D (H(M,γ; 0) ∧H0)]
⊥
,(3.9)

which in turn implies

D (H(M,γ; 0) ∧H0) =
1

H0 − i
M⊥.(3.10)

(3.10) says that the maximal common restriction of H(M,γ; 0)∧H0 is determined
only by M independently of γ. (This occurs only in the case θ = 0.) Putting
in another way, we can say that given a closed subspace M all relatively prime
selfadjoint extensions of H0| 1

H0−i
M⊥ are given by H(M,γ; 0).

Following F.Riesz and M.Krasnosel’skii we are going to call an operator A in
H Hermitian if

〈Af, g〉 = 〈f,Ag〉

for all f, g ∈ D (A) without assuming that D (A) is dense in H. The conditions for
the existence of selfadjoint extensions of Hermitian operators have been studied in
detail by M.Krasnosel’skii [6].

On the basis of these observations we can reformulate Theorems 1 and 2 as
follows.

Theorem 3. Let H00 be a closed Hermitian operator in a Hilbert space H and

H0 be a selfadjoint extension of H00. Then the following (i) and (ii) hold:

(i) Between the set of all selfadjoint extensions H of H00 which are relatively prime

to H0 and the set of all selfadjoint operators γ in the deficiency subspace M =

[(H00 − i)D (H00)]
⊥

which satisfy the admissibility condition (2.8), there exists a
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bijective correspondence determined by (2.10). Precisely, the correspondence γ → H
is given by H = H([(H00 − i)D (H00)]

⊥, γ; 0).

(ii) For z ∈ ρ(H0), let Q(z) be defined by (1.2) with M = [(H00 − i)D (H00)]
⊥
.

Then, z ∈ ρ(H) if and only if γ + Q(z) is boundedly invertible in M and the

following formula holds

1

H([(H00−i)D (H00)]⊥,γ;0)− z
−

1

H0 − z
= −

H0 + i

H0 − z

1

γ +Q(z)
P[(H00−i)D (H00)]⊥

H0 − i

H0 − z
.

(3.11)

Formula (3.11) is Krein’s formula. In the case where the operatorH00 is densely
defined this formula has been derived by S.N.Saakjan [14]. See recent paper [4] for
a comprehensive study of this problem and extensive reference list.

The bounded operator Q(z) appearing in (1.1) depends analytically on z /∈ R

and has positive imaginary part in =z > 0. Really

=Q(z) = =z PM

H2
0 + 1

(H0 −<z)2 + =z2
PM ≥ 0.

4. Application of H−2 perturbation theory

As is reviewed in the introduction results in [11] say that resolvent formula
(1.7) gives a bijective correspondence between all selfadjoint operators H and all
bounded normal operators such that

Ker

(

1

H0 + i
− τ

)

= {0}, σ(τ) ⊂

{

z

∣

∣

∣

∣

|z +
i

2
| =

1

2

}

,(4.1)

where σ(τ) is the spectrum of τ . It was also shown that z ∈ ρ(H0) ∩ ρ(H) if and

only if the operator B(z) := 1 + (z − i)τ
H0 + i

H0 − z
is boundedly invertible in H.

Let us first consider the case that θ = 0. Comparing (1.8) with (2.10) τ corre-
sponding to H(M,γ; 0) is given by

τ = −
1

γ + i
PM .(4.2)

In this case B(z) = 1−
z − i

γ + i
PM

H0 + i

H0 − z
. Then, if B(z) is boundedly invertible in

H, then it maps M onto M and hence the restriction of B(z) to M is an operator
in M and it is boundedly invertible in M. It is then a simple matter to derive (3.1)
from (1.7).

Next, let us consider the case that θ = π. In this case we have

τ = i+
1

γ + i
PM .(4.3)

Then, B(z) does not map M into M . For this reason we cannot make much
simplifications. All we can do now is to write down (1.7) with the above τ and call
it the resolvent formula in the case of θ = π:

1

H(M,γ;π)− z
−

1

H − z

=
H0 + i

H0 − z

1

1 + (z − i)
(

i+ 1
γ+i

PM

)

H0+i
H0−z

(

i+
1

γ + i
PM

)

H0 − i

H0 − z
.

(4.4)
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The admissibility conditions for {M,γ} and (4.1) are equivalent to each other. It
would not be necessary to discuss this in detail.

5. Resolvent estimates

Parameterization of the selfadjoint operators as perturbations of a given selfad-
joint operatorH0 using the pair {M,γ} in the case θ = π leads to efficient estimates
of the difference between the resolvents of the perturbed and unperturbed opera-
tors.

Theorem 4. Let H0 ∈ Csa(H) and θ = π. Then the difference between the re-

solvents of the unperturbed operator H0 and the perturbed operator H = H(M,γ;π)
determined by the admissible pair {M,γ} can be estimated as follows

‖
1

H − i
−

1

H0 − i
‖H≤







1, if M 6= H;

min{‖ γ ‖, 1}, if M = H.
(5.1)

Proof. The difference between the resolvents at point i is given by (2.13)

1

H − i
−

1

H0 − i
=
H0 + i

H0 − i

(

iPM⊥ + i
γ

γ − i
PM

)

.

To estimate the norm of the operator

iPM⊥ + i
γ

γ − i
PM

we note first that this sum is orthogonal. Therefore the norm of this operator is
equal to the maximum of the norms of the summands. The norm of the operator
i γ
γ−i

PM can be estimated by min{‖ γ ‖, 1}. The orthogonal projector PM⊥ has

norm 1 if M 6= H. We conclude that the norm of the operator sum is equal to 1
if the subspace M⊥ is not trivial and to min{‖ γ ‖, 1} in the opposite case. The

norm of the Cayley transform H0+i
H0−i

is equal to 1 and formula (5.1) is proven.
The following statement is an easy corollary of the last theorem. It can also be

proven directly using estimates involving Cayley transform.

Corollary 1. Let H and H0 be two arbitrary selfadjoint operators in the

Hilbert space H. Then the difference between the resolvents at point i satisfies the

estimate

‖
1

H − i
−

1

H0 − i
‖≤ 1.(5.2)

Proof. The following estimates prove the corollary without using Theorem 4
but rather formula (1.11)

‖
1

H − i
−

1

H0 − i
‖=

1

2
‖
H + i

H − i
−
H0 + i

H0 − i
‖≤ 1.

Example 2. Let the original operator H0 be equal to zero H0 = 0 with the

domain D (H0) = H. Then the pair {M,γ} is admissible only if the subspace M
coincides with H. Then any operator γ is admissible. The formula (2.13) reads as

follows
1

H − i
=

1

−γ − i
.

The perturbation operator γ coincides with the operator −H in this case.
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6. Some remarks

In this section the general correspondence is discussed in the case θ = 0. The
following theorem describes when does the admissibility condition (2.8) is fulfilled
for all selfadjoint operators γ provided that the closed subspace M is fixed.

Theorem 5. Let H0 be a selfadjoint operator and M be any closed subspace

in H. Let H(M,γ; 0) be the selfadjoint operator parameterized by the pair {M,γ}.
Then the following (i) and (ii) hold:

(i) If M ∩ D (H0) = {0}, then the domain D (H(M,γ; 0) ∧ H0) is dense and any

selfadjoint operator γ in M is admissible.

(ii) If M ∩ D (H0) 6= {0}, then the domain D (H(M,γ; 0) ∧ H0) is not dense and

there exist selfadjoint operator γ in M , which is not admissible.

Proof. Note first that formula (3.9) implies that the subspace M is exactly the
deficiency subspace for the maximal common restriction of the operators H0 and
H(M,γ; 0). Therefore the maximal common restriction H00 = H(M,γ; 0)∧H0 does
not depend on the operator γ.

Suppose that ϕ ∈ M ∩ D (H0), ‖ ϕ ‖= 1. Then every vector from D (H00) is
orthogonal to the vector (H0 + i)ϕ ∈ H, and it follows that the operator H00 is not
densely defined. Then any selfadjoint operator γ in M , which maps ϕ 7→ PMH0ϕ
is not admissible.

Suppose that M ∩D (H0) = {0}. It follows that any selfadjoint operator γ in M
is admissible, since the ranges of the operators 1

H0+i
and 1

γ+i
PM belong to D (H0)

and M respectively and the equality
(

1

H0 + i
−

1

γ + i

)

f = 0

implies that f belongs to the kernel of the resolvent 1
H0+i

and therefore is equal to
zero. Suppose that the operator H00 is not densely defined. It follows that there
exist f ∈ H, such that f ⊥ D (H00). Then the vector ϕ = 1

H0+i
f belongs both to

M and D (H0). Contradiction proves that no such vector f exists and the operator

H00 is densely defined. The theorem is proven.
The necessity of the admissibility condition was discovered first by M.Krasno-

sel’skii [6] during the studies of selfadjoint extensions of Hermitian not densely
defined operators. It was proven that the admissibility condition is not needed if
the restricted operator is densely defined.

Consider two extreme cases M = {0} and M = H. When M = {0}, the only
selfadjoint operator in M is the zero operator and the admissibility condition (2.8)
is satisfied. We have H({0}, 0; 0) = H0. Next let M = H. A pair {H, γ} satisfies
(2.8) if and only if D (H0 ∧ γ) = {0}. In particular if D (H0) ∩ D (γ) = {0}, then
(H, γ) is an admissible pair.

We mentioned that in the case of θ = 0 the difference of the resolvent decreases
when the norm of γ increases. For example we have the following theorem

Theorem 6. Let γ ∈ Csa(H) be such that D (γ)∩D (H0) = {0} and zero is not

an eigenvalue of γ. Then, (H, tγ) satisfies (2.8) for any real t 6= 0. Furthermore, as

t→ ±∞ H(H, tγ; 0) converges to H0 in the sense of strong resolvent convergence.

Proof. Consider any element f of the Hilbert space. Then the difference of the
resolvents can be written using the spectral measure µf (λ) for the operator γ and
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the element PMf as follows

‖

(

1

H − i
−

1

H0 − i

)

f ‖2=

∫

R

|
1

tλ+ i
|2dµf (λ) →t→±∞ 0,

since point zero is not an eigenvalue of the operator γ. The theorem is proven.
Acknowledgments

This work started during the visit of P.Kurasov to Gakushuin University in
February-March 1999 and completed during the visit of S.T.Kuroda to Stockholm
University in April-May 2000. The authors would like to thank Sweden-Japan
Sasakawa Foundation, Gakushuin University, Stockholm University and The Royal
Swedish Academy of Sciences for financial support and hospitality.

References

[1] S.Albeverio, F.Gesztesy, R.Høegh-Krohn and H.Holden, Solvable models in quantum me-
chanics, Springer, 1988.

[2] S.Albeverio and P.Kurasov, Singular perturbations of differential operators, London Mathe-
matical Society Lecture Notes vol. 271, Cambridge Univ. Press, Cambridge, 2000.

[3] F.A.Berezin and L.D.Faddeev, Remark on the Schrödinger equation with singular potential,
Dokl. Akad. Nauk SSSR, 137, 1011–1014, 1961.

[4] F. Gesztesy, K. A. Makarov, E. Tsekanovskii, An addendum to Krein’s formula, J. Math.
Anal. Appl., 222 (1998), 594–606.

[5] A. Kiselev and B. Simon, Rank-one perturbations at infinite coupling, J. Funct. Anal., 128,
1995, 245-252.

[6] M.Krasnosel’skii, On selfadjoint extensions of Hermitian operators, Ukrain. Mat. Zurnal, 1,
21-38, 1949.

[7] M.Krein, On Hermitian operators whose deficiency indices are 1, Comptes Rendue (Doklady)
Acad. Sci. URSS (N.S.), 43, 131-134, 1944.

[8] M.Krein, On Hermitian operators whose deficiency indices are equal to one. II, Comptes
Rendue (Doklady) Acad. Sci. URSS (N.S.), 44, 131-134, 1944.

[9] M.Krein, On a remarkable class of Hermitian operators, Comptes Rendue (Doklady) Acad.
Sci. URSS (N.S.), 44, 175-179, 1944.

[10] S.T.Kuroda, H.Nagatani, H
−2-construction and some applications, in Mathematical Results

in Quantum Mechanics, J.Dittrich, P.Exner, M.Tartar, ed., Operator Theory: Advances and
Applications, Vol. 108, Birkhäuser Verlag, Basel, 1999.
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