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On Monomial Semigroups

Vincenzo Micale∗

April 4, 2000

1 Introduction

Let R a Noetherian ring with K ⊂ R ⊆ K[[t]], K a field of characteristic zero,
R = K[[t]] and the conductor C = (R : K[[t]]) different from zero. The above
conditions on R imply that R is a one-dimensional Noetherian local domain.
Note that if x ∈ (t) \ (t2), then K[[t]] = K[[x]]. This means that x = ut for
some unit u of K[[t]] or equivalently that we have t = x(a0 + a1x + a2x

2 + · · · )
or x = t(b0 + b1t+ b2t

2 + · · · ) with a0b0 = 1. We shall without loss of generality
always assume that a0 = b0 = 1.
If v : K((t))∗ → Z is the natural valuation for K((t)), that is v

(
∑∞

h=i rhth
)

= i,

with i ∈ Z and ri 6= 0, then v(R) = S is a numerical semigroup and v(R) = N.
An early paper on the connection between semigroups and one-dimensional lo-
cal domains is [A]. This connection has since been studied in e.g. [H-K] and
an extensive study on numerical semigroups and their applications to integral
domains is in [B-D-F].
Let be S = 〈g1, . . . , gn〉 with g1, . . . , gn a minimal set of generators. Without
loss of generality we may assume that gcd(g1, . . . , gn) = 1. By K[[tS ]] we mean
K[[tg1 , . . . , tgn ]]. A ring R is called a semigroup ring if R = K[[xS ]] for some
x ∈ (t) \ (t2). In general if S is fixed and we consider all the rings R with
v(R) = S, is not true that all these rings are semigroup rings.
In [P-S] the notion of monomial semigroup has been introduced.
We call a semigroup S in N a monomial semigroup if each subring R as above
with v(R) = S, is a semigroup ring.
In [P-S, Theorem 3.10] is given a theoretical description and a concrete classifi-
cation of the monomial semigroups, however the proof is not completely correct.

1.1 Description of the content

We now make a closer description of the content of this paper. In Section 2,
we recall some known results about the numerical semigroups and we introduce
v(R), the value semigroup associated to a ring R. In Section 3 we give the
definition of m-critical number and we use it (cf. Theorem 3.11) for a correct
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proof of [P-S, Theorem 3.10]. Moreover we introduce an invariant P (S) of S
and we find a bound for P (S), (cf. Theorem 3.17). We have P (S) = 0 if and
only if S is a monomial semigroup. In Section 4 we give (cf. Example 4.3) a
concrete classification of the numerical semigroups with crit(S) = 1 and we give
an example of a numerical semigroup with P (S) = 1 and crit(S) > 1.

2 Preliminaries

Let N denote the natural numbers. A subsemigroup S of (N, +) with 0 ∈
S is called a numerical semigroup. Each semigroup S has a natural partial
ordering ≤S where for two elements s and t in S we have s ≤S t if there
is a u ∈ S such that t = s + u. The set {gi} of the minimal elements in
S \ {0} in this ordering is called a a minimal set of generators for S. In fact
all elements of S are linear combination with non-negative integers coefficients
of minimal elements. The set {gi} of minimal generators is finite since for
any s ∈ S, s 6= 0, we have gi 6= gj (mod s). The same argument shows
that the number of minimal generators is at most min{s ∈ S | s 6= 0}. We
denote the semigroup generated by g1, g2, . . . , gn by 〈g1, g2, . . . , gn〉. Since the
semigroup 〈g1, g2, . . . , gn〉 is isomorphic to 〈dg1, dg2, . . . , dgn〉 for any d ∈ N\{0},
we assume, in the sequel, that gcd(g1, g2, . . . , gn) = 1. This is easily seen to be
equivalent to |N \ S| < ∞.
For a semigroup S we denote g(S) := max{x ∈ Z | x /∈ S}. This number is
often called the Frobenius number of S.
For a semigroup S we denote by g − S the set of numbers {g(S) − s | s ∈ S}.
Clearly we have S ∩ (g − S) = ∅.
The semigroup S is called symmetric if S ∪ (g − S) = Z. There are several
alternative descriptions of the concept of symmetric semigroup (cf. [F-G-H,
Lemma 1.1]). It is classically known (cf. [S]) that S = 〈g1, g2〉 is a symmetric
semigroup.
Since |N\S| < ∞, there exists in S elements s such that the set {s, s+1,−→} ⊆ S
(where the symbol ”−→” means that all subsequent natural numbers belong to
the set). We call the conductor of S, the minimal of such elements s and denote
it with c. Clearly, from the definition of Frobenius number, we have c = g(S)+1.
Throughout the rest of the paper we will assume R ⊆ K[[t]] be a Noetherian
domain with K field of characteristic zero, the conductor of R in K[[t]], that is
the greatest ideal of R and K[[t]], be different from zero, K ⊂ R and K[[t]] as
integral closure.
We call v(R) := {v(r) | r ∈ R} the value semigroup associated to R. It is
clear from the definition of t-adic valuation that if S = 〈g1, g2, . . . , gn〉 is any
nonzero numerical semigroup, then every semigroup ring K[[tS ]] has as valuation
the semigroup S. However not every R of our type is a semigroup ring, e.g.
R = K[[t4, t6 + t9, t11]] has v(R) = 〈4, 6, 11〉 but, as we will show, R is not a
semigroup ring.
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3 The main theorems

Throughout the rest of the paper we will assume that g1 < g2 < · · · < gn is a
minimal system of generators for S and that gcd(g1, . . . , gn) = 1; moreover we
let gs denote the greatest generator of S less than the conductor.

The following are easy to see:

if [a, a + g1 − 1] ⊆ S, then [a,∞) ⊆ S, i.e. a ≥ c (3.1)

if g ∈ [g1, g1 + g2 − 1] ∩ S \ g1N, then g = gi for some 1 ≤ i ≤ n (3.2)

We say that a natural number k is a critical number for gi if gi + k /∈ S. In
general, we call k an m-critical number if it is critical number for m generators
of S.

In [P-S, Theorem 3.10] is given a theoretic and a concrete description of
monomial semigroups. However, the proof of the theorem of characterization
of monomial semigroup is not completely correct. We will give a correct proof
of the theorem, giving a more intuitive theoretical description of the monomial
semigroups. To this purpose we prove the following lemma in which the con-
dition (i), present in [P-S, Theorem 3.10], is replaced by other more evident
conditions.

Lemma 3.1. Let S = 〈g1, . . . , gn〉 be a numerical semigroup.Then the following
are equivalent:

(i) If x ∈ N \ S and c(x) := min{n ∈ N | [n,∞) ⊆ S ∪ (x + S)}, then
S ∩ (x + S) ⊆ [c(x),∞).

(ii) For every k ≥ 0 and for every (i, j), with i 6= j and i, j = 1, . . . , n, we
have that gi + k ∈ S or gj + k ∈ S.

(iii) Every integer k ≥ 0 is a critical number for at most one generator of the
semigroup.

(iv) If a and b are in S with a > b and a− b /∈ S, then a + k ∈ S or b + k ∈ S
for every integer k ≥ 0.

Proof. (i) ⇒ (iv): Let be a and b in S with b < a and such that a−b = x /∈ S.
We have to prove that a+k ∈ S or that b+k ∈ S for every integer k ≥ 0. Since
a ∈ S ∩ (S + x), we have c(x) ≤ a. Hence a + k ∈ S ∪ (x + S) for every integer
k ≥ 0.

(iv) ⇒ (i): Let be y ∈ S ∩ (x + S). We have y ≥ c(x) ⇔ y + k ∈ S ∪ (x + S)
for every integer k ≥ 0 ⇔ y + k ∈ S or (y − x) + k ∈ S and the last statement
is true because y − (y − x) = x /∈ S.

(ii) ⇒ (iv): Let a and b be in S, with a > b, such that a− b /∈ S. Suppose
there exists an integer k ≥ 0 such that a + k /∈ S and b + k /∈ S. Since a and b
are in S, they are combination of generators of S. But if they are combination
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of more than one generator or if they are multiple of different generators, then
by (ii) we have that a+k or b+k are in S, that is a contradition. Hence we only
consider the case a = αgi and b = βgi. But in this case a− b is in S. Absurd.

(iv) ⇒ (ii): Trivial, since gi and gj are minimal generators.
(ii) ⇔(iii): Trivial from definition of critical number.

Lemma 3.2. Let S = 〈g1, . . . , gn〉 be a numerical semigroup. If the conditions
of Lemma 3.1 are true, then gi + gj + k ∈ S for every integer k ≥ 0 and for
every (i, j), with i 6= j and i, j = 1, . . . , n. (i.e. gi + gj ≥ c, where c is the
conductor of S)

Proof. It is enough to prove the lemma for i = 1 and j = 2. If there exists
an integer k > 0 such that g1 + g2 + k /∈ S then g1 + k /∈ S and g2 + k /∈ S.
Hence we have a contradition to (ii) of 3.1.

From now on we denote by Ki the set of critical numbers of gi. It is for us
an important set and we use it many times in the paper.

Remark 3.3. Let Ki be as above, where i = 1, . . . , s. If S = 〈g1, . . . , gn〉 is a
numerical semigroup, with gs the generator above, then it easy to see that every
ring R with v(R) = S, has a unique canonical representation of this sort:

R = K[[f1, . . . , fs, t
r | r ≥ c]]

where fi = tgi +
∑

kij
∈Ki

ajt
gi+kij . In fact if there exists another representation,

say

R = K[[f ′1, . . . , f
′
s, t

r | r ≥ c]]

where f ′i = tgi +
∑

kij
∈Ki

bjt
gi+kij , we would have fi − f ′i =

∑

kij
∈Ki

(ai −

bi)t
gi+kij ∈ R contradicting gi + kij

/∈ S.

Remark 3.4. If S = 〈g1, . . . , gn〉 and k is a m-critical number with m ≥ 2
and gi is generator which has k as critical number, it is not always true that
R = K[[tgi + αtgi+k, tgj | j ∈ {1, . . . , n} \ {i}]] has associated the semigroup S.

Example 3.5. Consider S = 〈4, 6, 15, 17〉 and let R = K[[t4 + t5, t6, t15, t17]]. We
have that (t4 + t5)3 − (t6)2 = 3t13 + 3t14 + t15 ∈ R, but 13 is not in S.

This is the mistake in the proof of [P-S, Theorem 3.10]. We prove now that
the statement becomes true for a right choose of k and gi. The following lemma
is generalization of Lemma 3.2.

Lemma 3.6. Let S = 〈g1, . . . , gn〉 be a numerical semigroup with conductor c.
Consider the sets, possibly empty, Ki,j of critical numbers for both gi and gj

and let hi,j be the greatest element in Ki,j , where hi,j = −1 if Ki,j = ∅. Then
gi + gj + hi,j ≥ c− 1.
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Proof. By the choice of hi,j we have gi + hi,j + x ∈ S or gj + hi,j + x ∈ S
for every x ≥ 1, so gi + gj + hi,j + x ∈ S, hence gi + gj + hi,j + 1 ≥ c that is
gi + gj + hi,j ≥ c− 1.

Lemma 3.7. Let k be the greatest m-critical number of S with m ≥ 2 and let
gi the greatest generator of S which has k as critical number. Then if R =
K[[tgi + tgi+k, tgj | j ∈ {1, . . . , n} \ {i}]], we have v(R) = S.

Proof. The only possibility to get a value outside S is to have in R an element
y = [

∏

j 6=i(t
gj )mj ](tgi + tgi+k)n −

∏

j 6=i(t
gj )nj where

∑

j 6=i gjmj + ngi + k =
∑

j 6=i njgj + k /∈ S. By factoring out common factors, we may assume that

nj = 0 if mj 6= 0. Now y = t(
�

j 6=i
gjmj)+ngi+k + · · · . We know by Lemma 3.6

that gi + gj + k ≥ c − 1 if k is the greatest critical number for gi and gj and
i 6= j. Thus we have to consider only four cases (we suppose that gj < gi and
gt < gr):

• gi + gj + k = gr + gt + k = c− 1 with r, t 6= i, j

• gi + gj + k = dgr + k = c− 1 with r 6= i, j d > 1

• ngi + k = gr + gt + k = c− 1 with r, t 6= i and n > 1

• ngi + k = dgr + k /∈ S with i 6= r and n, d > 1.

Consider the first case. We get gi+k = gt+gr+k−gj . We have gi+k /∈ S and
gr+k−gj > k. Since gr+k = gj +(gr+k−gj) /∈ S and gi+k = gt+(gr+k−gj),
we get that gr + k− gj is critical for both gj and gt, which is a contradiction to
the fact that k is the largest m-critical number for some m > 1.
Consider the second case. We have gi +k = gr +(d−1)gr +k− gj . We get that
(d−1)gr +k+gj is critical for gr and (d−1)gr−gj +k > k, so (d−1)gr−gj +k
cannot be critical for gj , thus gj + (d − 1)gr − gj + k = (d − 1)gr + k ∈ S and
gr + (d− 1)gr + k = dgr + k ∈ S, a contradiction.
Consider the third case. Then we have gr + k = ngi + k− gt. Since (n− 1)gi +
k− gt > k, and (n− 1)gi + k− gt is critical for gi, it cannot be critical for gt, so
gt + (n− 1)gi + k + gt = (n− 1)gi + k ∈ S, so gi + (n− 1)gi + k = ngi + k ∈ S,
a contradiction.
Consider now the last particular case. By Lemma 3.6 we have gi+gr +k = c−1,
but gi + gr + k < gi + gi + k, hence ngi + k ∈ S. We conclude that for every y
as above, v(y) ∈ S, that is v(R) = S.

We recall that a ring R is called a semigroup ring if R = K[[xS ]] for some
x ∈ (t) \ (t2). Let S = 〈g1, g2, . . . , gn〉 be a numerical semigroup. We call a
polynomial f(t) =

∑

ait
i ∈ K[[t]] an S-polynomial in t if ai 6= 0 implies i ∈ S.

Lemma 3.8. K[[f1(t), f2(t), . . . ]] = K[[tS]] if and only if all the fi(t) are S-
polynomial in t.

The proof is trivial.
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Lemma 3.9. Let S = 〈g1, . . . , gn〉 be a numerical semigroup and let r an integer
that is not a critical number in S. If fi(x) is an S-polynomial, then f ′i(y) =
fi(y(1− cry

r)) is an S-polynomial.

Proof. Since fi(x) is an S-polynomial in x, we have fi(x) = xs1 +ds2
xs2 +· · · ,

with si ∈ S. We can restrict to a monomial in fi(x). Let s ∈ S, then xs =
ys(1 − cry

r)s = ys +
∑

i≥1 diy
s+ir , hence for the definition of critical number

and S-polynomial, we have the proof.

Lemma 3.10. Let k be an m-critical number of S with m > 1 and let gi a gen-
erator of S which has k for critical number. If R = K[[fi(t) = tgi +tgi+k, fj(t) =
tgj | j ∈ {1, . . . , n} \ {i}]], then R is not a semigroup ring.

Proof. Suppose that R is a semigroup ring. Then there exists an x ∈
(t) \ (t)2, that is t = x(1 + arx

r + · · · ), such that R = K[[xS ]]. We know
that R = K[[f ′1(x), f ′2(x), . . . ]], where, by Lemma 3.8, f ′i(x) = xgi + · · · is an
S-polynomial for every i. If r > k, then we get a contradiction by Lemma 3.8.
In fact f ′i(x) = xgi + xgi+k + · · · .
If r = k and gj is a generator, different from gi, which has k for critical number,
we get a contradiction by Lemma 3.8. In fact f ′j(x) = xgj + gjarx

gj+r + · · · .
Thus r < k. Then r is not a critical number. In fact if r is a critical number for
gd, then we get a contradiction by Lemma 3.8 since f ′d = xgd + gdarx

gd+r + · · · .
So r is not a critical number. We choose x such that K[[f ′1(x), f ′2(x), . . . ]] =
K[[xS ]] and t − x ∈ (t)r+1 with r as big as possible. Let y such that x =
y(1 − ary

r) (it easy to see that such y exists). Then t = x(1 + arx
r + · · · ) =

y(1−ary
r)(1+ary

r(1−ary
r)r + · · · ) = y(1+aby

b + · · · ) with b > r. By Lemma
3.9 we have K[[f ′′1 (y), f ′′2 (y), . . . ]] = K[[yS ]] and we get a contradiction by the
definition of r.

Now we are ready to give a new version of [P-S, Theorem 3.10].

Theorem 3.11. Let S = 〈g1, . . . , gn〉 be a numerical semigroup.Then the fol-
lowing are equivalent:

(i) S is a monomial semigroup.

(ii) S is a semigroup from the following list:

(1) S is such that the only elements below the conductor are multiples of
g1,

(2) x /∈ S only for one x > g1,

(3) The only elements greater than g1 that are not in S are g1 + 1 and
2g1 + 1 and g1 ≥ 3.

(iii) S satisfies the conditions of the Lemma 3.1

Proof. (i) ⇒ (iii): Suppose (iii) is not true. Hence there exist integers that
are m-critical numbers with m ≥ 2. Let k be the greatest of these integers and
let gi the greatest generator which has k for critical number. We have to show
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that there exists a ring R with associated semigroup S, which is not a semigroup
ring. Let R = K[[tgi + tgi+k, tgj | j ∈ {1, . . . , n} \ {i}]]. By Lemma 3.7 we have
v(R) = S and by Lemma 3.10, R is not a semigroup ring.

(iii) ⇒ (i): Let S = 〈g1, . . . , gn〉 be a numerical semigroup, and let Ki =
{k ≥ 0 | gi + k /∈ S} = {ki1 , . . . , kini

} for i = 1, . . . , s.
By Remark 3.3 we know that every ring R associated with S has a unique

canonical representation of this sort:

R = K[[f1, . . . , fs, t
r | r ≥ c]]

where fi = tgi +
∑

kij
∈Ki

aij
tgi+kij . Let K = ∪Ki. By (iii) this is a dis-

joint union of Ki. Let kij
be the minimal element of K such that aij

is

different from zero. By t = x(1 − (aij
/gi)x

kij ) with x ∈ (t) \ (t)2 we have

R = K[[f ′1(x), . . . , f ′s(x), xr | r ≥ c]] where f ′i(x) = xgi +
∑

hij
∈Ki

bij
xgi+hij

and where min{hij
| bij

6= 0} > min{kij
| aij

6= 0}. Since |K| < ∞, proceeding
in the same way, we get R is a semigroup ring.

(ii) ⇒ (iii): This is an easy case by case check.
(iii) ⇒ (ii): Suppose that S satisfies (iii). If g2 > 2g1 then {1, . . . , g1 − 1}

are critical numbers for g1, hence [g2, g2 + g1 − 1] ⊆ S and g2 ≥ c follows from
(3.1). In this case S is of the type (1). Suppose next that g2 < 2g1. If g1 = 2,
then S = 〈2, 3〉 is of the type (1).

Otherwise g1 ≥ 3. Suppose first g1 + 1 = g2. If g2 ≥ c, then S is of
the type (1). Otherwise g2 < c − 1. So there exists a critical number k with
2 ≤ k < g1 − 1 for g1 with [g1, g1 + k − 1] ⊆ S hence [2g1, 2g1 + 2k − 2] ⊆ S.
So [g1 + k + 1, 2g1 + 2k − 2] ∈ S and S is of the type (2) by (3.1). It remains
now to consider the case g2 = g1 + b, with b > 1. If b ≥ 3 we get that 1 and 2
are critical numbers for g1, then [g2, g2 + g1 − 1] ⊆ S and S is of the type (1)
by (3.1).

Now b = 2. Since 1 is a critical number for g1, we have [g2, 2g1] ⊆ S. If
2g1 + 1 ∈ S, then [g2,∞) ⊆ S by (3.1), so S is of the type (1). If 2g1 + 1 /∈ S,
then S is of the type (3) by (3.1). In fact 3g1 + 1 = (2g1 − 1) + g2, hence
[2g1 + 2, 3g1 + 1] ∈ S.

Remark 3.12. In the notation of the paper by Pfister and Steenbrink we have
that our semigroups S of type (1) are their class Sm,s,b := {im | i = 0, 1, . . . , n}∪
[sm + b,∞) with 1 ≤ b < m, s ≥ 1, our semigroups of type (2) are theirs
Sm,r := {0} ∪ [m, m + r − 1] ∪ [m + r + 1,∞) with 2 ≤ r ≤ m − 1 and our
semigroups of type (3) are theirs Sm := {0, m}∪ [m + 2, 2m]∪ [2m+2,∞) with
m ≥ 3.

Now we show some sufficient conditions for v(R) = S.

Theorem 3.13. If for every set {gi1 , . . . , gie
} of generators with the same crit-

ical number k, min{(gij
+S)∩〈gi1 , . . . , gij−1

, gij+1
, . . . , gie

〉} ≥ c then v(R) = S.
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Proof. In fact the only possibility to have S ⊂ v(R) is that gij
+

∑

argr+k =
∑

r 6=ij
brgr + k /∈ S.

Corollary 3.14. If for every pair (gi, gj) with the same critical number k, gi +
gj + k ≥ c then v(R) = S.

Corollary 3.15. Let S = 〈g1, g2〉. Then v(R) = S.

Proof. In fact the only way to have S ⊂ v(R) is that there exist a, b and k
with a > b and k critical number for g1 and g2, such that ag1 = bg2, ag1 +k /∈ S
and a ≥ 3. Since gcd(g1, g2) = 1, we have a = ng2 and b = ng1. Hence ag1 + k
is in S for every k ≥ 0, since the conductor of S is g1g2 − g1 − g2 + 1.

Corollary 3.16. If g1 and g2 are the only elements of S below the conductor
and gcd(g1, g2) = 1, then v(R) = S.

Proof. Use the same argument of the Corollary 3.15, knowing that, in this
case, the conductor is less than or equal to g1g2 − g1 − g2 + 1.

Our aim is to find presentations of the rings of our class, which are as easy
as possible. We have seen that a ring associated to a monomial semigroup is a
semigroup ring. In general, if R is such that v(R) = S and has a presentation

R = K[[f1, . . . , fs, t
r | r ≥ c]] with fi = tgi +

∑

kij
∈Ki

aij
tgi+kij , where Ki is

the set of critical numbers for gi, we want minimize the number of nonzero aij
.

We denote with Px(R) the minimal number of these coefficients in the canonical
form of R with x ∈ (t) \ (t2).
We define P (R) := min{Px(R) | x ∈ (t) \ (t2)}.
We denote by P (S) := max{PR | v(R) = S}. We note that P (S) = 0 if and
only if S is monomial. Let K = ∪Ki, and let mk = card{gj | k ∈ Kj}.
We call crit(S) =

∑

k∈K(mk − 1).

The following theorem shows that P (S) ≤ crit(S).

Theorem 3.17. Let R be a ring with semigroup S. Then R has a presentation
R = K[[f1, . . . , fs, t

r | r ≥ c]], fi = tgi +
∑

kij
∈Ki

aij
tgi+kij , with at most crit(S)

non zero coefficients aij
.

Proof. Let K = {k1, . . . , kr} be the set of critical numbers of S, with k1 <
· · · < kr. Let gj be one of the generators which have k1 as critical number. By
t = x(1−(d/gj)x

k1 ), where d is the coefficient of tgj+k1 in f = tgj +dtgj+k1 + . . .
and x ∈ (t) \ (t)2, we have that the coefficient of xgj+k1 in f ′(x) becomes equal
to zero. Repeating for k2, k3, . . . , kr in order, we have the proof.

Corollary 3.18. Let S a semigroup, if crit(S) = 1, then P (S) = 1

Proof. It follows immediately by Theorems 3.11 and 3.17.
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4 Classification of the numerical semigroups with

crit(S) = 1

In this section we show a method to get a classification of semigroups with
crit(S) = 1 and we use it to produce many examples of semigroups with P (S) =
1. We will give also an example of a numerical semigroup with P (S) = 1 but
crit(S) > 1.

Lemma 4.1. Let S be a semigroup and let S ′ be the semigroup obtained from
S adding g(S), the Frobenius number of S. then crit(S ′) ≤ crit(S).

Proof. Follows from the definition of crit(S).

Remark 4.2. By Lemma 4.1, we have a method for a concrete classification of
semigroups S with crit(S) = 1, knowing, by Theorem 3.11, the classification
of all monomial semigroups S. Some of the semigroups S with crit(S) = 1
are obtained deleting a generator g from a monomial semigroup S ′, such that
g(S′) + 1 ≤ g ≤ g(S′) + g1. We will call this ”deleting a large generator”.
In this way we find all the semigroups with crit(S) = 1 for which, adding
their number of Frobenius, the semigroups S ′ just obtained is monomial. Some
others semigroups with crit(S) = 1 are obtained deleting a generator g from
all semigroups S′ with crit(S′) = 1 just obtained, such that g(S ′) + 1 ≤ g ≤
g(S′) + g1. In this way we find all the semigroups S with crit(S) = 1 for
which, adding their number of Frobenius, the semigroups S ′ just obtained have
crit(S′) = 1. And so on for every semigroup with crit(S ′) = 1 just obtained.
We will show that after a finite number of steps, we will find all the semigroups
with crit(S) = 1.

Now we use the method above.

Example 4.3. Consider the monomial semigroups S of the type (1) in Theorem
3.11, that is S = Sm,s,b by Remark 3.12. We get, by deleting a large generator,
seven different classes of semigroups with crit(S) = 1:

• (IA) S = {0, m, 2m, . . . , sm, sm + b, sm + b + 2,−→}, with s > 1, m ≥ 4
and 1 ≤ b < m.

• (IB) S = {0, m, m + 2, . . . , m + 2 + x − 1, m + 2 + x + 1,−→}, with
1 ≤ x < m− 2 and m ≥ 4.

• (IC) S = {0, m, m + b, m + b + 2,−→}, with m ≥ 4 and 1 ≤ b < m.

• (ID) S = {0, m, 2m, . . . , sm, (s + 1)m − 1, (s + 1)m, (s + 1)m + 2,−→},
with s > 1 and m ≥ 3.

• (IE) S = {0, m, 2m− 1, 2m, 2m + 2,−→}, with m ≥ 4.

• (IF) S = {0, m, m + 3, . . . , 2m + 1, 2m + 3,−→}, with m ≥ 3.
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• (IG) S = {0, m, 2m, . . . , sm, (s + 1)m, (s + 1)m + 1, (s + 1)m + 3,−→},
with m ≥ 3 if s ≥ 1 and m ≥ 4 if s = 0.

If we delete a large generator from (IB) we have two new classes of semigroups
with crit(S) = 1

• (IBa) S = {0, m, m + 2, . . . , m + 1 + x, m + 4 + x,−→}, with x > 1and
m ≥ 4

• (IBb) S = {0, m, m+2, m+4, . . . , 2m−1, 2m, 2m+1, 2m+2, 2m+4,−→},
with m ≥ 4.

If we delete a large generator from (ID), we have a new semigroup with
crit(S) = 1:

• (IDa) S = 〈3, 8〉

If we delete a large generator from the (IE), we have a new semigroup with
crit(S) = 1

• (IEa) S = 〈4, 7, 13〉,

If we delete 11 from (IF) with m = 3, we have a new semigroup with crit(S) =
1:

• (IFa) S = 〈3, 7〉

If we delete any generator from (IA), (IBa), (IBb), (IC), (IDa), (IEa), (IFa)
or (IG), we have no new semigroup with crit(S) = 1.

Consider now the monomial semigroup of the type (2) on the Theorem 3.11,
that is S = Sm,r by Remark 3.12. We get, by deleting a large generator, two
different classes of semigroups with crit(S) = 1:

• (IIA) S = {0, m, m + 1, m + 4,−→}, with m ≥ 4

• (IIB) S = {0, m, m + 1, m + 3, m + 5,−→}, with m ≥ 5

If we delete a large generator from (IIA), we have a new class of semigroups
and a new semigroup with crit(S) = 1:

• (IIAa) S = {0, m, m+1, m+4, . . . , 2m−1, 2m, 2m+1, 2m+2, 2m+4,−→},
with m ≥ 5

• (IIAb) S = 〈4, 5〉

If we delete any large generator from (IIAa), (IIAb) or (IIB) we have no new
semigroup with crit(S) = 1.

Consider the monomial semigroup of the type (3) of the Theorem 3.11, that
is S = Sm by Remark 3.12.

We can not delete any large generator because all generators are below the
conductor.
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By Corollary 3.18 we have P (S) = 1 if crit(S) = 1. We want to show that a
semigroup with P (S) = 1 and crit(S) > 1 is S = 〈4, 6, 11〉.

Example 4.4. Let S = 〈4, 6, 11〉. We have that crit(S) = 2 and 1 and 3 are the
only m-critical numbers with m > 1 (in this case m = 2). We know By Remark
3.3 that R has a canonical rapresentation of this form:

R = [[f1 = t4 + at5 + bt7 + ct9 + dt13, f2 = t6 + et7 + ft9 + gt13, f3 =
t11 + ht13, tr | r ≥ 14]]. Since v(R) = S and f3

1 − f2
2 ∈ R, we have that

e = (3/2)a. By t = x(1− (a/4)x) we have R = [[f ′1 = x4 +ax7 +bx9 +cx13, f ′2 =
x6 + dx9 + ex13, f ′3 = x11 + fx13, xr | r ≥ 14]]. Since S is not monomial and
using the same argument as in the proof of the Theorem 3.17, we have that
P (S) = 1.
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