ISSN: 1401-5617

On Monomial semigroups

Vincenzo Micale

Research Reports in Mathematics Number 5, 2000

Department of Mathematics Stockholm University Electronic versions of this document are available at http://www.matematik.su.se/reports/2000/5 $\,$

Date of publication: April 6, 2000 1991 Mathematics Subject Classification: Primary 13J05

Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden

Electronic addresses: http://www.matematik.su.se info@matematik.su.se

On Monomial Semigroups

Vincenzo Micale*

April 4, 2000

1 Introduction

Let R a Noetherian ring with $K \subset R \subseteq K[[t]]$, K a field of characteristic zero, $\overline{R} = K[[t]]$ and the conductor $\mathfrak{C} = (R : K[[t]])$ different from zero. The above conditions on R imply that R is a one-dimensional Noetherian local domain. Note that if $x \in (t) \setminus (t^2)$, then K[[t]] = K[[x]]. This means that x = ut for some unit u of K[[t]] or equivalently that we have $t = x(a_0 + a_1x + a_2x^2 + \cdots)$ or $x = t(b_0 + b_1t + b_2t^2 + \cdots)$ with $a_0b_0 = 1$. We shall without loss of generality always assume that $a_0 = b_0 = 1$.

If $v: K((t))^* \to \mathbb{Z}$ is the natural valuation for K((t)), that is $v\left(\sum_{h=i}^{\infty} r_h t^h\right) = i$, with $i \in \mathbb{Z}$ and $r_i \neq 0$, then v(R) = S is a numerical semigroup and $v(\overline{R}) = \mathbb{N}$. An early paper on the connection between semigroups and one-dimensional local domains is [A]. This connection has since been studied in e.g. [H-K] and an extensive study on numerical semigroups and their applications to integral domains is in [B-D-F].

Let be $S = \langle g_1, \ldots, g_n \rangle$ with g_1, \ldots, g_n a minimal set of generators. Without loss of generality we may assume that $gcd(g_1, \ldots, g_n) = 1$. By $K[[t^S]]$ we mean $K[[t^{g_1}, \ldots, t^{g_n}]]$. A ring R is called a *semigroup ring* if $R = K[[x^S]]$ for some $x \in (t) \setminus (t^2)$. In general if S is fixed and we consider all the rings R with v(R) = S, is not true that all these rings are semigroup rings.

In [P-S] the notion of monomial semigroup has been introduced.

We call a semigroup S in \mathbb{N} a monomial semigroup if each subring R as above with v(R) = S, is a semigroup ring.

In [P-S, Theorem 3.10] is given a theoretical description and a concrete classification of the monomial semigroups, however the proof is not completely correct.

1.1 Description of the content

We now make a closer description of the content of this paper. In Section 2, we recall some known results about the numerical semigroups and we introduce v(R), the value semigroup associated to a ring R. In Section 3 we give the definition of m-critical number and we use it (cf. Theorem 3.11) for a correct

^{*} email vmicale@dipmat.unict.it

proof of [P-S, Theorem 3.10]. Moreover we introduce an invariant P(S) of S and we find a bound for P(S), (cf. Theorem 3.17). We have P(S) = 0 if and only if S is a monomial semigroup. In Section 4 we give (cf. Example 4.3) a concrete classification of the numerical semigroups with $\operatorname{crit}(S) = 1$ and we give an example of a numerical semigroup with P(S) = 1 and $\operatorname{crit}(S) > 1$.

2 Preliminaries

Let \mathbb{N} denote the natural numbers. A subsemigroup S of $(\mathbb{N}, +)$ with $0 \in S$ is called a *numerical semigroup*. Each semigroup S has a natural partial ordering \leq_S where for two elements s and t in S we have $s \leq_S t$ if there is a $u \in S$ such that t = s + u. The set $\{g_i\}$ of the minimal elements in $S \setminus \{0\}$ in this ordering is called a *a minimal set of generators* for S. In fact all elements of S are linear combination with non-negative integers coefficients of minimal elements. The set $\{g_i\}$ of minimal generators is finite since for any $s \in S$, $s \neq 0$, we have $g_i \neq g_j \pmod{s}$. The same argument shows that the number of minimal generators is at most $\min\{s \in S \mid s \neq 0\}$. We denote the semigroup generated by g_1, g_2, \ldots, g_n by $\langle g_1, g_2, \ldots, g_n \rangle$. Since the semigroup $\langle g_1, g_2, \ldots, g_n \rangle$ is isomorphic to $\langle dg_1, dg_2, \ldots, dg_n \rangle$ for any $d \in \mathbb{N} \setminus \{0\}$, we assume, in the sequel, that $gcd(g_1, g_2, \ldots, g_n) = 1$. This is easily seen to be equivalent to $|\mathbb{N} \setminus S| < \infty$.

For a semigroup S we denote $g(S) := \max\{x \in \mathbb{Z} \mid x \notin S\}$. This number is often called the *Frobenius number* of S.

For a semigroup S we denote by g - S the set of numbers $\{g(S) - s \mid s \in S\}$. Clearly we have $S \cap (g - S) = \emptyset$.

The semigroup S is called symmetric if $S \cup (g - S) = \mathbb{Z}$. There are several alternative descriptions of the concept of symmetric semigroup (cf. [F-G-H, Lemma 1.1]). It is classically known (cf. [S]) that $S = \langle g_1, g_2 \rangle$ is a symmetric semigroup.

Since $|\mathbb{N}\backslash S| < \infty$, there exists in S elements s such that the set $\{s, s+1, \longrightarrow\} \subseteq S$ (where the symbol " \longrightarrow " means that all subsequent natural numbers belong to the set). We call the *conductor* of S, the minimal of such elements s and denote it with c. Clearly, from the definition of Frobenius number, we have c = g(S)+1. Throughout the rest of the paper we will assume $R \subseteq K[[t]]$ be a Noetherian domain with K field of characteristic zero, the conductor of R in K[[t]], that is the greatest ideal of R and K[[t]], be different from zero, $K \subset R$ and K[[t]] as integral closure.

We call $v(R) := \{v(r) \mid r \in R\}$ the value semigroup associated to R. It is clear from the definition of t-adic valuation that if $S = \langle g_1, g_2, \ldots, g_n \rangle$ is any nonzero numerical semigroup, then every semigroup ring $K[[t^S]]$ has as valuation the semigroup S. However not every R of our type is a semigroup ring, e.g. $R = K[[t^4, t^6 + t^9, t^{11}]]$ has $v(R) = \langle 4, 6, 11 \rangle$ but, as we will show, R is not a semigroup ring.

3 The main theorems

Throughout the rest of the paper we will assume that $g_1 < g_2 < \cdots < g_n$ is a minimal system of generators for S and that $gcd(g_1, \ldots, g_n) = 1$; moreover we let g_s denote the greatest generator of S less than the conductor.

The following are easy to see:

if
$$[a, a + g_1 - 1] \subseteq S$$
, then $[a, \infty) \subseteq S$, i.e. $a \ge c$ (3.1)

if
$$g \in [g_1, g_1 + g_2 - 1] \cap S \setminus g_1 \mathbb{N}$$
, then $g = g_i$ for some $1 \le i \le n$ (3.2)

We say that a natural number k is a *critical number* for g_i if $g_i + k \notin S$. In general, we call k an *m*-critical number if it is critical number for m generators of S.

In [P-S, Theorem 3.10] is given a theoretic and a concrete description of monomial semigroups. However, the proof of the theorem of characterization of monomial semigroup is not completely correct. We will give a correct proof of the theorem, giving a more intuitive theoretical description of the monomial semigroups. To this purpose we prove the following lemma in which the condition (i), present in [P-S, Theorem 3.10], is replaced by other more evident conditions.

Lemma 3.1. Let $S = \langle g_1, \ldots, g_n \rangle$ be a numerical semigroup. Then the following are equivalent:

- (i) If $x \in \mathbb{N} \setminus S$ and $c(x) := \min\{n \in \mathbb{N} \mid [n, \infty) \subseteq S \cup (x + S)\}$, then $S \cap (x + S) \subseteq [c(x), \infty)$.
- (ii) For every $k \ge 0$ and for every (i, j), with $i \ne j$ and i, j = 1, ..., n, we have that $g_i + k \in S$ or $g_j + k \in S$.
- (iii) Every integer $k \ge 0$ is a critical number for at most one generator of the semigroup.
- (iv) If a and b are in S with a > b and $a b \notin S$, then $a + k \in S$ or $b + k \in S$ for every integer $k \ge 0$.

Proof. (i) \Rightarrow (iv): Let be a and b in S with b < a and such that $a-b = x \notin S$. We have to prove that $a+k \in S$ or that $b+k \in S$ for every integer $k \ge 0$. Since $a \in S \cap (S+x)$, we have $c(x) \le a$. Hence $a+k \in S \cup (x+S)$ for every integer $k \ge 0$.

(iv) \Rightarrow (i): Let be $y \in S \cap (x+S)$. We have $y \ge c(x) \Leftrightarrow y+k \in S \cup (x+S)$ for every integer $k \ge 0 \Leftrightarrow y+k \in S$ or $(y-x)+k \in S$ and the last statement is true because $y - (y - x) = x \notin S$.

(ii) \Rightarrow (iv): Let *a* and *b* be in *S*, with a > b, such that $a - b \notin S$. Suppose there exists an integer $k \ge 0$ such that $a + k \notin S$ and $b + k \notin S$. Since *a* and *b* are in *S*, they are combination of generators of *S*. But if they are combination

of more than one generator or if they are multiple of different generators, then by (ii) we have that a + k or b + k are in S, that is a contradition. Hence we only consider the case $a = \alpha g_i$ and $b = \beta g_i$. But in this case a - b is in S. Absurd.

- (iv) \Rightarrow (ii): Trivial, since g_i and g_j are minimal generators.
- (ii) \Leftrightarrow (iii): Trivial from definition of critical number.

Lemma 3.2. Let $S = \langle g_1, \ldots, g_n \rangle$ be a numerical semigroup. If the conditions of Lemma 3.1 are true, then $g_i + g_j + k \in S$ for every integer $k \ge 0$ and for every (i, j), with $i \ne j$ and $i, j = 1, \ldots, n$. (i.e. $g_i + g_j \ge c$, where c is the conductor of S)

Proof. It is enough to prove the lemma for i = 1 and j = 2. If there exists an integer k > 0 such that $g_1 + g_2 + k \notin S$ then $g_1 + k \notin S$ and $g_2 + k \notin S$. Hence we have a contradition to (ii) of 3.1.

From now on we denote by K_i the set of critical numbers of g_i . It is for us an important set and we use it many times in the paper.

Remark 3.3. Let K_i be as above, where i = 1, ..., s. If $S = \langle g_1, ..., g_n \rangle$ is a numerical semigroup, with g_s the generator above, then it easy to see that every ring R with v(R) = S, has a unique canonical representation of this sort:

$$R = K[[f_1, \ldots, f_s, t^r \mid r \ge c]]$$

where $f_i = t^{g_i} + \sum_{k_{i_j} \in K_i} a_j t^{g_i + k_{i_j}}.$ In fact if there exists another representation, say

$$R = K[[f'_1, \dots, f'_s, t^r \mid r \ge c]]$$

where $f'_i = t^{g_i} + \sum_{k_{i_j} \in K_i} b_j t^{g_i + k_{i_j}}$, we would have $f_i - f'_i = \sum_{k_{i_j} \in K_i} (a_i - b_i) t^{g_i + k_{i_j}} \in R$ contradicting $g_i + k_{i_j} \notin S$.

Remark 3.4. If $S = \langle g_1, \ldots, g_n \rangle$ and k is a m-critical number with $m \geq 2$ and g_i is generator which has k as critical number, it is not always true that $R = K[[t^{g_i} + \alpha t^{g_i+k}, t^{g_j} | j \in \{1, \ldots, n\} \setminus \{i\}]]$ has associated the semigroup S.

Example 3.5. Consider $S = \langle 4, 6, 15, 17 \rangle$ and let $R = K[[t^4 + t^5, t^6, t^{15}, t^{17}]]$. We have that $(t^4 + t^5)^3 - (t^6)^2 = 3t^{13} + 3t^{14} + t^{15} \in R$, but 13 is not in S.

This is the mistake in the proof of [P-S, Theorem 3.10]. We prove now that the statement becomes true for a right choose of k and g_i . The following lemma is generalization of Lemma 3.2.

Lemma 3.6. Let $S = \langle g_1, \ldots, g_n \rangle$ be a numerical semigroup with conductor c. Consider the sets, possibly empty, $K_{i,j}$ of critical numbers for both g_i and g_j and let $h_{i,j}$ be the greatest element in $K_{i,j}$, where $h_{i,j} = -1$ if $K_{i,j} = \emptyset$. Then $g_i + g_j + h_{i,j} \ge c - 1$. Proof. By the choice of $h_{i,j}$ we have $g_i + h_{i,j} + x \in S$ or $g_j + h_{i,j} + x \in S$ for every $x \ge 1$, so $g_i + g_j + h_{i,j} + x \in S$, hence $g_i + g_j + h_{i,j} + 1 \ge c$ that is $g_i + g_j + h_{i,j} \ge c - 1$.

Lemma 3.7. Let k be the greatest m-critical number of S with $m \ge 2$ and let g_i the greatest generator of S which has k as critical number. Then if $R = K[[t^{g_i} + t^{g_i+k}, t^{g_j} | j \in \{1, ..., n\} \setminus \{i\}]]$, we have v(R) = S.

Proof. The only possibility to get a value outside S is to have in R an element $y = [\prod_{j \neq i} (t^{g_j})^{m_j}](t^{g_i} + t^{g_i + k})^n - \prod_{j \neq i} (t^{g_j})^{n_j}$ where $\sum_{j \neq i} g_j m_j + ng_i + k = \sum_{j \neq i} n_j g_j + k \notin S$. By factoring out common factors, we may assume that $n_j = 0$ if $m_j \neq 0$. Now $y = t^{(\sum_{j \neq i} g_j m_j) + ng_i + k} + \cdots$. We know by Lemma 3.6 that $g_i + g_j + k \geq c - 1$ if k is the greatest critical number for g_i and g_j and $i \neq j$. Thus we have to consider only four cases (we suppose that $g_j < g_i$ and $g_t < g_r$):

- $g_i + g_j + k = g_r + g_t + k = c 1$ with $r, t \neq i, j$
- $g_i + g_j + k = dg_r + k = c 1$ with $r \neq i, j \ d > 1$
- $ng_i + k = g_r + g_t + k = c 1$ with $r, t \neq i$ and n > 1
- $ng_i + k = dg_r + k \notin S$ with $i \neq r$ and n, d > 1.

Consider the first case. We get $g_i + k = g_t + g_r + k - g_j$. We have $g_i + k \notin S$ and $g_r + k - g_j > k$. Since $g_r + k = g_j + (g_r + k - g_j) \notin S$ and $g_i + k = g_t + (g_r + k - g_j)$, we get that $g_r + k - g_j$ is critical for both g_j and g_t , which is a contradiction to the fact that k is the largest m-critical number for some m > 1.

Consider the second case. We have $g_i + k = g_r + (d-1)g_r + k - g_j$. We get that $(d-1)g_r + k + g_j$ is critical for g_r and $(d-1)g_r - g_j + k > k$, so $(d-1)g_r - g_j + k$ cannot be critical for g_j , thus $g_j + (d-1)g_r - g_j + k = (d-1)g_r + k \in S$ and $g_r + (d-1)g_r + k = dg_r + k \in S$, a contradiction.

Consider the third case. Then we have $g_r + k = ng_i + k - g_t$. Since $(n-1)g_i + k - g_t > k$, and $(n-1)g_i + k - g_t$ is critical for g_i , it cannot be critical for g_t , so $g_t + (n-1)g_i + k + g_t = (n-1)g_i + k \in S$, so $g_i + (n-1)g_i + k = ng_i + k \in S$, a contradiction.

Consider now the last particular case. By Lemma 3.6 we have $g_i + g_r + k = c - 1$, but $g_i + g_r + k < g_i + g_i + k$, hence $ng_i + k \in S$. We conclude that for every y as above, $v(y) \in S$, that is v(R) = S.

We recall that a ring R is called a semigroup ring if $R = K[[x^S]]$ for some $x \in (t) \setminus (t^2)$. Let $S = \langle g_1, g_2, \ldots, g_n \rangle$ be a numerical semigroup. We call a polynomial $f(t) = \sum a_i t^i \in K[[t]]$ an S-polynomial in t if $a_i \neq 0$ implies $i \in S$.

Lemma 3.8. $K[[f_1(t), f_2(t), \ldots]] = K[[t^S]]$ if and only if all the $f_i(t)$ are S-polynomial in t.

The proof is trivial.

Lemma 3.9. Let $S = \langle g_1, \ldots, g_n \rangle$ be a numerical semigroup and let r an integer that is not a critical number in S. If $f_i(x)$ is an S-polynomial, then $f'_i(y) = f_i(y(1-c_ry^r))$ is an S-polynomial.

Proof. Since $f_i(x)$ is an S-polynomial in x, we have $f_i(x) = x^{s_1} + d_{s_2} x^{s_2} + \cdots$, with $s_i \in S$. We can restrict to a monomial in $f_i(x)$. Let $s \in S$, then $x^s = y^s (1 - c_r y^r)^s = y^s + \sum_{i \ge 1} d_i y^{s+ir}$, hence for the definition of critical number and S-polynomial, we have the proof.

Lemma 3.10. Let k be an m-critical number of S with m > 1 and let g_i a generator of S which has k for critical number. If $R = K[[f_i(t) = t^{g_i} + t^{g_i+k}, f_j(t) = t^{g_j} | j \in \{1, ..., n\} \setminus \{i\}]]$, then R is not a semigroup ring.

Proof. Suppose that R is a semigroup ring. Then there exists an $x \in (t) \setminus (t)^2$, that is $t = x(1 + a_r x^r + \cdots)$, such that $R = K[[x^S]]$. We know that $R = K[[f'_1(x), f'_2(x), \ldots]]$, where, by Lemma 3.8, $f'_i(x) = x^{g_i} + \cdots$ is an S-polynomial for every *i*. If r > k, then we get a contradiction by Lemma 3.8. In fact $f'_i(x) = x^{g_i} + x^{g_i+k} + \cdots$.

If r = k and g_j is a generator, different from g_i , which has k for critical number, we get a contradiction by Lemma 3.8. In fact $f'_j(x) = x^{g_j} + g_j a_r x^{g_j+r} + \cdots$. Thus r < k. Then r is not a critical number. In fact if r is a critical number for g_d , then we get a contradiction by Lemma 3.8 since $f'_d = x^{g_d} + g_d a_r x^{g_d+r} + \cdots$. So r is not a critical number. We choose x such that $K[[f'_1(x), f'_2(x), \ldots]] =$ $K[[x^S]]$ and $t - x \in (t)^{r+1}$ with r as big as possible. Let y such that x = $y(1 - a_r y^r)$ (it easy to see that such y exists). Then $t = x(1 + a_r x^r + \cdots) =$ $y(1 - a_r y^r)(1 + a_r y^r(1 - a_r y^r)^r + \cdots) = y(1 + a_b y^b + \cdots)$ with b > r. By Lemma 3.9 we have $K[[f''_1(y), f''_2(y), \ldots]] = K[[y^S]]$ and we get a contradiction by the definition of r.

Now we are ready to give a new version of [P-S, Theorem 3.10].

Theorem 3.11. Let $S = \langle g_1, \ldots, g_n \rangle$ be a numerical semigroup. Then the following are equivalent:

- (i) S is a monomial semigroup.
- (ii) S is a semigroup from the following list:
 - (1) S is such that the only elements below the conductor are multiples of g_1 ,
 - (2) $x \notin S$ only for one $x > g_1$,
 - (3) The only elements greater than g_1 that are not in S are $g_1 + 1$ and $2g_1 + 1$ and $g_1 \ge 3$.

(iii) S satisfies the conditions of the Lemma 3.1

Proof. (i) \Rightarrow (iii): Suppose (iii) is not true. Hence there exist integers that are *m*-critical numbers with $m \geq 2$. Let k be the greatest of these integers and let g_i the greatest generator which has k for critical number. We have to show

that there exists a ring R with associated semigroup S, which is not a semigroup ring. Let $R = K[[t^{g_i} + t^{g_i+k}, t^{g_j} | j \in \{1, ..., n\} \setminus \{i\}]]$. By Lemma 3.7 we have v(R) = S and by Lemma 3.10, R is not a semigroup ring.

(iii) \Rightarrow (i): Let $S = \langle g_1, \dots, g_n \rangle$ be a numerical semigroup, and let $K_i = \{k \ge 0 \mid g_i + k \notin S\} = \{k_{i_1}, \dots, k_{i_{n_i}}\}$ for $i = 1, \dots, s$.

By Remark 3.3 we know that every ring R associated with S has a unique canonical representation of this sort:

$$R = K[[f_1, \ldots, f_s, t^r \mid r \ge c]]$$

where $f_i = t^{g_i} + \sum_{k_{i_j} \in K_i} a_{i_j} t^{g_i + k_{i_j}}$. Let $K = \bigcup K_i$. By (iii) this is a disjoint union of K_i . Let k_{i_j} be the minimal element of K such that a_{i_j} is different from zero. By $t = x(1 - (a_{i_j}/g_i)x^{k_{i_j}})$ with $x \in (t) \setminus (t)^2$ we have $R = K[[f'_1(x), \ldots, f'_s(x), x^r \mid r \geq c]]$ where $f'_i(x) = x^{g_i} + \sum_{h_{i_j} \in K_i} b_{i_j} x^{g_i + h_{i_j}}$ and where $\min\{h_{i_j} \mid b_{i_j} \neq 0\} > \min\{k_{i_j} \mid a_{i_j} \neq 0\}$. Since $|K| < \infty$, proceeding in the same way, we get R is a semigroup ring.

(ii) \Rightarrow (iii): This is an easy case by case check.

(iii) \Rightarrow (ii): Suppose that S satisfies (iii). If $g_2 > 2g_1$ then $\{1, \ldots, g_1 - 1\}$ are critical numbers for g_1 , hence $[g_2, g_2 + g_1 - 1] \subseteq S$ and $g_2 \geq c$ follows from (3.1). In this case S is of the type (1). Suppose next that $g_2 < 2g_1$. If $g_1 = 2$, then $S = \langle 2, 3 \rangle$ is of the type (1).

Otherwise $g_1 \geq 3$. Suppose first $g_1 + 1 = g_2$. If $g_2 \geq c$, then S is of the type (1). Otherwise $g_2 < c - 1$. So there exists a critical number k with $2 \leq k < g_1 - 1$ for g_1 with $[g_1, g_1 + k - 1] \subseteq S$ hence $[2g_1, 2g_1 + 2k - 2] \subseteq S$. So $[g_1 + k + 1, 2g_1 + 2k - 2] \in S$ and S is of the type (2) by (3.1). It remains now to consider the case $g_2 = g_1 + b$, with b > 1. If $b \geq 3$ we get that 1 and 2 are critical numbers for g_1 , then $[g_2, g_2 + g_1 - 1] \subseteq S$ and S is of the type (1) by (3.1).

Now b = 2. Since 1 is a critical number for g_1 , we have $[g_2, 2g_1] \subseteq S$. If $2g_1 + 1 \in S$, then $[g_2, \infty) \subseteq S$ by (3.1), so S is of the type (1). If $2g_1 + 1 \notin S$, then S is of the type (3) by (3.1). In fact $3g_1 + 1 = (2g_1 - 1) + g_2$, hence $[2g_1 + 2, 3g_1 + 1] \in S$.

Remark 3.12. In the notation of the paper by Pfister and Steenbrink we have that our semigroups S of type (1) are their class $S_{m,s,b} := \{im \mid i = 0, 1, \ldots, n\} \cup [sm + b, \infty)$ with $1 \leq b < m, s \geq 1$, our semigroups of type (2) are theirs $S_{m,r} := \{0\} \cup [m, m + r - 1] \cup [m + r + 1, \infty)$ with $2 \leq r \leq m - 1$ and our semigroups of type (3) are theirs $S_m := \{0, m\} \cup [m + 2, 2m] \cup [2m + 2, \infty)$ with $m \geq 3$.

Now we show some sufficient conditions for v(R) = S.

Theorem 3.13. If for every set $\{g_{i_1}, \ldots, g_{i_e}\}$ of generators with the same critical number k, $\min\{(g_{i_i}+S) \cap \langle g_{i_1}, \ldots, g_{i_{i-1}}, g_{i_{i+1}}, \ldots, g_{i_e}\rangle\} \geq c$ then v(R) = S.

Proof. In fact the only possibility to have $S \subset v(R)$ is that $g_{i_j} + \sum a_r g_r + k = \sum_{r \neq i_i} b_r g_r + k \notin S$.

Corollary 3.14. If for every pair (g_i, g_j) with the same critical number k, $g_i + g_j + k \ge c$ then v(R) = S.

Corollary 3.15. Let $S = \langle g_1, g_2 \rangle$. Then v(R) = S.

Proof. In fact the only way to have $S \subset v(R)$ is that there exist a, b and k with a > b and k critical number for g_1 and g_2 , such that $ag_1 = bg_2$, $ag_1 + k \notin S$ and $a \geq 3$. Since $gcd(g_1, g_2) = 1$, we have $a = ng_2$ and $b = ng_1$. Hence $ag_1 + k$ is in S for every $k \geq 0$, since the conductor of S is $g_1g_2 - g_1 - g_2 + 1$.

Corollary 3.16. If g_1 and g_2 are the only elements of S below the conductor and $gcd(g_1, g_2) = 1$, then v(R) = S.

Proof. Use the same argument of the Corollary 3.15, knowing that, in this case, the conductor is less than or equal to $g_1g_2 - g_1 - g_2 + 1$.

Our aim is to find presentations of the rings of our class, which are as easy as possible. We have seen that a ring associated to a monomial semigroup is a semigroup ring. In general, if R is such that v(R) = S and has a presentation $R = K[[f_1, \ldots, f_s, t^r \mid r \geq c]]$ with $f_i = t^{g_i} + \sum_{k_{i_j} \in K_i} a_{i_j} t^{g_i + k_{i_j}}$, where K_i is the set of critical numbers for g_i , we want minimize the number of nonzero a_{i_j} . We denote with $P_x(R)$ the minimal number of these coefficients in the canonical form of R with $x \in (t) \setminus (t^2)$.

We define $P(R) := \min\{P_x(R) \mid x \in (t) \setminus (t^2)\}.$

We denote by $P(S) := \max\{P_R \mid v(R) = S\}$. We note that P(S) = 0 if and only if S is monomial. Let $K = \bigcup K_i$, and let $m_k = \operatorname{card}\{g_j \mid k \in K_j\}$. We call $\operatorname{crit}(S) = \sum_{k \in K} (m_k - 1)$.

The following theorem shows that $P(S) \leq \operatorname{crit}(S)$.

Theorem 3.17. Let R be a ring with semigroup S. Then R has a presentation $R = K[[f_1, \ldots, f_s, t^r \mid r \geq c]], f_i = t^{g_i} + \sum_{k_{i_j} \in K_i} a_{i_j} t^{g_i + k_{i_j}}, \text{ with at most crit}(S)$ non zero coefficients a_{i_j} .

Proof. Let $K = \{k_1, \ldots, k_r\}$ be the set of critical numbers of S, with $k_1 < \cdots < k_r$. Let g_j be one of the generators which have k_1 as critical number. By $t = x(1 - (d/g_j)x^{k_1})$, where d is the coefficient of $t^{g_j+k_1}$ in $f = t^{g_j} + dt^{g_j+k_1} + \ldots$ and $x \in (t) \setminus (t)^2$, we have that the coefficient of $x^{g_j+k_1}$ in f'(x) becomes equal to zero. Repeating for k_2, k_3, \ldots, k_r in order, we have the proof.

Corollary 3.18. Let S a semigroup, if crit(S) = 1, then P(S) = 1

Proof. It follows immediately by Theorems 3.11 and 3.17.

4 Classification of the numerical semigroups with $\operatorname{crit}(S) = 1$

In this section we show a method to get a classification of semigroups with $\operatorname{crit}(S) = 1$ and we use it to produce many examples of semigroups with P(S) = 1. We will give also an example of a numerical semigroup with P(S) = 1 but $\operatorname{crit}(S) > 1$.

Lemma 4.1. Let S be a semigroup and let S' be the semigroup obtained from S adding g(S), the Frobenius number of S. then $\operatorname{crit}(S') \leq \operatorname{crit}(S)$.

Proof. Follows from the definition of $\operatorname{crit}(S)$.

Remark 4.2. By Lemma 4.1, we have a method for a concrete classification of semigroups S with $\operatorname{crit}(S) = 1$, knowing, by Theorem 3.11, the classification of all monomial semigroups S. Some of the semigroups S with $\operatorname{crit}(S) = 1$ are obtained deleting a generator g from a monomial semigroup S', such that $g(S') + 1 \leq g \leq g(S') + g_1$. We will call this "deleting a large generator". In this way we find all the semigroups with $\operatorname{crit}(S) = 1$ for which, adding their number of Frobenius, the semigroups S' just obtained is monomial. Some others semigroups with $\operatorname{crit}(S) = 1$ are obtained deleting a generator g from all semigroups S' with $\operatorname{crit}(S') = 1$ are obtained is monomial. Some others semigroups with $\operatorname{crit}(S') = 1$ pust obtained, such that $g(S') + 1 \leq g \leq g(S') + g_1$. In this way we find all the semigroups S with $\operatorname{crit}(S) = 1$ for which, adding their number of Frobenius, the semigroups S with $\operatorname{crit}(S) = 1$ for which $\operatorname{crit}(S') = 1$.

Now we use the method above.

Example 4.3. Consider the monomial semigroups S of the type (1) in Theorem 3.11, that is $S = S_{m,s,b}$ by Remark 3.12. We get, by deleting a large generator, seven different classes of semigroups with $\operatorname{crit}(S) = 1$:

- (IA) $S = \{0, m, 2m, \dots, sm, sm + b, sm + b + 2, \longrightarrow\}$, with $s > 1, m \ge 4$ and $1 \le b < m$.
- (IB) $S = \{0, m, m+2, \dots, m+2+x-1, m+2+x+1, \dots\}$, with $1 \le x < m-2$ and $m \ge 4$.
- (IC) $S = \{0, m, m+b, m+b+2, \longrightarrow\}$, with $m \ge 4$ and $1 \le b < m$.
- (ID) $S = \{0, m, 2m, \dots, sm, (s+1)m 1, (s+1)m, (s+1)m + 2, \dots \}$, with s > 1 and $m \ge 3$.
- (IE) $S = \{0, m, 2m 1, 2m, 2m + 2, \dots\}, \text{ with } m \ge 4.$
- (IF) $S = \{0, m, m+3, \dots, 2m+1, 2m+3, \dots\}, \text{ with } m \ge 3.$

• (IG) $S = \{0, m, 2m, \dots, sm, (s+1)m, (s+1)m+1, (s+1)m+3, \dots \}$, with $m \ge 3$ if $s \ge 1$ and $m \ge 4$ if s = 0.

If we delete a large generator from (IB) we have two new classes of semigroups with $\operatorname{crit}(S) = 1$

- (IBa) $S = \{0, m, m+2, \dots, m+1+x, m+4+x, \longrightarrow\}$, with x > 1 and $m \ge 4$
- (IBb) $S = \{0, m, m+2, m+4, \dots, 2m-1, 2m, 2m+1, 2m+2, 2m+4, \dots \}$, with $m \ge 4$.

If we delete a large generator from (ID), we have a new semigroup with $\operatorname{crit}(S) = 1$:

• (IDa) $S = \langle 3, 8 \rangle$

If we delete a large generator from the (IE), we have a new semigroup with $\operatorname{crit}(S) = 1$

• (IEa) $S = \langle 4, 7, 13 \rangle$,

If we delete 11 from (IF) with m = 3, we have a new semigroup with $\operatorname{crit}(S) = 1$:

• (IFa) $S = \langle 3, 7 \rangle$

If we delete any generator from (IA), (IBa), (IBb), (IC), (IDa), (IEa), (IFa) or (IG), we have no new semigroup with $\operatorname{crit}(S) = 1$.

Consider now the monomial semigroup of the type (2) on the Theorem 3.11, that is $S = S_{m,r}$ by Remark 3.12. We get, by deleting a large generator, two different classes of semigroups with crit(S) = 1:

- (IIA) $S = \{0, m, m+1, m+4, \dots\}, \text{ with } m \ge 4$
- (IIB) $S = \{0, m, m+1, m+3, m+5, \dots\}, \text{ with } m \ge 5$

If we delete a large generator from (IIA), we have a new class of semigroups and a new semigroup with $\operatorname{crit}(S) = 1$:

- (IIAa) $S = \{0, m, m+1, m+4, \dots, 2m-1, 2m, 2m+1, 2m+2, 2m+4, \longrightarrow\}$, with $m \ge 5$
- (IIAb) $S = \langle 4, 5 \rangle$

If we delete any large generator from (IIAa), (IIAb) or (IIB) we have no new semigroup with $\operatorname{crit}(S) = 1$.

Consider the monomial semigroup of the type (3) of the Theorem 3.11, that is $S = S_m$ by Remark 3.12.

We can not delete any large generator because all generators are below the conductor.

By Corollary 3.18 we have P(S) = 1 if $\operatorname{crit}(S) = 1$. We want to show that a semigroup with P(S) = 1 and $\operatorname{crit}(S) > 1$ is $S = \langle 4, 6, 11 \rangle$.

Example 4.4. Let $S = \langle 4, 6, 11 \rangle$. We have that $\operatorname{crit}(S) = 2$ and 1 and 3 are the only *m*-critical numbers with m > 1 (in this case m = 2). We know By Remark 3.3 that *R* has a canonical rapresentation of this form:

 $R = [[f_1 = t^4 + at^5 + bt^7 + ct^9 + dt^{13}, f_2 = t^6 + et^7 + ft^9 + gt^{13}, f_3 = t^{11} + ht^{13}, t^r \mid r \ge 14]].$ Since v(R) = S and $f_1^3 - f_2^2 \in R$, we have that e = (3/2)a. By t = x(1 - (a/4)x) we have $R = [[f'_1 = x^4 + ax^7 + bx^9 + cx^{13}, f'_2 = x^6 + dx^9 + ex^{13}, f'_3 = x^{11} + fx^{13}, x^r \mid r \ge 14]]$. Since S is not monomial and using the same argument as in the proof of the Theorem 3.17, we have that P(S) = 1.

References

- [A] R. Apery, Sur les superlineaires des courbes algebriques, C. R. Acad. Sc. Paris 222 (1946), 1198-1200.
- [B-D-F] V. Barucci-D.E. Dobbs-M. Fontana, Properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc. vol 125, 598 (1997).
- [F-G-H] R. Fröberg-C. Gottlieb-R. Häggkvist, Gorenstein rings as maximal subrings of k[[X]] with fixed conductor, Comm. Algebra 16 (1988), 1621-1625.
- [H-K] J. Herzog-E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, Sitzungsber. Heidelberger Ak. Wiss. 22 (1971), 26-67.
- [P-S] G. Pfister-J.H.M. Steenbrink, Reduced Hilbert scheme for irreducible curve singularities, J. Pure Appl. Algebra 77 (1992), 103-116.
- [S] J.J. Sylvester, Mathematical questions with their solutions, Educational Time **41** (1884), 21.