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1 Introduction

If I is an ideal of a (commutative) ring R and lR(R/I) = h, we say that I
has colength h. Maximal ideals have colength 1, and there may be many other
ideals of finite colength even in non-Noetherian rings. If R is a one-dimensional
Noetherian domain, every non-zero ideal has finite colength.

We are interested in the class of rings in which there is a finite number of
ideals for each finite colength, and how this number grows as a function of h. In
Artinian rings there are no ideals of colength h, if h >> 0 and we show that, in
a Noetherian ring of dimension at least two, the number of ideals of colength h
grows exponentially with h (for a precise statement, cf. Theorem 2.8). If R has
a finite number of ideals for each finite colength, then R is semilocal and each
localization at a maximal ideal has the same property. Thus the one-dimensional
(Noetherian) local rings are a natural class of rings to investigate. For a large
natural subclass of those, we give a precise measure of the growth: if (R, m) is a
one-dimensional analytically unramified residually rational local ring with finite
residue field and the integral closure R̄ has d maximal ideals, with |R/m| ≥ d,
we prove that the number of ideals of colength h is a polynomial of degree d− 1
in h, if h ≥ lR(R̄/R : R̄) (cf. Theorem 3.7). In particular, when d = 1, i.e. when
R is analytically irreducible, the number of ideals of colength h is, for large h,
a constant that of course depends on the cardinality of the residue field of R.

All the information on the number of ideals of finite colength of a ring R
can be collected in a generating function, the colength series of R, which in the
case of our subclass of rings has a nice form.

To prove the mentioned results, we use the value semigroup associated to a
one-dimensional analytically unramified ring and we refer for that to [1].
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2 Generalities

Let R be a (not necessarily Noetherian) ring. We consider ideals J of R of finite
colength (i.e. lR(R/J) = h < ∞). This is equivalent to say that R/J is an
Artinian ring.

Notice that many ideals of finite colength may exist also in non-Noetherian
rings. R = Z + XQ[[X ]] is an example of a non-Noetherian ring with ideals of
any colength h ∈ N. As a matter of fact R/XQ[[X ]] ∼= Z and so, if p is a prime
in Z, phR = phZ + XQ[[X ]] is an ideal of R of colength h.

Lemma 2.1 Suppose that J ⊆ I are ideals of a quasilocal ring (R, m) with
lR(I/J) = 1. Then Im ⊆ J .

Proof. If I is finitely generated, this follows from Nakayama’s lemma, but the
statement is always true. Let t ∈ I \ J . Then t /∈ J + tm, since otherwise
t = j + tm1, j ∈ J, m1 ∈ m, so t(1 − m1) = j ∈ J , and t ∈ J since 1 − m1

is invertible. Since J ⊆ J + tm ⊂ I and the last inclusion is proper, the first
inclusion cannot be proper, and we get J + tm = J for all t ∈ I , so Im ⊆ J .

Proposition 2.2 Let (R, m) be a quasilocal ring. If J is an ideal of colength
h, then mh ⊆ J . In particular J is m-primary.

Proof. We use induction on h. If h = 1, then J = m. Suppose lR(R/J) = h
and that the statement is proved for ideals of colength h− 1. Choose an ideal
I ⊇ J of colength h− 1. Then mh−1 ⊆ I , so mh ⊆ mI ⊆ J by Lemma 2.1.

Corollary 2.3 Let R be a ring with a finite number of ideals for each colength
h ∈ N and let m be a maximal ideal, then the localization Rm has also a finite
number of ideals for each colength h ∈ N.

Proof. By Proposition 2.2, ideals in Rm of finite colength are mRm-primary,
and there is a 1-1 correspondence between mRm-primary ideals Qm in Rm and
m-primary ideals Q in R, and lRm

(Rm/Qm) = lR(R/Q).

If the ring (R, m) is Noetherian, then each m-primary ideal is of finite
colength, but in general this is not true. By Proposition 2.2, if the maximal ideal
of R is idempotent, i.e. m = m2 (this happens for example in a one-dimensional
non-discrete valuation domain), then the only ideal of finite colength is the
maximal ideal, but each non-zero ideal is m-primary. However, if we restrict to
Noetherian rings, we get:

Proposition 2.4 Let (R, m) be a local (i.e. quasilocal and Noetherian) ring.
Then there exists, for each h ∈ N, an ideal of colength h.

Proof. By induction on h. Let I be an ideal of colength h − 1. Any ideal J
which is maximal in the set of proper subideals of I is of colength h.

In the sequel we will restrict to (Noetherian) local rings. There is no restric-
tion to assume that R is complete:
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Proposition 2.5 If (R, m) is local with (m-adic) completion (R̂, m̂), there are
just as many ideals of colength h in R as in R̂.

Proof. By Proposition 2.2, mh ⊆ I if I is of colength h (and correspondingly
for ideals in R̂), and R/mh ∼= R̂/m̂h.

Notice however that even such a simple ring as R = C[X, Y ]/(X, Y )2 =
C[x, y] has infinitely many ideals of colength 2. Any maximal chain of ideals in
R looks like this:

R ⊃ (x, y) ⊃ (ax + by) ⊃ (0)

and there are infinitely many choices for (a, b) 6= (0, 0) giving different ideals.
The following proposition gives the class of rings we will study.

Proposition 2.6 Let (R, m) be a local ring. Then, for each h ∈ N, there is
a finite number of ideals of colength h if and only if R is a DVR, an Artinian
principal ideal ring, or if R/m is finite.

Proof. Suppose that the number of ideals of colength 2 is finite. The ideals of
colength 2 are in 1-1 correspondence to R/m-subspaces of m/m2 of codimension
1. Then either m/m2 is one-dimensional or R/m is a finite field. In the first case
m = (x) is a principal ideal and, since by Krull intersection theorem

⋂

i≥0 mi =

0, we get that every element of R is of the form exi, for some i ≥ 0 and some
unit e. It follows that, if mi 6= 0 for each i, then R is a DVR and, if mi = 0 for
some i, R is an Artinian principal ideal ring.

If R is a DVR or an Artinian principal ideal ring, the number of ideals of each
colength is at most one, so we assume that R/m is a finite field. By induction
we can assume that there are finitely many ideals Ji of colength h − 1. The
ideals of colength h corresponds to R/m-subspaces of Ji/mJi of codimension 1,
which are finitely many.

We are interested in the growth of the number of ideals of colength h in
a local ring R as a function of h. We denote the number of ideals in R of
colength h by ΩR(h), or just Ω(h) if the ring R is understood from the context.
If R is Artinian, then Ω(h) = 0, if h >> 0. We will first see that, if dim R ≥ 2,
then Ω(h) cannot be bounded by a function which grows less than exponentially,
thus the following theorem shows that it is natural to restrict to one-dimensional
rings. We will use the following, certainly well known, lemma.

Lemma 2.7 Let V be a vector space of dimension n over a field with q elements.
Then the number of subspaces of dimension (or codimension) [n/2] is at least

q[n/2]2 .

Proof. The number of subspaces of dimension [n/2] is (qn−1)(qn−q) · · · (qn−
q[n/2]−1)/((q[n/2]−1)(q[n/2]−q) · · · (q[n/2]−q[n/2]−1)). If n ≥ 4 (and so [n/2]−1 ≥
1), since (qn − qi)/(q[n/2] − qi) ≥ q[n/2], and we have at least two factors, the
statement follows. If n < 4, the result is still true since [n/2]2 = [n/2].
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Theorem 2.8 Let (R, m) be a local ring. If dim R ≥ 2, there is a positive
rational number F such that, for each N there is an M ≥ N with Ω(M) > qFM .

Proof. Suppose that dim R = 2. Then we have lR(R/mn) = an2 + bn + c
and lR(mn/mn+1) = 2an + a + b, for some a > 0, if n >> 0. Let Mn =

[(2an + a + b)/2] (integer part). There are, by Lemma 2.7, at least q(Mn)2

subspaces of codimension Mn in mn/mn+1, so there are at least q(Mn)2 ideals
of colength an2 + bn + c + Mn in R. If we let M ′

n = an2 + bn + c + Mn, we will
show that (Mn)2 > FM ′

n for some F > 0, if n >> 0. Since (Mn)2 > (an)2/2 if
n >> 0 and M ′

n < 2an2 if n >> 0, it suffices to show that (an)2/2 = F · 2an2,
for some F > 0, and so F = a/4 will do. If dim R > 2, let I be an ideal in R
such that dim R/I = 2. Obviously ΩR(n) ≥ ΩR/I (n).

In the next section we will see that we can get good control over the growth
of Ω(h) for a large class of one-dimensional rings.

3 Analytically unramified one-dimensional rings

In this section we consider a particular class of one-dimensional rings. In all
this section R will be an analytically unramified one-dimensional local ring, i.e.
a one-dimensional reduced Noetherian local ring, such that the integral closure
R̄ is finite over R. An important class of examples of such rings are the local
rings of an algebraic curve.

As we noticed in the previous section, it is not restrictive to suppose that R
is complete. So we can suppose that, if P1, . . . , Pd are the minimal primes of
R, each R/Pi is analyticlly irreducible, with integral closure Vi, a DVR. Thus
we have R ⊆ R/P1 × · · · ×R/Pd and R̄ = V1 × · · · × Vd.

We also suppose that R is residually rational (i.e. that all localizations at
maximal ideals of R̄ have the same residue field as R) and that the cardinality
of the residue field of R is at least equal to the number d of minimal primes.

Since R ⊆ R/P1×· · ·×R/Pd ⊆ V1× · · ·×Vd, each element x = (x1, . . . , xd) ∈
R has a value v(x) = (v1(x1), . . . , vd(xd)), where, for i = 1, . . . , d, vi is the
valuation of the DVR Vi (it is convenient to assume vi(0) = ∞).

The value semigroup of R is S = v(R) = {v(x); x ∈ R} ⊆ (N ∪ {∞})d and
each ideal I ⊆ R has its value set v(I) = {v(x); x ∈ I} ⊆ S. On S there is a
natural partial ordering, (α1, . . . , αd) ≤ (β1, . . . , βd), if αi ≤ βi for all i. For
other properties of S, we refer to [1].

If C = (R : R̄) is the conductor, then C is an ideal (of R and) of R̄ , so
C = t1

δ1V1 × · · · × td
δdVd, where ti is the uniformizing parameter of Vi. Thus

v(C) = {α = (α1, . . . , αd) ∈ (N ∪ {∞})d | αi ≥ δi, for i = 1, . . . , d}. We will
always denote min v(C) by δ = (δ1, . . . , δd) in the sequel. Notice in particular
that each element x ∈ R̄ = V1 × · · · × Vd, with v(x) ≥ δ (i.e. v(x) ∈ v(C)) is in
R, because it is in C.

If J ⊆ I are ideals of R, it is possible to compute lR(I/J) looking at v(I)
and v(J) (cf. [1, Section 2.1]).
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Finally, in order to study how the number of ideals of colength h grows with h
in R, we have to suppose that the residue field of R is finite, cf. Proposition 2.6.

In this setting, that is fixed for all Section 3, and with the notation introduced
above, if I, J are ideals of R, we define I ∼ J if there exists an element x in the
quotient ring of R such that v(I) = v(xJ). This is an equivalence relation and
we call a shape for the ideals of R an equivalence class. If I is an ideal in the
equivalence class I, we say that I is the shape of I or I is of shape I.

Notice that the shapes are finitely many for a ring R.

Example 1. For the ring R = k[[(t, u), (t3, u2)]] = k[[x, y]]/(x3 − y) ∩ (x2 − y)
that has the following value semigroup
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Fig. 1. The value semigroup of R
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I3=shape(C).

Definition. Given a shape I for the ideals of R, we define the function ΩI(h)
as the number of ideals of R of shape I and colength h. Of course we have
Ω(h) =

∑

I ΩI(h).

3.1 The analytically irreducible case

We first consider the analytically irreducible case, i.e., we assume that the inte-
gral closure of the ring R is a DVR which we denote by (V, t). We denote the
conductor C = R : V by tδV .
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Lemma 3.1 The map φi(I) = tiI, i ≥ 0, from ideals I with min v(I) = δ to
ideals J with min v(J) = i + δ is a bijection which preserves the shape of the
ideal.

Proof. Since tiI is a fractional ideal and tiI ⊆ C ⊆ R, we get that φi(I) is an
ideal of R. The map is bijective with φ−1

i (J) = t−iJ as inverse. The shape is
preserved by the definition of shape.

Lemma 3.2 ΩI(h) is constant, if h ≥ δ.

Proof. If min v(I) < δ, then lR(R/I) = #(v(R) \ v(I)) = #((v(R) \ v(I)) ∩
[1, δ)) + #((v(R) \ v(I)) ∩ [δ,∞)) < lR(R/C) + lR(V/R) = lR(V/C) = δ. Thus
I ⊆ C, if lR(R/I) ≥ δ. According to Lemma 3.1, the number of ideals of shape
I is constant (i.e. independent of min v(I)) for all ideals inside the conductor.

We now state the main result for analytically irreducible rings.

Proposition 3.3 If R is analytically irreducible, then Ω(h) is constant, if h ≥
lR(V/C).

Proof. We have Ω(h) =
∑

I ΩI(h). The sum is finite and each summand is a
constant, by Lemma 3.2, if h ≥ δ = lR(V/C).

As usual it is convenient to collect the information in a generating function.
We define the colength series of R to be CLR(Z) =

∑∞

h=0 Ω(h)Zh. For an
analytically irreducible ring R we get CLR(Z) = p(Z)/(1 − Z). Then p(Z) ∈
Z[Z], and p(1) = Ω(h), for h ≥ lR(V/C).

The constant Ω(h), h >> 0, of course depends on q = |R/m|. We will
determine this dependence in an example.

Example 2. Let R = k[[t3, t4, t5]]. There are the following shapes of ideals:
I1 = shape(R), I2 = shape((t3, t5, t7)), I3 = shape((t3, t4)), and finally I4 =
shape((t3, t4, t5)). We get, if q = |k|,
Ω(0) = ΩI1

(0) = Ω(1) = ΩI4
(0) = 1,

Ω(2) = ΩI2
(2) + ΩI3

(2) + ΩI4
(2) = q + q2 + 1,

Ω(h) = ΩI1
(h) + ΩI2

(h) + ΩI3
(h) + ΩI4

(h) = q2 + q + q2 + 1, if h ≥ 3.
CLR(Z) = (1 + (q + q2)Z2 + q2Z3)/(1− Z).

We could generalize the example and show that, if v(R) = 〈δ, δ+1, . . . , 2δ−
1〉, then the constant Ω(h) is a polynomial of degree [δ/2]2 in q = |R/m|, if
h ≥ δ. In general the dependence of Ω(h) of q is more complicated. We can,
however, show that Ω(h) is always bounded by a polynomial of degree [δ/2]2 in
q.

3.2 The non-analytically irreducible case

We consider now the analytically unramified case with d > 1. Recall that,
as above, δ = (δ1, . . . , δd) is min v(C). By the properties (1) and (2) of [1,
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Proposition 2.1], the semigroup S is given by the union of a finite number of
sets that, modulo a reordering of the coordinates, are of the following form:

T = {(α1, . . . , αu, δu+1, . . . , δs, βs+1, . . . , βd)} (1)

where δi ≤ αi ∈ N, for i ≤ u, and βi are fixed integers, 0 < βi < δi, for
s + 1 ≤ i ≤ d.

If s = 0, T is just a single element of S, and s = d, if T = v(C). Any subset
T of S of this form has a minimum element, min T = (δ1, . . . , δs, βs+1, . . . , βd).
Denote by Tδ1,... ,δs,βs+1,... ,βd

the union of the previous subsets with the same
minimum (δ1, . . . , δs, βs+1, . . . , βd). We have v(C) = Tδ1,... ,δd

and, for a point
β = (β1, . . . , βd) < δ, we have β = Tβ1,... ,βd

.

Lemma 3.4 Let x = (x1, . . . , xd) ∈ R, with v(x) = (a1, . . . , as, βs+1, . . . , βd) ∈
Tδ1,... ,δs,βs+1,... ,βd

. If δi − ai ≤ ni ≤ ∞, for i = 1, . . . , s, then

(x1, . . . , xd)(t
n1

1 , . . . , tns
s , 1, . . . , 1) ∈ R.

Proof. Every element x′ = (x′1, . . . , x′s, 0, . . . , 0) of R̄, with vi(x
′
i) ≥ δi, for i =

1, . . . , s has a value in v(C), so x′ ∈ C ⊆ R. In particular (x1, . . . , xs, 0, . . . , 0) ∈
R and so (x1, . . . , xd)−(x1, . . . , xs, 0, . . . , 0) = (0, . . . , 0, xs+1, . . . , xd) ∈ R, and
thus every element (x′1, . . . , x′s, xs+1, . . . , xd) with vi(x

′
i) ≥ δi, for i = 1, . . . , s

belongs to R. The element (x1, . . . , xd)(t
n1

1 , . . . , tns
s , 1, . . . , 1) in the statement

of the lemma is such an element.

Lemma 3.5 a) Let I be an ideal of R with min v(I) = min Tδ1,... ,δs,βs+1,... ,βd
.

Then the map φ(I) = (tn1

1 , . . . , tns
s , 1, . . . , 1)I, from ideals I with min v(I) =

(δ1, . . . , δs, βs+1, . . . , βd) to ideals J with min v(J) =
(δ1 + n1, . . . , δs + ns, βs+1, . . . , βd) is a bijection which preserves the shape of
the ideal.
b) The number of ideals of R of shape I with min v(I) ∈ Tδ1,... ,δs,βs+1,... ,βd

is a
constant.

Proof. a) By Lemma 3.4, if x = (x1, . . . , xd) ∈ I , then (tn1

1 , . . . , tns
s , 1, . . . , 1)x ∈

R. So the fractional ideal (tn1

1 , . . . , tns
s , 1, . . . , 1)I is contained in R and is an

ideal of R. The map is bijective with φ−1(J) = (t−n1

1 , . . . , t−ns
s , 1, . . . , 1)J as

inverse. The shape is preserved by the definition of shape.
b) By a) the number of ideals of R of shape I with min v(I) ∈ Tδ1,... ,δs,βs+1,... ,βd

does not depend on the element α = min v(I).

Denote the constant in Lemma 3.5ḃ) by fI(Tδ1,... ,δs,βs+1,... ,βd
).

For an analytically unramified ring with d > 1 minimal primes, we need to
make the definition of the function ΩI(h) finer.

Definition. Given a shape I for the ideals of R, we define the function
ωI(h, Tδ1,... ,δs,βs+1,... ,βd

) as the number of elements α ∈ Tδ1,... ,δs,βs+1,... ,βd
such

that there exists an ideal I in R of shape I and colength h, with min v(I) = α.
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The computation of the function ωI(h, Tδ1,... ,δs,βs+1,... ,βd
) gives an answer

to our problem at semigroup level and is the first step in the computation of the
growth (with h) of Ω(h), the number of ideals of colength h. It is convenient to
introduce before next lemma another notation. If I is an ideal of shape I, with
min v(I) = min Tδ1,... ,δs,βs+1,... ,βd

, set bI(Tδ1,... ,δs,βs+1,... ,βd
) = lR(R/I).

Lemma 3.6 ωI(h, Tδ1,... ,δs,βs+1,... ,βd
) is a polynomial of degree at most s − 1,

if h ≥ bI(Tδ1,... ,δs,βs+1,... ,βd
).

Proof. We know that Tδ1,... ,δs,βs+1,... ,βd
is a finite union of subsets T of type

(1) described in the beginning of this section. We will first count the number
of elements α ∈ T (where T is of type (1)), such that there exists an ideal I
of R of shape I and colength h, with min v(I) = α. If such an ideal I with
min v(I) ∈ Tδ1,... ,δs,βs+1,... ,βd

exists, we have to count the number of ways to
write h − bI(Tδ1,... ,δs,βs+1,... ,βd

) as a sum of u non-negative summands hi =
αi − δi, where u ≤ s. This is given by

(

h− bI(Tδ1,... ,δs,βs+1,... ,βd
) + u− 1

u− 1

)

which is a polynomial in h of degree u− 1 ≤ s− 1.
Since Tδ1,... ,δs,βs+1,... ,βd

is a finite union of subsets of type (1), then, by the
principle of inclusion-exclusion, ωI(h, Tδ1,... ,δs,βs+1,... ,βd

) is an alternating sum
of polynomials of degree ≤ s− 1, thus a polynomial of degree at most s− 1.

Theorem 3.7 If R is analytically unramified, with d minimal primes, then
Ω(h) is a polynomial in h of degree d− 1, if h ≥ lR(R̄/C).

Proof. We have Ω(h) =
∑

I ΩI(h) and the sum is finite. Thus it is enough to
prove the theorem for a fixed shape I.

By Lemma 3.6, ωI(h, Tδ1,... ,δs,βs+1,... ,βd
), i.e. the number of elements α ∈

Tδ1,... ,δs,βs+1,... ,βd
such that there exists an ideal I in R of shape I and colength

h, with min v(I) = α, is a polynomial in h of degree at most s − 1, if h ≥
bI(Tδ1,... ,δs,βs+1,... ,βd

). All the numbers bI(Tδ1,... ,δs,βs+1,... ,βd
) are bounded by

bI(Tδ1,... ,δd
) = bI(v(C)). Moreover, if R is the shape of a principal ideal, all the

numbers bI(v(C)) are bounded by bR(v(C)). It follows that, for h ≥ bR(v(C)) =
lR(R/C)+ lR(R̄/R) = lR((R̄/C) and for each shape I, ωI(h, Tδ1,... ,δs,βs+1,... ,βd

)
is a polynomial in h of degree at most s − 1. It is actually a polynomial of
degree d − 1, when Tδ1,... ,δs,βs+1,... ,βd

= v(C), because an ideal I of shape I
with min v(I) ∈ v(C) certainly exists.

On the other hand we have to count, fixed a certain Tδ1,... ,δs,βs+1,... ,βd
, for

each α ∈ Tδ1,... ,δs,βs+1,... ,βd
, how many ideals I of R of shape I and colength h,

with min v(I) = α exist. By Lemma 3.5, this number, fI(Tδ1,... ,δs,βs+1,... ,βd
),

does not depend on the element α ∈ Tδ1,... ,δs,βs+1,... ,βd
chosen. So, for h ≥

lR(R̄/C), we get that

ΩI(h) =
∑

Tδ1,... ,δs,βs+1,... ,βd

ωI(h, Tδ1,... ,δs,βs+1,... ,βd
) · fI(Tδ1,... ,δs,βs+1,... ,βd

)
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is a polynomial in h of degree d− 1.

Example 3. We use the same ring R as in Example 1 from the beginning of this
section. We get fI1

(T0,0) = 1, fI1
(T1,1) = q, fI1

(T2,2) = q(q − 1), fI2
(T0,0) =

0, fI2
(T1,1) = 1, fI2

(T2,2) = q − 1, fI3
(T0,0) = 0, fI3

(T1,1) = 0, fI3
(T2,2) = 1.

Furthermore ωI1
(h, T0,0) = 1 for h = 0 and = 0 otherwise, ωI1

(h, T1,1) = 1 for
h = 2 and = 0 otherwise, ωI1

(h, T2,2) = h − 3 for h ≥ 4 and = 0 otherwise,
ωI2

(h, T0,0) = 0 for each h, ωI2
(h, T1,1) = 1 for h = 1 and = 0 otherwise,

ωI2
(h, T2,2) = h− 2 for h ≥ 3 and = 0 otherwise, ωI3

(h, T2,2) = h− 1 for h ≥ 2
and = 0 otherwise. Thus ΩR(0) = 1, ΩR(1) = 1, ΩR(2) = 1 + q, ΩR(3) = 1 + q,
and ΩR(h) = 1 + q + (h− 3)q2, if h ≥ 4 = lR(R̄/C).

For the generating function CLR(Z) of Ω(h) we get the following result.

Corollary 3.8 CLR(Z) = p(Z)/(1 − Z)d, where p(Z) ∈ Z[Z], deg p(Z) =
lR(R̄/C), p(1) equals the number of ideals I with min v(I) = α for any α ≥ δ,
and d equals the number of maximal ideals in R̄.

Example 4. The generating function from Example 1 (and Example 3) becomes

CLR(Z) = (1− Z + qZ2 − qZ3 + q2Z4)/(1− Z)2.
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