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THE SIMILARITY PROBLEM FOR THE NONSELFADJOINT

OPERATORS WITH ABSOLUTELY CONTINUOUS SPECTRUM:

RESTRICTIONS TO THE SPECTRAL SUBSPACES

ALEXANDER V. KISELEV

Abstract. The similarity problem for the restrictions of the nonselfadjoint operator pos-
sessing absolutely continuous spectrum only to its spectral subspaces corresponding to the
Borel subsets δ of its spectrum (see [6]) is considered. Necessary and sufficient conditions
of such similarity are obtained in the form of a pair of integral estimates on δ ⊂ R. The
results are then applied to the analysis of one-dimensional nonselfadjoint Friedrichs model
operator.

1. Preliminaries

The nonselfadjoint operator L acting in the Hilbert space H is called similar to a selfad-
joint operator A if there exists a bounded, boundedly invertible operator X in H such, that
L = X−1AX.

In the present article we are going to consider a class of operators of the form [7]

L = A + iV,

where A is a selfadjoint operator in H defined on the domain D(A) and the perturbation
V admits the factorization V = αJα

2
, where α is a nonnegative selfadjoint operator in H

and J is a unitary operator in E ≡ R(α). This factorization corresponds to the polar
decomposition of the operator V . In order that the expression A + iV be meaningful,
we impose the condition that V be (A)-bounded with the relative bound less then 1, i.e.
D(A) ⊂ D(V ) and for some a and b (a < 1) the condition

‖V u‖ ≤ a‖Au‖+ b‖u‖, u ∈ D(A)

is satisfied, see [4]. Then the operator L is well-defined on the domain D(L) = D(A).
Alongside with the operator L we are going to consider the maximal dissipative operator

L‖ = A + iα
2

2
and the one adjoint to it, L−‖ ≡ L‖∗ = A − iα

2

2
. Since the functional model

for the dissipative operator L‖ will be used below, we require that L‖ be completely non-
selfadjoint, i.e. that it has no reducing selfadjoint parts. This requirement is not restrictive
in our case due to the Proposition 1 in [7].

Now we are going to briefly describe the construction of the selfadjoit dilatation of the
completely nonselfadjoint dissipative operator L‖, following [1, 9], see also [7].

The characteristic function S(λ) of the operator L‖ is the contractive, analytic operator-
valued function acting on the Hilbert space E, defined for Imλ > 0 by

S(λ) = I + iα(L−‖ − λ)−1α, Imλ > 0. (1.1)

The research was supported by the grant of Swedish Royal Academy of Sciences and by the grant RFFI–
97–01–01149.
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In the case of unbounded α the characteristic function is first defined by the latter expression
on the manifold E ∩D(α) and then extended by continuity to the whole space E.

Formula (1.1) makes it possible to consider S(λ) for Imλ < 0 with S(λ) = (S∗(λ))−1.
Finally, S(λ) possesses boundary values on the real axis in the strong sense: S(k) ≡ S(k +
i0), k ∈ R (see [1]).

Consider the model space H = L2( I S∗

S I ), which is defined in [9] as the Hilbert space of
two-component vector-functions (g̃, g) on the axis (g̃(k), g(k) ∈ E, k ∈ R) with metric

((

g̃

g

)

,

(

g̃

g

))

=

∞
∫

−∞

((

I S∗(k)
S(k) I

)(

g̃(k)

g(k)

)

,

(

g̃(k)

g(k)

))

E⊕E

dk.

It is assumed here that the set of two-component functions has been factored by the set of
elements with the norm equal to zero.

Let’s define the following orthogonal subspaces in H :

D− ≡
(

0

H−
2 (E)

)

, D+ ≡
(

H+
2 (E)

0

)

, K ≡ H	 (D− ⊕D+),

where H
+(−)
2 (E) denotes the Hardy class of analytic functions f in the upper (lower) half

plane with the values in the Hilbert space E.
The subspace K can be described as K = {(g̃, g) ∈ H : g̃ + S∗g ∈ H−

2 (E), Sg̃ + g ∈
H+

2 (E)}. Let PK be the orthogonal projection of H onto K:

PK

(

g̃

g

)

=

(

g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)

)

,

where P± are orthogonal projections of L2(E) onto H±
2 (E).

The following theorem holds [1, 9]:

Theorem 1.1. The operator (L‖−λ0)
−1 is unitary equivalent to the operator PK(k−λ0)

−1|K
for all λ0, Imλ0 < 0.

This means, that the operator of multiplication by k serves as the minimal (closImλ6=0(k−
λ)−1K = H) selfadjoint dilatation [1] of the operator L‖.

Provided that the non-real spectrum of the operator L is countable, the characteristic
function of the operator L is defined by the following expression:

Θ(λ) ≡ I + iJα(L∗ − λ)−1α, Imλ 6= 0,

and is a meromorphic, J-contractive (Θ∗(λ)JΘ(λ) ≤ J, Imλ > 0) operator-function [2].
The characteristic function Θ(λ) admits a factorization in the form of the ratio of two
bounded analytic operator-functions (in the corresponding half-planes Imλ < 0, Imλ > 0)
triangular with respect to the decomposition of the space E into the orthogonal sum

E = (X+E)⊕ (X−E), X± ≡
I ± J

2
:

Θ(λ) = Θ′∗
1 (λ)(Θ′∗

2 )−1(λ), Imλ > 0

Θ(λ) = Θ∗
2(λ)(Θ∗

1)
−1(λ), Imλ < 0,
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where the following designations have been adopted [6]:

Θ1(λ) = X− + S(λ)X+,

Θ2(λ) = X+ + S(λ)X−,
Θ′

1(λ) = X− + S∗(λ)X+,

Θ′
2(λ) = X+ + S∗(λ)X−,

and S(λ) is defined by (1.1).
Following [6], we define the subspaces N± in H as follows:

N̂± ≡
{(

g̃

g

)

:

(

g̃

g

)

∈ H, P± (Θ′∗
1 g̃ + Θ∗

2g) = 0

}

and introduce the following designation:

N± = closPKN̂±.

Then, as it is shown in [7], one gets for Imλ < 0(Imλ > 0) and (g̃, g) ∈ N̂−(+), respec-
tively:

(L− λ)−1PK

(

g̃

g

)

= PK

1

k − λ

(

g̃

g

)

.

The absolutely continuous and singular subspaces of the nonselfadjoint operator L were
defined in [5]: let1 N ≡ N̂+ ∩ N̂−, Ñ± ≡ PKN̂±, then

Ne ≡ clos
(

Ñ+ ∩ Ñ−
)

= closPKN

Ni ≡ K 	Ne(L
∗).

(1.2)

We call operator L an “operator with absolutely continuous spectrum only” if Ne = H, i.e.
PKN is dense in K.

The spectral projector Pδ to the portion δ of the absolutely continuous spectrum was
constructed in the model terms in [6]. Namely, the following theorem holds:

Theorem 1.2. For any Borel set δ ⊂ R

PδPK

(

g̃

g

)

= PKXδ

(

g̃

g

)

, (1.3)

where
(

g̃

g

)

∈ N and Xδ is the operator of componentwise multiplication by the characteristic

function of the set δ. For the operator Pδ defined by (1.3) on the linear set Ñe ≡ Ñ− ∩ Ñ+

the following assertions hold:

(i) PδÑe ⊂ Ñe;

(ii) (L− λ0)
−1Pδ = Pδ(L− λ0)

−1, Imλ0 6= 0;
(iii) PδPδ′ = Pδ∩δ′ , δ, δ′ ⊂ R;

(iv) Pδu −→ u as δ → (−∞,∞), u ∈ Ñe;

(v) Pδu = limε→+0
1

2πi

∫

δ
[(L− k − iε)−1 − (L− k + iε)−1]udk, u ∈ Ñe.

1The linear set N is called a set of “smooth” vectors of the operator L (see [7])
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In the second section of the present paper we are going to obtain the conditions, necesary
and sufficient for the restrictions of the operator L posessing absolutely continuous spec-
trum only to its spectral subspaces to be similar to selfadjoint operators. Then, in the third
section, we will apply these results to the analysis of the nonselfadjoint Friedrichs model
operator in one simple case. See also [11] where analogous results are given for the simi-
larity of the nonselfadjoint operator L as a whole to a selfadjoint one and [12], where the
computations of the same nature are applied to the analysis of the nonselfadjoint extensions
of symmetric operators with finite deficiency indices.

2. The restrictions of L to its spectral subspaces: functional model approach

We are going to rely on the following conditions considered for all u ∈ H:

sup
ε>0

ε

∞
∫

−∞

‖(L− k − iε)−1u‖2dk ≤ C‖u‖2

sup
ε>0

ε

∞
∫

−∞

‖(L∗ − k − iε)−1u‖2dk ≤ C‖u‖2

sup
ε>0

ε

∞
∫

−∞

‖(L− k + iε)−1u‖2dk ≤ C‖u‖2

sup
ε>0

ε

∞
∫

−∞

‖(L∗ − k + iε)−1u‖2dk ≤ C‖u‖2

(2.1)

which if fulfilled for any ε > 0 are necessary and sufficient [8, 10] for a nonselfadjoint operator
with the real spectrum to be similar to a selfadjoint one. Furthermore, notice that the first
pair of estimates above is clearly equivalent to the second pair. This makes it possible to
prove the following

Theorem 2.1. Provided that the spectrum of L is absolutely continuous, the following as-

sertions are equivalent:

(a) The restriction of L to its invariant subspace, corresponding to the “portion” of its

spectrum contained in the Borel set δ ⊂ R, PδH, is similar to a selfadjoint operator;

(b) For any u ∈ PδH the following estimates hold:
∫

δ

((Θ(k − i0)JΘ∗(k − i0)− J)X+α(L−‖ − k − i0)−1u,X+α(L−‖ − k − i0)−1u)dk

≤ C‖u‖2

∫

δ

((J −Θ∗(k + i0)JΘ(k + i0))X−α(L−‖ − k − i0)−1u,X−α(L−‖ − k − i0)−1u)dk

≤ C‖u‖2;
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(c) For any u ∈ PδH the following estimates hold:

∫

δ

((J −Θ(k + i0)JΘ∗(k + i0))X−α(L‖ − k + i0)−1u,X−α(L‖ − k + i0)−1u)dk

≤ C‖u‖2

∫

δ

((Θ∗(k − i0)JΘ(k − i0)− J)X+α(L‖ − k + i0)−1u,X+α(L‖ − k + i0)−1u)dk

≤ C‖u‖2.

Proof. Our first goal is to rewrite the estimates (2.1) in the model terms. This will allow us
to pass to limit as ε → +0 in the corresponding estimates in the model representation for
the operator L. To this end, we are first going to prove the following Lemma.

Lemma 2.2. The estimates in (2.1), considered on the vectors u ∈ PδH, are one-to-one

equivalent to the following ones:

∥

∥

∥

∥

P+

(

g̃ + S∗g

−(Sg̃ + g)

)∥

∥

∥

∥

2

H

≤ C

∥

∥

∥

∥

PK

(

g̃

g

)∥

∥

∥

∥

2

H
∥

∥

∥

∥

(

P+(g̃ + S∗g)− c2(k)

−P+(Sg̃ + g) + S(k)c2(k)

)∥

∥

∥

∥

2

H

≤ C

∥

∥

∥

∥

PK

(

g̃

g

)∥

∥

∥

∥

2

H
∥

∥

∥

∥

P−

(

g̃ + S∗g

−(Sg̃ + g)

)∥

∥

∥

∥

2

H

≤ C

∥

∥

∥

∥

PK

(

g̃

g

)∥

∥

∥

∥

2

H
∥

∥

∥

∥

(−P−(g̃ + S∗g) + S∗(k)c1(k)

P−(Sg̃ + g)− c1(k)

)∥

∥

∥

∥

2

H

≤ C

∥

∥

∥

∥

PK

(

g̃

g

)∥

∥

∥

∥

2

H

,

(2.2)

where
(

g̃

g

)

∈ XδN and

T1(λ) ≡ [X− + S∗(λ)X+]−1

T2(λ) ≡ [X+ + X−S(λ)]−1

c1(λ) ≡ T1(λ)(P−(g̃ + S∗g)(λ) + P−(Sg̃ + g)(λ))

c2(λ) ≡ T2(λ)(P+(g̃ + S∗g)(λ) + P+(Sg̃ + g)(λ)).

Proof. We will show that the first estimates in the statement of the Lemma 2.2 and in (2.1)
are equivalent; the corresponding proof for the other three pairs of estimates is carried out
in a similar manner.

Note, that clearly XδN ⊂ N , therefore one gets

(L− λ0)
−1PK

(

g̃

g

)

= PK

1

k − λ0

(

g̃

g

)
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for every
(

g̃

g

)

∈ XδN . On the other hand, the straightforward computation shows that

(L− λ0)
−1PK

(

g̃

g

)

=















1

k − λ0
PK

(

g̃

g

)

+
1

k − λ0

(

P+(g̃ + S∗g)(λ0)

−P+(Sg̃ + g)(λ0)

)

, Imλ0 > 0

1

k − λ0
PK

(

g̃

g

)

+
1

k − λ0

(−P−(g̃ + S∗g)(λ0)

P−(Sg̃ + g)(λ0)

)

, Imλ0 < 0

Taking into account that the first estimate in (2.1), considered on all u ∈ PδH, in the
model representation of the operator L can be written as

sup
ε>0

ε

∫
∥

∥

∥

∥

(L− k − iε)−1PK

(

g̃

g

)∥

∥

∥

∥

2

dk ≤ C

∥

∥

∥

∥

PK

(

g̃

g

)∥

∥

∥

∥

2

,

where
(

g̃

g

)

∈ XδN , one can compute the left hand side in the latter estimate. Then

ε

∫

dx

∥

∥

∥

∥

(L− x− iε)−1PK

(

g̃

g

)∥

∥

∥

∥

2

=

= π

∫

dx(‖P+(g̃ + S∗g)(x+ iε)‖2 + ‖P+(Sg̃ + g)(x+ iε)‖2)−

−2Re

∫

dx

∫

dk
ε

(x− k)2 + ε2
(S(k)P+(Sg̃ + g)(x+ iε), P+(g̃ + S∗g)(x+ iε)).

Having used the fact that (see [3])

∫

dk
ε

(x− k)2 + ε2
(S(k)P+(Sg̃ + g)(x+ iε), P+(g̃ + S∗g)(x+ iε)) =

= π(S(x+ iε)P+(Sg̃ + g)(x+ iε), P+(g̃ + S∗g)(x+ iε))

since S(λ) is a bounded analytic operator-function in the upper semiplane of the com-
plex plane, and then passing to the limit as ε → 0, taking into account that P+(g̃ +
S∗g)(λ), P+(Sg̃ + g)(λ) ∈ H+

2 (E) [3], we arrive to the following rezult:

lim
ε→+0

ε

∫

dx

∥

∥

∥

∥

(L− x− iε)−1PK

(

g̃

g

)∥

∥

∥

∥

2

= π

∥

∥

∥

∥

P+

(

g̃ + S∗g

−(Sg̃ + g)

)∥

∥

∥

∥

2

H

.

Therefore the equivalence claimed is proved.
When considering the estimates of (2.1) that involve the resolvent of the adjoint operator

L∗, one has to use the following model representation for the action of the resolvent of the
adjoint operator on the “smooth” vectors of the operator L (see [5, 7]):

(L∗ − λ0)
−1PK

(

g̃

g

)

=

= PK

1

k − λ0





g̃ − P+(g̃ + S∗g)
g − P−(Sg̃ + g)−X+[I + (S∗(λ0)− I)X+]−1∗
∗(P−(g̃ + S∗g)(λ0)− S∗(λ0)P−(Sg̃ + g)(λ0))



 .

The rest of the proof in this case is essentially similar to the one carried out above.
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In order to complete the proof of Theorem 2.1, we need to rewrite the estimates obtained
by virtue of Lemma 2.2 in terms of the initial Hilbert space H and of the operators in
it. To this end, we will first rewrite our estimates in terms of H, the three-component
representation of H, see [9, 7]. The space H ≡ D− ⊕H ⊕D+ consists of three-component
vector-functions (ṽ−, u, ṽ+), where ṽ− ∈ L2(R−;E), ṽ+ ∈ L2(R+;E) and u ∈ H. The unitary
operator (see [7]) that maps H onto H is given by the following formulas:

g̃ + S∗g = − 1√
2π
α(L‖ − k + i0)−1u+ S∗(k)v−(k) + v+(k)

Sg̃ + g = − 1√
2π
α(L−‖ − k − i0)−1 + v−(k) + S(k)v+(k),

where2

v±(k) ≡ 1√
2π

∫

eikξṽ±(ξ)dξ ∈ H±
2 (E)

by the Paley–Wiener theorem [3].
We are going to use this mapping extensively. First of all, note that the fact that

(

g̃

g

)

∈ N
in the model representation is equivalent to

{

X−(g̃ + S∗g) = 0

X+(Sg̃ + g) = 0
, (2.3)

which is of course also true for the subspace we are considering, PδN . Next, for the latter
subspace we clearly have

{

Xδ(g̃ + S∗g) = g̃ + S∗g

Xδ(Sg̃ + g) = Sg̃ + g
, (2.4)

and finally,










































X+(−)α(L‖(−‖) + (−)i0)−1u ∈ H2
−(+)(E)

{

X+v−(k) = 0 a. a. k

X−v+(k) = 0 a. a. k










X−S∗(k)v−(k) =
1√
2π
X−α(L‖ − k + i0)−1u a. a. k

X+S(k)v+(k) =
1√
2π
X+α(L−‖ − k − i0)−1u a. a. k

, (2.5)

where we have used (2.3) and the orthogonality of H2
+(E) and H2

−(E) in L2(E).
Let’s prove now that the assertions (a) and (c) of Theorem 2.1 are equivalent. In order

to do so we need to show, that the third and fourth estimates in the statement of Lemma
2.2 are respectively equivalent to the ones provided by the assertion (c) of Theorem 2.1.

2We assume here that the functions ṽ
−

, ṽ+ have been extended by zero to the complementary semiaxes.
7



We begin with the third estimate of Lemma. One immediately obtains:

∥

∥

∥

∥

(

P−(g̃ + S∗g)

−P−(Sg̃ + g)

)∥

∥

∥

∥

2

H

=

=

∫

δ

dk
(

‖P−(g̃ + S∗g)‖2 + ‖P−(Sg̃ + g)‖2 − 2Re(SP−(g̃ + S∗g), P−(Sg̃ + g))
)

,

where we have used (2.3), (2.4) and the following simple observation:

∫

�

(P+f1(k), f2(k))dk =

∫

�

(P+f1(k), P+f2(k))dk =

=

∫

δ

(f1(k), f2(k))dk =

∫

δ

(P+f1(k), f2(k))dk when f1(k) = Xδf1(k).

The direct computation now shows that the third estimate of Lemma is equivalent to the
following one:

∫

δ

dk
(

‖X−v−‖2 − ‖X+S
∗v−‖2) +

+ 2Re

∫

δ

dk

(

1√
2π
X+α(L‖ − k + i0)−1u, (S∗(k)X− − X+S

∗(k)) v−(k)

)

≤

≤ C‖u‖2, (2.6)

where we have taken into account that [7]

∫

δ

∥

∥

∥

∥

1√
2π
X+α(L‖ − k + i0)−1u

∥

∥

∥

∥

2

dk ≤ C‖u‖2.

The conditions (2.5) when applied to (2.6) show the equivalence of the latter estimate to

∫

δ

dk
(

(X−SX−)−1(I − SS∗)(X−S∗X−)−1X−α(L‖ − k + i0)−1u ,

X−α(L‖ − k + i0)−1u
)

≤ C‖u‖2,

where X−SX− is treated as a bounded linear operator on X−E for a.a. k. It’s not hard to
show on the basis of Hilbert identity, that

(X−S(λ)X−)−1 = X−Θ(λ)X−.
8



Then

((X−S(λ)X−)−1(I − S(λ)S∗(λ))(X−S∗(λ)X−)−1X−α(L‖ − λ)−1u,

X−α(L‖ − λ)−1u) =

= (X−Θ(λ)X−Θ2(λ)J(J − Θ(λ)JΘ∗(λ))JΘ∗
2(λ)X−Θ∗(λ)X−X−α(L‖ − λ)−1u,

X−α(L‖ − λ)−1u) =

= (J(J −Θ(λ)JΘ∗(λ))JX−X−α(L‖ − λ)−1u,

X−α(L‖ − λ)−1u),

since, clearly, Θ∗
2(λ)X−Θ∗(λ)X− = X−. The latter result leads to the desired estimate.

Analogous computations based on (2.3), (2.4) and (2.5) applied to the fourth estimate of
the Lemma 2.2 show that the latter is equivalent to the following one:

∫

δ

dk((X− + S(k)X+)−1(I − SS∗)(X− + X+S
∗(k))−1X+α(L‖ − k + i0)−1u,

X+α(L‖ − k + i0)−1u) ≤ C‖u‖2. (2.7)

Taking into account that

X− + X+S
∗(λ) = (X− + S(λ)X+)∗ = Θ∗

1(λ),

we have:

((X− + S(λ)X+)−1(I − S(λ)S∗(λ))(X− + X+S
∗(λ))−1X+α(L‖ − λ)−1u,

X+α(L‖ − λ)−1u) =

= (Θ−1
1 (λ)Θ2(λ)J(J − Θ(λ)JΘ∗(λ))JΘ∗

2(λ)Θ∗−1
1 (λ)X+α(L‖ − λ)−1u,

X+α(L‖ − λ)−1u) =

= (Θ∗(λ)J(J −Θ(λ)JΘ∗(λ))JΘ(λ)X+α(L‖ − λ)−1u,

X+α(L‖ − λ)−1u) =

= ((Θ∗(λ)JΘ(λ)− J)X+α(L‖ − λ)−1u,X+α(L‖ − λ)−1u),

which finishes the proof of the equivalence of the assertions (a) and (c) of the Theorem 2.1.
The equivalence of assertions (a) and (b) is shown in analogous fashion, so we omit the

corresponding calculations here.

The results obtained are yet quite complicated since the integral estimates of Theorem
2.1 involve the boundary values of the resolvent of the dissipative operator L‖ and its
adjoint, rather then the boundary values of the operators L and L∗ like the conditions
(2.1). Therefore we are now going to prove a modification of the Theorem 2.1. Namely, the
following result holds:

Theorem 2.3. Provided that the spectrum of L is absolutely continuous, the following as-

sertions are equivalent:

(a) The restriction of L to its invariant subspace, corresponding to the “portion” of its

spectrum contained in the Borel set δ ⊂ R, PδH, is similar to a selfadjoint operator;
9



(b) For any u ∈ PδH the following estimates hold:
∫

δ

((I − S∗(k)S(k))X+α(L− k − i0)−1u,

X+α(L− k − i0)−1u)dk ≤ C‖u‖2

∫

δ

((I − S∗(k)S(k))X−α(L∗ − k − i0)−1u,

X−α(L∗ − k − i0)−1u)dk ≤ C‖u‖2;

(c) For any u ∈ PδH the following estimates hold:
∫

δ

((I − S(k)S∗(k))X−α(L− k + i0)−1u,

X−α(L− k + i0)−1u)dk ≤ C‖u‖2

∫

δ

((I − S(k)S∗(k))X+α(L∗ − k + i0)−1u,

X+α(L∗ − k + i0)−1u)dk ≤ C‖u‖2.

Proof. This theorem is proved by direct computation. For example, for the first estimate of
the assertion (b) of Theorem 2.1 one has:

((Θ(λ)JΘ∗(λ)− J)X+α(L−‖ − λ)−1u,X+α(L−‖ − λ)−1u) =

= (Θ∗
1(λ)X+(Θ(λ)JΘ∗(λ)− J)X+Θ1(λ)α(L− λ)−1u, α(L− λ)−1u),

since

α(L−‖ − λ)−1 = Θ1(λ)α(L− λ)−1.

Then

Θ∗
1(λ)X+(Θ(λ)JΘ∗(λ)− J)X+Θ1(λ) =

= (X+ −X+S
∗(λ)X−)J(X+ − X−S(λ)X+)− Θ∗

1(λ)X+JX+Θ1(λ) =

= (X+ −X+S
∗(λ)X−)(X+ + X−S(λ)X+)−

− (X− + X+S
∗(λ))X+(X− + S(λ)X+) =

= X+ −X+S
∗(λ)X−S(λ)X+ − X+S

∗(λ)X+S(λ)X+ =

= X+(I − S∗(λ)S(λ))X+,

where we have used the fact that by the Hilbert identity

Θ∗(λ)X+Θ1(λ) = X+ − X−S(λ)X+.

In the case of the other respective pairs of estimates the proof is carried out similarly.

Corollary 2.4. Provided that the spectrum of the operator L is absolutely continuous, the

following conditions are sufficient for the restriction of L onto the subspace PδH for any

Borel set δ ⊂ R to be similar to a selfadjoint operator:
10



(a) There exists a constant C <∞ such that for all u ∈ PδH the following estimates hold:

{

∫

δ
‖X+α(L− k − i0)−1u‖2

dk ≤ C‖u‖2

∫

δ
‖X−α(L∗ − k − i0)−1u‖2

dk ≤ C‖u‖2
(2.8)

(b) There exists a constant C <∞ such that for all u ∈ PδH the following estimates hold:

{

∫

δ
‖X−α(L− k + i0)−1u‖2

dk ≤ C‖u‖2

∫

δ
‖X+α(L∗ − k + i0)−1u‖2

dk ≤ C‖u‖2 .
(2.9)

In the last section of the present paper we are going to apply the results obtained above
(more specifically, the result of the Corollary 2.4) to the analysis of the similarity problem
for the operator of one-dimensional nonselfadjoint Friedrichs model.

3. Application: Friedrichs model operator

We consider the operator acting in the Hilbert space L2(R) defined by the formula

(Lu)(x) = xu(x) + ψ(x)

∫

u(t)ϕ(t) dt, u, ϕ, ψ ∈ L2(R). (3.1)

The determinant of perturbation D(λ) in this case is given by the following expression:

D(λ) = 1 +
∫

ϕ(t)ψ(t)(t − λ)−1 dt. In order to simplify the calculation of the operators α
and X± let’s restrict ourselves to the case of orthogonal functions ϕ, ψ: (ϕ, ψ) = 0.

Let’s denote the class of the functions f analytic in the upper (lower) half-plane and
satisfying the condition

sup
ε>0 (ε<0)

∫

|f(k + iε)|p dk

1 + k2
<∞

by Hp,loc
+ (Hp,loc

− ).
The following lemma, characterizing the structure of the spectrum of the operator under

investigation, holds:

Lemma 3.1. (i) Let the spectrum of the operator (3.1) be absolutely continuous. Then

(D(λ))−1 ∈ H2,loc
± , (D(λ))−1(ψ(t)(t− λ)−1, ψ(t)) ∈ H2

±.

(ii) Provided, that

(a) (D(λ))−1 ∈ H2+δ,loc
± , δ > 0,

(b) ψ(t) ∈ L∞(R),
the spectrum of the operator (3.1) is absolutely continuous.

We finally note, that the condition (2.8) for the operator (3.1) can be reduced to the
test of boundedness of the certain singular integral operators acting in L2(R). Namely, the
following theorem can be proved:

Theorem 3.2. Provided that the spectrum of the one-dimensional perturbation of the mul-

tiplication operator (3.1) is absolutely continuous and (ϕ, ψ) = 0, the boundedness of the
11



singular integral operators with the kernels

T1(k, t) =
i ψ(t)

t− k − i0
+

1− i ‖ϕ‖‖ψ‖−1(ψ(x)(x− k − i0)−1, ψ(x))

D(k + i0)

ϕ(t)

t− k − i0
,

T2(k, t) =
i ϕ(t)

t− k − i0
+

1− i ‖ψ‖‖ϕ‖−1(ϕ(x)(x− k − i0)−1, ϕ(x))

D∗(k + i0)

ψ(t)

t− k − i0
,

(3.2)

where D∗(λ) ≡ D(λ), in the space L2(δ) is sufficient for the similarity of the restriction of

the operator L to a spectral set, corresponding to the Borel set δ ⊂ R, to a selfadjoint one.

The proof of this theorem is a straightforward application of the Corollary 2.4 to the
operator under investigation.
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