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GEOMETRY OF THE INNER MAXIMAL FUNCTION II

Mats Erik Andersson
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A maximal function with restrictions on the test sets is studied. As

compared to the Hardy–Littlewood maximal function, only affine copies contained

in the region are allowed as test sets. The question is whether this maximal function

must be positive everywhere in the region. A complete characterization is achieved,

stating that this happens exactly when the region is a bounded or unbounded copy

of the fixed convex contour.

For a long time the Hardy–Littlewood maximal function has been of exceptional
value in analysis. There are variations on its standard definition:

Mf(x) = sup
x∈Q

1

|Q|

∫

Q

|f | dx, f ∈ L1
loc(R

n), Q ⊆ Rn is a cube.

One common idea is to make a local maximal function by the additional demand
|Q| < t, for a given t > 0. Another alteration is the theme of this short note.

Let us consider a fixed compact and convex set K ⊆ R2 with interior, as well as
a region Ω ⊆ R2. The collection K = KΩ consists of all affine copies V of K such
that V ⊆ Ω. Observe that V is constructed by dilation and translation of K; no
rotation is involved. We define the inner maximal function MΩ with respect to Ω
and K as

MΩf(x) = MΩ,Kf(x) = sup
x∈V ∈K

1

|V |

∫

V

|f | dx, f ∈ L1
loc(Ω).

The word inner is chosen for its suggestive geometrical meaning, instead of the
more prosaic word local. With this notation the Hardy-Littlewood function could
be written MR2 = MR2,Q, where Q would be a square in the plane.

It is a basic fact that for each f ∈ L1
loc(R

2), not almost everywhere zero, one
has Mf > 0 everywhere: simply choose a sufficiently large square. It would be
interesting to know under what circumstances MΩ shares with MR2 the property
of being positive everywhere in Ω. Since the equality MΩf(x) = 0 means that it is
possible to “hide” the point x ∈ Ω from supp f when covering sets are from K, it
seems natural to introduce a notion.

This material is the refined development of an earlier more specialized subject. The original

ideas formed during an extended visit in the Autumn 1998 to the Institute of Mathematics at

the Czech Academy of Sciences, Prague. Its hospitality is thankfully acknowledged. The visit

was initiated through an exchange program administered by the Royal Academy of Sciences,

Stockholm.
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2 MATS ERIK ANDERSSON

Definition. The region Ω is said to be well-covered by K in case for every f in
L1

loc(Ω) \ {0} and x ∈ Ω, we have MΩf(x) = MΩ,Kf(x) > 0.

A simple argument shows that it suffices to consider instead of f ∈ L1
loc(Ω) point

masses δy, y ∈ Ω, and to demand MΩδy(x) > 0 for all x, y ∈ Ω, in the obvious sense.
Equivalently, there is to every pair x, y ∈ Ω a set V ∈ K with {x, y} ⊂ V .

Lemma 1. Any region Ω well-covered by K has to be convex.

Proof. Take x, y ∈ Ω arbitrary. Then we have MΩδy(x) > 0, which produces an
affine copy K∗ of K with x, y ∈ K∗, K∗ ⊆ Ω. By convexity of K the full segment
[x, y] = {t+(1− t)y | 0 ≤ t ≤ 1} is contained in K∗ and hence in Ω. It follows that
also Ω is convex.

For points x, y ∈ R2 the notation [x, y] = {t + (1− t)y | 0 ≤ t ≤ 1} for segments
will be used in this paper. There is no danger of confusing this with closed intervals
on the real line.

Remark. Of course the convexity of Ω is not sufficient for well-coveredness. Letting
K be the unit square we can consider Ω = ]−2, 2[ × ]0, 1[. If f is supported in
]1, 2[ × ]0, 1[, then MΩf(x) = 0 for all x ∈ Ω ∩ {(x1, x2) | x1 ≤ 0}.

Definition. The set K, being convex and bounded, defines for each κ ∈ ∂K a
unique closed cone V (κ), at most a half plane and with vertex at the origin, giving
K ⊆ κ+V (κ). These latter sets, as κ ∈ ∂K, will be referred to as the closed wedge
domains generated by K. The interior of such a wedge domain is naturally said to
be an open wedge domain.

An open half plane L is said to be a resting half plane for K if L ⊇ K and there
is κ ∈ ∂L ∩ ∂K such that the left or right tangent to K at κ is contained in ∂L.

These two notions allow us to formulate the main result of this document.

Theorem. Let Ω be well-covered by K. Then Ω is either the full plane, an affine

copy of K◦, a translation of an open wedge domain generated by K, or a translation

of a resting half plane for K.

It is trivial to see that all listed options are actually well-covered by K.
As the case of bounded regions Ω turns out to be more streamlined, the next two

sections deal in turn with the bounded and unbounded cases. First some geometric
objects must be introduced.

Definition. Consider for any θ ∈ [0, 2π[ the orthonormal vectors Aθ = (cos θ, sin θ)
and Bθ = (sin θ,− cos θ). A closed band of direction θ is for real parameters s 6 t
the set

R(θ, s, t) =
{

ξAθ + ζBθ ; ξ ∈ R, s 6 ζ 6 t
}

.

For a plane set U we define the θ-width of U according to

θ-width(U) = inf
{

t− s ; U ⊆ R(θ, s, t), s < t
}

.

Finally, a particular quantity relating Ω to K will be necessary to tell the size
of Ω in relation to that of K.

Definition. r(Ω,K) = sup
{

a > 0 ; aK + b ⊆ Ω for some b ∈ R2
}

.
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The case of a bounded region.

One needs first to understand how boundary points of Ω can be sensed by the
inner maximal function, that is, in what respect the covering property with affine
copies of K can include boundary points. Of the next two lemmata, the latter
improves on the former.

Lemma 2. Assume Ω is bounded and well-covered by K. To any α ∈ Ω and β ∈ Ω
there exist a > 0 and b ∈ R2 with {α, β} ⊂ aK + b ⊆ Ω.

Proof. One may assume that α 6= β and β ∈ ∂Ω. Choose βn ∈ Ω such that βn → β.
By well-coveredness there are an > 0 and bn ∈ R2 with {α, βn} ⊂ anK + bn ⊆ Ω.

Since Ω is bounded, the sets {an}∞n=1 and {bn}∞n=1 are bounded, so increasing
sub-indices n(j) exist with an(j) → a and bn(j) → b as j → ∞. Due to α 6= β and
α, βn(j) ∈ an(j)K + bn(j), by necessity a > 0 follows.

Put ‖K‖ = sup {|k| ; k ∈ K}, a finite quantity. For any x = any+bn ∈ anK +bn

an estimate obtains;

dist(x, aK + b) 6 |any + bn − ay − b| 6 |an − a| ‖K‖+ |bn − b|.

Writing εN = supj>N |an(j) − a| ‖K‖+ |bn(j) − b|, one has εN → 0 and

x ∈
∞
⋃

j=N

(

an(j)K + bn(j)

)

implies dist(x, aK + b) 6 εN .

Consequently, ( B(0, r) is here the closed disk at the origin of radius r)

{α} ∪ {βn(N), βn(N+1), . . . } ⊂
∞
⋃

j=N

(

an(j)K + bn(j)

)

⊆ aK + b + B(0, εN ).

Letting N tend to infinity, it follows that α, β ∈ aK + b as well as aK + b =
lim supj→∞ an(j)K + bn(j) ⊆ Ω. The latter limes superior being understood in the
sense of sets. These last two observations complete the desired proof.

Lemma 3. Assume Ω is bounded and well-covered by K. To any α, β ∈ Ω and

β ∈ Ω, there exist a > 0 and b ∈ R2 with the property {α, β} ⊂ aK + b ⊆ Ω.

Proof. According to Lemma 2, only the case α ∈ Ω and β ∈ ∂Ω remains. Essentially
the same argument as in the preceding proof goes through. The major change
being made in the stage of choosing parameters an and bn. Instead of referring
to well-coveredness, the statement of Lemma 2 itself insures the existence of these
parameters. The rest of the proof goes through with the minimal change of inserting
the closure Ω instead of Ω where applicable for inclusion relations.

Now the characterization of well-coveredness for bounded regions can be resolved.

Proposition 4. Assume Ω is bounded and well-covered by K. Then parameters

a > 0 and b ∈ R2 exist, such that Ω = aK◦ + b.

Proof. Choose α, β ∈ ∂Ω with |α− β| = diamΩ. According to Lemma 3 there are
a0 > 0 and b0 ∈ R2 with {α, β} ⊆ a0K + b0 ⊆ Ω.
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It is now claimed that r(Ω,K) = a0; already by definition a0 6 r(Ω,K) holds.
Define temporarily x, y ∈ K by α = a0x + b0 and β = a0y + b0. The contrapositive
to the claim is now a0 < r(Ω,K), which would produce a > a0 and b ∈ R2 with
{ax + b, ay + b} ⊂ aK + b ⊂ Ω. Then a contradiction obtains:

diamΩ > a|x− y| > a0|x− y| = diam Ω.

Thus the claimed value r(Ω,K) = a0 has been certified. An affine transformation
applied to K next allows a0 = 1, b = 0, and the simplified relations

(∗) K ⊆ Ω; aK + b ⊆ Ω implies a 6 1.

Suppose finally that K ( Ω. The rest of the proof aims at contradicting (∗)
under this assumption. Since K is strictly contained in Ω, there is a band R(θ, s, t)
containing Ω in such a way that both components of ∂R(θ, s, t) intersects ∂Ω,
whereas at least one of them does not meet ∂K.

Study for this direction θ the quantities δ = θ-width(K) and ε = θ-width(Ω).
Clearly ε > δ > 0 obtains. Choose now x, y ∈ ∂Ω ∩ R(θ, s, t), one point in each
component of ∂R(θ, s, t). Lemma 3 supplies a > 0 and b ∈ R2 with x, y ∈ ∂(aK +b)
and aK + b ⊆ Ω. This means

ε = θ-width({x, y}) 6 θ-width(aK + b) = a · θ-width(K) = aδ,

whence a > ε/δ > 1, in spite of aK + b ⊆ Ω. Thus we have, as intended, arrived at
a contradiction, which in turn forces upon us the conclusion K = Ω. By convexity
we deduce K◦ = Ω, the desired statement.

Corollary 5. Suppose Ω is well-covered by K and that θ-width(Ω) < ∞ for some

direction θ. Then Ω = aK◦ + b for some a > 0 and b ∈ R2.

Proof. The assumption on θ-width implies r(Ω,K) < ∞. Every choice of α, β ∈ Ω
thus gives |α−β| 6 r(Ω,K) diam(K) < ∞. Hence Ω has bounded diameter and so
is bounded. The claim is now resolved by a reference to Proposition 4.

Unbounded regions

To begin with, it must be stressed that Lemma 2 need not be true for well-
covered, but unbounded Ω. Thus the method of proof for bounded regions cannot
be carried over without major modification.

Examples 6. Consider the convex sets K1 = {(x, y) ; 0 6 x 6 1, x2 6 y 6 1} and
K2 = {(x, y) ; y > 0, x4 6 y2 6 x} together with the regions U1 = {(x, y) ; x, y > 0}
and U2 = {(x, y) ; x ∈ R, y > 0}. It is perfectly straightforward to see that each Uj

is well-covered by the set families generated by each Ki.
Furthermore, the conclusion in Lemma 2 holds with K = K1 and Ω = U1

precisely for β ∈ U1∪{(0, y) ; y > 0}, whereas Ω = U2 gives validity only for β ∈ U2.
On the other hand, the choice K = K2 and Ω = U1 demands β ∈ {(0, 0)} ∪ U1 for
Lemma 2 to hold, whereas Ω = U2 again reduces validity to β ∈ U2.

The completion of our Theorem, as stated earlier, demands that unbounded,
well-covered regions Ω be shown to coincide with α + V (κ), where α ∈ ∂Ω and
κ + V (κ) arises as a closed wedge domain relative to the given contour K, or that
Ω coincide with a translated resting half plane for K.
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Lemma 7. Let Ω be well-covered and such that ∂Ω contains a straight segment.

Then this segment is parallel to some right or left tangent line of ∂K. When

affinely mapping the segment into the tangent, Ω and K will be part - that is after

a translation - of the same half plane spanned by the tangents.

Proof. Suppose [α, β] ⊂ ∂Ω. Let L be the closed half plane such that 0 ∈ ∂L = `,
[α, β] ⊂ α + `, and Ω ⊆ L. Take ν ∈ L, |ν| = 1, ν ⊥ `, and consider the strip
L(ρ) = ` + {tν ; 0 6 t 6 ρ}.

It is possible to select αn, βn ∈ Ω with αn → α and βn → β; hence also an > 0,
bn ∈ R2 such that {αn, βn} ⊂ anK + bn ⊆ Ω. The convexity of K provides κ ∈ ∂K
and κ + L ⊇ K. Consider now the closed wedge domain κ + V (κ).

For each ρ > 0, the inclusion anK + bn ⊆ V (κ) + anκ + bn delivers an estimate

diam
(

[anK + bn] ∩ [α + L(ρ)]
)

6 diam
(

[V (κ) + anκ + bn] ∩ [α + L(ρ)]
)

6 diam
(

V (κ) ∩ L(ρ)
)

.

Consequently, for all ρ > 0,

0 < |α− β| = lim sup
n→∞

|αn − βn| 6 diam
(

V (κ) ∩ L(ρ)
)

.

Letting ρ → 0+, we conclude that at least one of the rays in ∂V (κ) must be
contained in ` = ∂L. This is precisely the claim.

Parts of the classification can now be completed. Let Ω be well-covered and
unbounded. The full plane Ω = R2 is an obvious possibility and any smaller region
Ω must, by convexity, be contained in a half plane. Should Ω be exactly a half
plane, Lemma 7 says that it must in fact be a resting half plane for K. Thus only
the cases of Ω being strictly smaller than any supporting half plane still remain to
be studied. The next standard argument, for completeness sketched here, provides
the means to locate any corner. Observe that any still unclassified, but well-covered
region now satisfies the hypothesis of the following statement.

Lemma 8. Let Ω be a convex set with interior and strictly contained in any sup-

porting half plane. Then there exists a closed half plane L such that L◦ ∩ Ω 6= ∅
and also 0 < diam(Lc ∩Ω) < ∞.

Proof. Translation, reflection, and rotation allow the simplifications (0, 0) ∈ ∂Ω,
Ω ⊂ R× ]0,∞[, and that the ray R+ ×{0} be a right-hand tangent to ∂Ω at (0, 0),
as well as the existence of a point σ = (s, t) ∈ Ωc such that s < 0, t > 0.

Furthermore, there is close to the origin, a point ρ = (r, q) ∈ ∂Ω with r > 0. Let
` be the unique straight line passing through σ and ρ; take L to be the half-plane
with boundary ` and not containing the origin. Clearly L◦ ∩ Ω 6= ∅ is achieved. In
addition, `∩Ω ( [σ, ρ] and hence Lc∩Ω ⊆ Q, where Q is a quadrilateral with corners
at the points σ, ρ, (x, 0), and (r, 0). Consequently, 0 < diam(Lc ∩ Ω) 6 diam(Q),
which completes the claim.

Lemma 9. Let Ω be well-covered by K and such that Lemma 8 is applicable. Then

there exist α ∈ ∂Ω and κ ∈ ∂K such that the closed tangent cone of α with respect

to Ω, here written α + U(α), has the property U(α) ⊆ V (κ).

Proof. By slightly tilting the half plane L from Lemma 8, we may assume there are
unique α ∈ ∂Ω and κ ∈ ∂K that have translations of L as supporting half planes.
This follows from the convexity of Ω and K.
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Let Un be open cones that exhaust U(α), that is U(α)◦ = ∪nUn. There are hence
quantities δn → 0 such that (α+Un)∩B(α, δn) ⊆ Ω. The set on the left-hand side
is henceforth denoted α + U ∗n.

Take any β ∈ α + U ∗n with |β − α| = δn, and additionally locate {αj}
∞
j=1 such

that αj → α and αj ∈ α + U∗n. Suitable parameters an and bn achieve {β, αj} ⊂
ajK + bj ⊆ Ω. Write also S(ρ) = {x ∈ α + L ; dist(x, α + `) 6 ρ}, where ` = ∂L.

Putting εj = dist(αj , α + `) we have the useful facts

diam
[

Ω ∩ S(εj)
]

→ 0 and ajκ + bj ∈ Ω ∩ S(εj).

It follows that ajκ+bj → α as j →∞. Hence the inclusion [β, αj ] ⊂ ajκ+bj +V (κ)
delivers, as j →∞, the relation [β, α] ⊆ α +V (κ). The freedom in choosing β thus
gives α+U∗n ⊆ α+V (κ) for any n, which when using the exhaustion {Un} simplifies
to U(α) ⊆ V (κ); this was the claim.

Remark. Observe that the preceding lemma is applicable also for bounded, well-
covered regions, so there is no hope of identifying Ω from the above statement
alone.

The final step for our classification resembles the preceding proof very much but
of course uses the unboundedness as an essential ingredient.

Proposition 10. Let Ω be an unbounded region such that Lemma 9 is applicable.

With the same α and κ it follows that Ω = α + V (κ).

Proof. It suffices, by Lemma 9, to prove α + V (κ) ⊆ Ω, which more or less will be
achieved by reversing the exhaustion used in the previous argument. Notation and
choices made during the proof of Lemma 9 remain in effect.

Let {Vn}
∞
n=1 be open cones exhausting V (κ), so V (κ)◦ = ∪nVn. Take δn → 0

with V ∗n = Vn ∩ B(0, δn) such that κ + V ∗n ⊆ K. Fix a ρ > 0 and choose αρ ∈
Ω ∩ S(ρ). From the unboundedness of Ω there are βj ∈ Ω such that |βj | → ∞.
Thus {αρ, βj} ⊂ ajK + bj ⊆ Ω for suitable aj > 0 and bj ∈ R2. It follows that
γj = ajκ + bj ∈ Ω ∩ S(ρ) and γj + ajV

∗
n ⊆ Ω for every n > 1. Also aj → ∞, due

to |aρ − βj | → ∞.

Since {γj}
∞
1 ⊆ Ω∩S(ρ) is bounded, there is a subsequence γj(m) → γδ ∈ Ω∩S(ρ).

From γj(m) +aj(m)V
∗
n ⊆ Ω and Vn = ∪m aj(m)V

∗
n , it follows that γρ +Vn ⊆ Ω. This

holds for any n > 1, so also γρ + V (κ) ⊆ Ω follows.

Finally, γρ ∈ Ω ∩ S(ρ) forces γ → α as ρ → 0+. Consequently α + V (κ) ⊆ Ω

obtains from γρ + V (κ) ⊆ Ω. This inclusion thus finishes the proof.

The proposition says that any well-bounded region, which is not the full plane,
a half plane, or a bounded region, must in fact be the translation of an open
wedge domain generated by K. Therefore the claimed classification has now been
completed and our Theorem has been fully verified.
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