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Abstract

The paper deals with spectral analysis of a class of selfadjoint unbounded Jacobi matrices J
with modulated entries. This means all their entries have the form of ”smooth” increasing to
infinity sequences multiplied by proper periodic sequences. For this class criteria of pure absolute
continuity of the spectrum or its discretness and asymptotic of generalized eigenvectors of J are
given. Some examples illustrating stability zones of spectrum structure are presented.



1 Introduction.

Let {en}
n∈N

be the canonical orthonormal basis in l2. The paper deals with the class of tridi-

agonal matrices which induce densely defined operators J acting in l2 by the formula

Jen = λn−1en−1 + λnen+1 + qnen, n = 1, 2, · · · ,

where weights {λn}n∈N
and diagonal (potential) {qn}n∈N

are sequences of real numbers and

λ0 = 0. Let S be the unilateral shift in l2 and Den = λnen, Qen = qnen are the diagonal
operators. We always assume that

∑

λ−1
n = +∞ (Carleman condition ). Then J = (SD +

DS∗ + Q). The main goal of the paper is spectral analysis of sufficiently rich class of J ′s with
modulated entries. Namely λn = cnµn, qn = bnrn, where {cn}n∈N

is periodic sequence non-zero

numbers of the smallest period N , {bn}n∈N
is also periodic sequence of real numbers of smallest

period M, {µn} and {rn} are ”smooth” sequences of real numbers with limn µn = +∞, µn 6= 0.
The class of J ′s induced by the above sequences {λn}, {qn} provides (as it will become clear
below) many interesing and new examples of operators with complicated spectral behaviour
with respect to perturbation of parameters {bn}, {cn} and parities of M and N . Our interest in
this class was partially inspired by noticing very particular but nice examples of Jacobi matrices
with ”linear” (in n) entries discussed from the point of view of group theory by Masson and
Repka in [9] and Edward in [8]. Unbounded Jacobi matrices also appear in different fields:
quantum group theory, birth and death Markoff processes etc. The paper [16] was devoted to
the very special case when M = 1, µn = nα, α ∈ (0, 1], rn = δµn. To some extent we continue
here considerations started in [16] and for this reason the notations used below are close to those
employed in [16]. In the present paper we try to understand the results of the above articles
from our point of view i.e. asymptotic analysis of the transfer matrix. The main goal of the
preceding paper was presentation of some explicit examples of spectral phase transition. In this
paper we try to develop a sort of spectral analysis of sufficiently rich class of Jacobi matrices
with modulated entries λn, qn. Actually spectral theory of selfadjoint Jacobi matrices is a vast
field which develops rapidly in recent years. Let us mention here only few works related to
the above mentioned topics [1], [4], [6], [7], [13], [14], [15], [16], [17], [18], [19], [27]. In this
paper we deal with spectral phase transition of the first type i.e. the space of parameters can be
decomposed into separate regions in which spectrum of a given operator is either pure absolutely
continuous or discrete. In turn according to physical terminology spectral phase transition of
the second type refers to situations with mixed spectrum and existence of mobility edges and
is even more interesting. Studies of spectral phase transition required applications of modern
methods of spectral analysis of J ′s and elaborating new ones. For example a sort of discrete
version of semi-classical method (WKB asymptotics, Levinson-type theorem) was used. As it is
well known spectral analysis of J due to Gilbert-Pearson theory [17] is strongly related to the
study of asymptotic behaviour of solutions of the infinite system of equations

λn−1un−1 + λnun+1 + qnun = λun, n = 2, 3, · · · (1.1)
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where λ ∈ R. Let ~un :=

(

un−1

un

)

and

Bn :=

(

0 1
−λn−1λ

−1
n (λ− qn)λ−1

n

)

. (1.2)

Then (1.1) can be written as:

~un+1 = Bn~un, n = 2, 3, · · · .

The matrix Bn is called the transfer matrix of (1.1) The asymptotic analysis of the product
BnBn−1 · · ·B2 was already essentially exploited in several paper e.g. [13], [14], [15], [16], [27],
and others.

In what follows it will be always assumed that µn, rn satisfy among others the following
conditions limn µn+1µ

−1
n = 1 and limn rnµ−1

n = δ is finite. Then for n = lK + j, where
K = M ∨ N is the least common multiple of M and N , 1 ≤ j ≤ K is fixed, there exist
liml BlK+j := Fj. The next necessary function we need in order to describe briefly the results of
the paper is defined by PK(b, c; δ) := Tr(FK+1 · · ·F2), where b := (b1, · · · , bM), c := (c1, · · · , cN).
Note that parameter δ is somehow redundant (being non-zero it could be absorbed by b′ns) but
it is useful below for better understanding. Let {b̃s} ( resp. {c̃s}) be K-periodic extension of
{bs} (resp. {cs}). Denote by Cper (resp. Bper) the diagonal matrix defined by {c̃s} (resp. δb̃s}).
Let us introduce periodic Jacobi matrix

Jper = SCper + CperS
∗ + Bper.

Observe that PK(b, c; δ) defined above is strongly related to the characteristic polynomial dJper(λ)
of Jper. In fact, since (c0 := cN)

dJper(λ) := Tr
K
∏

s=1

(

0 1
−cs−1c

−1
s (λ− bsδ)c

−1
s

)

we have
dper(0) = PK(b, c; δ).

First this relation was used in special case in [16]. It is well known that σac(Jper) consists of
exactly K intervals [αj, βj], j = 1, · · · , K which can have common end points (in degenerate
case), see [22]. However this does not happen in generic situations [12]. Denoting by ’ Int
’ σac(Jper) =

⋃

j(αj, βj) the main result of §3 says (Th.3.1) : if 0 ∈ ’ Int ’ σac(Jper) then J
has pure absolutely continuous spectrum covering R under proper smoothness conditions (2.1).
Moreover in Th.3.1 asymptotic formula for generalized eigenvectors ( solutions ~un of (1.1)) is
given. In turn in Th. 4.1 we show that σ(J) is discrete provided 0 does not belong to σac(Jper).
Asymptotic of eigenvectors of J is also shown. Denote by {ρk}k∈N

the set of all eigenvalues of

J ordered with respect to increasing of their modulus. In Th.4.2 estimations of Cesaro averages
of {ρk} are proved. In particular case µn � nα, α ∈ (0, 1) we have ρn � µn. This result was not
found in [16] even in the case µn = nα. Note that the point spectrum of J can be semibounded
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or not semibounded depending mainly on b and c. Finally in Section 5 we give some explicit
examples illustrating various types of spectral phase transition and stability of spectra under
small perturbations of b′ns or c′ns and periods.
Concerning the methods we use in this work they are based on three main ideas.
i) Gilbert-Pearson theory reduces spectral analysis of J to the asymptotic behaviour of products
Bn · · ·B2, as n →∞.
ii) The asymptotic analysis is obtained by proper application of discrete version of WKB asymp-
totics for Bn · · ·B2.
iii) In turn K-periodicuty forces us to employ WKB approach for K different subsequences
(n = lK + j, j = 1, · · · , K) of the above products which appear to be smooth in l (not in n.)
Actually this means that we collect the products into blocks of length K.

2 Preparatory facts and conditions.

In this section we discuss some conditions emposed on weights and diagonals. These conditions
are expressed in an unified form giving us possibility to extend results of the present paper for a
larger classes of Jacobi matrices. In what follows we shall use the class Dk of bounded sequences
(or mxm matrices) with bounded varation introduced by G. Stolz in [27]. For a sequence
{A(n)}

n∈N
= A of mxm matrices, let ∆A(n) = A(n+1)−A(n), ∆sA = ∆(∆s−1A), s = 2, 3, · · ·

and ∆0A = A. We say that A ∈ Dk iff ‖∆sA(·)‖ ∈ lk/j, j = 1, · · · , k. Given a sequence A(s)
of mxm matrices the product

∏n2

s=n1
A(s) is understood as: A(n2) · · ·A(n1). This is so called

chronological product.
Recall that {cs} be a periodic sequence of non-zero real numbers of minimal period N ,

and {bs} be also a periodic sequence of real numbers of minimal period M . The K− periodic
extension of sequence {bs} (resp. {cs}) is denoted by {b̃s} (resp {c̃s }). For any integer 1 ≤ j ≤ K
the 2x2 matrix Fj is given by

Fj =

(

0 1

−c̃j−1c̃
−1
j −δ b̃j c̃

−1
j

)

, (2.3)

here c̃o := c̃K .
Let

Gs :=

(

0 1
−c̃s−1c̃

−1
s 0

)

, Es :=

(

0 0

0 −δ b̃sc̃
−1
s

)

i.e Fj = Gj + Ej.

In what follows the principal role will play the matrix C∞ :=
∏K

j=1 Fj. The natural character of
the notation will be clarified below.
In the next sections we shall need the following elementary

Proposition 2.1 (On the interplay between parities of M and N) Let b = (b1, · · · , bM ) and
c = (c1, · · · , cN). Under the above notations the function

PK(b, c; δ) := TrC∞ (2.4)
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can be written in the following form (depending on parities of M and N)
a) M- arbitrary, N- even

PK(b, c; δ) = Po(c) + δ2P2(b, c) + · · ·+ δKPK(b, c) (2.5)

where Po(c) = (−1)K/2(α
K/N
N + α

−K/N
N ), αN := cN−1 · · · c3c1(cN · · · c4c2)

−1 and P2s(b, c) are
homogeneous polynomials of degree 2s in b1, · · · , bM .
b) M- odd, N- odd

PK(b, c; δ) = δP1(b, c) + δ3P3(b, c) + · · ·+ δKPK(b, c), (2.6)

where P2s+1(b, c) are homogeneous polynomials of degree 2s + 1 in b1, · · · , bM .
c) M- even, N- odd

PK(b, c; δ) = (−1)K/22 + δ2P2(b, c) + · · ·+ δKPK(b, c), (2.7)

where P2s have the same meaning as above.

Proof. a) By definition

PK(b, c; δ) = Tr
K
∏

j=1

(Gj + Ej). (2.8)

The term Tr
∏K

j=1 Gj can be computed explicitely and is equal to Po(c) as K is even. Observe
that the product of odd number of anti-diagonal 2x2 matrices and any number of diagonal 2x2
matrices is again anti-diagonal. This can be checked easily because the products of anti-diagonal
and diagonal matrices, is again anti-diagonal.
Hence

δ2s+1P2s+1(b, c) = Tr
∑

t2s+1>···>t1

(X · · ·Et2s+1
· · ·Et1 · · ·Y )

where all matricess X, · · · , Y except Et2s+1
, · · · , Et1 are anti-diagonal , must be equal to zero.

Indeed, since K is even so K − 2s− 1 is odd and in the above products we always multiply odd
number of anti-diagonal matrices Gr by (2s + 1) diagonal matrices Eti

b) Since both M and N are odd so K is also odd. Therefore K − 2s is odd.
Now

P2s(b, c) = Tr
∑

t2s>···>t1

(X · · ·Ft2s · · ·Et1 · · ·Y ),

where again all matrices except Et2s , · · · , Et1 are anti-diagonal. Since we multiply K − 2s
matrices Gr by 2s diagonal matrices Eti the products in the above sum are again anti-diagonal
and so P2s(b, c) = 0.
c) By repeating the reasoning given in proof of a) we check that P2s+1(b, c) = 0.
In turn

Po(c) = Tr[
K
∏

j=1

Gj] = (−1)K/2[αK + α−1
K ],
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where αK = c̃K−1c̃K−3 · · · c̃N c̃N−2 · · · c3c1(c̃K c̃K−2 · · · c̃N+1c̃N−1 · · · c4c2)
−1.

Since K is even for each c̃j from the nominator of αK one can find c̃j+N from the denominator
of αK (the number of factors in nominator and denominator is the same) and so αK = 1.

As it was mentioned in Introduction the class of Jacobi matrices considered in this paper is
given by weights λn = cnµn, where {cn} is N -periodic sequence of non-zero, real numbers and
diagonal qn = bnrn, where {bn} is M - periodic sequence of real numbers. In what follows we
always assume that µn and rn satisfy the assumptions
i) (µn+1µn−1)

1/2µ−1
n − 1 is in D1,

ii) µ−1
n belongs to D1

iii) rnµ−1
n ∈ D1.

iv)lim µn = +∞ (2.7)
v) lim µn+1µ

−1
n = 1

vi)
∑

n µ−1
n = +∞ (the Carleman condition, see [3])

The above assumptions will play essential role in the analysis of spectral properties of J .

Remark 2.2 . We could not require iv) below. However then appears spectral parameter
λ in the limit matrix Fj and so PK(b, c; δ) would also depend on λ. We may (and will) always
assume that all ck > 0. This makes no loss of generality since this can be achieved by a suitable
diagonal unitary equivalence of J with J ′ possesing positive c′k.

Remark 2.3 . a) If εn := µn−1µ
−1
n − 1 is in D1 then {µn} satisfies i).

b) In turn if µ−1
n ∈ l2 and εn ∈ l2, then {µn} satisfies ii).

c) If µn is increasing then ii) holds.
Denote by i ′) (the stronger version of i) ) as: (µn+1µn−1)

1/2µ−1
n−1 − 1 is in l1. In particular

condition i ′) implies that there exists a finite non-zero limit d = limn µn+1µ
−1
n . Next iv) forces

that d ≥ 1, and using vi) one has d = 1. In other words v) is in this case derived from other
conditions.

Remark 2.4 . Weights λn = nα(1+∆n), α > 0, limn ∆n = 0 considered in [12] satisfy
i) iff

∑

n

|∆2(∆n) + ∆n+1∆n−1 −∆2
n| < ∞

and ii) is equivalent to the convergence of
∑

n |∆(∆n)|n−α, here ∆(∆n) := ∆n+1 − ∆n and
∆2(∆n) is the second difference

3 Absolutely continuous spectrum and asymptotics of

generalized eigenvectors.

In this section we shall establish pure absolute continuity of J for the above defined class of
weights and diagonals.The results will depend in essntial way on parities of periods M and N
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as well as on regultarites of weights and diagonal expressed by assumptions i),ii), iii),iv), v),
vi). The method of proof uses a reduction of the transfer matrix Bn for J to a matrix B̃n which
resembles the transfer matrix of discrete Schrödinger operator. Advantage of this reduction is
clear because it helps to extract the main part in the principal term of the asymptotic of the
chronological product of transfer matrices. It can be applied in discrete and pure absolutely
continuous cases as well.

The first step of our analysis of products
∏n

k=1 Bk is based on the following procedure relating
Bk with the matrix B̃k defined as

B̃k =

(

0 1
−c̃k−1c̃

−1
k µ−1

k (µk+1µk−1)
1/2 (µk+1µ

−1
k )1/2(λ− qk)(c̃kµk)

−1

)

.

The matrix B̃k resembles the transfer matrix of discrete Schrödinger operator (which has the

form

(

0 1
−1 λ− qn

)

). This allows us (remind that limk(µk+1µ
−1
k ) = 1) to avoid condition

µn−1µ
−1
n ∈ D1 for the left lower entry of Bn and replace it by less restrictive (i) (µn+1µn−1)

1/2µ−1
n ∈

D1, see Remark 2.3. Let Vk = diag(µ
1/2
k−1, µ

1/2
k ).

We have
Bk = V −1

k+1B̃kVk. (3.9)

Since Vk has obvious asymptotics Vk ∼
√

µk

(

1 0
0 1

)

it is clear that (3.1) reduces analysis of

∏n
k=2 Bk to the corresponding

∏n
k=2 B̃k. This fact will be exploited below in the proof of the

following.

Theorem 3.1 . Let J be a Jacobi matrix with weights λn and diagonal qn satisfying the
above conditions i), ii), iii), iv), v), vi). If δ := lim rnµ−1

n then J has pure absolutely
continuous spectrum and σac(J) = R provided |PK(b, c; δ)| < 2, where PK(b, c; δ) = Tr

∏K
j=1 Fj,

see (2.1). Moreover generalized eigenvectors ~un of (1.1) have the asymptotics

~un+1 = µ−1/2
n FtFt−1 · · ·F1Tdiag(

l
∏

k=1

µ+(k),
l
∏

k=1

µ−(k))(I + o(1))~e (3.10)

where n = lK + t, tends to infinity for fixed entire t ∈ [1, K], µ±(s) are eigenvalues of the matrix
∏K

j=1 B̃sK+j,

B̃r := diag(µ
1/2
k , µ

1/2
k+1)Bkdiag(µ

−1/2
k−1 , µ

−1/2
k ),

T is the invertible 2x2 matrix diagonalizing C∞ =:
∏K

j=1 Fj, T−1C∞T = diag(µ+(∞), µ−(∞))

and ~e is a vector in C
2
.

Proof.
As usual the proof is based on Gilbert-Pearson theory of subordinacy [17]. Observe that B̃s can
be written as the sum of K-periodic matrix Fs and the matrix Hs given by

(

0 0

c̃s−1c̃
−1
s [1− (µs+1µs−1)

1/2µ−1
s ] (λ− b̃srs)(c̃sµs)

−1(µs+1µ
−1
s )1/2 + δb̃sc

−1
s

)
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We claim that

Cl :=
K
∏

j=1

B̃(l−1)K+j , l = 1, 2, · · · ,

can be expressed in the form

Cl =
K
∏

j=1

Fj + H̃l, (3.11)

where H̃l ∈ D1. This can be checked by induction on K. Let us examine the case K = 2.
Assume that n is odd number n = 2(l − 1) + 1 (the case of even n is similar). Then we have

Cl = B̃n+1B̃n = (F2 + Hn+1)(F1 + Hn), Cl+1 = (F2 + Hn+3)(F1 + Hn+2).

By the definition of Hs it is easy to verify that ‖Hn+2 −Hn‖ belongs to l1 (by using ii) and iii)
). It follows that ‖Cl+1 − Cl‖ is also summable and this proves our claim. The induction step
K → K + 1 is based on a similar argument.

Now for n = (l − 1)K + j, detB̃n = c̃n−1c̃
−1
n (1 + rjl), where {rjl} ∈ D1 in l by i) and

liml→∞ rjl = 0 by v), j = 1, · · · , K.
Hence (by the K- periodicity of c̃n)

detCl =
K
∏

j=1

(1 + rjl) =: 1 + Rl, {Rl} ∈ D1 and lim
l

Rl = 0. (3.12)

For the same reason C∞ :=
∏K

j=1 F(l−1)K+j does not depend on l.

Due to our assumption |TrC∞| = |PK(b, c; δ)| < 2 so eigenvalues µ+(∞) and µ−(∞) of
C∞ must be different because detC∞ = 1. On the other hand TrCl = TrC∞ + TrH̃l, where
∆l := TrH̃l ∈ D1 and liml→∞ ∆l = 0.
Therefore the eigenvalues

µ±(l) =
1

2
(TrC∞ + ∆l)± [

(TrC∞ + ∆l)
2

4
− detCl]

1/2 (3.13)

of Cl are also different and are complex conjugate for l sufficiently large ( ∆l → 0, as l →∞).
By a proper choice of µ+(l), µ−(l) and of the corresponding eigenvectors ~e1(l), ~e2(l) of Cl one
can check that µ±(l) ∈ D1 and ~es(l) ∈ D1 due to the following .

Lemma 3.2 . Let Ml ∈ Dk be a sequence of mxm matrices. Suppose that there exists
liml→∞ Ml = M, where the matrix M is invertible and has simple spectrum. Then for a proper
choice of eigenvalues µ1(l), · · · , µm(l) and the corresponding eigenvectors ~e1(l), · · · , ~em(l) of Ml,
for l � 1 we have,
a) µs(·) ∈ Dk, s = 1, · · · , m.
b) liml→∞ ~es(l) = ~es, where M~es = µs~es and µs = liml→∞ µs(l).
c) ~es(·) ∈ Dk coordinatewise.
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Proof. We use the following fact (see [16]): if {gs(l)}∞l=1, s = 1, · · · , m belong to Dk and
the function f(x1, · · · , xm) belongs to Ck in a neighbourhood of the point (gs, · · · , gm), where
gs = liml→∞ gs(l) (provided these limits exist) then the sequence f(g1(l), · · · , gm(l)) also belongs
to the scalar class Dk.
Due to the formula for the eigenvalues of Ml it is clear that they are C∞ functions in entries of
Ml in suitable domains by the simplicity of σ(M). From this follows immediately the statement
a), since all entries of Ml are in Dk. Because σ(M) is simple we can suppose that M is a
diagonal matrix without loss of generality. Now choose ~es(l) (for l suff. large) such that its
s-th coordinate equals identically to 1. Then the spectral equation Ml~es(l) = µs(l)~es(l) after
substituting (~es(l))s = 1 can be reduced to (m − 1)x(m − 1) system of linear equations for
the rest of m − 1 coordinates, with determinant different from zero, for l � 1. This gurantee
the unique solution for the vector ~es(l), l � 1. The procedure can be performed separately for
s = 1, · · · , m. In turn, Cramers formulae for the solutions and elementary facts: DkDk ⊂ Dk

(put above f(x1, x2) = x1x2) and Dk/Dk ⊂ Dk for non-zero scalar limit of the denominator
(put above f(x1, x2) = x1 x2, |x2| ≥ ε > 0) prove c). Finally the construction of ~es(·) gives
statement b). Special case of Lemma 3.2 can be found in our preprint [16].

Diagonalization of C∞ + H̃l gives

C∞ + H̃l = Tldiag(µ+(l), µ−(l))T−1
l , (3.14)

here Tl := (~e1(l), ~e2(l)) and the eigenvectors are understood as columns, and we choose lo so
large that µ+(l) 6= µ−(l) for l ≥ lo. For any L = l ·K and n0 = l0K
we have

L
∏

n=no

B̃n =
l
∏

k=lo

Ck =
l
∏

k=lo

(C∞ + H̃k) (3.15)

= (Tl{
l
∏

k=lo+1

[diag(µ+(k), µ−(k))T−1
k Tk−1]}diag(µ+(lo), µ−(lo))T

−1
lo .

Now
T−1

k Tk−1 = (Tk−1 + ∆Tk−1)
−1Tk−1 = I + Γk, and {‖Γk‖} ∈ l1

because {Tk} ∈ D1. Therefore the last product in (3.7) can be written as:

Tl{
l
∏

k=lo+1

[diag(µ+(k), µ−(k))(I + Γk)]}diag(µ+(lo), µ−(lo))T
−1
lo (3.16)

= (
l
∏

s=lo

|µ+(s)|)Tl[
l
∏

k=lo

(Uk + Γ̃k)]T
−1
lo ,

where Uk = diag(µ+(k)|µ+(k)|−1, µ−(k)|µ−(k)|−1) (as µ+(k) = µ−(k) ) and {‖Γ̃k‖} ∈ l1.
By easy version of Levinson theorem [5], [16] we have identically

l
∏

k=lo

(Uk + Γ̃k) = (
l
∏

i=lo

Ui)[
l
∏

k=lo

{(
l
∏

s=lo

Us)
−1(Uk + Γ̃k)(

k−1
∏

m=lo

Um)}] = (
l
∏

i=lo

Ui)[
l
∏

k=lo

(I + Γ
(1)
k )],
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where
‖Γ(1)

k ‖ = ‖Γ̃k‖.
Hence moving in (3.8) the factor

∏l
s=lo |µ+(s)| back to

∏l
k=lo(Uk + Γ̃k) we have

l
∏

k=lo

(C∞ + H̃k) = Tldiag(
l
∏

k=lo

µ+(k),
l
∏

k=lo

µ−(k))[
l
∏

k=lo

(I + Γ
(1)
k )]. (3.17)

Finally writing Tl = T∞ + o(1) the asymptotics of
∏l

k=lo(C∞ + H̃k) is given by

T−1
∞ {diag(

l
∏

k=lo

µ+(k),
l
∏

k=lo

µ−(k))}C(I + o(1)), (3.18)

where C is a fixed invertible matrix (depending on lo). ¿From formulae (3.7), (3.1) and definition
of Bn it is clear that µ±(l) 6= 0 for any l = 1, 2, · · · . Therefore we may replace l0 in (3.10) by 1.
The above asymptotics provides us formula (3.2) only for special sequence of natural numbers
(L = l · K) but due to uniform boundness of ‖B−1

k ‖ it can be extended to arbitrary natural
numbers (we leave the details to the reader). Finally (3.2) obviously implies that (1.1) has no
subordinated solutions because |µ+(k)| = |µ−(k)|, k � 1. This completes the proof.

4 Discrete Spectrum, asymptotics of principal and sup-

plementary solutions.

It turns out that asymptotics of solutions to (1.1) described by formula (3.2) (see Th.3.1) can
be extended also to the case |PK(b, c; δ)| > 2. As the consequence of this asymptotics it will
be shown discreteness of σ(J) provided |TrC∞| > 2. Below we shall need the following discrete
version of the Levinson theorem [5], [16].

Proposition 4.1 (N. Levinson). Let A, An, Vn and Rn be sequences of 2 x 2 matrices such
that
1) A is constant, invertible matrix with two different eigenvalues λ1 6= λ2 and
A~ei = λi~ei 6= 0 i = 1, 2.
2) {‖Vn+1 − Vn‖} ∈ l1 and ‖Vn‖ → 0, as n →∞,
3) {‖Rn‖} ∈ l1.
4) In the special case Reλ1 = Reλ2, we need extra condition:
Let d(n) := Re[λ1(n) − λ2(n)]. Suppose that either

∑n
k=1 d(k) tends to +∞, as n → ∞ and

∑n2

k=n1
d(k) is uniformly bounded from below (n1, n2 > 0) or

∑n2

n1
d(k) is uniformly bounded

fromm abve. Consider the infinite system of reccurence equations

~xn+1 = (A + Vn + Rn)~xn. (4.19)

Then there exist two non-zero solutions ~x(1)(n), ~x(2)(n) of (4.1) such that

~x(i)(n) = [
n
∏

k=p

λi(k)](~ei + o(1)), as n →∞, i = 1, 2, (4.20)
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for some p sufficiently large. Here λi(n) are eigenvalues of A + Vn chosen such that
limn→∞ λi(n) = λi, i = 1, 2.

Actually Proposition 4.1 is only a special case of more general result when condition 2) of D1

type is replaced by more general condition of Dk type. It will be considered in another paper.
Here we only mention that this generalization has one essential difference in comparison with
Prop.4.1. The asymptotics in (4.2) will contain beside the spectrum of RHS of (4.1) information
on the eigenvectors of (A + Vn).

In what follows we will apply Prop.4.1 to the matrices Cl = C∞+H̃l. More precisely, we apply
it in the case A = C∞, Vk = H̃k, Rk ≡ 0 because H̃k ∈ D1 (see §3).Since in our case det Cl 6= 0
for all l we can replace p in formula (4.2) by 1. Recall that eigenvalues of (C∞ + H̃l) are µ±(l).
They are given by formula (3.5) in nonelliptic case too. According to standard terminolgy [11]
µ+(∞) = µ−(∞) in elliptic case and µ±(∞) ∈ R in nonelliptic (hyperbolic) situation. But
now µ+(l) > 1 and µ−(l) < 1 for l sufficiently large, because here |TrC∞| > 2 and detC∞ = 1.
Let C∞~e1 = µ−(∞)~e1, C∞~e2 = µ+(∞)~e2. Using (4.2) we can write for n = (l − 1)N + j the

asymptotic formula for two linearly independent solutions ~u
(i)
n+1 of (1.1) as:

~u
(i)
n+1 = V −1

n+1Fj · · ·F1[
l
∏

k=1

µ±(k)](~ei + o(1)), (4.21)

here Fs are given by (2.1). We choose in (4.3) µ−(k) for i = 1 and µ+(k) for i = 2. Evoking
definitions of Vn and Fj we can rewrite (4.3) as follows

~u
(i)
n+1 = µ

− 1

2
n

l
∏

k=1

µ±(k)

(

0 1

−c̃j−1c̃
−1
j −δb̃j−1c̃

−1
j

)

·
(

0 1
−c̃0c̃

−1
1 −δb1c̃

−1
1

)

(~ei + o(1)). (4.22)

Asymptotics of solutions given by (4.4) allows to obtain estimations of the Green matrix
G(k, n; λ0) = ((J − λ0)

−1ek, en), where λ0 /∈ R and k, n ∈ N. These estimates permit to show
compactness of (J − λ0)

−1.
Let uD(·, λ0), uN(·, λ0) be two Weyl solutions to (1.1) with λ = λ0 and boundary conditions

given by uD(0) = 0, uD(1) = 1 respectively uN(0) = 1, uN(1) = 0. Denote by ϕN
+ (n, λ0) the

unique (by Carleman condition) Jost [11] solution which belongs to l2,

ϕN
+ (n, λ) = uD(n, λ0) + m(λ0)u

N(n, λ0),

where m(λ) is the well known Weyl function [2]. The Green matrix G(k, n, λ0) can be written
as usual

C(λ0)u
D(k<, λ0)ϕ

N
+ (k>, λ0), (4.23)

where k< = min(k, n), k> = max(k, n), see [2].
Using (4.4) we know that

ϕN
+ (n, λ0) = O(µ−1/2

n

n
∏

k=1

µ−(k)), n →∞. (4.24)
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Surely uD(n, λ0) must grow (λ0 /∈ σ(J)) and therefore again by 4.4

uD(n, λ0) = O(µ−1/2
n

n
∏

k=1

µ+(k)), n →∞. (4.25)

Indeed, evoking definition of Cl and using K periodicity of c̃j we have

m
∏

l=2

µ+(l)µ−(l) =
m
∏

l=2

detCl =
m
∏

l=2

(
K
∏

j=1

detB̃(l−1)K+j) (4.26)

=
m
∏

l=2

[
K
∏

j=1

c̃j−1c̃
−1
j (µ(l−1)K+j+1µ(l−1)K+j−1)

1/2µ−1
(l−1)K+j] =

mK
∏

s=K+1

[(µs+1µs−1)
1/2µ−1

s ]

= (µmK+1µ
−1
mKµkµ

−1
K+1.

By (v) the above equalities prove the desired convergence of the left hand side of (4.8). Using
(4.5)-(4.8) we have

|G(k, n; λ0)| ≤ C(µnµk)
−1/2

n
∏

s=k+1

µ−(s), (4.27)

where C = C(λ0) > 0 and n ≥ k but k is sufficiently large (here for k = n the product
∏n

s=k+1 µ−(s) is understood to be equal to 1.)
Since µ−(s) ≤ r < 1, for s � 1 (4.9) implies that

|G(k, n; λ0)| ≤ C1(µnµk)
−1/2r|k−n| (4.28)

for n ≥ k and k sufficiently large, say k ≥ k0. Surely estimation (4.10) also holds for k < k0 and
k < n.
The case n < k follows by symmetry in (4.5) and so (4.10) holds for all k, n. Estimation (4.10)
implies that G(k, n; λ0) can be written in the form

G(k, n; λ0) = µ
−1/2
k [F (k, n; λ0)r

|n−k|]µ−1/2
n , (4.29)

where |F (k, n; λ0)| ≤ M, for some M > 0 and all k, n ∈ N.
It follows that the operator G induced by the matrix {G(k, n; λ0)}k,n∈N

can be expressed as

the product
G = ABA, (4.30)

where A is the diagonal operator with the diagonal {µ−1/2
n }

n∈N
and B is the operator defined

in l2 by the matrix {F (k, n; λ0)r
|n−k|}.

Note that
∑

k

|F (k, n; λ0)|r|n−k| ≤ 2M(1− r)−1, n ∈ N

and
∑

n

|F (k, n; λ0)|r|n−k| ≤ 2M(1− r)−1, k ∈ N.

11



Therefore B is bounded in l2 (and ‖B‖ ≤ 2M(1− r)−1), [10].
Since A is compact (µn → +∞, as n →∞) G must be also compact and the spectrum of J is
discrete.
Suming up the above considerations we have proved

Theorem 4.2 . If weights λn and diagonal qn satisfy assumptions (2.7) and
|PK(b, c; δ)| > 2 then
a) the spectrum of J is discrete,
b) there exist two non-zero solutions ~x(1)(n), ~x(2)(n) of the system (1.1) such that
~x(i)(n) = µ−1/2

n Fj · · ·F1[
∏l

s=1 µ±(s)](~ei + o(1)),
where n = lK+j, 1 ≤ j ≤ K, µ±(s) are eigenvalues of Cs :=

∏K
j=1 B̃sK+j, and ~ei are eigenvectors

of C∞ := liml→∞ Cl.

Let {ρk}k∈N
be the sequence of all eigenvalues of J enumerated according to increasing order of

their modulus. It will be shown in Th.4.3 that |ρk| can be estimated from below and the Cesaro
average of the sequence {|ρk|−1}, k ∈ N is proportional to the Cesaro average of {µ̂k}k∈N

, here

{µ̂k}k∈N
stands for the increasing rearrangement of {µk}k∈N

.

Theorem 4.3 . Let J be the Jacobi matrix with weights and diagonal satisfying
(2.7).
Suppose that |PK(b, c; δ)| > 2. Let σ(J) = {ρk}k∈N

, |ρk| ≤ |ρk+1| then

a) there exists a constant c > 0 such that |ρk| ≥ cµ̂[ k
2
]−1, k = 3, · · ·

b) there are positive constans c1, c2 such that

c1

n
∑

k=1

µ̂−1
k ≤

n
∑

k=2

|ρk|−1 ≤ c2

n
∑

k=1

µ̂−1
k , n = 2, 3. · · · (4.31)

Proof. Fix λ0 /∈ R. Employing the notation given above in Th.4.2 we know that
G = (J−λ0I)−1 = ABA, see (4.12). Let {sk(A)}

k∈N
, {sk(J)}

k∈N
be the sequences of singular

numbers of A and J . Elementary properties of singular numbers of operators imply that for
m > 1 (ρ2 6= 0 since J has simple spectrum)

|ρm|−1 = sm(J)−1 ≤ Csm((J − λ0I)−1)

= Csm(ABA) ≤ C‖B‖s[m
2

]−1(A
2) = C‖B‖µ̂−1

[m
2

]−1,

here [r] stands for the entire part of r ∈ R. This proves a).
The proof of b) is more complicated. First observe that for any compact operator A1 and a
bounded operator B1 we have

m
∑

k=1

sk(A1B1A1) ≤ ‖B‖
m
∑

k=1

sk(A1)
2. (4.32)

12



Inequality (4.13) is a simple consequence of Horn inequality for product of two operators and
general inequalities for cross-norms [9]. Applying (4.14) to A1 = A and B1 = B we get

n
∑

k=2

|ρk|−1 ≤ ‖B‖
n
∑

k=1

µ̂−1
k . (4.33)

Formally speaking in most cases Cesaro type estimation (4.14) is worse than inequality a). Let
Pn be the orthogonal projection on the subspace spanned by eigenvectors {ets}n

s=1 (chosen from
the canonical basis in l2) corresponding to the first singular numbers s1(A), · · · , sn(A). Particular
choice of indices ts corresponds to the monotonic rearrangment of {µn}. Then applying Th.5.1,
Chapt. 2 in [9] we have

C
n
∑

k=2

|ρk|−1 ≥
n
∑

k=1

sk((J − λ0I)−1) ≥ Tr[Pn(J − λ0I)−1Pn] =
n
∑

k=1

G(tk, tk; λ0) (4.34)

The last sum can be estimated from below by const.
∑n

k=1 µ−1
tk . Indeed, using (4.4), (4.5), (4.8)

and invertibility of Fj, j = 1, · · · , K. We can write for t � 1

G(t, t; λ0) � µ−1
t ,

because Dt :=
∏t

l=1 µ+(l)µ−(l) is convergent. Combining (4.15) and (4.16) we obtain the desired
estimation (

∑n
k=1 µ−1

tk =
∑n

k=1 µ̂−1
k by definition). The proof is complete.

As a consequence of Th.4.3 one can show using elementary estimations.

Corollary 4.4 . If µk � kα, α ∈ (0, 1) then |ρk| � kα.

Proof. It is easy to check that µ̂k � kα. Th.4.2 a) implies the lower bound estimate |ρk| ≥
d̃1µ̂k = d1k

α, d1, d̃1 > 0. Using (4.13) for any Θ ∈ (0, 1) we have

n
∑

k=2

|ρk|−1 =
[nΘ]−1
∑

k=2

|ρk|−1 +
n
∑

k=[nΘ]

|ρk|−1 ≤ (n− [nΘ] + 1)|ρ[Θn]|−1 + c2

[nΘ]−1
∑

k=2

µ̂−1
k

Applying again (4.13) and µ̂k � kα we get ( with the same c1, c2) :

(n− [nΘ] + 1)|ρ[Θn]|−1 ≥ c1

n
∑

k=1

µ−1
k − c2

[nΘ]−1
∑

k=2

µ̂−1
k ≥ c3n

1−α − c4([nΘ])1−α (4.35)

for sufficiently small c3 > 0 and large c4 independent on Θ. Choosing Θ � 1 it is clear that the
LHS of (4.17) is greater or equal c5n

1−α, c5 = c3 − c4Θ
1−α > 0

Therefore
|ρ[Θn]| ≤ c−1

5 (n + 1)nα−1.

Since Θ has been chosen independently on n we obtain the desired estimation.

¿From the above considerations it is actually possible to obtain asymptotics of ρn. We hope to
do it later.

Note that we could not remove modulus sign from |ρk| in all the above estimations because
the sequence {ρk}

k∈N
can have accumulation points at +∞ and {−∞} simultanously. This

can be illustrated by the following .
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Example 4.5 . a) (non semiboundedness ) Let µn = rn = nα, α ∈ (0, 1), bn = (−1)n, cn ≡
1. Recall that J = B+Q, where B = SΛ+ΛS∗ and Q = diag(bnnα). Choose the sequence fN =
(1, · · · , 1, 0, 0, · · ·)T , where all coordinates with indices greater than N are equal to zero. Easy
computations shows that (BfN , fN)‖fN‖−2 ∼ 2Nα(α + 1)−1 and (QfN , fN)‖fN‖−2 = O(Nα−1),
and so (JfN , fN)‖fN‖−2 → +∞, as n →∞.

In turn for f̃N = (1,−1, 1,−1, · · · , 1,−1, 0, 0, · · ·)T (zero coordinates for k > N) we have
(Bf̃N , f̃N)‖f̃N‖−2 ∼ −2Nα(α + 1), (Qf̃N , f̃N)‖f̃N‖−2 = O(Nα−1).
Therefore (Jf̃N , f̃N)‖f̃N‖−2 → −∞, as n →∞.

b) (semiboundedness). Choosing the same µn, rn cn and 2-periodic sequence bn with b1b2 > 4
one can prove applying Cauchy inequality that J is semibounded from below provided b1, b2 > 0.
Actually using subordination of operators in Kato sense (like in [16], Sec.4) it is easy (again only
by Cauchy inequality ) to check that σ(J) is discrete. Therefore in the case of discrete spectrum
J can be either semibounded or not semibounded. Remind that in the case of absolutely
continuous spectrum (see Th.3.1) J is always not semibounded. Concernig the querstion of
semiboundedness of J there is an explicit answer (in generic case) in terms of characteristic
polynomial dJper(λ). We hope to come back to this topic in the future paper.

Remark 4.6 . (Case δ = 0.) Note for any weights satisfying (2.7) Prop. 2.1, Th.3.1, Th.4.1
imply that the spectrum of J is pure absolutely continuous and covers R provided K is odd (
hence M = 1 and N odd). Really PK(b, c; 0) ≡ 0. In turn if K is even and N is also even (
the additional condition depending on M) σ(J) is discrete under extra (generic type) condition:

c1, · · · cN−1 6= c2 · · · cN . Actually |Pk(b, c; 0)| = α
K/N
N +α

−K/N
N > 2, see (2.3). Despite the absence

of influence of particular values of b′ns in generic case (modulation of diagonal) its trace remains
in the possible eveness of the common period K and so it changes spectra character for arbitrary
small perturbation of δ keeping fixed b.

Example 4.7 . Take µn = nα, rn = nβ, 0 < β < α ≤ 1. Then δ = 0 and surely (2.7) is
satisfied and we can easily apply Remark 4.6 by choosing various periods of M and N .

5 Examples of curves and surfaces of spectral phase tran-

sition and stability of their topology

In this section we present some examples illustrating geometric complexity of domains (zones
of stable spectral structure in the space of parameters of modulation) with fixed phase states
: σ(J) discrete or pure absolutely continuous in our case. We introduce this space because
the spectral structure of J depends only on parameters of modulations (see (2.6)) a.e. except
the phase transition points. The boundaries of these domains correspond to the first type
spectral phase transition (in suitable regions) under small perturbation of bn

′s or cn
′s. Spectral

situation on the boundaries of the domains (phase transition points in the space of parameters

(b, c, δ) ∈ R
M ×R

N ×R) is rather complicated and very intresting. Its study requires finding
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new tools and we hope to consider this in a future paper. In what follows we always assume
(except the last example) that the numbers M and N are fixed. The next general assumption
is that the diagonal {qn} does not dominate the weights λn (we say that {qn} dominates {λn}
if lim inf q2

n(λ2
n + λ2

n−1)
−1 > 2). Otherwise as it is easy to prove σ(J) is discrete, see [16, Th

4.1]. In Prop. 5.1 we fix all parameters of J except bn
′s which are supposed to be small. Using

Prop. 2.1, Th. 3.1 and Th.4.2 one easily prove.

Proposition 5.1 Under our assumptions (2.7) we have the following possibilities for types
of spectrum of J .
a) If M is arbitrary and N is even then σ(J) is discrete for bn

′s sufficiently small (as the term
P0(c) dominates the remaining ones in formula (2.3) for PK(b, c; δ)) if c1c3 · · · cN−1 6= c2c4 · · · cN ,
b) if both M and N are odd then σ(J) is pure absolutely continuous for sufficiently small bn

′s.
c) if M is even, N is odd and δ 6= 0 then σ(J) can be either discrete pure absolutely continuous
or depending whether the value of

(−1)K/2P2(b, c) = (−1)
∑

i<j

b̃i(b̃j)(c̃ic̃j)
−1 (5.36)

[(c̃j−2 · · · c̃i+3c̃i+1)(c̃j−1 · · · c̃i+4c̃i+2)
−1(c̃i−2 · · · c̃j+1)(c̃i−1 · · · c̃j+2)

−1]

is positive or negative, respectively, provided b′ns are sufficiently small. Again the term P2(b, c)
being nonzero dominates the remaining ones in formula (2.5) for PK(b, c; δ),

The above Proposition displays the interplay between parities of M and N . Below we describe
the table which explains the spectral structure of J in generic case, i.e. for almost all values
of parameters bn

′s, cn
′s, δ provided N and M are fixed. It happens that the answer does not

depend on µn, rn under assumptions (2.7) ouside the spectral phase transition points. Remind
that the modulation of the diagonal bn

′s are supposed to be sufficiently small. The last condi-
tion is necessary to dominate the higher terms in the polynomials in δ in P (b, c; δ).

M- period of diagonal

N-
period
of
weights

even odd

even
discrete
(in generic case)

discrete
(in generic case)

odd

either discrete or
abs. cont.
(dependence on sign
of the expression in
(5.1))

pure absolutely
continuous

In order to illustrate geometry of regions of ”stable” spectrum of J with fixed phase state we
give below a few simple examples.
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Example 5.2 . Let M = N = 2, λn = cnnα, α ∈ (0, 1] and qn = bnnα. Then K = 2, δ = 1
and P2(b, c; 1) = −[c1c

−1
2 + c2c

−1
1 ] + b1b2(c1c2)

−1. For symmetry reasons we assume below that
sign of c1 can be arbitrary and c2 = 1. Denote c1 = t, b1b2 = v. Then

P2(b, c; 1) =
v

t
− (t +

1

t
).

We have in coordinates (t, v) two different unbounded simply connected domains Ω1 and Ω2 of
discrete spectrum of J corresponding to the inequality | v

t
−(t+ 1

t
)| > 2 and two unbounded simply

connected domains Ω̃1 and Ω̃2 of pure absolutely continuous spectrum in the case | v
t
−(t+ 1

t
)| < 2.

Note that all Ωk are symmetric with respect to v-axis (t → −t) and ∂Ωk are picewise parabolic
curves.

Ω1 = {(t, v) : v ∈ (1, +∞), |t| < (
√

v − 1)},
so it starts from the point (0,1) and extends to infinity becoming wider with respect to the
growing parameter v. Ω2 contains the whole open lower half plane

∏

− and the parts of
∏

+

around (0,0), given by {(t, v), v ∈ [0, 1), |t| < 1 − √v}, and two unbounded pieces {(t, v), v ∈
[0, +∞), |t| > √

v + 1}
In turn Ω̃1∪Ω̃2 = R

2 \(Ω1∪Ω2) has the form of two symmetric pipes in
∏

+ extended to infinity.
Additionally vertical axis t = 0 which was formaly excluded from considerations (c1 = 0) reduced

J to the trivial case of infinite orthogonal sum of 2x2 matrices

(

b1r2n−1 µ2n

µ2n b2r2n

)

, and therefore

σ(J) is pure point and actually discrete. From this picture we see that for any horizontal line
{(t, v0), t ∈ R}, v0 > 0 we have the following pattern: for any v0 6= 1 σ(J) is discrete for |t|
sufficiently large or small and pure absolutely continuous in the intermediate case. This is clear
because for small |t| J becomes close to the above mentioned orthogonal sum of 2x2 matrices
with discrete spectrum. The same holds true for |t| sufficiently large because |t|−1J has similar
behaviour only the numeration of 2x2 matrices is changed. For v0 = 1 we have an interesting
phenomenon : σ(J) is never discrete for |t| arbitrary small (except t = 0) in contradistinction to
the cases where v0 ∈ R+ \ {1}. Remind that for v0 < 0 the spectrum of J is always discrete. In
other words if the signs of the diagonal modulation b1, b2 are different σ(J) should be discrete
independently on the modulation of weights. This can be explained in a way: due eveness of
N for t 6= 1 and zero diagonal we alawys have discrete spectrum, Remark 4.6. Therefore it is
not supprising that the spectrum of J remains discrete in most cases (except two pipes) also in
presence of the diagonal. More unasual seems to be its discreetness for t = 1, when σ(J) is pure
absolutely conttinuous for zero diagonal, for arbitrary modulation of the diagonal with different
signs and M = 2.

Example 5.3 . Even more interesting picture of spectral phase transition appears in
higher dimension parameter space (b, c). Let M = 3, N = 2 and b = (v, w, 0), c = (1, t).
Suppose that µn = rn = nα, α ∈ (0, 1). Direct computation gives P6(b, c) := Tr(F6F5 · · ·F1) =
−t3 + tvw + (w2 + v2)t−1 + (vw − 1)t−3. The above formula shows that P6(b, c) = P6(v, w, t) is
odd function of t and so in analysis of domains where |P6(v, w, t)| < 2 ( or > 2) we can assume
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that t > 0.
a) Take w = αv, α > 0. Strightforward computation shows that
|P6(v, αv, t)| < 2 if and only if

|t3 − 1|(αt4 + t2 + α2t2 + α)−1/2 < |v| < (t3 + 1)(αt4 + t2 + α2t2 + α)−1/2. (5.37)

Deonoting the function on the right (resp. left) hand side of (5.2) by v2(t) (resp. v1(t)) one can
check that

lim
t→0+

v2(t) = lim
t→0+

v1(t) = α−1/2, (5.38)

lim
t→∞

[v2(t)− v1(t)] = 0 (5.39)

but limt→∞ v2(t) = limt→∞ v1(t) = ∞
Since P6(−v,−w, t) = P6(v, w, t) we may assume that v ≥ 0, and so varying α we see that in
the octant v ≥ 0, w ≥ 0, t > 0 one has one unbounded domain of parameters (v, w, t), where
σ(J) is pure absolutely continuous. Due to (5.3) and (5.4) this domain shrinks as t → 0+ or
as t → ∞. Since for the point (0, 0, 1) σ(J) is pure absolutely continuous ( use [ 16, Cor.3.3]
or [7]) the plane t = 1 is special because for (v, w) arbitrary but |v| and |w| sufficiently small
(0 < (v + w)2 < 4) σ(J) is always pure absolutely continuous. This does not contradict
Prop.5.1 a) because c1 = c2 = 1. Observe that the curves (v1(t), αv1(t), t) and (v2(t), αv2(t), t)
never interesect (v1(t) < v2(t) , t > 0) and functions v1(t), v2(t) are monotonic in suitable two
intervals.
b) If w = αv but α < 0 the picture looks different. Assume that −1 < α < 0 ( the case α < −1
can be treated similarly). Then |P6(v, αv, t)| < 2 iff

(t3 − 1)2 < pα(t)v2 < (t3 + 1)2 (5.40)

and pα(t) := αt4+(1+α2)t2+α > 0. One can easily check that pα(t) > 0 iff t ∈ ((−α)1/2, (−α)−1/2)
Therefore for t ∈ (0, (−α)1/2] or t ∈ [(−α)−1/2,∞), σ(J) is always discrete for w = αv. In other
words the situation in the second octant {(v, w, t), v > 0, w < 0, t > 0} looks different than in
the first one. This is not so surprising because P6(v, w, t) is neither even nor odd function of w.
Write (5.5) in the form

|t3 − 1|pα(t)−1/2 < |v| < (t3 + 1)pα(t)−1/2 t ∈ ((−α)1/2, (−α)−1/2). (5.41)

Denote
fα(t) := |t3 − 1|pα(t)−1/2, gα(t) := (t3 + 1)pα(t)−1/2.

We have
lim

t→(−α)
1/2

+

[gα(t)− fα(t)] = +∞ (5.42)

and
lim

t→(−α)−1/2

[gα(t)− fα(t)] = +∞. (5.43)

Since fα(t) < gα(t), t ∈ ((−α)1/2, (−α)−1/2) it is clear that (5.6) desribes in the second octant
one unbounded domain which is contained in the layer between two planes t = (−α)1/2, t =
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(−α)−1/2. Moreover, this domain approaches the set given by |t2 − 1
t
| < |v| < t2 + 1

t
, as

α → 0−. Again functions fα(t), gα(t) are monotonic in suitable intervals and the above do-
main shrinks when t tends to critical values (−α)1/2, (α)−1/2. Observe that for α = −1 and
t 6= 1, P6(v,−v, t) < −2 and σ(J) is always discrete. Note also that ((−α)1/2, (−α)−1/2) → {1},
as α → −1+.
Finally, in the case α = −1, t = 1 we do not the answer because P6(v,−v, 1) = −2 (the border
situation). As it was mentioned above this situation requires a new approach. Sumning up
we have for t ∈ R four simply connected zones of parameters (v, w, t) which give σ(J) pure
absolutely continuous and four zones where σ(J) is discrete.
The following comments seem to clarify a litlle geometry of domains from perturbation the-
ory point of view. First, if v2 + w2 tends to {∞} then σ(J) should be discrete since diago-
nal dominates weights. Second, if t → 0 (or t → {∞}) σ(J) also becomes discrete because
J is close to infinite orthogonal sum of diagonal matrices (see Ex.5.2). In turn in a neigh-
borhood of (t, v, w) = (t, 0, 0) absolutely spectrum can appear only for t = ±1, because of
dominating weights and evenness of N = 2. Therefore appearance of σac near (±1, 0, 0) has
a resonance character. This seems to be even more reasonable for appearance of σac near
(t, v, w) = (0, α−1/2, α1/2). Actually for small t and v = α−1/2 the modulation of diagonal with
w = −α1/2 − (α−1/2 + α3/2)t2 + O(t3) (see formula for P6(b, c)) gives σac due to resonance inter-
play between modulations of weights and diagonal. Surely the above reasoning gives only rough
explanation of the whole picture, pricese answer requires detailed but elementary analysis of
the characteristic polynomials.

Remark 5.4 . It is clear that 2M is a new period (not the smallest) along with M and by a
slight change of b′ns it becomes the smallest one. Hence the odd case for the period is not stable
in contrast with the even case. The following example shows also instability of the spectral
structure of J regarding to changes of the parity of M . Actually instability due to changing of
periods is a well-known fact leading to the appearance of Cantor-like spectra. It was a basis for
construction of almost periodic potential theory [4], [22].

Example 5.5 . Let M = 3, N = 1, µn = rn = nα, 0 < α ≤ 1.Take ck ≡ 1 and ε1, ε2 such
that ε1ε2 < 0. Define b = (1,−1, 0). Then Tr(F3F2F1) = 0 and so by Th4.2 the spectrum of J
(defined for the above weights and diagonal) is absolutely continuous. Now change M = 3 by
M = 6, and define the new

b′ = (1,−1, 0, 1 + ε1,−1 + ε2, 0), c′k ≡ 1, µ′n ≡ r′n ≡ µn.

We have
Tr(F ′

6F
′
5 · · ·F ′

1) = −2 + ε1ε2 < −2,

and applying Th.3.1 to the matrix J ′ corresponding to the above {b′k}, {c′k}, {µ′k}, {r′k} we know
that σ(J ′) is discrete despite small perturbation of {bk} and {ck}. Surely we can choose here ε1

and ε2 arbitrary small but with different signs.
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