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AN EXAMPLE OF IMPROVED HYPERCONTRACTIVITY.

Mats Erik Andersson

The purpose of this presentation is to provide an example where improved in-
formation on hypercontractivity can be achieved. Improved in the sense that the
result emanating from a logarithmic Sobolev inequality is bootstrapped to get a
better degree of hypercontractivity.

The first section is devoted to the construction of a class of probability spaces
together with operator semigroups that display a spectral gap between their only
non-trivial eigenvalue and the corresponding logarithmic Sobolev exponent. The
construction generalizes a three-point space used by the author in [A]. With a
different interpretation similar probability spaces were built by Diaconis and Saloff-
Coste in [DS]. All necessary background on hypercontractivity and logarithmic
Sobolev inequalities are conveniently found in the exposition [G2].

The second section introduces two variants of Gross’ theorem on how hypercon-
tractivity may be deduced from logarithmic Sobolev inequalities. These variants
will be be combined in section three in order to derive stronger hypercontractivity
claims in any situation where a spectral gap is present, in particular to the model
spaces from the first section. It should be stressed that the first and second sections
are independent and that they are brought together in this document for the sole
purpose of demonstrating that the mechanisms in section two can be applied to
some non-trivial settings.

A class of operator semigroups based on simplices.

The underlying simplex. Denote the normalized surface measure on the unit
sphere Sn−1 ⊆ R

n by σn. It is clear that in the space of linear functions on R
n the

function kn(x, y) = (1+nx · y)/(n+1) is the reproducing kernel on Sn−1. Clearly,
the unit sphere is too large, as a point set, to avoid interdependencies of function
values for linear functions. Let us reduce the underlying set to a simplex in order
to get a situation admitting unique determination of linear functions.

Lemma 1. There is a discrete, finite set Qn ⊆ Sn−1, |Qn| = n+1,
∑

x∈Qn
x = 0,

such that all distances between different x, y ∈ Qn is constantly ρn =
√

2(n + 1)/n.

Excepting the first half of section two, the material in this presentation was developed during

three useful months of the late summer and early Autumn of 1998 in Wroc law, Poland, where

I visited Prof. Marek Bożejko. The visit was organized within an exchange program between
the Polish and Royal Swedish Academies of Natural Sciences. I gratefully commend these two

institutes as well as the Department of Mathematics at the University of Wroc law for a very

influential and stimulating experience. To a still larger degree my gratitude goes to Marek Bożejko

for having shared his knowledge and inspired me also in other directions not presented here.
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2 MATS ERIK ANDERSSON

Proof. Let cn = n−1
√

n2 − 1 and consider

hn : R
n−1 → R

n, x = (x1, . . . , xn−1) 7→ (cnx1, . . . , cnxn−1,− 1
n).

Thus |hn(x)|2 = n2−1
n2 |x|2 + 1

n2 , so hn

∣

∣

Sn−2 is an isometric injection.
Consider Q1 = {1,−1} and Qn = hn(Qn−1)∪{(0, . . . , 0, 1)}. Inductively one has

|Qn| = n + 1 and Qn ⊆ Sn−1, due to the above isometry. Writing Xn =
∑

x∈Qn
x,

the relations X1 = 0 and Xn = (cnXn−1,−1) + (0, . . . , 0, 1) follow. By induction
all Xn are zero. Here (cnXn−1,−1) has the coordinates of cnXn−1 in the first n−1
places.

Now suppose a particular Qn−1 possesses the property – as Q1 trivially does –
that the distance between its elements is constant; say ρn−1. Successive projection
on the first n− 2, . . . , 2, 1 coordinates, demonstrates that each Qk, k 6 n− 1, has
constant distance ρk. Clearly, ρk = ckρk−1, so an explicit value obtains:

ρn−1 = cn−1 . . . c2ρ1 =
√

2n
n−1 .

Between two elements in Qn, both generated from Qn−1, the distance is cnρn−1 =
√

2(n + 1)/n. From (0, . . . , 0, 1) to any other element in Qn, the distance is

[

c2
n + (1 + 1

n )2
]1/2

=

√

2(n+1)
n .

This completes the proof of the claim.

Proposition 2. Every linear function f : R
n → R, x 7→ a0 + a1x1 + · · ·+ anxn is

given by the representation f(x) =
∑

y∈Qn
f(y) kn(x, y).

Proof. Any two x, y ∈ Qn together with the origin span a triangle. After rotations
all these triangles are congruent by the lemma above. Hence x · y is constant for
y ∈ Qn \ {x} and x ∈ Qn. Due to

∑

y∈Qn\{x}
y = −x the common value is −1/n

and so

kn(x, y) =

{

1, x = y ∈ Qn,

0, x 6= y, both in Qn.

Based on the reproducing property on Sn−1, the above values of kn on Qn × Qn

validate the claimed representation of linear functions.

Corollary 3. For any y ∈ Qn the positivity kn(·, y) > 0 obtains throughout the

closed convex hull conv Qn.

This immediate result will be instrumental later on.

Construction of an operator semigroup. We next aim at the construction
of a semigroup acting on all linear function defined on R

n; the underlying space
will be Qn. Take for µn the discrete probability measure

∑

ω∈Qn
(n + 1)−1 δω.

Every function norm ‖f‖2 is taken with respect to this measure; likewise for inner
products. Writing Kn(x, ω) = 1 + nx · ω, Proposition 2 expresses for all linear
functions the reproducing formula

f(x) =

∫

Qn

f(ω)Kn(x, ω) dµn(ω).
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This means that any function defined on Qn has a unique extension to R
n as a

linear function, and vice versa. By Corollary 3, the linear extension is positive on
conv Qn if and only it is positive on Qn. (This statement should not be understood
as expressing only strict positivity!)

The (linear) functions, positive on Qn, and of mean value 1 there can be written

(∗) f(x) = 1 +
∑

ω∈Qn

αω nx · ω, αω > 0,
∑

αω = 1,

since they are convex combinations of Kn(·, ω), ω ∈ Qn. The projection on the sub-
space of constant functions is Ef =

∫

f dµn; denote the complementary projection

A = E⊥ = I −E. The definition

Pr = E + rA, Prf(x) = f(0) +
∑

ω∈Qn

rαω nx · ω

yields a multiplicatively parametrized semigroup for 0 6 r 6 1. The corresponding
infinitesimal generator is of course A.

For f > 0 the logarithmic Sobolev inequality leads to the quantity

Q(f) =

∫

f2 log f dµn − ‖f‖22 log ‖f‖2
〈Af, f〉 =

∫

f2 log f dµn − 1
2
‖f‖22 log ‖f‖22

‖f‖22 − 1
,

where the last equality follows upon the normalization f(0) = Ef = 1. Since every
non-trivial eigenvalue of A is 1, the identity 〈Af, f〉 = ‖f‖2 − 1 = ‖Af‖22 obtains.
Observe that Jensen’s inequality ensures that Q(f) is positive for non-constant
functions.

Problem. Determine sup {Q(f) ; f linear, f > 0 on Qn, f(0) = 1}.
The supremum is attained since the the underlying set is a compact subset of

an (n + 1)-dimensional linear variety. For convenience a special positive cone is
introduced as follows:

N = { f : R
n → R linear, f > 0 on Qn, f(0) = 1}.

Any f ∈ N has a representation as in (∗). For functions f, g ∈ N we consider a
variational functional defined as

Varf (g) =
(

〈f, g〉 − 1
)

Q(f)−
∫

gf log f dµn + 〈f, g〉 log ‖f‖2.

Proposition 4. f ∈ N is a critical point for Q exactly when Varf (g) = 0, all

g ∈ N .

Proof. If f, g ∈ N , 0 6 ρ 6 1, then also ρf + (1− ρ)g ∈ N . Let Ωh = ∂
∂ρh(ρ)

∣

∣

ρ=1−
.

Obviously we have for any critical point f of Q that Ω
[

Q
(

ρf + (1 − ρ)g
)]

= 0 for
all g ∈ N . In order to apply this observation, we fix an element g ∈ N and write
Rρf = ρf + (1 − ρ)g, whence Rρf

∣

∣

ρ=1
= f . We need an explicit expression for

Ω
[

Q(Rρf)
]

. The identity

Q(Rρf) =

∫

(Rρf)2 log Rρf dµn − 1
2
‖Rρf‖22 log ‖Rρf‖22

‖Rρf‖22 − 1
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yields as a first stepping stone the following expansion.

Ω
[

Q(Rρf)
]

=

∫

Ω[Rρf ]{2f log f + f} dµ2 − 1
2
Ω[‖Rρf‖22]{log ‖f‖22 + 1}

‖f‖22 − 1

− Ω[‖Rρf‖22]
‖f‖22 − 1

·
∫

f2 log f dµn − 1
2‖f‖22 log ‖f‖22

‖f‖22 − 1
.

Since Ω[Rρf ] = f − g, it is straightforward to verify Ω[‖Rρf‖22] = 2‖f‖ − 2〈f, g〉.
Thus the above simplifies to

Ω[Q(Rρf)] =

∫

(f − g){2f log f + f} dµn − {‖f‖22 − 〈f, g〉}{1 + log ‖f‖2
2}

‖f‖22 − 1

− 2Q(f)
‖f‖22 − 〈f, g〉
‖f‖22 − 1

.

The first numerator can be simplified to

2Q(f){‖f‖22 − 1}+ 〈f, g〉 log ‖f‖2
2 − 2

∫

fg log f dµn.

Hence it follows that

Ω
[

Q(Rρf)
]

{‖f‖22 − 1} = 2Q(f)
{

‖f‖22 − 1− ‖f‖22 + 〈f, g〉
}

+ 〈f, g〉 log ‖f‖2
2

− 2

∫

fg log g dµn

= 2 Varf (g).

The extremality of Q(f) forces Ω[Q(Rρf)] = 0, whence Varf (g) = 0. Since g ∈ N
was arbitrary, one half of the claim follows. The remaining part is simpler still, just
retrace the above argument backwards and disregard the intermediate derivations.

Corollary 5. For any critical point of Q(f), the relation
∫

f log f dµn = log ‖f‖2
holds.

Proof. Summing Varf (Kn(·, ω) ) = 0 over all ω ∈ Qn yields

∑

ω∈Qn

(

f(ω)− 1
)

Q(f)−
∑

ω∈Qn

f(ω) log f(ω) +
∑

ω∈Qn

f(ω) log ‖f‖2 = 0,

which reduces to

0 ·Q(f)− (n + 1)

∫

f log f dµn + (n + 1) log ‖f‖2 = 0

since f ∈ N . This was the claim.

Remark. For f ∈ N , the measure dν = f dµn is a probability measure. Since log t
is concave, Jensen’s inequality gives

∫

f log f dµn =

∫

log f dν 6 log

∫

f dν = 2 log ‖f‖2.

The corollary thus claims that, for any extremal function f ,
∫

f log f dµn takes half
its maximal possible value as de facto value.
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Proposition 6. The following two statements are equivalent.

(1) f is a critical point for Q,

(2)

∫

g f log f dµn = 〈f, g〉
{

log ‖f‖2 + Q(f)
}

−Q(f), all g ∈ N .

Proof. According to Proposition 4, f ∈ N is a critical point if and only if Varf ≡ 0.
When explicitly writing Varf (g) = 0 the relation

∫

fg log f dµn =
(

〈f, g〉 − 1
)

Q(f) + 〈f, g〉 log ‖f‖2

appears, which readily is seen to coincide with the second property.

Lemma 7. For f ∈ N , the value f(ω) = 1 is attained if and only if αω = 1/(n+1).

Proof. The representation f(x) = 1+
∑

ω∈Qn
αω nx ·ω with

∑

αω = 1 clearly gives

the equivalences (use x · ω = −1/n on Qn, x 6= ω)

f(ω) = 1 ⇔
∑

x∈Qn

αx nx · ω = 0 ⇔ nαω −
∑

x6=ω
αx = 0

⇔ nαω − (1− αω) = 0 ⇔ (n + 1)αω = 1,

which resolves the claim.

Proposition 8. If f ∈ N is a critical point of Q, then either f ≡ 1 or f 6= 1
on Qn. Equivalently, either all αω take the value 1/(n + 1), or none at all.

Proof. Assume f ∈ N to be a critical point with f(ω) = 1 for some ω ∈ Qn.
Applying Proposition 6 with g(x) = Kn(x, ω) yields 0 = 1·

{

log ‖f‖2+Q(f)
}

−Q(f),
which says ‖f‖2 = 1. The known case of equality in the Cauchy–Schwarz inequality

1 =

∫

f dµn 6
(

∫

dµn

)1/2(
∫

f2 dµn

)1/2

= 1

demonstrates that necessarily f ≡ 1 on Qn. The claimed alternatives are therefore
clear. The preceding lemma provides the stated reinterpretations.

Proposition 9. Either of the following two conditions for non-constant f ∈ N are

equivalent to the two properties in Proposition 6.

(3)
f(ω) log f(ω)− f(ω) log ‖f‖2

f(ω)− 1
= C is independent of ω,

(4)
f(ω) log f(ω)− f(ω)

∫

f log f dµn

f(ω)− 1
= Q(f) for all ω ∈ Qn.

In case any of them is true, the value C = Q(f) in (3) necessarily follows.

Proof. Observe that for a non-constant critical point f ∈ N , one has f 6= 1, so
both quotients in the statement are defined for all ω ∈ Qn; this was the purpose of
Proposition 8.

Consider first the equivalence between Proposition 6, property (2), and the
above (3). Thanks to linearity and convexity in the argument g ∈ N , (2) is equi-
valent to Varf (Kn(·, ω) ) = 0 for all ω ∈ Qn, that is to say

f(ω) log f(ω) =
(

f(ω)− 1
)

Q(f) + f(ω) log ‖f‖2, for all ω ∈ Qn.

Hence (3) follows from (2).
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In case (3) applies, an identity appears:

f(ω)2 log f(ω)− f(ω)2 log ‖f‖2 = C f(ω)2 − C f(ω).

Using
∫

f dµn = 1, an integration against µn provides

∫

f2 log f dµn − ‖f‖22 log ‖f‖2 = C
(

‖f‖22 − 1
)

.

Hence C = Q(f), so (2) holds for every g = Kn(·, ω), ω ∈ Qn. Taking convex
combinations of them, the full validity of (2) has been derived from (3).

Next, taking a non-constant critical point f , the equivalence (1)⇔(3) shows, in
view of

∫

f log f dµn = log ‖f‖2 from Corollary 5 as well as C = Q(f), that the two
quotients in the statement coincide. Hence (3) implies (4).

Conversely, the independence of ω in (4) implies

f(ω)2 log f(ω)− f(ω)2
∫

f log f dµn = Q(f)
{

f(ω)2 − f(ω)
}

, all ω ∈ Qn.

Integration and use of
∫

f dµn = 1 yield

∫

f2 log f dµn−‖f‖22
∫

f log f dµn = Q(f)
(

‖f‖22 − 1
)

=

∫

f2 log f dµn − ‖f‖22 log ‖f‖2.

It follows that
∫

f log f dµn = log ‖f‖2, so property (4) expresses the same as (3)
does. The proof is complete.

Proposition 10. If f ∈ N is a critical point of Q, then either f ≡ 1 or f takes

exactly two values on Qn.

Proof. According to Proposition 8 we may assume that f 6= 1 and Q(f) > 0.
Consider the function

R(q) =
(

1 + 1
q

)

log(1 + q)−
(

1 + 1
q

)

log ‖f‖2 =
(

1 + 1
q

)

log 1+q
‖f‖2

.

According to Proposition 9 we have R( f(ω) − 1 ) = Q(f) for each ω ∈ Qn. Fur-
thermore, the proof of Proposition 8 establishes ‖f‖2 > 1 in the present situation.
Differentiation yields

R′(q) = q−2
{

q − log(1 + q) + log ‖f‖2

}

> 0 on ]−1, 0[ ∪ ]0,∞[ ,

since log ‖f‖2 > 0 and q−log(1+q)>0 in that set. Hence R(q) is strictly increasing
in each of the two indicated, connected intervals.

From (1 + q) log(1 + q) = q + O(q2) follows limq→0± R(q) = ∓∞; in addi-
tion, limq→−1+(1 + q−1) log(1 + q) = 0 readily yields limq→−1+ R(q) = 0, whereas
limq→+∞ R(q) = +∞ is obvious. We conclude that R is strictly increasing from
0 to +∞ inside ]− 1, 0[ and is likewise strictly increasing from −∞ to +∞ in the
interval ]0,∞[. This observation says, as desired, that R(f(ω)− 1) = Q(f) entails
exactly two values for f(ω) as ω ranges through Qn.
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Lemma 11. Any f ∈ N , which takes only two values on Qn, can be written

f = Prfk for some r ∈ ]0, 1]. Here fk ∈ N is determined by the property that for

some 1 6 k 6 n exactly k different αω take the value 1/k, whereas the remaining

ones are zero.

Proof. From f(x) =
∑

ω∈Qn
αω Kn(x, ω) = αx(n+1) and the assumption that only

two value are attained, it follows that there is a disjoint dissection Qn = K∪L with
ω 7→ αω constant on each K and L; let the common values be αK and αL on K
and L respectively. We may without loss assume that |K| > 1 and αK > αL > 0.

Define next fk by its parameters αω(fk) = 1/k for all ω ∈ K and 0 for all ω ∈ L;
here k = |K|. Clearly fk ∈ N and also

Prfk(x) = 1 + rnk−1
∑

ω∈K
x · ω.

It follows that

Prfk(x) =

{

1 + n+1−k
k r, x ∈ K,

1− r, x ∈ L.

For the given f ∈ N we can determine 0 < r 6 1 such that f > 1 − r and such
that equality attains exactly n + 1 − k = |L| times, namely on L. The remaining
value 1 + a is thus determined by

n + 1 =
∑

ω∈Qn

f(ω) = k(1 + a) + (n + 1− k)(1− r),

clearly containing a = r(n + 1 − k)/k. One readily sees that this entails f = Prfk

identically, which was the claim.

Remark. It is an easy matter to calculate

‖Prfk‖22 = 1 + n+1−k
k r2,

which will be needed presently. The preceding Lemma says also that any critical
point on the boundary of N must be one of the special functions fk.

Proposition 12. The only critical points for Q(f) in the interior of N , are the

functions Prfk with r = (s− 1)/2s and s = (n + 1− k)/k.

Proof. According to Lemma 11 and suitable, positive values of r and s, any critical
point (i.e., function on Qn) attains only the values 1−r and 1+sr. In fact, precisely
n + 1− k and k times, respectively.

According to Proposition 9, statement (3), and the preceding remark, f gets to
be a critical point only if

(1 + sr) log(1 + sr) + s(1− r) log(1− r)− 1
2 (1 + s) log(1 + sr2) = 0

is satisfied for r ∈ ]−1/s, 1[. The relation arose through the equating of two out-
comes of (3), first with f(ω) = 1 − r and then 1 + sr. Denote the left-hand side
of the equation by U(r, s). It is readily calculated that U(0, s) = U( s−1

2s , s) = 0,
which says that the claimed values are indeed relevant. We need to exclude further
zeros in order to have given a proof of the proposition. An elementary but tedious
argument will reveal that r 7→ U(r, s) has a third order zero in r = 0 and exactly
one additional zero.
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Fix s and differentiate to get

1

s

∂U

∂r
= log

1 + sr

1− r
− (1 + s)r

1 + sr2
.

The change of variables r 7→ t = (1+sr)/(1−r) is monotonely increasing and takes
]−1/s, 0[ to ]0,∞[; in particular r = 0 ↔ t = 1. We will assume this interpretation
to be in effect. Consider now the functions

U1(t, s) =
∂

∂r
U(r, s) = log t− (t− 1)(t + s)

t2 + s
,

M(t, s) = (t2 + s)U1(t, s) = (t2 + s) log t− (t− 1)(t + s).

Two differentiations yield

∂M

∂t
= 2t log t− t + 1− s(1− 1

t ) and
∂2M

∂t2
= 2 log t + 1− s

t2 .

Thus ∂2M
∂t2 is strictly increasing from −∞ to ∞ for 0 < t < ∞. Due to ∂2M

∂t2 (1, s) =

1− s, it is clear that ∂2M
∂t2 has sign tableau −0+ with the zero within ]1,∞[ in case

s > 1, whereas s < 1 makes the zero fall inside ]0, 1[.

Observing ∂M
∂t

∣

∣

t=1
= 0 and ∂M

∂t

∣

∣

t=0
= ∂M

∂t

∣

∣

t=+∞
= +∞, we record a sign tableau

+0− 0+ for ∂M
∂t . The point t = 1 is always a zero, whereas the second zero falls in

]1,∞[ or ]0, 1[ according as to which of the cases s > 1 or 0 < s < 1, respectively,
applies.

Based on M(1, s) = 0, M(0, s) = −∞, and M(+∞, s) = +∞, we deduce that
t 7→ M(t, s) has a double zero in t = 1 and a simple zero t1(s) > 1 in case s > 1 or
a likewise simple zero t2(s) < 1 in case 0 < s < 1. Further zeros are missing. This
means that t 7→ M(t, s) enjoys a sign tableau −0 − 0+ for s > 1 and −0 + 0+ for
s < 1.

These last properties of M(t, s) can immediately be transplanted back to say the
same for r 7→ ∂

∂rU(r, s). In particular, incorporating the evaluations U(0, s) = 0,

U(1, s) = 1+s
2 log(1 + s), and U(−1/s, s) = 1+s

2 log 1+s
s , one deduces that r 7→

U(r, s) has a third order zero at the origin and at most one additional zero, which
must be (s− 1)/2s.

Membership in N for the critical point is encoded in the relation

(n + 1− k)(1− r) + k(1 + sr) = n + 1.

Refering to r = (s− 1)/2s as just derived, it is an easy matter to conclude that

s = (n + 1− k)/k and s = 1

are the only solutions for given k. The latter option must be excluded since it forces
r = 0 and thus a constant function. This means that the proof of the proposition
has been completed.
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Theorem 13. At any critical point the value of Q(f) does not exceed n+1
2(n−1) log n.

Moreover, this particular value is attained.

Proof. The remark above describes the critical points at the boundary of N as some
fk, attaining the value (n + 1)/k on Qn exactly k times and being zero elsewhere;
here 1 ≤ k ≤ n. Clearly

‖fk‖22 = n+1
k , Q(fk) = n+1

k log n+1
k

/

2
[

n+1
k − 1

]

.

Since m(x) = x log x/(x− 1) is strictly increasing in ]1,∞[, it is clear that

Q(fk) = 1
2 m

(

n+1
k

)

≤ 1
2 m(n + 1) =

n + 1

2n
log(n + 1), all 1 ≤ k ≤ n.

Now the calculations can proceed with the critical points of Q interior to N .
According to Propositions 9 and 12 candidates for supQ(f) are the numbers

(sr)−1
{

(1+sr) log(1 + sr)− 1
2 (1 + sr) log(1 + sr2)

}

∣

∣

∣

r=
s−1
2s

=
2

s− 1

{s + 1

2
log

s + 1

2
− s + 1

4
log

(s + 1)2

4s

}

=
s + 1

2(s− 1)
log s,

evaluated with s = (n + 1− k)/k for k = 1, . . . , n.
Observe first that s 7→ s−1 leaves s+1

2(s−1) log s invariant, so we may restrict work

to s > 1, that is to 1 6 k 6 (n + 1)/2. Next we record the expressions

d

ds

s + 1

s− 1
log s =

1

s(s− 1)2
(

s2 − 1− 2s log s
)

and

d

ds

(

s2 − 1− 2s log s
)

= 2
(

s− 1− log s
)

> 0 for s > 1.

Hence s 7→ s+1
2(s−1) log s is increasing on [1,∞[. The viable alternatives for s =

(n+1− k)/k arise as conditioned by s 6 n, so the critical points interior to N give
for Q(f) at most the value

s + 1

2(s− 1)
log s

∣

∣

∣

s=(n+1−k)/k
≤ n + 1

2(n− 1)
log n.

Now the contributions from the critical points can be compared. Clearly

n + 1

2(n− 1)
log n >

n + 1

2n
log(n + 1), for all n ≥ 2.

Thus the maximal value of Q(f) at interior critical points of N exceeds the values
at the boundary. The claim has consequently been fully verified.

Remark. It is straightforward to verify the lower part of this inequality:
1
2 log (n + 2) < supf∈N Q(f) ≤ 3

2 log n.

These are about the simplest estimates available. Further and somewhat more
detailed analysis of (Qn, Pr) will appear in the last section.

Recall also that the above semigroups Pr have spectral gap 1, whereas their
log-Sobolev exponents are n+1

2(n−1)
log n. Clearly this latter quantity can be made

arbitrarily large, so a family of semigroups are at hand with large distance to the
spectral gap. They should be able to act as test cases in Rothaus’ theory on
hypercontractivity.
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Refined logarithmic Sobolev inequalities

The setting is now that of a finite measure space (Ω, µ), a positivity-preserving
semigroup e−tH , and the corresponding infinitesimal generator H, supposedly non-
negative and self-adjoint on L2(µ). The companion quadratic form is Q(u, v) =
〈H1/2u,H1/2v〉L2(µ). A p-th logarithmic Sobolev inequality is a statement that

∫

fp log f dµ 6 c(p)Q(f, f p−1) + ‖f‖p
p log ‖f‖p,

for all positive f in Dom(H1/2). The non-negativity of H extends the validity also
to complex valued functions f . It is convenient to say that the above inequality has
index p. Here we take interest in the least possible quantity c(p), called the prin-
cipal coefficient function. In case c(p) is not minimal it is simply called coefficient
function.

More general forms of the inequality are common and this particular case has
“local norm zero”. For more general cases, involving local norm contributions, one
may refer to the original paper [G] by Gross as well as to his excellent exposition
[G2].

The precise connection to hypercontractivity was established by Gross:

Theorem (Gross [G]) Suppose c(p) is a coefficient function for a logarithmic

Sobolev inequality. For each p in ]a, b[, let q = q(t, p) be the solution of the initial

value problem

dq/dt = q/c(q), q(0, p) = p, t > 0.

Then ‖e−tH‖Lp→Lq 6 1. �

A common application of this is to determine c(2) and then to apply the following
result of Stroock in order to extend index 2 to some result for index p.

Theorem (Stroock, from [G2]) With assumptions as above, each positive f be-

longing to the domain Dom(H1/2) yields for p > 2

Q(fp/2, fp/2) 6 1
4
p2(p− 1)−1Q(f, fp−1).

Specifically, c(p) 6 (p/2)(p − 1)−1c(2) in case p > 2.

The hypercontractivity ‖e−tH‖p→q 6 1 for e−t 6 {(p− 1)/(q − 1)}c(2)/2 follows
from Gross’ theorem. The next two paragraphs will investigate to what extent the
exponent c(2)/2 may be replaced by something smaller.

Estimating logarithmic Sobolev exponents. We need to clarify the behaviour
of c(p) as dependent on p. A generalization of Stroock’s theorem is appropriate as
a first source of information.

Theorem 14. Let (Ω, µ) be a finite measure space and H a non-negative self-

adjoint operator on L2(µ), such that the semigroup e−tH is positivity preserving

and simultaneously a contraction on L∞(µ). Write D = Dom(H1/2), Q(f, g) =
〈H1/2f,H1/2g〉L2(µ). If now 2 6 p 6 q < ∞ or 1 < q 6 p 6 2, and f > 0,
f ∈ L∞ ∩ D, then

Q
(

f q/p, f (1−1/p)q
)

6
q2(p− 1)

p2(q − 1)
Q(f, f q−1),

provided all the used powers of f belong to D.



AN EXAMPLE OF IMPROVED HYPERCONTRACTIVITY. 11

Remark. It is well known that g > 0, g ∈ L∞ ∩ D implies gr ∈ D for all r > 1.
Hence, for the case 2 6 p 6 q the assumption f ∈ D ∩L∞ suffices for applicability,
whereas f q−1 ∈ D ∩ L∞ for 1 < q 6 p 6 2 will do perfectly.

To get the desired result a real analysis inequality is needed, whose proof is fairly
straightforward to complete and is thus excluded.

Lemma 15. Consider α and β in ]0, 1[ such that α lies between β and 1−β. Then

an inequality obtains.

(sα − 1)(s1−α − 1) 6 cαβ (sβ − 1)(s1−β − 1), all s > 0.

Here cαβ = α(1 − α)/β(1 − β) and equality is attained only for s = 1.

Proof of Theorem 14. Write Pt = e−tH and σt = Pt1, whence 1 − σt > 0 due to
contractivity. It is well known that Q(u, v) = limt→0+ t−1〈(I − Pt)u, v〉 and that

〈(I − Pt)u, v〉 = 1
2

∫

Pt[{u− u(x)}{v − v(x)}](x) dµ(x)

+

∫

{1− σt(x)}u(x)v(x) dµ(x).(1)

From the inequality in Lemma 15 it follows that for s > 0 the relation

(s1/p − 1)(s1−1/p − 1) 6
q2(p−1)
p2(q−1) (s

1/q − 1)(s1−1/q − 1)

holds. In consequence, for each η, ξ > 0

(2) (ηq/p − ξq/p)(η(1−1/p)q − ξ(1−1/p)q) 6
q2(p−1)
p2(q−1)

(η − ξ)(ηq−1 − ξq−1).

Since both relations between p and q guarantee q2(p− 1)/p2(q− 1) > 1, the action
of Pt on (2) yields, with two references to (1),

〈(I − Pt)f
q/p,f (1−1/p)q〉

= 1
2

∫

Pt[{f q/p − f(x)q/p}{f (1−1/p)q − f(x)(1−1/p)q}](x) dµ(x)

+

∫

{1− σt(x)}f(x)q/pf(x)(1−1/p)q dµ(x)

6 1
2

q2(p−1)
p2(q−1)

∫

Pt[{f − f(x)}{f q−1 − f(x)q−1}](x) dµ(x)

+

∫

{1− σt(x)}f(x)f(x)q−1 dµ(x)

6
q2(p−1)
p2(q−1) 〈(I − Pt)f, f q−1〉.

Division by t and identification of limits as t → 0+ finally prove Q(f q/p, f (1−1/p)q) 6
q2(p−1)
p2(q−1) Q(f, f q−1), the intended inequality.

Now we are ready to improve our understanding of the principal coefficient func-
tion c(p) in the logarithmic Sobolev inequality.
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Theorem 16. Let c(p) be the principal coefficient function. The modified function

(1−1/p) c(p) is never increasing for p > 2 and never decreasing for 1 < p 6 2, i.e.,

2 6 p 6 q or 1 < q 6 p 6 2 give (1− 1/q)c(q) 6 (1− 1/p)c(p).

Proof. Consider g > 0, g, gq−1 ∈ D ∩ L∞. Applying the p-th logarithmic Sobolev
inequality to f = gq/p, and an ensuing use of Theorem 14, provides the calculation

∫

gq log g dµ 6
p

q
c(p)Q(gq/p , g(1−1/p)q) + ‖g‖q

q log ‖g‖q

6 c(p)
q(p− 1)

p(q − 1)
Q(g, gq−1) + ‖g‖q

q log ‖g‖q .

This means that c(q) 6
q(p−1)
p(q−1) c(p), which is the claimed monotonicity. �

Time dependent logarithmic Sobolev inequalities. As a next step we will
modify Gross’ theorem to better take into account the development of orbits with
time, i.e., the behaviour of t 7→ e−tHf .

The range of the semigroup at a fixed time is essential in what follows:

Dt =
{

e−tHf ; f ∈ L2
}

.

Clearly e−sHDt = Ds+t for all s, t = 0. In particular,

s > t > 0 implies Ds ⊆ Dt ⊆ L2.

The time dependent principal coefficient function c(t, p) is the infimum of all c such
that a logarithmic Sobolev inequality holds:

(lSi)

∫

fp log f dµ− ‖f‖p
p log ‖f‖p 6 c 〈Hf, fp−1〉, all f ∈ Dt, f ≥ 0.

Clearly t 7→ c(t, p) is decreasing, possibly constant on some intervals, and also
limt→+∞ c(t, 2) = 1. Assume for the moment that c(t, q) is such that the differential
equation

(de)







c(t, q)
dq

dt
= q,

q(0, p) = p

has a solution q = q(t, p), where p is a fixed parameter. Thus we have that

d

dt
log q(t, p) =

1

c(t, q(t, p))
.

We can read word by word Gross’ proof of [G], Theorem 1, in order to verify the
following line of argument. Let D = Dom(H1/2). Then f ∈ D makes f(t) = e−tHf
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a member of Dt for all t > 0. Setting α(t) = ‖f(t)‖q(t,p) Gross’ calculations
demonstrate

dα(t)

dt
= ‖f(t)‖1−q

q

[ 1

c(t, q)

{

∫

f(t)q log f(t) dµ− ‖f(t)‖q
q log ‖f(t)‖q

}

− 〈Hf(t), f(t)q−1〉
]

6 0 for t > 0, q = q(t, p).

Thus α(t) 6 α(0), which says for each f ∈ D that ‖f(t)‖q(t,p) 6 ‖f(0)‖q(0,p) = ‖f‖p.
In other words,

‖e−tHf‖q(t,p) 6 ‖f‖p, all f ∈ Lp

when taking the density of D in Lp into consideration.
Consider now any function c = c(t, p) satisfying the logarithmic Sobolev inequal-

ity (lSi) and simultaneously making (de) solvable with solution q = q(t, p). Retrac-
ing our earlier steps mannered on Gross’ argumentation, it is clear that everything
in the argument remains fully valid for this particular – not necessarily optimal –
function c(t, p). Hence we have established a variant of Gross’ original theorem.

Theorem 17. Let the positive function c(t, p), t > 0, 2 6 p < p0, be such that

the logarithmic Sobolev inequality (lSi) holds with c = c(t, p), and simultaneously

such that (de) is solvable with solution q = q(t, p) for 2 ≤ p < p0. Then e−tH is

hypercontractive to the extent that

‖e−tHf‖Lq(t,p) 6 ‖f‖p, all f ∈ Lp and 2 ≤ p < p0.

The bootstrapped log-Sobolev inequality. Let once more c(t, p) denote the
least possible value of c in the log-Sobolev inequality (lSi). Looking back into the
proof of Theorem 14, it is clear that the same proof may be performed verbatim
for the smaller class of f ∈ D ∩ Ds, f > 0, for each fixed s > 0. Hence the proof
of Theorem 16 can also be reinterpreted so as to only use g, gq−1 ∈ D ∩ Ds ∩ L∞.
This being done we have established a variant of Theorem 16.

Proposition 18. Let c = c(t, p) be the least positive function satisfying (lSi). Then

each t > 0 has the property that

2 6 p 6 q implies (1− 1/q) c(t, q) 6 (1− 1/p) c(t, p).

Since the principal coefficient function is difficult to compute as soon as p 6= 2,
it is the following corollary that gives an applicable statement.

Corollary 19. Suppose that c(t, 2) satisfies for t > 0
∫

f2 log f dµ− ‖f‖22 log ‖f‖2 6 c(t, 2) 〈Hf, f〉, all f ∈ Dt, f ≥ 0.

Then the extension c̃(t, p) = p
2(p−1) c(t, 2) of c(t, 2) to all p > 2, satisfies the general

log-Sobolev inequality (lSi) for p > 2 and t > 0.

Proof. According to Proposition 18 applied to p ≥ 2, we find

c(t, p) 6
p

2(p− 1)
c(t, p) = c̃(t, p).

Thus (lSi) is satisfied with c = c̃(t, p) and the claim follows.
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Remark. It must be pointed out at this stage, that the corollary is interesting only in
case c(t, 2) > 1. For it is well known that c(2) = 1 implies c(p) = p

2(p−1) identically

in the original setting and similarly one quickly sees by the same perturbation
argument that c(t, 2) = 1 forces c(t, p) = p/2(p− 1).

Fix now one continuous and positive function c(t, 2), defined for all t > 0, that
satisfies the inequality as stated in Corollary 19. We may suppose t 7→ c(t, 2)
to be non-increasing since the sets Dt decrease with t. The intention is to apply
Theorem 17 with c = c̃(t, p) as defined above, since the extension c̃(t, p) satisfies
(lSi) according to Corollary 19.

Consider for this purpose the initial condition q̃(0, p) = p and the differential
equation

dq̃

dt
=

q̃

c̃(t, q̃)
=

2(q̃ − 1)

c(t, 2)
, i.e.,

d

dt
log(q̃ − 1) =

2

c(t, 2)
.

The assumptions on c(t, 2) make log(q̃ − 1) strictly increasing and convex. Hence
there exists a continuous inverse function t̃(q, p) such that q̃( t̃(q, p), p) = q for q > p.
Clearly q 7→ t̃(q, p) is increasing. According to Theorem 17, t̃ = t̃(q, p) gives

‖e−t̃Hf‖Lq = ‖e−t̃Hf‖Lq̃(t̃,p) 6 ‖f‖Lp .

By the semigroup property, t > t̃ = t̃(q, p) implies

∥

∥e−tHf‖Lq =
∥

∥

∥
e−t̃H

[

e−(t−t̃)Hf
]

∥

∥

∥

Lq
6

∥

∥e−(t−t̃)Hf
∥

∥

Lp 6 ‖f‖Lp .

This means that we have proved a hypercontractivity result.

Proposition 20. Let c(t, 2) be a positive, continuous, and non-increasing function

for t > 0. Assume that Corollary 19 applies and let q̃ = q̃(t, p) and t̃ = t̃(q, p) be as

defined above. Then e−tH is hypercontractive to the extent that for given q > p > 2

t > t̃ implies ‖e−tHf‖Lq 6 ‖f‖Lp , all f ∈ Lp.

It is this result that after an interpretation of the quantity t̃(q, p) will deliver
refined information on hypercontractivity.

Keep the above assumptions on c(t, 2) and write for visibility cmax = c(0, 2),
which is the maximum of all values attained by c(t, 2). Take tmax to be the largest
number such that for t ∈ [0, tmax ] we have c(t, 2) = cmax. Thus there is an exact
value q̃ − 1 = (p − 1) exp(2t/cmax) for 0 6 t 6 tmax. This suggests an auxiliary
function

R(t) =
{

q̃(t, p)− 1
}

exp

{

− 2t

cmax

}

,

which has the properties







d

dt
log R(t) =

2

c(t, 2)
− 2

cmax
> 0,

R(0) = p− 1, log R(t) is convex and non-decreasing.

In particular it follows that

q̃(t, p)− 1 > (p− 1) exp
2t

cmax
, t > 0,
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with equality exactly for 0 6 t 6 tmax. Reformulated, this expresses

e−t >

(

p− 1

q̃(t, p)− 1

)cmax/2

.

Take for notational simplicity – but semantically somewhat abusive – the quantity
q̃max to be

q̃max(p) = q̃(tmax, p) = 1 + (p− 1) exp
2tmax

cmax
.

The previous display is preferably understood as

e−t̃(q,p) >

(

p− 1

q − 1

)cmax/2

,

simply by choosing t = t̃(q, p). We know that strict inequality holds in this inequal-
ity as soon as q > q̃max(p).

Corollary 21. In the above setting and accompanying notation, for any q >
q̃max(p) the parameter interval for e−t making e−tH hypercontractive Lp → Lq

is strictly larger than the interval expressed by e−t 6 [(p− 1)/(q − 1)]cmax/2.

Remark. It is precisely this latter interval that results from the standard application
of Stroock’s theorem, as noted at the beginning of this section.

Application to the simplicial semigroups

Naturally our last step in this development is to apply Corollary 21 to the par-
ticular class of semigroups constructed in the first section. Trivially we see that the
infinitesimal generator A constructed there is idempotent and e−tA = E + e−tA =
Pe−t for t > 0; in accordance with earlier notation it is convenient to let r = e−t

parameterize e−tA ↔ Pr. Studying a particular Qn, thus fixing n > 1, an appli-
cation of Corollary 21 demands calculation of cmax, tmax, and q̃max as dependent
on n for whichever choice of c(t, 2) we care to make. It is clear that

c(t, 2) = sup
{

Q(f) ; f ∈ e−tAN
}

is the least possible, still valid choice. Of course e−tAN = {e−tAg ; g ∈ N}. Looking
back, the set N can be seen as a compact subset of R

n
+, via the identification of

f ∈ N with its parameters {αω}, ω ∈ Qn, αω > 0, and
∑

αω = 1.
Obviously Dt ∩{Ef = 1} = e−tAN = PrN in this context. A little lemma takes

care of membership in Dt ∩ {Ef = 1}.
Lemma 22. For non-constant f ∈ N the membership f ∈ PrN holds if and only

if r > 1−min f . Hence f ∈ Dt ∩ {Ef = 1} if and only if t 6 log [1/(1 −min f)].

Proof. Suppose f = Prg for g ∈ N . Then f = 1 + r(g − 1) and since g > 0

1−min f = r(1−min g) 6 r.

Let on the other hand, for given f > 0 non-constant, r ∈ ]0, 1] be the unique
number such that the thereby introduced g̃ enjoys the property

g̃ =
1

r
(f −Ef) > −Ef
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with equality being attained somewhere on Qn. We see that g = Ef + g̃ gives
f = Prg. To wit, Eg̃ = 0 so

Prg = Ef + rg̃ = Ef + f −Ef = f.

Moreover, f ∈ N produces 1 = Ef = Eg and min g = 1 + min g̃ = 1− 1 = 0, thus
showing g ∈ N to be at hand.

Finally, the construction of g̃ has r = 1 −min f as the effectuated choice. This
completes the demonstration of the first part of the statement, whereas the second
is a mere reformulation based on r = e−t.

By the proof of Theorem 13 and the statement of Proposition 12 the maximum
of Q(f) for f ∈ N is attained only by f̃ = Pρf1, where ρ = (n−1)/2n and f1 ∈ N is
one of the n+1 possible functions having value n+1 at one point of Qn and being
zero elsewhere. This means there is one ξ ∈ Qn with aξ(f1) = 1 and aω(f1) = 0
otherwise. Thus

f̃(ω) = Pρf1(ω) =

{

n+1
2 , ω = ξ,

n+1
2n

, ω 6= ξ.

Since 1 −min f̃ = n−1
2n

, Lemma 22 demonstrates f̃ ∈ PrN if and only if r ≥ n−1
2n

.
Hence the present setting on Qn with semigroup Pr has

rmax = e−tmax =
n− 1

2n
, cmax =

n + 1

2(n− 1)
log n.

It follows that

log

(

q̃max(p)− 1

p− 1

)

=
2tmax

cmax
=

4(n− 1) log 2n
n−1

(n + 1) log n

Using an auxillary function T (x) = (1 − x)(1 + x)−1 log [2/(1 − x)], this being
suggested by 2tmax/cmax = 4T (1/n)/ log n, it is not too difficult to establish that
T (x) is strictly decreasing on ]0, 1[ and is bounded by log 2 there. It follows that in
this situation

log

(

q̃max(p)− 1

p− 1

)

<
4 log 2

log n
.

It is therefore time to express this our main application in full detail. A reference to
Corollary 21 with the just calculated estimate proves the last result in this paper.

Theorem 23. Consider the simplices Qn and the multiplicative semigroups Pr on

L2(Qn) constructed earlier. For any q > p ≥ 2 such that

q − 1

p− 1
≥ 161/ log n

the hypercontractivity ‖Prf‖q ≤ ‖f‖p obtains for a parameter interval strictly larger

than that indicated by r ≤
[

(p− 1)/(q − 1)
]

(n+1) log n

4(n−1) .

To complete the proof it suffices to observe that the calculations above estab-
lished the estimate

q̃max(p)− 1

p− 1
< 161/ log n.
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Thus the added condition on (q−1)/(p−1) in the statement of the present theorem
ensures that the bootstrapped hypercontractivity in Corollary 21 is applicable.
Then the statement is merely a copy of that result.

Remark. It is hardly worth the effort to derive quantitative estimates on Q(Prf)
for r < rmax in order to improve on the qualitative conclusion of Theorem 23. In
principle such elaboration is possible though, and would quantify the size of an
enhanced interval.
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