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Abstract

The paper is devoted to the problem of reconstructing a tensor
field in Cn, if its ray transform is known along all complex lines,
intersecting a given complex curve. A procedure for recovering the
solenoidal part of the tensor field is given.

1 Introduction and some theory of tensor fields

in a complex space

For a major reference to integral geometry of tensor fields we refer the reader
to the book [2]. In the paper [3] the author considered an integral geometry
problem with incomplete data for symmetric tensor fields in a real space.
(See [1] for the references to other papers on the integral geometry problems
with incomplete data.) In the current article we are going to study a similar
problem for tensors in a complex space. The problem for the complete col-
lection of data was considered in the author’s dissertation [4], as well as in
[5]. We will need to recall some theory from these papers.
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Let p, q ≥ 0 be integers and T q
p be the space of bidegree (p, q) tensors

on Cn, i.e. the functions f : Cn × . . .× Cn

︸ ︷︷ ︸
p

×Cn × . . .× Cn

︸ ︷︷ ︸
q

→ C, which are

C-linear with respect to each of the first p variables and C-antilinear with
respect to the last q. Let Sq

p be a space of tensors, symmetric with respect
to the collections of the first p and the last q variables separately. There is a
canonical projection σ : T q

p → Sq
p :

σf(z1, . . . , zp, w1, . . . , wq) =
1

p!q!

∑

π∈Πp

∑

δ∈Πq

f(zπ1, . . . , zπp, wδ1, . . . , wδq),

where Πp,Πq are permutation groups. We write each tensor f ∈ T q
p in the

form
f = f

j1...jq

i1...ip
dzi1 ⊗ . . .⊗ dzip ⊗ dz̄j1 ⊗ . . .⊗ dz̄jq .

Henceforth we will use the Einstein summation convention — summation
with respect to the pairs of repeated indices, independently running from 1
to n. The numbers f

j1...jq

i1...ip
are called the coordinates (or the components) of

the tensor f . A map Cn → T q
p is called a tensor field on Cn. By C∞(T q

p ) and
S(T q

p ) we denote the spaces of tensor fields on Cn with smooth and rapidly
decreasing components respectively. We will need the following operators,
defined in coordinates:

(dlf)
j1...jq

i1...ip+1
= σ(

∂

∂zip+1

f
j1...jq

i1...ip
), (d̄uf)

j1...jq+1

i1...ip
= σ(

∂

∂z̄jq+1

f
j1...jq

i1...ip
) ,

(δ̄lf)
j1...jq

i1...ip−1
=

n∑

i=1

∂

∂z̄i

f
j1...jq

i1...ip−1i, (δuf)
j1...jq−1

i1...ip
=

n∑

j=1

∂

∂zj

f
j1...jq−1j
i1...ip

.

The operators d are the operators of inner differentiation of the different
kinds (”l” - lower, ”u” - upper), δ — the divergence operators.

Here, as usual,

∂

∂zk

=
1

2
(
∂

∂xk

−
√
−1

∂

∂yk

) ,
∂

∂z̄k

=
1

2
(
∂

∂xk

+
√
−1

∂

∂yk

) .

Let Cn
0 = Cn \ {0}.
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Definition 1.1 The ray transform of a tensor field g ∈ C∞(Sq
p) is the func-

tion Ig, defined on Cn × Cn
0 by the expression:

Ig(z, ξ) =
∫

C

g
j1...jq

i1...ip (z + tξ)ξi1 . . . ξip ξ̄j1 . . . ξ̄jq dS(t),

where dS(t) is the area form on C, and we assume the absolute convergence
of all integrals involved.

The problem we will be dealing with is to reconstruct g from Ig. It turns
out that the operator I has a nontrivial kernel. In S(Sq

p) it consists exactly of
the tensor fields of the form dlv + d̄uw, where v ∈ C∞(Sq

p−1), w ∈ C∞(Sq−1
p )

and v, w vanish sufficiently fast at infinity.
We need the following statement.

Theorem 1.2 For a tensor field g ∈ S(Sq
p) there exists a unique tensor field

f ∈ C∞(Sq
p) such that for some tensor fields v ∈ C∞(Sq

p−1), w ∈ C∞(Sq−1
p )

one has

g = f + dlv + d̄uw , δ̄lf = 0 , δuf = 0 ; f, v, w→ 0 as |z| → ∞ .

The field f is called the solenoidal part of g, we denote f = sg . It turns
out that by knowing Ig we can reconstruct f = sg, and there is in [4], [5] an
explicit inversion formula.

We will be using the following version of the Fourier transform for tensor
fields: in coordinates,

ĝ
j1...jq

i1...ip
(ζ) = (2π)−n

∫

Cn

e−
√

−1

2
(〈z,ζ〉+〈ζ,z〉)g

j1...jq

i1...ip
(z) dV2n(z),

where 〈·, ·〉 is the standard Hermitian form on Cn and dV2n(z) is the volume
form on Cn.

We have the following expression for f̂ in terms of ĝ (f = sg), which will
be useful later:

f̂
j1...jq

i1...ip
(ζ) = εk1

i1
(ζ) . . . ε

kp

ip
(ζ) εj1

l1
(ζ) . . . ε

jq

lq
(ζ) ĝ

l1...lq
k1...kp

(ζ), (1)

where

εj
i (ζ) = δj

i −
ζ̄ iζj

|ζ|2 ,

δj
i — the Kroneker symbol.
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2 Integral geometry problem with incom-

plete data, reconstruction of the solenoidal

part

For n ≥ 3 let γ ⊂ Cn be a C1-smooth complex, but not necessarily holo-
morphic curve, parametrized as follows:

x = φ(λ), λ ∈ Λ ⊂ C, φ ∈ C1(Λ).

Problem. Let g ∈ S(Sq
p). Reconstruct its solenoidal part f = sg by the

known values Ig(z, ξ) for all z ∈ γ, ξ ∈ Cn
0 .

To formulate a condition on γ we need to consider the following algebraic
setting. Let P (z) be an arbitrary degree m polynomial on CN , which is not
necessarily holomorphic:

P (z) =
∑

l+r≤m

p
(l,r)j1...jr

i1...il
zi1 . . . zil z̄j1 . . . z̄jr , p(l,r) ∈ Sr

l .

Altogether there are LN,m := (
2N +m

m
) independent coefficients (taking

into account symmetries).

Definition 2.1 A collection of LN,m points in CN : b1, . . . , bLN,m
is called

defining of order m, if a polynomial P (z) is determined uniquely by its values
P (bj), j = 1, . . . ,LN,m.

Almost all collections are defining in the sense that they form in (Cn)LN,m

the complement of an algebraic hypersurface.

Definition 2.2 We say that a complex curve γ satisfies the complex Kirillov-
Tuy condition of order m ≥ 1, if for every z ∈ Cn, η ∈ S2n−1 ( |η| = 1 )
we can find a defining collection of order m: a1(z, η), . . . , aLn−1,m

(z, η) in the
intersection of the complex hyperplane 〈a, η〉 = 〈z, η〉 with γ. (Defining, that
is, for the polynomials on this hyperplane.)

Theorem 2.3 Let γ ⊂ Cn (n ≥ 3) be a C1-smooth complex curve, satisfying
the complex Kirillov-Tuy condition of order (p + q). If g ∈ S(Sq

p), then its
solenoidal part f = sg can be uniquely reconstructed by the known values
Ig(z, ξ) for all z ∈ γ, ξ ∈ Cn

0 .
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Proof.

We notice the following homogeneity property of Ig with respect to the
second variable:

Ig(z, τξ) =
τ pτ̄ q

|τ |2 Ig(z, ξ).

Thus for a fixed z we can treat Ig(z, ·) as a tempered distribution from S ′(Cn)
and consider its Fourier transform.

Lemma 2.4 We have the following formula in S ′(Cn):

(Ig
∧
) (a, η) = lim

H→∞

p∑

l=0

q∑

r=0

∑

1≤α1<...<αl≤p

∑

1≤γ1<...<γr≤q

(−1)l+raiα1 . . . aiαl×

×ājγ1 . . . ājγr

∫

|ρ|≤H

|ρ|2n−4ρpρ̄qe
√

−1

2
(〈ρa,η〉+〈η,ρa〉)×

×(ziβ1 . . . z
iβp−l z̄jδ1 . . . z̄jδq−r g

j1...jq

i1...ip
(z)

∧
) (ρ̄η) dS(ρ). (2)

Here we set {β1 . . . βp−l} = {1 . . . p} \ {α1 . . . αl} , 1 ≤ β1 < . . . < βp−l ≤ p;
{δ1 . . . δq−r} = {1 . . . q} \ {γ1 . . . γr} , 1 ≤ δ1 < . . . < δq−r ≤ q. The limit is
taken in the weak sense in S ′(Cn).

Proof of Lemma 2.4.

We need to apply both parts of (2) to a test function ψ(η) ∈ S(Cn). The
left-hand side will then be

〈(Ig
∧
) (a, η), ψ(η)〉 = 〈Ig(a, y), ψ̂(y)〉. (3)

Consider the right-hand side before taking the limit:

∫

Cn

p∑

l=0

q∑

r=0

∑

1≤α1<...<αl≤p

∑

1≤γ1<...<γr≤q

(−1)l+raiα1 . . . aiαl ājγ1 . . . ājγr×

×
∫

|ρ|≤H

|ρ|2n−4ρpρ̄qe
√

−1

2
(〈ρa,η〉+〈η,ρa〉)×

×(ziβ1 . . . ziβp−l z̄jδ1 . . . z̄jδq−r g
j1...jq

i1...ip
(z)

∧
) (ρ̄η) dS(ρ) ψ(η) dV2n(η) =

=
∫

|ρ|≤H

|ρ|2n−4ρpρ̄q
∫

Cn

p∑

l=0

q∑

r=0

∑

1≤α1<...<αl≤p

∑

1≤γ1<...<γr≤q

(−1)l+raiα1 . . . aiαl×
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×ājγ1 . . . ājγr ziβ1 . . . z
iβp−l z̄jδ1 . . . z̄jδq−r g

j1...jq

i1...ip
(z)×

×(2π)−n
∫

Cn

e
√

−1

2
(〈ρ(z−a),η〉+〈η,ρ(z−a)〉)ψ(η) dV2n(η) dV2n(z) dS(ρ).

We can change the order of integration, because ψ and all the components
of g are from the Schwartz space.

The last expression above equals
∫

|ρ|≤H

|ρ|2n−4ρpρ̄q
∫

Cn

(z − a)i1 . . . (z − a)ip(z − a)j1 . . . (z − a)jqg
j1...jq

i1...ip
(z)×

×ψ̂(ρ(z − a)) dV2n(z) dS(ρ).

Introducing variable change y = ρ(z − a) and t = 1/ρ, we obtain

∫

|ρ|≤H

∫

Cn

g
j1...jq

i1...ip
(a +

1

ρ
y)yi1 . . . yip ȳj1 . . . ȳjqψ̂(y) · dV2n(y)

1

|ρ|4 dS(ρ) =

=
∫

|t|≥H−1

∫

Cn

g
j1...jq

i1...ip
(a+ ty)yi1 . . . yipȳj1 . . . ȳjq ψ̂(y) dV2n(y) dS(t). (4)

The integral above converges absolutely, i.e.
∫

Cn

∫

C

|gj1...jq

i1...ip (a+ ty)||yi1| . . . |yip||ȳj1| . . . |ȳjq||ψ̂(y)| dS(t) dV2n(y) <∞,

because the function

y →
∫

C

|gj1...jq

i1...ip
(a+ ty)||yi1| . . . |yip||ȳj1| . . . |ȳjq | dS(t)

is positively homogeneous of the degree (p+ q − 2) and ψ̂ ∈ S(Cn).
Thus in (4) we can take the limit as H →∞ and obtain

∫

Cn

∫

C

g
j1...jq

i1...ip
(a+ ty)yi1 . . . yipȳj1 . . . ȳjq dS(t) ψ̂(y) dV2n(y) =

=
∫

Cn

Ig(a, y)ψ̂(y) dV2n(y) = 〈Ig(a, y), ψ̂(y)〉,

which is the same as in (3).
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This proves Lemma 2.4.

We notice that in the right-hand side of (2) we have a pointwise limit as
H →∞ in the domain {η ∈ Cn | η 6= 0}, because the corresponding Fourier
transform is rapidly decreasing (if η = 0, then the limit does not exist).

We will need to show that the restriction of the distribution (Ig
∧
) (a, η) to

this domain coincides with the regular distribution, defined by the pointwise
limit.

Each term in (2) up to a coefficient has the form

lim
H→∞

∫

|ρ|≤H

|ρ|2n−4ρpρ̄q e
√

−1

2
(〈ρa,η〉+〈η,ρa〉) Ĝ(ρ̄η) dS(ρ), (5)

G(z) = ziβ1 . . . ziβp−l z̄jδ1 . . . z̄jδq−r g
j1...jq

i1...ip
(z).

The components of g are from the Schwartz space, therefore G(z) and
Ĝ(z) are rapidly decreasing and

|Ĝ(ζ)| ≤ CM

1 + |ζ|M ,

for every M .
So, in (5) we have for each η 6= 0 the following value

∫

C

|ρ|2n−4ρpρ̄q e
√

−1

2
(〈ρa,η〉+〈η,ρa〉) Ĝ(ρ̄η) dS(ρ).

Take a test function ψ ∈ S(Cn) with supp ψ ⊂ Cn
0 . Then for some r > 0 we

have |η| ≥ r on supp ψ. Consider the following expression
∫

Cn

∫

|ρ|≤H

|ρ|2n−4ρpρ̄q e
√

−1

2
(〈ρa,η〉+〈η,ρa〉) Ĝ(ρ̄η)dS(ρ) · ψ(η) dV2n(η). (6)

We have the following estimate for each η ∈ supp ψ:
∣∣∣∣∣∣∣

∫

|ρ|≤H

|ρ|2n−4ρpρ̄q e
√

−1

2
(〈ρa,η〉+〈η,ρa〉) Ĝ(ρ̄η) dS(ρ)

∣∣∣∣∣∣∣
≤

≤
∫

|ρ|≤H

|ρ|2n+p+q−4 CM

1 + |ρ|M |η|M dS(ρ) ≤
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≤
∫

C

|ρ|2n+p+q−4 CM

1 + |ρ|MrM
dS(ρ) = C(M) <∞,

if M is sufficiently large for the last integral to converge.
Since ψ belongs to the Schwartz space and because of the Lebesgue domi-

nated convegence theorem, we can take the pointwise limit under the integral
sign over Cn in (6) and get

∫

Cn

∫

C

|ρ|2n−4ρpρ̄qe
√

−1

2
(〈ρa,η〉+〈η,ρa〉) Ĝ(ρ̄η) dS(ρ) · ψ(η) dV2n(η).

By the hypothesis of the theorem, we therefore know the following ex-
pression for every a ∈ γ and η ∈ S2n−1:

p∑

l=0

q∑

r=0

∑

1≤α1<...<αl≤p

∑

1≤γ1<...<γr≤q

(−1)l+raiα1 . . . aiαl ājγ1 . . . ājγr

∫

C

|ρ|2n−4ρpρ̄q×

×e
√

−1

2
(〈ρa,η〉+〈η,ρa〉)(ziβ1 . . . z

iβp−l z̄jδ1 . . . z̄jδq−r g
j1...jq

i1...ip (z)
∧
) (ρ̄η) dS(ρ). (7)

We fix an arbitrary z0 ∈ Cn and η ∈ S2n−1. By the hypothesis we can find
a defining collection of points a1(z0, η), . . . , aLn−1,m

(z0, η) in the intersection
of the hyperplane 〈a, η〉 = 〈z0, η〉 with γ. Note that the restriction of the
expression in (7) to this hyperplane is a polynomial P (a) on it (because
there we have 〈ρa, η〉 = ρ〈a, η〉 = ρ〈z0, η〉 and the dependence on a is purely
polynomial).

The values P (aj(z0, η)) are known, because aj(z0, η) ∈ γ. Therefore P (a)
is known on the whole hyperplane.

We introduce the following polynomial P̃ (a), defined everywhere on Cn:

P̃ (a) = P (z0 + πη(a− z0)),

where πη(z) = z−〈z, η〉η is the orthogonal projection to the complement η⊥

of η with respect to the Hermitian form. It is clear that P̃ is known on Cn.
Its homogeneous part of the highest degree (p+ q) has the form

(−1)p+q
∫

C

|ρ|2n−4ρpρ̄q e
√

−1

2
(〈ρz0 ,η〉+〈η,ρz0〉) ĝ

j1...jq

i1...ip
(ρ̄η) dS(ρ)×

×(ai1 − 〈a, η〉ηi1) . . . (aip − 〈a, η〉ηip) (āj1 − 〈η, a〉η̄j1) . . . (ājq − 〈η, a〉η̄jq) =
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= (−1)p+q
∫

C

|ρ|2n−4ρpρ̄qe
√

−1

2
(〈ρz0 ,η〉+〈η,ρz0〉)ĝ

j1...jq

i1...ip
(ρ̄η) dS(ρ)×

×εi1
k1

(η) . . . ε
ip
kp

(η) εl1
j1

(η) . . . ε
lq
jq

(η)ak1 . . . akp āl1 . . . ālq =

= (−1)p+q
∫

C

|ρ|2n−4ρpρ̄q e
√

−1

2
(〈ρz0 ,η〉+〈η,ρz0〉) f̂

l1...lq
k1...kp

(ρ̄η) dS(ρ)×

×ak1 . . . akp āl1 . . . ālq , (8)

where f = sg is the solenoidal part of g. (See the formula (1) and use |η| = 1
and εj

i (ρ̄η) = εj
i (η).)

Thus, we know all the coefficients in (8):
∫

C

|ρ|2n−4ρpρ̄q e
√

−1

2
(〈ρz0 ,η〉+〈η ,ρz0〉) f̂

l1...lq
k1...kp

(ρ̄η) dS(ρ).

Consider now a fixed η0 ∈ S2n−1 and introduce the variable µ = ρ̄. If we take
z0 = λη0, λ ∈ C, we therefore obtain

∫

C

|µ|2n−4µ̄pµq e
√

−1

2
(〈z0,µη0〉+〈µη0 ,z0〉) f̂

l1...lq
k1...kp

(µη0) dS(µ) =

=
∫

C

e
√

−1

2
(λµ̄+µλ̄) |µ|2n−4µ̄pµq f̂

l1...lq
k1...kp

(µη0) dS(µ).

Noting that
√
−1
2

(λµ̄+µλ̄) =
√
−1Re(λµ̄), we recognize here the 2-dimensional

Fourier transform (up to a coefficient) of the function

µ→ |µ|2n−4µ̄pµqf̂
l1...lq
k1...kp

(µη0).

The value λ ∈ C can be taken arbitrary, therefore this Fourier transform is
known on C. Applying the inversion formula for it, we find f̂

l1...lq
k1...kp

(µη0) for

all µ ∈ C (and all η0 ∈ S2n−1). Then, applying Fourier inversion in Cn, we

obtain all the components f
l1...lq
k1...kp

of the solenoidal part f . This completes
the proof of Theorem 2.3.
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