ISSN: 1401-5617

Integral Geometry Problem with Incomplete Data for Tensor Fields in a Complex Space

L.B. Vertgeim

Research Reports in Mathematics Number 15, 2000

DEPARTMENT OF MATHEMATICS STOCKHOLM UNIVERSITY Electronic versions of this document are available at http://www.matematik.su.se/reports/2000/15 $\,$

Date of publication: November 17, 2000

Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden

Electronic addresses: http://www.matematik.su.se info@matematik.su.se

Integral Geometry Problem with Incomplete Data for Tensor Fields in a Complex Space.

L. B. Vertgeim

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Acad. Koptyug prosp., 4, Novosibirsk, 630090, Russia vert @ math.nsc.ru

November 17, 2000

Abstract

The paper is devoted to the problem of reconstructing a tensor field in C^n , if its ray transform is known along all complex lines, intersecting a given complex curve. A procedure for recovering the solenoidal part of the tensor field is given.

1 Introduction and some theory of tensor fields in a complex space

For a major reference to integral geometry of tensor fields we refer the reader to the book [2]. In the paper [3] the author considered an integral geometry problem with incomplete data for symmetric tensor fields in a real space. (See [1] for the references to other papers on the integral geometry problems with incomplete data.) In the current article we are going to study a similar problem for tensors in a complex space. The problem for the complete collection of data was considered in the author's dissertation [4], as well as in [5]. We will need to recall some theory from these papers. Let $p, q \ge 0$ be integers and T_p^q be the space of bidegree (p, q) tensors on C^n , i.e. the functions $f: \underbrace{C^n \times \ldots \times C^n}_p \times \underbrace{C^n \times \ldots \times C^n}_q \to C$, which are *C*-linear with respect to each of the first *p* variables and *C*-antilinear with

respect to the last q. Let S_p^q be a space of tensors, symmetric with respect to the collections of the first p and the last q variables separately. There is a canonical projection $\sigma: T_p^q \to S_p^q$:

$$\sigma f(z_1,\ldots,z_p,w_1,\ldots,w_q) = \frac{1}{p!q!} \sum_{\pi \in \Pi_p} \sum_{\delta \in \Pi_q} f(z_{\pi 1},\ldots,z_{\pi p},w_{\delta 1},\ldots,w_{\delta q}),$$

where Π_p, Π_q are permutation groups. We write each tensor $f \in T_p^q$ in the form

$$f = f_{i_1...i_p}^{j_1...j_q} dz^{i_1} \otimes \ldots \otimes dz^{i_p} \otimes d\bar{z}^{j_1} \otimes \ldots \otimes d\bar{z}^{j_q}.$$

Henceforth we will use the Einstein summation convention — summation with respect to the pairs of repeated indices, independently running from 1 to n. The numbers $f_{i_1...i_p}^{j_1...j_q}$ are called the coordinates (or the components) of the tensor f. A map $C^n \to T_p^q$ is called a *tensor field on* C^n . By $C^{\infty}(T_p^q)$ and $\mathcal{S}(T_p^q)$ we denote the spaces of tensor fields on C^n with smooth and rapidly decreasing components respectively. We will need the following operators, defined in coordinates:

$$(d_l f)_{i_1 \dots i_{p+1}}^{j_1 \dots j_q} = \sigma(\frac{\partial}{\partial z_{i_{p+1}}} f_{i_1 \dots i_p}^{j_1 \dots j_q}), \quad (\bar{d}_u f)_{i_1 \dots i_p}^{j_1 \dots j_{q+1}} = \sigma(\frac{\partial}{\partial \bar{z}_{j_{q+1}}} f_{i_1 \dots i_p}^{j_1 \dots j_q}),$$

$$(\bar{\delta}_l f)_{i_1 \dots i_{p-1}}^{j_1 \dots j_q} = \sum_{i=1}^n \frac{\partial}{\partial \bar{z}_i} f_{i_1 \dots i_{p-1}i}^{j_1 \dots j_q}, \quad (\delta_u f)_{i_1 \dots i_p}^{j_1 \dots j_{q-1}} = \sum_{j=1}^n \frac{\partial}{\partial z_j} f_{i_1 \dots i_p}^{j_1 \dots j_{q-1}j}.$$

The operators d are the operators of inner differentiation of the different kinds ("l" - lower, "u" - upper), δ — the divergence operators.

Here, as usual,

$$\frac{\partial}{\partial z_k} = \frac{1}{2} \left(\frac{\partial}{\partial x_k} - \sqrt{-1} \frac{\partial}{\partial y_k} \right) \quad , \quad \frac{\partial}{\partial \bar{z}_k} = \frac{1}{2} \left(\frac{\partial}{\partial x_k} + \sqrt{-1} \frac{\partial}{\partial y_k} \right)$$

Let $C_0^n = C^n \setminus \{0\}.$

Definition 1.1 The ray transform of a tensor field $g \in C^{\infty}(S_p^q)$ is the function Ig, defined on $C^n \times C_0^n$ by the expression:

$$Ig(z,\xi) = \int_{C} g_{i_{1}\dots i_{p}}^{j_{1}\dots j_{q}}(z+t\xi)\xi^{i_{1}}\dots\xi^{i_{p}}\bar{\xi}^{j_{1}}\dots\bar{\xi}^{j_{q}} \, dS(t),$$

where dS(t) is the area form on C, and we assume the absolute convergence of all integrals involved.

The problem we will be dealing with is to reconstruct g from Ig. It turns out that the operator I has a nontrivial kernel. In $\mathcal{S}(S_p^q)$ it consists exactly of the tensor fields of the form $d_l v + \bar{d}_u w$, where $v \in C^{\infty}(S_{p-1}^q)$, $w \in C^{\infty}(S_p^{q-1})$ and v, w vanish sufficiently fast at infinity.

We need the following statement.

Theorem 1.2 For a tensor field $g \in \mathcal{S}(S_p^q)$ there exists a unique tensor field $f \in C^{\infty}(S_p^q)$ such that for some tensor fields $v \in C^{\infty}(S_{p-1}^q), w \in C^{\infty}(S_p^{q-1})$ one has

$$g = f + d_l v + \bar{d}_u w , \ \bar{\delta}_l f = 0 , \delta_u f = 0 ; \ f, v, w \to 0 \ as |z| \to \infty .$$

The field f is called the *solenoidal part* of g, we denote $f = {}^{s}g$. It turns out that by knowing Ig we can reconstruct $f = {}^{s}g$, and there is in [4], [5] an explicit inversion formula.

We will be using the following version of the Fourier transform for tensor fields: in coordinates,

$$\hat{g}_{i_1\dots i_p}^{j_1\dots j_q}(\zeta) = (2\pi)^{-n} \int_{C^n} e^{-\frac{\sqrt{-1}}{2}(\langle z,\zeta\rangle + \langle \zeta,z\rangle)} g_{i_1\dots i_p}^{j_1\dots j_q}(z) \, dV_{2n}(z),$$

where $\langle \cdot, \cdot \rangle$ is the standard Hermitian form on C^n and $dV_{2n}(z)$ is the volume form on C^n .

We have the following expression for \hat{f} in terms of \hat{g} $(f = {}^{s}g)$, which will be useful later:

$$\hat{f}_{i_1\dots i_p}^{j_1\dots j_q}(\zeta) = \varepsilon_{i_1}^{k_1}(\zeta)\dots\varepsilon_{i_p}^{k_p}(\zeta) \varepsilon_{l_1}^{j_1}(\zeta)\dots\varepsilon_{l_q}^{j_q}(\zeta) \hat{g}_{k_1\dots k_p}^{l_1\dots l_q}(\zeta),$$
(1)

where

$$\varepsilon_i^j(\zeta) = \delta_i^j - \frac{\zeta^i \zeta^j}{|\zeta|^2},$$

 δ_i^j — the Kroneker symbol.

2 Integral geometry problem with incomplete data, reconstruction of the solenoidal part

For $n \geq 3$ let $\gamma \subset C^n$ be a C^1 -smooth complex, but not necessarily holomorphic curve, parametrized as follows:

$$x = \phi(\lambda), \ \lambda \in \Lambda \subset C, \ \phi \in C^1(\Lambda).$$

Problem. Let $g \in \mathcal{S}(S_p^q)$. Reconstruct its solenoidal part $f = {}^sg$ by the known values $Ig(z,\xi)$ for all $z \in \gamma, \xi \in C_0^n$.

To formulate a condition on γ we need to consider the following algebraic setting. Let P(z) be an arbitrary degree m polynomial on C^N , which is not necessarily holomorphic:

$$P(z) = \sum_{l+r \le m} p^{(l,r)j_1 \dots j_r} z^{i_1} \dots z^{i_l} \bar{z}^{j_1} \dots \bar{z}^{j_r}, \quad p^{(l,r)} \in S_l^r.$$

Altogether there are $\mathcal{L}_{N,m} := \left(\begin{array}{c} 2N+m \\ m \end{array} \right)$ independent coefficients (taking into account symmetries).

Definition 2.1 A collection of $\mathcal{L}_{N,m}$ points in C^N : $b_1, \ldots, b_{\mathcal{L}_{N,m}}$ is called defining of order m, if a polynomial P(z) is determined uniquely by its values $P(b_j), j = 1, \ldots, \mathcal{L}_{N,m}$.

Almost all collections are defining in the sense that they form in $(C^n)^{\mathcal{L}_{N,m}}$ the complement of an algebraic hypersurface.

Definition 2.2 We say that a complex curve γ satisfies the complex Kirillov-Tuy condition of order $m \geq 1$, if for every $z \in C^n$, $\eta \in S^{2n-1}$ ($|\eta| = 1$) we can find a defining collection of order m: $a_1(z,\eta), \ldots, a_{\mathcal{L}_{n-1,m}}(z,\eta)$ in the intersection of the complex hyperplane $\langle a, \eta \rangle = \langle z, \eta \rangle$ with γ . (Defining, that is, for the polynomials on this hyperplane.)

Theorem 2.3 Let $\gamma \subset C^n$ $(n \geq 3)$ be a C^1 -smooth complex curve, satisfying the complex Kirillov-Tuy condition of order (p+q). If $g \in \mathcal{S}(S_p^q)$, then its solenoidal part $f = {}^s g$ can be uniquely reconstructed by the known values $Ig(z,\xi)$ for all $z \in \gamma, \xi \in C_0^n$.

Proof.

We notice the following homogeneity property of Ig with respect to the second variable:

$$Ig(z,\tau\xi) = \frac{\tau^p \bar{\tau}^q}{|\tau|^2} Ig(z,\xi)$$

Thus for a fixed z we can treat $Ig(z, \cdot)$ as a tempered distribution from $\mathcal{S}'(C^n)$ and consider its Fourier transform.

Lemma 2.4 We have the following formula in $\mathcal{S}'(C^n)$:

$$(Ig)^{\wedge}(a,\eta) = \lim_{H \to \infty} \sum_{l=0}^{p} \sum_{r=0}^{q} \sum_{1 \le \alpha_1 < \ldots < \alpha_l \le p} \sum_{1 \le \gamma_1 < \ldots < \gamma_r \le q} (-1)^{l+r} a^{i\alpha_1} \ldots a^{i\alpha_l} \times \\ \times \bar{a}^{j\gamma_1} \ldots \bar{a}^{j\gamma_r} \int_{|\rho| \le H} |\rho|^{2n-4} \rho^p \bar{\rho}^q e^{\frac{\sqrt{-1}}{2}(\langle \rho a, \eta \rangle + \langle \eta, \rho a \rangle)} \times \\ \times (z^{i\beta_1} \ldots z^{i\beta_{p-l}} \bar{z}^{j\delta_1} \ldots \bar{z}^{j\delta_{q-r}} g^{j_1 \ldots j_q}_{i_1 \ldots i_p}(z)^{\wedge} (\bar{\rho}\eta) \, dS(\rho).$$
(2)

Here we set $\{\beta_1 \dots \beta_{p-l}\} = \{1 \dots p\} \setminus \{\alpha_1 \dots \alpha_l\}, 1 \leq \beta_1 < \dots < \beta_{p-l} \leq p;$ $\{\delta_1 \dots \delta_{q-r}\} = \{1 \dots q\} \setminus \{\gamma_1 \dots \gamma_r\}, 1 \leq \delta_1 < \dots < \delta_{q-r} \leq q.$ The limit is taken in the weak sense in $\mathcal{S}'(C^n)$.

Proof of Lemma 2.4.

We need to apply both parts of (2) to a test function $\psi(\eta) \in \mathcal{S}(\mathbb{C}^n)$. The left-hand side will then be

$$\langle (Ig)^{\wedge}(a,\eta),\psi(\eta)\rangle = \langle Ig(a,y),\hat{\psi}(y)\rangle.$$
(3)

Consider the right-hand side before taking the limit:

$$\int_{C^{n}} \sum_{l=0}^{p} \sum_{r=0}^{q} \sum_{1 \le \alpha_{1} < \ldots < \alpha_{l} \le p} \sum_{1 \le \gamma_{1} < \ldots < \gamma_{r} \le q} (-1)^{l+r} a^{i_{\alpha_{1}}} \ldots a^{i_{\alpha_{l}}} \bar{a}^{j_{\gamma_{1}}} \ldots \bar{a}^{j_{\gamma_{r}}} \times \\ \times \int_{|\rho| \le H} |\rho|^{2n-4} \rho^{p} \bar{\rho}^{q} e^{\frac{\sqrt{-1}}{2}(\langle \rho a, \eta \rangle + \langle \eta, \rho a \rangle)} \times \\ \times (z^{i_{\beta_{1}}} \ldots z^{i_{\beta_{p-l}}} \bar{z}^{j_{\delta_{1}}} \ldots \bar{z}^{j_{\delta_{q-r}}} g^{j_{1} \ldots j_{q}}_{i_{1} \ldots i_{p}}(z)^{\wedge} (\bar{\rho}\eta) \, dS(\rho) \, \psi(\eta) \, dV_{2n}(\eta) = \\ = \int_{|\rho| \le H} |\rho|^{2n-4} \rho^{p} \bar{\rho}^{q} \int_{C^{n}} \sum_{l=0}^{p} \sum_{r=0}^{q} \sum_{1 \le \alpha_{1} < \ldots < \alpha_{l} \le p} \sum_{1 \le \gamma_{1} < \ldots < \gamma_{r} \le q} (-1)^{l+r} a^{i_{\alpha_{1}}} \ldots a^{i_{\alpha_{l}}} \times$$

$$\times \bar{a}^{j\gamma_1} \dots \bar{a}^{j\gamma_r} z^{i\beta_1} \dots z^{i\beta_{p-l}} \bar{z}^{j\delta_1} \dots \bar{z}^{j\delta_{q-r}} g^{j_1\dots j_q}_{i_1\dots i_p}(z) \times$$
$$\times (2\pi)^{-n} \int_{C^n} e^{\frac{\sqrt{-1}}{2} \left(\langle \rho(z-a), \eta \rangle + \langle \eta, \rho(z-a) \rangle \right)} \psi(\eta) \, dV_{2n}(\eta) \, dV_{2n}(z) \, dS(\rho)$$

We can change the order of integration, because ψ and all the components of g are from the Schwartz space.

The last expression above equals

$$\int_{|\rho| \le H} |\rho|^{2n-4} \rho^p \bar{\rho}^q \int_{C^n} (z-a)^{i_1} \dots (z-a)^{i_p} (\overline{z-a})^{j_1} \dots (\overline{z-a})^{j_q} g^{j_1 \dots j_q}_{i_1 \dots i_p} (z) \times \hat{\psi}(\rho(z-a)) \, dV_{2n}(z) \, dS(\rho).$$

Introducing variable change $y = \rho(z - a)$ and $t = 1/\rho$, we obtain

$$\int_{|\rho| \le H} \int_{C^n} g_{i_1 \dots i_p}^{j_1 \dots j_q} (a + \frac{1}{\rho} y) y^{i_1} \dots y^{i_p} \bar{y}^{j_1} \dots \bar{y}^{j_q} \widehat{\psi}(y) \cdot dV_{2n}(y) \frac{1}{|\rho|^4} \, dS(\rho) = \\
= \int_{|t| \ge H^{-1}} \int_{C^n} g_{i_1 \dots i_p}^{j_1 \dots j_q} (a + ty) y^{i_1} \dots y^{i_p} \bar{y}^{j_1} \dots \bar{y}^{j_q} \widehat{\psi}(y) \, dV_{2n}(y) \, dS(t). \quad (4)$$

The integral above converges absolutely, i.e.

$$\int_{C^n} \int_C |g_{i_1\dots i_p}^{j_1\dots j_q}(a+ty)| |y^{i_1}|\dots |y^{i_p}|| \bar{y}^{j_1}|\dots |\bar{y}^{j_q}|| \hat{\psi}(y)| \, dS(t) \, dV_{2n}(y) < \infty,$$

because the function

$$y \to \int_{C} |g_{i_1 \dots i_p}^{j_1 \dots j_q}(a+ty)| |y^{i_1}| \dots |y^{i_p}|| \bar{y}^{j_1}| \dots |\bar{y}^{j_q}| \, dS(t)$$

is positively homogeneous of the degree (p+q-2) and $\hat{\psi} \in \mathcal{S}(\mathbb{C}^n)$. Thus in (4) we can take the limit as $H \to \infty$ and obtain

$$\int_{C^n} \int_{C} g_{i_1\dots i_p}^{j_1\dots j_q}(a+ty)y^{i_1}\dots y^{i_p}\bar{y}^{j_1}\dots \bar{y}^{j_q} \, dS(t)\,\hat{\psi}(y)\,dV_{2n}(y) =$$
$$= \int_{C^n} Ig(a,y)\hat{\psi}(y)\,dV_{2n}(y) = \langle Ig(a,y),\hat{\psi}(y)\rangle,$$

which is the same as in (3).

This proves Lemma 2.4.

We notice that in the right-hand side of (2) we have a pointwise limit as $H \to \infty$ in the domain $\{\eta \in C^n \mid \eta \neq 0\}$, because the corresponding Fourier transform is rapidly decreasing (if $\eta = 0$, then the limit does not exist). We will need to show that the restriction of the distribution $(Ig)^{\wedge}(a,\eta)$ to this domain coincides with the regular distribution, defined by the pointwise limit.

Each term in (2) up to a coefficient has the form

$$\lim_{H \to \infty} \int_{|\rho| \le H} |\rho|^{2n-4} \rho^p \bar{\rho}^q \, e^{\frac{\sqrt{-1}}{2} (\langle \rho a, \eta \rangle + \langle \eta, \rho a \rangle)} \, \widehat{G}(\bar{\rho}\eta) \, dS(\rho), \tag{5}$$
$$G(z) = z^{i_{\beta_1}} \dots z^{i_{\beta_{p-l}}} \bar{z}^{j_{\delta_1}} \dots \bar{z}^{j_{\delta_{q-r}}} \, g^{j_1 \dots j_q}_{i_1 \dots i_p}(z).$$

The components of g are from the Schwartz space, therefore G(z) and $\hat{G}(z)$ are rapidly decreasing and

$$|\widehat{G}(\zeta)| \le \frac{C_M}{1+|\zeta|^M},$$

for every M.

So, in (5) we have for each $\eta \neq 0$ the following value

$$\int_{C} |\rho|^{2n-4} \rho^{p} \bar{\rho}^{q} e^{\frac{\sqrt{-1}}{2}(\langle \rho a, \eta \rangle + \langle \eta, \rho a \rangle)} \widehat{G}(\bar{\rho}\eta) dS(\rho).$$

Take a test function $\psi \in \mathcal{S}(C^n)$ with $\operatorname{supp} \psi \subset C_0^n$. Then for some r > 0 we have $|\eta| \ge r$ on $\operatorname{supp} \psi$. Consider the following expression

$$\int_{C^n} \int_{|\rho| \le H} |\rho|^{2n-4} \rho^p \bar{\rho}^q \ e^{\frac{\sqrt{-1}}{2}(\langle \rho a, \eta \rangle + \langle \eta, \rho a \rangle)} \ \widehat{G}(\bar{\rho}\eta) dS(\rho) \cdot \psi(\eta) \ dV_{2n}(\eta).$$
(6)

We have the following estimate for each $\eta \in \operatorname{supp} \psi$:

$$\left| \int_{|\rho| \le H} |\rho|^{2n-4} \rho^p \bar{\rho}^q \, e^{\frac{\sqrt{-1}}{2} (\langle \rho a, \eta \rangle + \langle \eta, \rho a \rangle)} \, \widehat{G}(\bar{\rho}\eta) \, dS(\rho) \right| \le$$
$$\leq \int_{|\rho| \le H} |\rho|^{2n+p+q-4} \frac{C_M}{1+|\rho|^M |\eta|^M} \, dS(\rho) \le$$

$$\leq \int_{C} |\rho|^{2n+p+q-4} \frac{C_M}{1+|\rho|^M r^M} \, dS(\rho) = C(M) < \infty,$$

if M is sufficiently large for the last integral to converge.

Since ψ belongs to the Schwartz space and because of the Lebesgue dominated convegence theorem, we can take the pointwise limit under the integral sign over C^n in (6) and get

$$\int_{C^n} \int_{C} |\rho|^{2n-4} \rho^p \bar{\rho}^q e^{\frac{\sqrt{-1}}{2}(\langle \rho a, \eta \rangle + \langle \eta, \rho a \rangle)} \widehat{G}(\bar{\rho}\eta) \, dS(\rho) \cdot \psi(\eta) \, dV_{2n}(\eta).$$

By the hypothesis of the theorem, we therefore know the following expression for every $a \in \gamma$ and $\eta \in S^{2n-1}$:

$$\sum_{l=0}^{p} \sum_{r=0}^{q} \sum_{1 \le \alpha_1 < \ldots < \alpha_l \le p} \sum_{1 \le \gamma_1 < \ldots < \gamma_r \le q} (-1)^{l+r} a^{i\alpha_1} \ldots a^{i\alpha_l} \bar{a}^{j\gamma_1} \ldots \bar{a}^{j\gamma_r} \int_C |\rho|^{2n-4} \rho^p \bar{\rho}^q \times e^{\frac{\sqrt{-1}}{2} (\langle \rho a, \eta \rangle + \langle \eta, \rho a \rangle)} (z^{i\beta_1} \ldots z^{i\beta_{p-l}} \bar{z}^{j\delta_1} \ldots \bar{z}^{j\delta_{q-r}} g^{j_1 \ldots j_q}_{i_1 \ldots i_p} (z)^{\wedge} (\bar{\rho}\eta) \, dS(\rho).$$
(7)

We fix an arbitrary $z_0 \in C^n$ and $\eta \in S^{2n-1}$. By the hypothesis we can find a defining collection of points $a_1(z_0, \eta), \ldots, a_{\mathcal{L}_{n-1,m}}(z_0, \eta)$ in the intersection of the hyperplane $\langle a, \eta \rangle = \langle z_0, \eta \rangle$ with γ . Note that the restriction of the expression in (7) to this hyperplane is a polynomial P(a) on it (because there we have $\langle \rho a, \eta \rangle = \rho \langle a, \eta \rangle = \rho \langle z_0, \eta \rangle$ and the dependence on a is purely polynomial).

The values $P(a_j(z_0, \eta))$ are known, because $a_j(z_0, \eta) \in \gamma$. Therefore P(a) is known on the whole hyperplane.

We introduce the following polynomial $\tilde{P}(a)$, defined everywhere on C^n :

$$P(a) = P(z_0 + \pi_\eta (a - z_0)),$$

where $\pi_{\eta}(z) = z - \langle z, \eta \rangle \eta$ is the orthogonal projection to the complement η^{\perp} of η with respect to the Hermitian form. It is clear that \tilde{P} is known on C^n . Its homogeneous part of the highest degree (p+q) has the form

$$(-1)^{p+q} \int_{C} |\rho|^{2n-4} \rho^{p} \bar{\rho}^{q} e^{\frac{\sqrt{-1}}{2} (\langle \rho z_{0}, \eta \rangle + \langle \eta, \rho z_{0} \rangle)} \hat{g}_{i_{1} \dots i_{p}}^{j_{1} \dots j_{q}} (\bar{\rho} \eta) dS(\rho) \times \\ \times (a^{i_{1}} - \langle a, \eta \rangle \eta^{i_{1}}) \dots (a^{i_{p}} - \langle a, \eta \rangle \eta^{i_{p}}) (\bar{a}^{j_{1}} - \langle \eta, a \rangle \bar{\eta}^{j_{1}}) \dots (\bar{a}^{j_{q}} - \langle \eta, a \rangle \bar{\eta}^{j_{q}}) =$$

$$= (-1)^{p+q} \int_{C} |\rho|^{2n-4} \rho^{p} \bar{\rho}^{q} e^{\frac{\sqrt{-1}}{2} (\langle \rho z_{0}, \eta \rangle + \langle \eta, \rho z_{0} \rangle)} \hat{g}_{i_{1} \dots i_{p}}^{j_{1} \dots j_{q}}(\bar{\rho}\eta) \, dS(\rho) \times \\ \times \varepsilon_{k_{1}}^{i_{1}}(\eta) \dots \varepsilon_{k_{p}}^{i_{p}}(\eta) \, \varepsilon_{j_{1}}^{l_{1}}(\eta) \dots \varepsilon_{j_{q}}^{l_{q}}(\eta) a^{k_{1}} \dots a^{k_{p}} \bar{a}^{l_{1}} \dots \bar{a}^{l_{q}} = \\ = (-1)^{p+q} \int_{C} |\rho|^{2n-4} \rho^{p} \bar{\rho}^{q} \, e^{\frac{\sqrt{-1}}{2} (\langle \rho z_{0}, \eta \rangle + \langle \eta, \rho z_{0} \rangle)} \, \hat{f}_{k_{1} \dots k_{p}}^{l_{1} \dots l_{q}}(\bar{\rho}\eta) \, dS(\rho) \times \\ \times a^{k_{1}} \dots a^{k_{p}} \bar{a}^{l_{1}} \dots \bar{a}^{l_{q}}, \tag{8}$$

where $f = {}^{s}g$ is the solenoidal part of g. (See the formula (1) and use $|\eta| = 1$ and $\varepsilon_{i}^{j}(\bar{\rho}\eta) = \varepsilon_{i}^{j}(\eta)$.)

Thus, we know all the coefficients in (8):

$$\int_{C} |\rho|^{2n-4} \rho^p \bar{\rho}^q \ e^{\frac{\sqrt{-1}}{2}(\langle \rho z_0, \eta \rangle + \langle \eta, \rho z_0 \rangle)} \ \hat{f}_{k_1 \dots k_p}^{l_1 \dots l_q}(\bar{\rho}\eta) \ dS(\rho)$$

Consider now a fixed $\eta_0 \in S^{2n-1}$ and introduce the variable $\mu = \bar{\rho}$. If we take $z_0 = \lambda \eta_0, \ \lambda \in C$, we therefore obtain

$$\int_{C} |\mu|^{2n-4} \bar{\mu}^{p} \mu^{q} e^{\frac{\sqrt{-1}}{2}(\langle z_{0},\mu\eta_{0}\rangle+\langle\mu\eta_{0},z_{0}\rangle)} \hat{f}_{k_{1}...k_{p}}^{l_{1}...l_{q}}(\mu\eta_{0}) dS(\mu) =$$
$$= \int_{C} e^{\frac{\sqrt{-1}}{2}(\lambda\bar{\mu}+\mu\bar{\lambda})} |\mu|^{2n-4} \bar{\mu}^{p} \mu^{q} \hat{f}_{k_{1}...k_{p}}^{l_{1}...l_{q}}(\mu\eta_{0}) dS(\mu).$$

Noting that $\frac{\sqrt{-1}}{2}(\lambda\bar{\mu}+\mu\bar{\lambda}) = \sqrt{-1}\operatorname{Re}(\lambda\bar{\mu})$, we recognize here the 2-dimensional Fourier transform (up to a coefficient) of the function

$$\mu \to |\mu|^{2n-4} \bar{\mu}^p \mu^q \hat{f}^{l_1...l_q}_{k_1...k_p}(\mu\eta_0).$$

The value $\lambda \in C$ can be taken arbitrary, therefore this Fourier transform is known on C. Applying the inversion formula for it, we find $\hat{f}_{k_1...k_p}^{l_1...l_q}(\mu\eta_0)$ for all $\mu \in C$ (and all $\eta_0 \in S^{2n-1}$). Then, applying Fourier inversion in C^n , we obtain all the components $f_{k_1...k_p}^{l_1...l_q}$ of the solenoidal part f. This completes the proof of Theorem 2.3.

Acknowledgements

The author is grateful to the Department of Mathematics of the Stockholm University and the Royal Swedish Academy of Sciences for their hospitality.

References

- [1] Natterer F. The Mathematics of Computerized Tomography. B.G.Teubner, Stuttgart, and John Wiley & Sons Ltd, 1986.
- [2] Sharafutdinov V. A. Integral Geometry of Tensor Fields. VSP, Utrecht, the Netherlands, 1994.
- [3] Vertgeim L. B. Integral geometry problems for symmetric tensor fields with incomplete data. J.Inv. Ill-Posed Problems, Vol. 8, No. 3 (2000), pp. 353–362.
- [4] Vertgeim L. B. Integral geometry of symmetric tensor fields in a complex space and integral geometry of matrices. Candidate dissertation. Sobolev Institute of Math., Siberian Branch of the Russian Acad. of Sciences, Novosibirsk. 1999. (in russian)
- [5] Vertgeim L. B. Integral geometry of symmetric tensor fields in a complex space. Solution methods for the conditionally-correct problems. Novosibirsk. Institute of Math., Sib. Branch of the USSR Acad. of Sciences. 1991. pp. 29–46. (in russian)