ISSN: 1401-5617

$egin{aligned} ext{Construction of one-dimensional} \ ext{rings with fixed values of} \ t(R)\lambda_R(R/\mathfrak{C}) - \lambda_R(\overline{R}/R) \end{aligned}$

Marco D'Anna Vincenzo Micale

Research Reports in Mathematics Number 14, 2000

Department of Mathematics Stockholm University $\label{eq:electronic versions of this document are available at http://www.matematik.su.se/reports/2000/14$

Date of publication: October 18, 2000 2000 Mathematics Subject Classification: Primary 13A18. Keywords: semigroup of values, one-dimensional ring.

Postal address: Department of Mathematics Stockholm University S-106 91 Stockholm Sweden

Electronic addresses: http://www.matematik.su.se info@matematik.su.se

Construction of one-dimensional rings with fixed values of $t(R)\lambda_R(R/\mathfrak{C}) - \lambda_R(\overline{R}/R)$

M. D'Anna^{*} V. Micale[†]

October 12, 2000

1 Introduction

Let R be a local, Noetherian, one-dimensional domain; assume also that R is analytically irreducible or, equivalently, that the integral closure \overline{R} of R in its quotient field is a DVR and is a finite R-module. It is natural to associate to Ra value semigroup v(R) which is a subsemigroup of \mathbb{N} and it is well known that there is a strict connection between R and v(R), when R and \overline{R} have the same residue field (cf. [K, Ms]).

More generally, when R is not a domain, but just a reduced ring, if we assume that \overline{R} is a finite R-module (or, equivalently, R analytically unramified), it is again possible to associate to R a value semigroup, which, in this case, is a subsemigroup of \mathbb{N}^d , where d is the number of maximal primes of \overline{R} (cf. [D, D'A]).

An important class of examples of such rings is given by the local rings of an algebraic curve over an algebraically closed field in a singular point.

The key fact that allows to connect a ring to its value semigroup is that it is possible to compute the lenght $\lambda_R(I/J)$ (where $I \supseteq J$ are ideals of R) in terms of the semigroup. In this context one can consider the inequality $\lambda_R(\overline{R}/R) \leq t(R)\lambda_R(R/\mathfrak{C})$ (cf. [Ms, Proposition 3] and [De, Proposition 2.1]), where $\mathfrak{C} = (\overline{R}:R)$ is the conductor of R and t(R) is the Cohen-Macaulay type.

If $l^*(R) = t(R)\lambda_R(R/\mathfrak{C}) - \lambda_R(\overline{R}/R)$, it is proved in [D'A-De, Proposition 2.1] that $0 \leq l^*(R) \leq (t(R)-1)(\lambda_R(R/\mathfrak{C})-1)$. It is possible to give a characterization of rings satisfying the condition $l^*(R) \leq t(R) - 2$ and, assuming also that t(R) = e(R) - 1, of rings satisfying the condition $l^*(R) < t(R)$ (where e(R) is the multiplicity of R; cf. [De, Theorems 2.3-2.10]). In the case $l^*(R) \geq t(R)$ there are results involving the type and the multiplicity of the ring R and the lenght $\lambda(R/(\mathfrak{C} + xR))$ (where xR is a minimal reduction of the maximal ideal; cf. [De-L-M, Theorem 2.2]), but a complete classification of such rings seems out of reach at present.

^{*} email mdanna@dipmat.unict.it

 $^{^{\}dagger}email$ vmicale@dipmat.unict.it

It is natural to ask whether, fixed three natural numbers n, t, l^* such that $n \ge 1, t \ge 1$ and $0 \le l^* \le (t-1)(n-1)$, there exists a ring R such that $\lambda_R(R/\mathfrak{C}) = n, t(R) = t$ and $l^*(R) = l^*$.

The main goal of this paper is to give a positive answer to this question, giving a way to construct such rings. To make this construction we assume that the rings are complete and Arf. While the first assumption gives just a simplification of notation (cf. [D'A]), the second one allows to move the problem from the ring level to the semigroup level, giving the notion of Arf semigroup as in [B-D'A-F]. The main ingredient of the construction is the multiplicity tree of a ring (or of an Arf semigroup), introduced in [B-D'A-F].

In the next section we give all the preliminaries to our construction; in particular we explicitly give the way to read all the integers involved in our inequality, in terms of multiplicity tree (cf. Proposition 2.5). In section 3 we give the construction of the multiplicity trees satisfying the conditions requested (cf. Theorem 3.1). In section 4 we produce an example of the construction for particular values of n, t and l^* (cf. Example 4.1) and we study the case $l^*(R) = t(R)$, showing that if $\lambda(\overline{R}/\mathfrak{C})$ is large enough, then there is no analytically irreducible ring R such that $l^*(R) = t(R)$ (cf. Proposition 4.7); this fact implies that, in order to get a positive answer to the main question, it is necessary to consider reduced rings and not only analytically irreducible domains.

2 Preliminaries

Throughout the rest of this paper we will assume that (R, \mathfrak{m}) is a local, complete, one-dimensional, reduced, Noetherian ring; we will denote by \overline{R} the integral closure of R in its total ring of fractions Q and we assume that $R \neq \overline{R}$; notice that \overline{R} is a finite R-module.

Under these hypotheses \overline{R} is semilocal and it is a finite *R*-module (cf. [Ma, Theorem 10.2]); moreover the number *d* of maximal ideals of \overline{R} equals the number of minimal primes of *R* (cf. [D'A, Proposition 1.1]). We will denote by \mathfrak{m}_i the maximal ideals of \overline{R} and by \mathfrak{p}_i the minimal primes of *R*. We have the following commutative diagram

$$\begin{array}{c} R & \longrightarrow & R/\mathfrak{p}_1 \times \cdots \times R/\mathfrak{p}_d \\ & & \downarrow \\ \hline R & \longrightarrow & V_1 \times \cdots \times V_d \\ & & \downarrow \\ Q & \longrightarrow & Q(R/\mathfrak{p}_1) \times \cdots \times Q(R/\mathfrak{p}_d) \end{array}$$

where $V_i = \overline{(R/\mathfrak{p}_i)} = \overline{R}_{\mathfrak{m}_i}$, the integral closure of R/\mathfrak{p}_i in its quotient field $Q(R/\mathfrak{p}_i)$, is a DVR. We will denote by t_i a uniformizing parameter of V_i and by

 v_i the valuation function associated to V_i . We also assume that $R/\mathfrak{m} \simeq V_i/(t_i)$ for every i and that $|R/\mathfrak{m}| \ge d$.

For any $x = (x_1, \ldots, x_d) \in Q \setminus Z$ (where Z is the set of zero divisors of Q) we define $v(x) = (v_1(x_1), \ldots, v_d(x_d))$. Hence we can define $v(R) = \{v(r) \mid r \in R \setminus Z\}$; more generally, for every regular fractional ideal I of R (where regular means that I contains a nonzero divisor), we set $v(I) = \{v(i) \mid i \in I \setminus Z\}$.

With these hypotheses and notation, we recall first the following results that will be used in the sequel (cf. [B-D'A-F]):

- v(R) is an additive subsemigroup of \mathbb{N}^d and v(I) is a semigroup ideal of v(R) (i.e. $v(I) + s \subseteq v(I)$, for every $s \in v(R)$).
- Considering the usual product ordering in \mathbb{N}^d , that is $(\alpha_1, \ldots, \alpha_d) \leq (\beta_1, \ldots, \beta_d)$ if and only if $\alpha_i \leq \beta_i$ for $i = 1, \ldots, d$, the set of values v(I) of a regular fractional ideal I contains an element of smallest value, i.e. $\min v(I)$ exists. We will denote it by $\mathbf{m}_{v(I)}$.
- There exists a $\boldsymbol{\delta} \in \mathbb{N}^d$ such that $\boldsymbol{\delta} + \mathbb{N}^d \subseteq v(R)$.
- The ideals of \overline{R} are of the form $\overline{R}(\delta) = \{x \in \overline{R} \mid v(x) \ge \delta\}$; the conductor $\mathfrak{C} = R : \overline{R}$ equals the largest ideal $\overline{R}(\delta)$ contained in R.
- If $I \subseteq J$ are two regular fractional ideals of R, then $\lambda_R(J/I)$ can be calculated by means of the sets of values v(J) and v(I). More precisely, if $\alpha, \beta \in v(I), \alpha < \beta$, we let $d_{v(I)}(\alpha, \beta)$ denote the common length of a saturated chain of elements of v(I) from α to β . Let $\mathbf{m}_{v(I)}, \mathbf{m}_{v(J)}$ be the minimal elements in v(I) and v(J) respectively. Then for any sufficiently large α we set $d(v(J) \setminus v(I)) = d_{v(J)}(\mathbf{m}_{v(J)}, \alpha) d_{v(I)}(\mathbf{m}_{v(I)}, \alpha)$. This definition is independent of the choice of α . Then we have $\lambda_R(J/I) = d(v(J) \setminus v(I))$.
- If $\mathbf{m}_{v(\mathfrak{m})} = (\alpha_1, \dots, \alpha_d)$, the multiplicity of R is $e(R) = \alpha_1 + \dots + \alpha_d$.
- $t(R) = \lambda(\mathfrak{m}^{-1}/R) \le e(R) 1.$

Notice that these hypotheses are slightly different by the hypotheses of [De] and [D'A-De]; however the inequalities $\lambda_R(\overline{R}/R) \leq t(R)\lambda_R(R/\mathfrak{C})$ and $0 \leq l^*(R) \leq (t(R) - 1)(\lambda_R(R/\mathfrak{C}) - 1)$ are still true, with the same proof: the existence of the canonical ideal of R follows from the fact that R is complete and reduced (cf. [H-K, Satz 6,21]) and if I is a regular ideal of R and $x \in I$ is an element of minimal value, then xR is a minimal reduction of I (cf. [D'A, Remarks 2.1 (2)]).

In [B-D'A-F] has been introduced the notion of multiplicity tree of a ring. Recall that, if I is an ideal of R, the blowing up R^{I} of I is $\bigcup_{n>0}(I^{n}:I^{n})$. We have $(I^{n}:I^{n}) \subseteq (I^{n+1}:I^{n+1})$ for each n, and $R^{I} = (I^{n_{0}}:I^{n_{0}})$ for some n_{0} , since R is Noetherian. Recall that we can associate to R, as in [L, p. 666], a sequence of semilocal rings $R = R_{0} \subseteq R_{1} \subseteq \cdots$ where R_{i+1} is obtained from R_{i} by blowing up rad (R_{i}) , the Jacobson radical of R_{i} . We call this sequence the Lipman sequence. Since, in our hypotheses, \overline{R} is a finitely generated *R*-module, this sequence stabilizes for some *n* and $R_h = \overline{R}$, for $h \ge n$. Recall also that, given a maximal ideal \mathfrak{m}_j of \overline{R} the branch sequence of *R* along \mathfrak{m}_j is the sequence of rings $(R_i)_{\mathfrak{m}_j \cap R_i}$ (cf. [L, p. 669])

Example 2.1 Let K be a field and let $R = K[[(t, u^2), (t, u^7), (t^2, u^7)]] \subset K[[t]] \times K[[u]]$; we get the following Lipman sequence: $R_1 = K[[t]] \times K[[u^2, u^5]]$, $R_2 = K[[t]] \times K[[u^2, u^3]]$, $R_3 = R_4 = \cdots = \overline{R} = K[[t]] \times K[[u]]$.

It is possible to associate to a local ring R with $\overline{R} = V_1 \times \cdots \times V_d$ a rooted tree, called the *blowing up tree* of R, in the following way: the nodes are all local rings occuring in all branch sequences. The root (at level 0) is R, and on level 1 there are the localizations (at its maximal ideals) of $R_1 = R^{\mathfrak{m}} = R^{\operatorname{rad}(R)}$, and so on. If U is a local ring in the tree and $\overline{U} = V_{i_1} \times \cdots \times V_{i_k}$, then U has k minimal primes $\mathfrak{q}_1, \ldots, \mathfrak{q}_k$. The vector $\mathbf{e}(U) = (e_1(U), \ldots, e_d(U))$ (where $e_j(U) = 0$ if $j \notin \{i_1, \ldots, i_k\}$ and $e_{i_j}(U) = e(U/\mathfrak{q}_j), j = 1, \ldots, k$) is said the *fine multiplicity* of U (thus the usual multiplicity of U is $\sum_{i=1}^d e_i(U)$). If we replace the local rings in the tree with their fine multiplicities, we get the *multiplicity tree* of R. We denote the nodes of the level i of the multiplicity tree by $\mathbf{e}_{(i)}^1, \ldots, \mathbf{e}_{(i)}^{l^i}$. In the example above we get the blowing up tree and the multiplicity tree depicted in Fig. 1.

Fig. 1

Remark 2.2 Notice that, since we assumed that \overline{R} is a product of DVR's, each ring R_i of the Lipman sequence associated to R is the direct product of its localizations at maximal ideals [B-D'A-F, Corollary 3.2], i.e., the direct product of the local rings which appear at level i in the blowing up tree.

In [B-D'A-F] is given a numerical characterization of those trees which are multiplicity trees of a ring:

Theorem 2.3 [B-D'A-F, Theorem 5.11] Let **T** be a tree of vectors $\{\mathbf{e}_{(i)}^{j} = (e_{i,1}^{j}, \ldots, e_{i,d}^{j})\}$ of \mathbb{N}^{d} (where $\mathbf{e}_{(0)}$ is the root of the tree and the index (i) denotes the level of the nodes in the tree). The following conditions are equivalent for **T**:

1) \mathbf{T} is the multiplicity tree of a ring.

2) **T** satisfies the three conditions a), b) and c) below:

a) There exists $n \in \mathbb{N}$ such that, for $m \ge n$, $\mathbf{e}_{(m)}^j = (0, \ldots, 0, 1, 0, \ldots, 0)$ (the nonzero coordinate in the *j*-th position) for any $j = 1, \ldots, d$.

b) $e_{i,h}^{j} = 0$ if and only if $\mathbf{e}_{(i)}^{j}$ is not in the h-th branch of \mathbf{T} (the h-th branch of the tree is the unique maximal path containing the h-th unit vectors).

c) $\mathbf{e}_{(i)}^{j} = \sum_{\mathbf{e} \in \mathbf{U} \setminus \mathbf{e}_{(i)}^{j}} \mathbf{e}$ for some finite subtree U of T, rooted in $\mathbf{e}_{(i)}^{j}$.

The connection between rings and their value semigroups is particularly strict for Arf rings. A ring R is said to be Arf if every regular integrally closed ideal is stable (cf. [L]; recall that a regular ideal I is *stable* if $(I : I) = z^{-1}I$ for some nonzero divisor $z \in I$). Under our hypotheses the integrally closed ideals are of the form $R(\alpha) = \{r \in R \mid v(r) \geq \alpha\}$ (where $\alpha \in v(R)$; cf. [D'A, Remarks 2.1.2]); in this case the element z has to be an element of value $v(z) = \alpha$. Similarly it is possible to define Arf semigroups: if S = v(R) is the value semigroup of a ring and $\alpha \in S$, define $S(\alpha) = \{\beta \in S \mid \beta \geq \alpha\}$; then S is said to be Arf if, for every $\alpha \in S$, $S(\alpha) - S(\alpha) := \{\beta \in \mathbb{Z} \mid \beta + S(\alpha) \subseteq S(\alpha)\} = S(\alpha) - \alpha$ (cf. [B-D'A-F, Section 3]). For Arf semigroups it is possible to define the multiplicity tree (cf. [B-D'A-F, Section 5]) and the following result holds:

Proposition 2.4 [B-D'A-F, Proposition 5.10] The following statements are equivalent:

(1) R is Arf.

(2) S = v(R) is Arf and the multiplicity trees of R and S are the same.

Moreover an Arf semigroup is completely described by its multiplicity tree (cf. [B-D'A-F, Proposition 5.9]); hence, in the case of Arf rings, it allows to compute all the numbers involved in the inequality $\lambda(\overline{R}/R) \leq t(R)\lambda(R/\mathfrak{C})$. More precisely we have the following

Proposition 2.5 Let \mathbf{T} be the multiplicity tree of an Arf ring R and let $\mathbf{T}_{\mathfrak{C}}$ be the subtree consisting of all the nodes of \mathbf{T} which are non-unit vectors.

1) If $n(\mathbf{T})$ is the number of nodes of $\mathbf{T}_{\mathfrak{C}}$, then $\lambda(R/\mathfrak{C}) = n(\mathbf{T})$.

2) If $\mathbf{e}_{(0)} = (e_{(0),1}, \dots, e_{(0),d})$ is the root of \mathbf{T} , then $t(R) = e(R) - 1 = e_{(0),1} + \dots + e_{(0),d} - 1$.

3) If $\mathbf{e}_{(i)}^{j} = (e_{(i),1}^{j}, \dots, e_{(i),d}^{j})$ are the nodes of \mathbf{T} , then

$$\lambda\left(\frac{\overline{R}}{\mathfrak{C}}\right) = \sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathfrak{C}}} \left(\sum_{h=1}^{d} e_{(i),h}^{j}\right)$$

$$l^{*}(R) = \sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathfrak{C}} \setminus \{\mathbf{e}_{(0)}\}} \left(e(R) - \sum_{h=1}^{d} e_{(i),h}^{j} \right)$$

Proof. 1) By [B-D'A-F, Proposition 5.9], $v(R) = \{\mathbf{0}\} \bigcup_{\mathbf{T}'} \left\{ \sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}'} \mathbf{e}_{(i)}^{j} \right\}$, where $\mathbf{0} \in \mathbb{N}^{d}$ and \mathbf{T}' ranges over all finite subtrees of \mathbf{T} rooted in $\mathbf{e}_{(0)}$. Hence a chain of points of v(R) is obtained considering a chain of subtrees rooted in $\mathbf{e}_{(0)}$: $\mathbf{T}_{1} \subseteq \mathbf{T}_{2} \subseteq \cdots \subseteq \mathbf{T}_{h}$. To get a saturated chain, the subtree \mathbf{T}_{i} has to be obtained by \mathbf{T}_{i-1} adding exactly one node of \mathbf{T} . Since $\lambda_{R}(R/\mathfrak{C})$ equals the lenght of a saturated chain of points of v(R) between $\mathbf{0}$ and $\boldsymbol{\delta}$, then we get the conclusion.

2) By Proposition 3.17 in [B-D'A-F], we have that t(R) = e(R) - 1; the second equality follows by the definition of multiplicity tree.

3) The first equality comes from [B-D'A-F, Corollary 5.13]. As for the second, by definition of $l^*(R)$ and from the points 1) and 2) of this proposition, it follows that

$$l^{*}(R) = t(R)\lambda_{R}(R/\mathfrak{C}) - \lambda_{R}(\overline{R}/R) = (t(R) + 1)\lambda_{R}(R/\mathfrak{C}) - \lambda_{R}(\overline{R}/\mathfrak{C}) = e(R)n(\mathbf{T}) - \sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathfrak{C}}} \left(\sum_{h=1}^{d} e_{(i),h}^{j} \right) = \sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathfrak{C}} \setminus \{\mathbf{e}_{(0)}\}} \left(e(R) - \sum_{h=1}^{d} e_{(i),h}^{j} \right).$$

If R is a ring, it is possible to define its Arf closure, R' (cf. [L, Proposition-Definition 3.1]), and the multiplicity trees of R and R' coincide (cf. [B-D'A-F, Proposition 5.3]). Hence we have:

Corollary 2.6 Let **T** be a tree of vectors of \mathbb{N}^d . The following conditions are equivalent for **T**:

T is the multiplicity tree of a ring.
T is the multiplicity tree of an Arf ring.

3 The main Theorem

Now we are ready to prove the main theorem of this paper.

Theorem 3.1 If n, t, l^* are three fixed natural numbers such that $n \ge 1, t \ge 1$ and $0 \le l^* \le (t-1)(n-1)$, then there exists a ring R, satysfying the hypoteses of this paper, such that $\lambda_R(R/\mathfrak{C}) = n, t(R) = t$ and $l^*(R) = l^*$.

Proof. We will prove that there exists an Arf ring R satisfying the statement of this Theorem. Hence, by Proposition 2.5 and Corollary 2.6, it is enought to construct a multiplicity tree \mathbf{T} of a ring R such that $n(\mathbf{T}) = n$, $e_{(0),1} + \cdots + e_{(0),d} = t + 1$ and $\sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathbf{C}} \setminus \{\mathbf{e}_{(0)}\}} \left(t + 1 - \sum_{h=1}^{d} e_{(i),h}^{j}\right) = l^{*}$. Let l^{*} , n and t

and

be three integers with $n \ge 1$, $t \ge 1$ and $0 \le l^* \le (t-1)(n-1)$; if n = 1, then $l^* = 0$ and for any t, the multiplicity tree with one branch, whose nodes are $t+1, 1, 1, \ldots$, satisfies the conditions of Theorem 2.3 and, if R is an Arf ring with this multiplicity tree, then, by Proposition 2.5, $l^*(R) = 0$, $\lambda_R(R/\mathfrak{C}) = n(\mathbf{T}) = 1$ and t(R) = t. Hence we can assume n > 1. Let be k an integer such that $1 \le k \le n-1$ and let \mathbf{T} be the multiplicity tree depicted in Fig. 2.

Fig. 2

In this tree $\mathbf{e}_{(0)} = \cdots = \mathbf{e}_{(n-k-1)} = (\alpha_1, \dots, \alpha_k)$, where $\alpha_1 + \cdots + \alpha_k = t+1$ and $\alpha_i \geq 2$, and $\mathbf{e}_{(n-k+1)}^j = (0, \dots, 0, x_j, 0, \dots, 0)$, where x_j is in the j-th place and $1 < x_j \leq \alpha_j$. By Theorem 2.3 and Corollary 2.6, **T** is the multiplicity tree of an Arf ring *R*. Hence by Proposition 2.5, $\lambda_R(R/\mathfrak{C}) = n(\mathbf{T}) = n$, t(R) = tand $l^*(R) = (k-1)e(R) + (\alpha_1 - x_1) + \cdots + (\alpha_k - x_k)$, so $l^*(R)$ can assume all the values between (k-1)e(R) = (k-1)(t+1) and (k-1)e(R) + e(R) - 2k =ke(R) - 2k = k(t-1). By Proposition 2.5, we have $e(R) \geq 2k$ and $t(R) \geq 2k-1$, but the inequality $(k-1)(t(R)+1) \leq k(t(R)-1)$ implies that $t(R) \geq 2k-1$. Hence our construction covers all the possible values of *t*, when n > 1 and $(k-1)(t+1) \leq l^* \leq k(t-1)$.

Since for n = 2, $l^* \leq t - 1$, it remains to construct suitable multiplicity trees for the cases n > 2 and $k(t-1) + 1 \leq l^*(R) \leq k(t+1) - 1$ where $1 \leq k \leq n - 2$. Assume that $l^* = k(t-1) + 1 + h$, where h is an integer with $0 \leq h \leq 2k - 2$. Now consider the tree **T** depicted in Fig. 3, where the number of coordinates of the vectors is t + 1 (and $t \geq 2$). This tree satisfies the conditions of Theorem 2.3, hence if R is an Arf ring with **T** as multiplicity tree, by Proposition 2.5, $\lambda_R(R/\mathfrak{C}) = n(\mathbf{T}) = n, t(R) = t$ and $l^*(R) = h + 1 + k(t-1) = l^*$. Notice that in the tree depicted in Fig. 3 we have $n \ge 1+h+1+k=k+h+2$; therefore we still have to consider the cases $n-h-2 < k \le n-2$, with h > 0.

Fig. 3

Now, if k = n - 2 - x with $0 \le x \le h - 1$, let q and r be the integers such that h + 1 = q(x + 1) + r with $1 \le r \le x + 1$ and set $\psi(x) = q + 1$; consider the tree **T** depicted in Fig. 4, where the number of coordinates of the vectors is t + 1.

Fig. 4

By Theorem 2.3 and Corollary 2.6, **T** is the multiplicity tree of an Arf ring R. Hence by Proposition 2.5, $\lambda_R(R/\mathfrak{C}) = n(\mathbf{T}) = n$, t(R) = t and $l^*(R) = (\psi(x) - 1)(x + 1 - r) + \psi(x)r + (t - 1)k = q(x + 1 - r) + (q + 1)r + tk - k = q(x + 1) + r + tk - k = h + 1 + tk - k = l^*$. By construction $t \ge \psi(x) + 1$ and, by

$$\begin{split} l^* &= k(t-1) + h + 1 \leq (n-1)(t-1), \text{it follows } t \geq \frac{n-k+h}{n-k-1}. \text{ Hence, in order to cover} \\ \text{all the possible values of } t, \text{ we have to show that the following inequalities hold:} \\ \psi(x) &< \frac{n-k+h}{n-k-1} \leq \psi(x) + 1. \text{ Since } n = k+2+x, \text{ then } \frac{n-k+h}{n-k-1} = \frac{x+2+h}{x+1} = 1 + \frac{h+1}{x+1} \\ \text{and by definition of } \psi, \text{ we have } \psi(x) < 1 + \frac{h+1}{x+1} \leq \psi(x) + 1. \end{split}$$

4 Remarks and examples

In the next example, fixed two integers n and t, we examine how the three constructions of the proof of Theorem 3.1 arise depending on the values of l^* .

Example 4.1 Let n = 4 and t = 5. We have $0 \le l^* \le 12 = 3 \cdot 4$, hence the possible values of k are 1, 2 and 3.

We use the first construction for $l^* = 0, 1, 2, 3, 4$ (k = 1), for $l^* = 6, 7, 8$ (k = 2) and $l^* = 12$ (k = 3).

We use the second construction for $l^* = 5$ (k = 1; here h = 0 and $n \ge k + h + 2)$ and for $l^* = 9$ (k = 2, here h = 0 and $n \ge k + h + 2)$.

We use the third construction for $l^* = 10, 11$ $(k = 2, here h = 1, 2, respectively, and <math>n \le k + h + 1$).

We give an explicit construction of the multiplicity trees and of the rings for the values $l^* = 8, 9, 10$.

 $l^* = 8$. In this case we have more than one choice. A possible multiplicity tree is depicted in Fig. 5 and it is obtained by the tree depicted in Fig. 2, setting n = 4, k = 2, and $\alpha_1 = \alpha_2 = 3$ (so that $\alpha_1 + \alpha_2 - 1 = 5 = t$).

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D'A-F], we construct the ring R in the following way: we start with $R^0 = K[[t]] \times K[[u]]$, where t, u are indeterminates over a field K; then we set $R^1 = (K + t^2 K[[t]]) \times (K + u^2 K[[u]]) = U_1 \times U_2$, $R^2 = (1, 1)K + (t^3 U_1 \times u^3 U_2)$ and $R = R^3 = (1, 1)K + (t^3 U_1 \times u^3 U_2)$

 $(1,1)K + (t^3,u^3)R^2 = (1,1)K + (t^3,u^3)K + ((t^6K + t^8K[[t]]) \times (u^6K + u^8K[[u]])).$ In Fig. 6 is depicted the blowing up tree of R.

 $l^* = 9$. The multiplicity tree is depicted in Fig. 7 and it is obtained by the tree in Fig. 3, setting n = 4, k = 2, h = 0 and t = 5.

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D'A-F], we construct the ring R in the following way: we start with $R^0 = K[[t_1]] \times K[[t_2]] \times K[[t_2]]$

$$\begin{split} K[[t_3]] \times K[[t_4]] \times K[[t_5]] \times K[[t_6]], \, \text{where } t_i \, \text{ are indeterminates over a field } K \\ \text{for every } i = 1, \ldots, 6 \, \text{and } |K| \geq 6; \, \text{then we set } R^1 = ((1,1)K + (t_1K[[t_1]] \times t_2K[[t_2]])) \times K[[t_3]] \times K[[t_4]] \times K[[t_5]] \times K[[t_6]] = U_1 \times K[[t_3]] \times K[[t_4]] \times K[[t_5]] \times K[[t_5]] \times K[[t_6]] = U_2 \times K[[t_6]] \times K[[t_6]] \times K[[t_6]] = U_2 \times K[[t_3]] \times K[[t_4]] \times K[[t_5]] \times K[[t_6]], R^3 = ((1,1,1,1,1)K + ((t_1,t_2)U_2 \times t_3K[[t_6]]) \times K[[t_6]] \times$$

Fig. 8

 $l^* = 10$. The multiplicity tree is obtained (cf. Fig. 9) by the tree depicted in Fig. 4, setting n = 4, k = 2, h = 1 (hence x = 0 and r = 0) and t = 5.

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D'A-F], we construct the ring R in the following way: we start with $R^0 = K[[t_1]] \times K[[t_2]] \times K[[t_3]] \times K[[t_4]] \times K[[t_5]] \times K[[t_6]]$, where t_i are indeterminates over a field K for every i = 1, ..., 6 and $|K| \ge 6$; then we set $R^1 = ((1, 1)K + (t_1K[[t_1]] \times t_2K[[t_2]])) \times K[[t_3]] \times K[[t_4]] \times K[[t_5]] \times K[[t_6]] = U_1 \times K[[t_3]] \times K[[t_4]] \times K[[t_4]] \times K[[t_5]] \times K[[t_6]] = U_1 \times K[[t_6]] \times K[[t_6]] \times K[[t_6]] = U_2 \times K[[t_6]] \times K[[t_6]]$

We now show that the use of subsemigroups of \mathbb{N}^d , with d > 1, is necessary to

construct rings R with fixed values of $\lambda_R(R/\mathfrak{C})$, t(R) and $l^*(R)$. More precisely we will focus our attention to the case $l^*(R) = t(R)$ and we will show that, if n is an integer large enough, then, for every $t \ge 1$, there is no local, one-dimensional, Noetherian, complete domain R with $\lambda_R(R/\mathfrak{C}) = n$ and $l^*(R) = t(R) = t$. Actually we will not need to assume that R is complete, but only R analytically irreducible (i.e. the completion \hat{R} of R with respect of the m-adic topology is a domain; cf. Proposition 4.7).

The following results are given in [De-L-M] under slightly different hypotheses. The assumption in [De] (and hence also in [De-L-M]) that R is excellent is used to get the existence of the canonical module of R isomorphic to an mprimary ideal and the infinite residue field implies the existence of principal minimal reductions of regular ideals. Under our hypotheses the existence of the canonical ideal of R follows from the fact that R is complete and reduced (cf. [H-K, Satz 6,21]). Moreover we do not need to assume (as in [De-L-M, Corollary 2.13]) that the field K is infinite, since if I is a regular ideal of R and $x \in I$ is an element of minimal value, then xR is a minimal reduction of I (cf. [D'A, Remarks 2.1 (2)]).

Proposition 4.2 [De-L-M, Proposition 2.12] Assume $l^*(R) = t(R)$ and let $x \in \mathfrak{m}$ be an element of minimal value $v(x) = \mathbf{m}_{v(\mathfrak{m})}$. Only the following values for $\lambda(R/(\mathfrak{C} + xR))$ and t(R) are possible:

- (a) $\lambda(R/(\mathfrak{C}+xR)) = 3$, t(R) = 2 and e(R) = 5;
- (b) $\lambda(R/(\mathfrak{C}+xR)) = 2$ and t(R) = e(R) 2;
- (c) $\lambda(R/(\mathfrak{C}+xR)) = 1$ and t(R) = e(R) 1.

Corollary 4.3 [De-L-M, Corollary 2.13] Let K a field and $R = K[[u^s | s \in S]]$, where $S \subseteq \mathbb{N}$ is a numerical semigroup. Assume $l^*(R) = t(R)$ and let $x \in \mathfrak{m}$ be an element of minimal value $v(x) = \mathbf{m}_{v(\mathfrak{m})}$. We have the following possibilities for $\lambda(R/(\mathfrak{C} + xR))$:

- (a) $\lambda(R/(\mathfrak{C}+xR)) = 3$, t(R) = 2 and e(R) = 5;
- (b) $\lambda(R/(\mathfrak{C}+xR))=2$ and t(R)=e(R)-2.

In [De-L-M] examples of rings of the form $R = K[[t^s | s \in S]]$ ($S \subseteq \mathbb{N}$) are given for the case (a) (cf. [De-L-M, Example 2.14]) and for the case (b) (cf. [De-L-M, Example 2.11 (1)]). With the construction of Theorem 3.1 we get examples of rings for the case (c) of Proposition 4.2, with value semigroup contained in \mathbb{N}^e , where $e \geq 3$ is the multiplicity of R (cf. Fig 3, with k = 1 and h = 0).

Let (R, \mathfrak{m}) be a local, Noetherian, one-dimesional, analytically irreducible domain. Assume also that, if $(\overline{R}, \mathfrak{n})$ is the integral closure of R in its quotient field, then $R \neq \overline{R}$ and $R/\mathfrak{m} \simeq \overline{R}/\mathfrak{n}$. Under these hypotheses the value semigroup of R is $S = v(R) = \{0, s_1, s_2, \dots, s_{n(S)-1}, s_{n(S)}, \rightarrow\}$, where $s_1 = e(R)$ and the arrow means that every integer greater than or equal to s_n belongs to S. The largest positive integer not in S is called the *Frobenius number* of S and is denoted by g(S). Moreover if $I \supseteq J$ are two fractional ideals of R, then $\lambda(I/J) =$ $|v(I) \setminus v(J)|$; in particular we have that $\lambda(R/\mathfrak{C}) = |\{0, 1, \ldots, g(S)\} \cap S| = n(S)$ and that $\lambda(\overline{R}/R) = |\mathbb{N} \setminus S| = g(S) + 1 - n(S)$. Moreover it is defined the *type* of Sas $t(S) = |T| = |\{q \in \mathbb{N} \setminus S \mid q + s \in S, \forall s \in S \setminus \{0\}\}|$ (for all the definitions and results about numerical semigroups we refer to [B-D-F]). Hence we can define $l^*(S) = n(S)t(S) - |\mathbb{N} \setminus S|$. Since $t(S) \ge t(R)$ (cf. [B-D-F, Theorem II.1.16]), we have that $l^*(S) \ge l^*(R)$ and in [B-D-F, Example II.1.19] is given an example for which the inequality t(S) > t(R) holds. However in the particular case $R = K[[u^s \mid s \in S]], t(R) = t(S)$ and hence $l^*(R) = l^*(S)$. Hence Corollary 4.3 can be translated to the semigroup level as the following statement:

Corollary 4.4 Let $S \subseteq \mathbb{N}$ be a numerical semigroup. Assume $l^*(S) = t(S)$, let $e = s_1$ be the smallest non zero element of S and set $e + S = \{e + s \mid s \in S\}$. We have the following possibilities for $|S \setminus ((e + S) \cup \{g(S) + 1, \rightarrow\})|$:

- (a) $|S \setminus ((e+S) \cup \{g(S)+1, \rightarrow\})| = 3, t(S) = 2$ and e = 5;
- (b) $|S \setminus ((e+S) \cup \{g(S)+1, \rightarrow\})| = 2$ and t(S) = e-2.

Now we are ready to study the numerical semigroups S such that $l^*(S) = t(S)$. Notice that, since the inequality $l^*(R) \leq (\lambda(R/\mathfrak{C}) - 1)(t(R) - 1)$ holds for the rings of the form $R = K[[u^s | s \in S]]$, then the corresponding inequality $l^*(S) \leq (n(S) - 1)(t(S) - 1)$ holds for numerical semigroups. It follows that, if $l^*(S) = t(S)$, then t(S) > 1.

Proposition 4.5 If n is an integer large enough (n > 14), then, for any numerical semigroup S such that n(S) = n, $l^*(S) \neq t(S)$.

Proof. We will prove that if $l^*(S) = t(S)$, then n(S) is bounded by 14. Let g = g(S) and n = n(S). By Corollary 4.4 we have two possibilities for $|S \setminus ((e + S) \cup \{g + 1, \rightarrow\})|$.

If S satisfies case (a) of Corollary 4.4, then $|S \setminus ((e+S) \cup \{g+1, \rightarrow\})| = 3$, t(S) = 2 and e = 5; by the first condition, there exist exactly two non zero elements of S, f and h, such that f < h < g, $f - 5 \notin S$ and $h - 5 \notin S$. It follows that, if 2f < g, then $2f = h + 5\alpha$ (with $\alpha \ge 0$) and, if f + h < g, then $f + h = 5\beta$ (with $\beta > 0$). But if both these two equalities hold, then $h = 5\beta - f = 2f - 5\alpha$, that is $3f = 5(\alpha + \beta)$, which is a contradiction since 5 does not divide f. Therefore $f + h \ge g + 1$.

Moreover $\{g - 4, \ldots, g\} = \{5(p-1), f + 5r_1, h + 5r_2, i_1, i_2\}$, where $i_1, i_2 \notin S$, $0 \leq r_2 \leq r_1$ and p is the integer such that 5(p-1) < g < 5p. Since $i_1, i_2 \in T = \{q \in \mathbb{N} \setminus S \mid q + s \in S, \forall s \in S \setminus \{0\}\}$ and t(S) = |T| = 2, then $f - 5 \notin T$ and $h - 5 \notin T$; hence there exist two elements $q_1, q_2 \in S \setminus \{0\}$ such that $(f - 5) + q_1 \notin S$ and $(h - 5) + q_2 \notin S$. This implies $q_1, q_2 \in \{f, h\}$ (in fact any element of S smaller than g is of the form $5\alpha, f + 5\alpha$ or $h + 5\alpha$, with $\alpha \geq 0$); in particular $f + h - 5 \leq g$ (otherwise, if f + h - 5 > g, then also 2h - 5 > g and q_2 does not exit). It follows that $g < f + h \leq g + 5$.

Let k and j be the integers such that 5k < f < 5(k+1) and 5j < h < 5(j+1). With this notation 5(k+j) < f+h < 5(k+j+2). By $g+1 \le f+h < 5(k+j+2)$ and by definition of p, we have $p \le k+j+2$. On the other side, since $5(k+j) < f+h \le g+5 < 5(p+1)$, we have $k+j \le p$.

Since $l^*(S) = t(S)n(S) - |\mathbb{N} \setminus S| = t(S)$, then $|\mathbb{N} \setminus S| = t(S)(n-1) = 2(n-1)$. Moreover, by definition of p, k and j, we have $n = p + p - k - 1 + p - j - 1 + \varepsilon = 3p - k - j - 2 + \varepsilon$ (where $\varepsilon = |\{5(p-1) + 1, \dots, g\} \cap S| = 0, 1, 2$) and $|\mathbb{N} \setminus S| = 4k + 3(j-k) + 2(p-j-1) + \gamma = k + j + 2p - 2 + \gamma$ (where $\gamma = |\{5(p-1) + 1, \dots, g\} \cap \mathbb{N} \setminus S| = 1, 2$). It follows that:

$$|\mathbb{N} \setminus S| = 2(n-1) \iff k+j+2p-2+\gamma = 6p-2(k+j-2)+2\varepsilon - 2 \iff 4p = 3(k+j)+\gamma - 2\varepsilon + 4 \Longrightarrow p \le 6$$

(the last inequality comes from the inequalities $k + j \le p$, $\varepsilon \ge 0$ and $\gamma \le 2$).

It follows that, since $k + j \ge p - 2$ and $\varepsilon \le 2$, then $n = 3p - k - j - 2 + \varepsilon \le 2p + 2 \le 14$.

If S satisfies case (b) of Corollary 4.4, then t(S) = e - 2 (hence, since t(S) > 1, we can assume e > 3) and $|S \setminus ((e + S) \cup \{g + 1, \rightarrow\})| = 2$; hence there exists exactly one non zero element f in S, such that f < g and $f - e \notin S$. Hence, by the uniqueness of f, either $2f \ge g + 1$ or, if 2f < g, then $2f = \alpha e$ (with $\alpha > 2$).

Moreover $\{g + 1 - e, \ldots, g\} = \{e(p-1), f + er, i_1, i_2, \ldots, i_{e-2}\}$, where p is the integer such that (p-1)e < g < pe and $i_1, i_2, \ldots, i_{e-2} \notin S$. Since $i_1, i_2, \ldots, i_{e-2} \in T = \{q \in \mathbb{N} \setminus S \mid q+s \in S, \forall s \in S \setminus \{0\}\}$ and t(S) = |T| = e-2, then $f - e \notin T$; it follows that there exists an element $q \in S \setminus \{0\}$ such that $(f - e) + q \notin S$. This implies that $2f - e \notin S$; hence $2f - e \leq g$, that is $f \leq (g + e)/2$. On the other hand, $2f \geq g + 1$, otherwise $2f - e = \alpha e - e = (\alpha - 1)e \in S$; it follows that $f \geq (g + 1)/2$.

We denote by k the integer such that ke < f < (k+1)e. By definition of k, we have $(k+1)e > f \ge (g+1)/2$ and by definition of p we have $2(k+1) \ge p$, that is $k \ge (p/2) - 1$. Moreover, since $f \le (g+e)/2$, by definition of k, we have $ke < f \le (g+e)/2$, that is (2k-1)e < g. By definition of p, we have $2k-1 \le p-1$, hence $k \le p/2$.

Therefore $(p/2) - 1 \le k \le p/2$ and we have to consider only three different cases, k = (p/2) - 1, p/2 (when p is even) and k = (p-1)/2 (when p is odd).

Assume p even and k = p/2. Since $l^*(S) = t(S)n(S) - |\mathbb{N} \setminus S| = t(S)$, then $|\mathbb{N} \setminus S| = t(S)(n-1) = (e-2)(n-1)$. Moreover, by definition of p and k, we have $n = p+p-k-1+\varepsilon = (3/2)p-1+\varepsilon$ (where $\varepsilon = |\{(p-1)e+1,\ldots,g\} \cap S| = 0,1$) and $|\mathbb{N} \setminus S| = (e-1)p/2+(e-2)(p/2-1)+\gamma$ (where $\gamma = |\{(p-1)e+1,\ldots,g\} \cap \mathbb{N} \setminus S| = 1,2,\ldots,e-2$). It follows that:

$$|\mathbb{N} \setminus S| = (e-2)(n-1) \iff (1/2)pe - (3/2)p = \gamma - \varepsilon(e-2) + e - 2 \iff p(e-3) = 2(\gamma - \varepsilon(e-2) + e - 2).$$

Since $\varepsilon \ge 0$ and $\gamma \le e-2$, it follows that $p \le 4(e-2)/(e-3)$. Hence, since p is an even integer, if e = 4, then $p \le 8$, if e = 5, then $p \le 6$ and, if $e \ge 6$, then $p \le 4$. In any case, since $\varepsilon \le 1$, then $n = (3/2)p - 1 + \varepsilon \le 12$.

We now consider the case p even and k = p/2 - 1. Since $l^*(S) = t(S)n(S) - |\mathbb{N} \setminus S| = t(S)$, then $|\mathbb{N} \setminus S| = t(S)(n-1) = (e-2)(n-1)$. Moreover, by definition of p and k, we have $n = p + p - k - 1 + \varepsilon = (3/2)p + \varepsilon$ (where $\varepsilon = |\{(p-1)e+1, \ldots, g\} \cap S| = 0, 1$) and $|\mathbb{N} \setminus S| = (e-1)(p/2-1) + (e-2)p/2 + \gamma$ (where $\gamma = |\{(p-1)e+1, \ldots, g\} \cap \mathbb{N} \setminus S| \in \{1, 2 \dots, e-2\}$). It follows that:

$$|\mathbb{N} \setminus S| = (e-2)(n-1) \iff (1/2)pe - (3/2)p = \gamma - \varepsilon(e-2) - 1 \iff p(e-3) = 2(\gamma - \varepsilon(e-2) - 1).$$

Since p is an even positive integer, $\varepsilon \ge 0$ and $\gamma \le e - 2$, it follows that p = 2. But this implies k = p/2 - 1 = 0 which is a contradiction to f > e.

Finally we consider the case p odd and k = (p-1)/2. Since $l^*(S) = t(S)n(S) - |\mathbb{N} \setminus S| = t(S)$, then $|\mathbb{N} \setminus S| = t(S)(n-1) = (e-2)(n-1)$. Moreover, by definition of p and k, we have $n = p+p-k-1+\varepsilon = p+(p-1)/2+\varepsilon$ (where $\varepsilon = |\{(p-1)e+1,\ldots,g\} \cap S| = 0, 1$) and $|\mathbb{N} \setminus S| = (e-1)(p-1)/2+(e-2)(p-1)/2+\gamma$ (where $\gamma = |\{(p-1)e+1,\ldots,g\} \cap \mathbb{N} \setminus S| \in \{1,2\ldots,e-2\}$). It follows that:

$$|\mathbb{N} \setminus S| = (e-2)(n-1) \iff pe-3p = 2\gamma - 2\varepsilon(e-2) + e - 3 \iff p(e-3) = 2(\gamma - \varepsilon(e-2)) + e - 3.$$

Since $\varepsilon \ge 0$ and $\gamma \le e - 2$, it follows that $p \le (3e - 7)/(e - 3)$ and, since p is an odd integer larger than 1, we get that p = 3, 5 when e = 4 and p = 3 when $e \ge 5$.

It follows that, since $\varepsilon \leq 1$, then $n = p + (p-1)/2 + \varepsilon \leq 8$.

Remark 4.6 We could make the statement of Proposition 4.5 more precise studying which semigroups can be constructed for every single value of p.

If S satisfies case (a), it is proved in Proposition 4.5 that $p \leq 6$. Since $p \geq 2$ we have to consider five cases.

If p = 2, then, by definition of $p, 2 \cdot 5 = 10 \ge g + 1$. The elements f and h introduced in this proof are smaller than g + 1. Hence n = 4 and $g + 1 = |\mathbb{N} \setminus S| + n = 2(n-1) + n = 10$. In order to get t(S) = 2 we find the following semigroups $\{0, 5, 6, 7, 10, \rightarrow\}$ and $\{0, 5, 6, 8, 10, \rightarrow\}$.

If p = 3, then, by definition of p, $3 \cdot 5 = 15 \ge g + 1$. Moreover for the integer k and j introduced in the proof of Proposition 4.5 we have $j, k \ge 1$ and $j + k \le p$. Hence $n = 3p - k - j - 2 + \varepsilon = 4, 5, 6, 7$ (since $\varepsilon = 0, 1, 2$). If n = 4, then $g + 1 = |\mathbb{N} \setminus S| + n = 2(n - 1) + n = 10$ which is a contradiction to 10 = (p - 1)e < g + 1. If n = 5, then $g + 1 = |\mathbb{N} \setminus S| + n = 2(n - 1) + n = 13$; in order to get t(S) = 2 we find only the semigroup $\{0, 5, 8, 9, 10, 13, \rightarrow\}$. If n = 6, 7, then $g + 1 = |\mathbb{N} \setminus S| + n = 2(n - 1) + n \ge 16$, a contradiction to $15 \ge g + 1$.

With similar arguments we get that there are no semigroups satisfying conditions of the case (a) with $4 \le p \le 6$.

Analyzing analogously the case (b), it is possible to find semigroups verifying $l^*(S) = t(S)$ only for particular subcases.

If p is even and k = p/2 we get, for e = 4 and p = 4, the semigroup $S = \{0, 4, 8, 9, 12, 13, 16, \rightarrow\}$ (here n(S) = 6). While, for $e \ge 4$ and p = 2, we get infinite semigroups S (with n(S) = 4): for example $S = \{0, e, e + 1, 2e - 1, \rightarrow\}$.

If p is odd and k = (p-1)/2, we obtain, for e = 4 and p = 5, the semigroup $S = \{0, 4, 8, 11, 12, 15, 16, 19, \rightarrow\}$ (here n(S) = 7). While, for e > 4 and p = 3, we get the semigroups $S = \{0, e, 2e - 2, 2e, 3e - 2, \rightarrow\}$ (with n(S) = 4).

Using Proposition 4.5 we can prove that, if n is an integer large enough, then, for every $t \ge 1$, there is no analytically irreducible domain R with $\lambda_R(R/\mathfrak{C}) = n$ and $l^*(R) = t(R) = t$ (we remark that we do not need to assume R complete, since also in this case canonical ideal and principal minimal reductions exist, as it is shown in [D'A-De]). This result is not an immediate consequence of Proposition 4.5, since it is possible that $l^*(R) = t(R)$ while $l^*(v(R)) \neq t(v(R))$; the example introduced in [B-D-F, Example II.1.19] works to show this fact: let K be a field of characteristic different by 2 and let $R = K[[t^4, t^6 + t^7, t^{11}]]$. The value semigroup of R is $v(R) = \{0, 4, 6, 8, 10, \rightarrow\}$ and t(v(R)) = 3 since $T = \{q \in \mathbb{N} \setminus S \mid q + s \in S, \forall s \in S \setminus \{0\}\} = \{2, 7, 9\}$. Moreover $|\mathbb{N} \setminus v(R)| = 6$ and n(v(R)) = 4; hence $l^*(v(R)) = 3 \cdot 4 - 6 = 6 \neq 3$. On the other hand, as it is shown in [B-D-F, Example II.1.19], t(R) = 2, thus $l^*(R) = 2 \cdot 4 - 6 = 2$.

Proposition 4.7 Let (R, \mathfrak{m}) be a local, Noetherian, one-dimesional, analytically irreducible domain. Assume also that, if $(\overline{R}, \mathfrak{n})$ is the integral closure of R in its quotient field, then $R \neq \overline{R}$ and $R/\mathfrak{m} \simeq \overline{R}/\mathfrak{n}$. If n is an integer large enough (n > 14) and $\lambda(R/\mathfrak{C}) = n$, then $l^*(R) \neq t(R)$.

Proof. Let S = v(R) be the value semigroup of R and $e = e(R) = s_1$. We will prove that, if $l^*(R) = t(R)$, then $\lambda(R/\mathfrak{C}) \leq 14$.

If $l^*(R) = t(R)$, by Proposition 4.2, only the following values for $\lambda(R/(\mathfrak{C} + xR))$ and t(R) are possible:

- (a) $\lambda(R/(\mathfrak{C} + xR)) = 3$, t(R) = 2 and e = 5;
- (b) $\lambda(R/(\mathfrak{C}+xR)) = 2$ and t(R) = e-2;
- (c) $\lambda(R/(\mathfrak{C}+xR)) = 1$ and t(R) = e-1.

If case (c) holds for R, then $e - 1 = t(R) \leq t(S) \leq e - 1$ implies that t(R) = t(S) = e - 1 (for the inequality $t(S) \leq e - 1$ cf. [B-D-F, Remark I.2.7 (a)]). Hence $l^*(S) = l^*(R)$ and therefore $l^*(S) = t(S) = e - 1$, but, by Corollary 4.4, this is not possible; it follows that R cannot satisfy case (c).

If case (a) holds for R, then $2 = t(R) \le t(S) \le 5 - 1$. If t(S) = 2 we have that $l^*(S) = l^*(R)$, so $l^*(S) = t(S)$; hence we can apply Proposition 4.5 (case (a)) and we get $\lambda(R/\mathfrak{C}) = n(S) \le 14$.

Assume that t(S) = 3, 4. We have e = 5 and $3 = \lambda(R/(\mathfrak{C} + xR)) = |S \setminus ((5+S) \cup \{g+1, \rightarrow\})|$; hence there exist exactly two non zero elements of S, f and h, such that f < h < g, $f - 5 \notin S$ and $h - 5 \notin S$. It follows that, if 2f < g, then $2f = h + 5\alpha$ (with $\alpha \ge 0$) and, if f + h < g, then $f + h = 5\beta$ (with $\beta > 0$). But if both these two equalities hold, then $h = 5\beta - f = 2f - 5\alpha$, that is $3f = 5(\alpha + \beta)$, which is a contradiction since 5 does not divide f. Therefore $f + h \ge g + 1$.

Moreover $\{g-4,\ldots,g\} = \{5(p-1), f+5r_1, h+5r_2, i_1, i_2\}$, where $i_1, i_2 \notin S$, $0 \leq r_2 \leq r_1$ and p is the integer such that 5(p-1) < g < 5p. Since $i_1, i_2 \in T = \{q \in \mathbb{N} \setminus S \mid q+s \in S, \forall s \in S \setminus \{0\}\}$ and t(S) = |T| = 3, 4, then at least one of the integers f-5 and h-5 belongs to T; hence $f+h-5 \in S$. If $f+h-5 \geq g+1$ then also $2h-5 \geq g+1$ and this implies that $t(R) \geq 3$: in fact by $\lambda(R/xR + \mathfrak{C}) = 3$ it follows that $\lambda(\mathfrak{m}/xR + \mathfrak{C}) = 2$, hence there exist two elements $y, z \in R$ such that $\mathfrak{m} = xR + yR + zR + \mathfrak{C}$ and we can assume that v(y) = f and v(z) = h, since, if $y_1, y_2 \in R$ and $v(y_1) = v(y_2)$, then there exists a unity $u \in R$ such that $v(y_1 - uy_2) > v(y_1)$ (cf. [K, Theorem]); moreover, since $\mathfrak{C} = \{r \in \overline{R} \mid v(r) \geq g+1\}$ (cf. [K, Theorem]), by $f+h-5 \geq g+1$ and $2h-5 \geq g+1$, it follows that $z/x \in \mathfrak{m}^{-1}$. But this is a contradiction to t(R) = 2. Hence $f+h-5 \leq g$ and therefore $g < f+h \leq g+5$.

Since $l^*(R) = t(R)$ or, equivalently, $t(R)(\lambda(R/\mathfrak{C}) - 1) = \lambda(\overline{R}/R)$, then $2(n(S) - 1) = |\mathbb{N} \setminus S|$ and, since $g < f + h \leq g + 5$, we can use the same argument as in the proof of Proposition 4.5 (case (a)) to get $n \leq 14$.

If case (b) holds for R, then $e-2 = t(R) \le t(S) \le e-1$. If t(S) = e-2 we have that $l^*(S) = l^*(R)$, so $l^*(S) = t(S)$; hence we can apply Proposition 4.5 (case (b)) and we get $\lambda(R/\mathfrak{C}) = n(S) \le 12$.

Assume that t(S) = e - 1. We have $2 = \lambda(R/(\mathfrak{C} + xR)) = |S \setminus ((e + S) \cup \{g+1, \rightarrow\})|$; hence there exists exactly one non zero element f in S, such that f < g and $f - e \notin S$. Hence, by the uniqueness of f, either $2f \ge g + 1$ or, if 2f < g, then $2f = \alpha e$ (with $\alpha > 2$).

Moreover $\{g + 1 - e, \ldots, g\} = \{e(p-1), f + er, i_1, i_2, \ldots, i_{e-2}\}$, where p is the integer such that (p-1)e < g < pe and $i_1, i_2, \ldots, i_{e-2} \notin S$. Since $i_1, i_2, \ldots, i_{e-2} \in T = \{q \in \mathbb{N} \setminus S \mid q+s \in S, \forall s \in S \setminus \{0\}\}$ and t(S) = |T| = e-1, then $f - e \in T$; it follows that $2f - e \in S$. If $2f - e \ge g+1$, then t(R) = e-1: in fact by $\lambda(R/xR + \mathfrak{C})$ it follows that there exits $y \in R$ such that $\mathfrak{m} = xR + yR + \mathfrak{C}$ and we can assume that v(y) = f; but $2f - e \ge g+1$ implies that $y/x \in \mathfrak{m}^{-1}$. But this is a contradiction to t(R) = e-2. It follows that $2f - e \le g$, that is $f \le (g+e)/2$.

Since $l^*(R) = t(R)$ or, equivalently, $t(R)(\lambda(R/\mathfrak{C}) - 1) = \lambda(\overline{R}/R)$, then $(e - 2)(n(S) - 1) = |\mathbb{N} \setminus S|$. Therefore, if $2f \ge g + 1$ (that is $f \ge (g + 1)/2$), we can use the same argument as in the proof of Proposition 4.5 (case (b)) to get $n \le 12$.

Otherwise, if 2f < g, then $2f = \alpha e$ (with $\alpha > 2$). Denote by k the integer such that ke < f < (k+1)e and by p the integer such that $(p-1)e < g \le pe$. By definition of p and k, we have $n = p + p - k - 1 + \varepsilon$ (where $\varepsilon = |\{(p-1)e + 1, \ldots, g\} \cap S| = 0, 1$) and $|\mathbb{N} \setminus S| = (e-1)k + (e-2)(p-k-1) + \gamma$ (where $\gamma = |\{(p-1)e + 1, \ldots, g\} \cap \mathbb{N} \setminus S| = 1, 2, \ldots, e-2$). It follows that:

$$\begin{split} |\mathbb{N} \setminus S| &= (e-2)(n-1) \Longleftrightarrow p(e-2) - (e-2) + \varepsilon(e-2) = k(e-1) + \gamma \\ &\Longrightarrow (p-1)(e-2) \le k(e-1) + (e-2) \Longrightarrow k \ge (p-2)(e-2)/(e-1) \end{split}$$

(where the first implication follows by $\varepsilon \geq 0$ and $\gamma \leq e-2$).

Since ke < f, then 2ke < 2f < g; hence $p > 2k \ge 2(p-2)(e-2)/(e-1)$ or equivalently p(e-1) > 2(p-2)(e-2). It follows that p(e-3) < 4(e-2); hence,

by $e \ge 4$ (since e-2 = t(R) > 1), it follows that p < 8 and $n = 2p-k-1+\varepsilon \ge 13$ (since $k \ge 1$ and $\varepsilon \le 1$).

References

- [B-D'A-F] V. Barucci M. D'Anna R. Fröberg, Analytically Unramified Onedimensional Semilocal Rings and their Value Semigroups, J. Pure Appl. Algebra 147 (2000) 215-254.
- [B-D-F] V. Barucci D. E. Dobbs M. Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc 125 (598) (1997).
- [D'A] M. D'Anna, The canonical module of a one-dimensional reduced local ring, Comm. Algebra 25 (1997), 2939-2965.
- [D'A-De] M. D'Anna D. Delfino, Integrally closed ideals and type sequences in one dimensional local rings, Rocky Montain J. Math.27 (1997), 1065-1073.
- [De] D. Delfino, On the inequality $\lambda_R(\overline{R}/R) \leq t(R)\lambda_R(R/\mathfrak{C})$ for onedimensional local rings, J.Algebra **169** (1994), 332-342.
- [De-L-M] D. Delfino L. Leer R. Muntean, A lenght inequality for onedimensional local rings, Comm. Algebra 28 (2000), 2555-2564.
- [D] F. Delgado de la Mata, *The semigroup of values of a curve singularity with several branches*, Manuscripta Math. **59** (1987), 347–374.
- [H-K] J. Herzog E. Kunz, *Kanonische Modul eines Cohen-Macaulay Rings* Springer Lecture Notes in Math. **238** (1971).
- [K] E. Kunz, The value-semigroup of a one-dimensional Gorestein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.
- [L] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.
- [M] H. Matsumura, *Commutative Ring theory*, Cambridge studies in advanced mathematics **8**.
- [Ma] E. Matlis, *One-dimensional Cohen Macaulay rings*, Springer Lecture Notes in Math. **327** (1973).
- [Ms] T. Matsuoka, On the degree of singularity of one-dimensional analytically irreducible noetherian rings, J. Math. Kyoto Univ. 11 (1971), 485–491.