Construction of one-dimensional rings with fixed values of $\boldsymbol{t}(\boldsymbol{R}) \boldsymbol{\lambda}_{\boldsymbol{R}}(\boldsymbol{R} / \mathfrak{C})-\lambda_{\boldsymbol{R}}(\overline{\boldsymbol{R}} / \boldsymbol{R})$
 Marco D'Anna
 Vincenzo Micale

Research Reports in Mathematics Number 14, 2000

Department of Mathematics
Stockholm University

Electronic versions of this document are available at http://www.matematik.su.se/reports/2000/14

Date of publication: October 18, 2000
2000 Mathematics Subject Classification: Primary 13A18.
Keywords: semigroup of values, one-dimensional ring.
Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden

Electronic addresses:
http://www.matematik.su.se
info@matematik.su.se

Construction of one-dimensional rings with fixed values of $t(R) \lambda_{R}(R / \mathfrak{C})-\lambda_{R}(\bar{R} / R)$

M. D'Anna* V. Micale ${ }^{\dagger}$

October 12, 2000

1 Introduction

Let R be a local, Noetherian, one-dimensional domain; assume also that R is analytically irreducible or, equivalently, that the integral closure \bar{R} of R in its quotient field is a DVR and is a finite R-module. It is natural to associate to R a value semigroup $v(R)$ which is a subsemigroup of \mathbb{N} and it is well known that there is a strict connection between R and $v(R)$, when R and \bar{R} have the same residue field (cf. [K, Ms]).

More generally, when R is not a domain, but just a reduced ring, if we assume that \bar{R} is a finite R-module (or, equivalently, R analytically unramified), it is again possible to associate to R a value semigroup, which, in this case, is a subsemigroup of \mathbb{N}^{d}, where d is the number of maximal primes of \bar{R} (cf. [D, D'A]).

An important class of examples of such rings is given by the local rings of an algebric curve over an algebraically closed field in a singular point.

The key fact that allows to connect a ring to its value semigroup is that it is possible to compute the lenght $\lambda_{R}(I / J)$ (where $I \supseteq J$ are ideals of R) in terms of the semigroup. In this context one can consider the inequality $\lambda_{R}(\bar{R} / R) \leq t(R) \lambda_{R}(R / \mathfrak{C})$ (cf. [Ms, Proposition 3] and [De, Proposition 2.1]), where $\mathfrak{C}=(\bar{R}: R)$ is the conductor of R and $t(R)$ is the Cohen-Macaulay type.

If $l^{*}(R)=t(R) \lambda_{R}(R / \mathfrak{C})-\lambda_{R}(\bar{R} / R)$, it is proved in [D'A-De, Proposition 2.1] that $0 \leq l^{*}(R) \leq(t(R)-1)\left(\lambda_{R}(R / \mathfrak{C})-1\right)$. It is possible to give a characterization of rings satisfying the condition $l^{*}(R) \leq t(R)-2$ and, assuming also that $t(R)=e(R)-1$, of rings satisfying the condition $l^{*}(R)<t(R)$ (where $e(R)$ is the multiplicity of R; cf. [De, Theorems 2.3-2.10]). In the case $l^{*}(R) \geq t(R)$ there are results involving the type and the multiplicity of the ring R and the lenght $\lambda(R /(\mathfrak{C}+x R)$) (where $x R$ is a minimal reduction of the maximal ideal; cf. [De-L-M, Theorem 2.2]), but a complete classification of such rings seems out of reach at present.

[^0]It is natural to ask whether, fixed three natural numbers n, t, l^{*} such that $n \geq 1, t \geq 1$ and $0 \leq l^{*} \leq(t-1)(n-1)$, there exists a ring R such that $\lambda_{R}(R / \mathfrak{C})=n, t(R)=t$ and $l^{*}(R)=l^{*}$.

The main goal of this paper is to give a positive answer to this question, giving a way to construct such rings. To make this construction we assume that the rings are complete and Arf. While the first assumption gives just a simplification of notation (cf. [D'A]), the second one allows to move the problem from the ring level to the semigroup level, giving the notion of Arf semigroup as in [B-D'A-F]. The main ingredient of the construction is the multiplicity tree of a ring (or of an Arf semigroup), introduced in [B-D'A-F].

In the next section we give all the preliminaries to our construction; in particular we explicitly give the way to read all the integers involved in our inequality, in terms of multiplicity tree (cf. Proposition 2.5). In section 3 we give the construction of the multiplicity trees satisfying the conditions requested (cf. Theorem 3.1). In section 4 we produce an example of the construction for particular values of n, t and l^{*} (cf. Example 4.1) and we study the case $l^{*}(R)=$ $t(R)$, showing that if $\lambda(\bar{R} / \mathfrak{C})$ is large enough, then there is no analytically irreducible ring R such that $l^{*}(R)=t(R)$ (cf. Proposition 4.7); this fact implies that, in order to get a positive answer to the main question, it is necessary to consider reduced rings and not only analytically irreducible domains.

2 Preliminaries

Throughout the rest of this paper we will assume that (R, \mathfrak{m}) is a local, complete, one-dimensional, reduced, Noetherian ring; we will denote by \bar{R} the integral closure of R in its total ring of fractions Q and we assume that $R \neq \bar{R}$; notice that \bar{R} is a finite R-module.

Under these hypotheses \bar{R} is semilocal and it is a finite R-module (cf. [Ma, Theorem 10.2]); moreover the number d of maximal ideals of \bar{R} equals the number of minimal primes of R (cf. [D'A, Proposition 1.1]). We will denote by \mathfrak{m}_{i} the maximal ideals of \bar{R} and by \mathfrak{p}_{i} the minimal primes of R. We have the following commutative diagram

where $V_{i}=\overline{\left(R / \mathfrak{p}_{i}\right)}=\bar{R}_{\mathfrak{m}_{i}}$, the integral closure of R / \mathfrak{p}_{i} in its quotient field $Q\left(R / \mathfrak{p}_{i}\right)$, is a DVR. We will denote by t_{i} a uniformizing parameter of V_{i} and by
v_{i} the valuation function associated to V_{i}. We also assume that $R / \mathfrak{m} \simeq V_{i} /\left(t_{i}\right)$ for every i and that $|R / \mathfrak{m}| \geq d$.
For any $x=\left(x_{1}, \ldots, x_{d}\right) \in Q \backslash Z$ (where Z is the set of zero divisors of Q) we define $v(x)=\left(v_{1}\left(x_{1}\right), \ldots, v_{d}\left(x_{d}\right)\right)$. Hence we can define $v(R)=\{v(r) \mid r \in$ $R \backslash Z\}$; more generally, for every regular fractional ideal I of R (where regular means that I contains a nonzero divisor), we set $v(I)=\{v(i) \mid i \in I \backslash Z\}$.

With these hypotheses and notation, we recall first the following results that will be used in the sequel (cf. [B-D'A-F]):

- $v(R)$ is an additive subsemigroup of \mathbb{N}^{d} and $v(I)$ is a semigroup ideal of $v(R)$ (i.e. $v(I)+s \subseteq v(I)$, for every $s \in v(R)$).
- Considering the usual product ordering in \mathbb{N}^{d}, that is $\left(\alpha_{1}, \ldots, \alpha_{d}\right) \leq$ $\left(\beta_{1}, \ldots, \beta_{d}\right)$ if and only if $\alpha_{i} \leq \beta_{i}$ for $i=1, \ldots, d$, the set of values $v(I)$ of a regular fractional ideal I contains an element of smallest value, i.e. $\min v(I)$ exists. We will denote it by $\mathbf{m}_{v(I)}$.
- There exists a $\boldsymbol{\delta} \in \mathbb{N}^{d}$ such that $\boldsymbol{\delta}+\mathbb{N}^{d} \subseteq v(R)$.
- The ideals of \bar{R} are of the form $\bar{R}(\underline{\boldsymbol{\delta}})=\{x \in \bar{R} \mid v(x) \geq \boldsymbol{\delta}\}$; the conductor $\mathfrak{C}=R: \bar{R}$ equals the largest ideal $\bar{R}(\boldsymbol{\delta})$ contained in R.
- If $I \subseteq J$ are two regular fractional ideals of R, then $\lambda_{R}(J / I)$ can be calculated by means of the sets of values $v(J)$ and $v(I)$. More precisely, if $\boldsymbol{\alpha}, \boldsymbol{\beta} \in v(I), \boldsymbol{\alpha}<\boldsymbol{\beta}$, we let $d_{v(I)}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ denote the common length of a saturated chain of elements of $v(I)$ from $\boldsymbol{\alpha}$ to $\boldsymbol{\beta}$. Let $\mathbf{m}_{v(I)}, \mathbf{m}_{v(J)}$ be the minimal elements in $v(I)$ and $v(J)$ respectively. Then for any sufficiently large $\boldsymbol{\alpha}$ we set $d(v(J) \backslash v(I))=d_{v(J)}\left(\mathbf{m}_{v(J)}, \boldsymbol{\alpha}\right)-d_{v(I)}\left(\mathbf{m}_{v(I)}, \boldsymbol{\alpha}\right)$. This definition is independent of the choice of $\boldsymbol{\alpha}$. Then we have $\lambda_{R}(J / I)=$ $d(v(J) \backslash v(I))$.
- If $\mathbf{m}_{v(\mathfrak{m})}=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$, the multiplicity of R is $e(R)=\alpha_{1}+\cdots+\alpha_{d}$.
- $t(R)=\lambda\left(\mathfrak{m}^{-1} / R\right) \leq e(R)-1$.

Notice that these hypotheses are slightly different by the hypotheses of [De] and [D'A-De]; however the inequalities $\lambda_{R}(\bar{R} / R) \leq t(R) \lambda_{R}(R / \mathfrak{C})$ and $0 \leq l^{*}(R) \leq(t(R)-1)\left(\lambda_{R}(R / \mathfrak{C})-1\right)$ are still true, with the same proof: the existence of the canonical ideal of R follows from the fact that R is complete and reduced (cf. [H-K, Satz 6,21]) and if I is a regular ideal of R and $x \in I$ is an element of minimal value, then $x R$ is a minimal reduction of I (cf. [D'A, Remarks 2.1 (2)]).

In [B-D'A-F] has been introduced the notion of multiplicity tree of a ring. Recall that, if I is an ideal of R, the blowing up R^{I} of I is $\cup_{n>0}\left(I^{n}: I^{n}\right)$. We have $\left(I^{n}: I^{n}\right) \subseteq\left(I^{n+1}: I^{n+1}\right)$ for each n, and $R^{I}=\left(I^{n_{0}}: I^{n_{0}}\right)$ for some n_{0}, since R is Noetherian. Recall that we can associate to R, as in [L, p. 666], a sequence of semilocal rings $R=R_{0} \subseteq R_{1} \subseteq \cdots$ where R_{i+1} is obtained from R_{i} by blowing up $\operatorname{rad}\left(R_{i}\right)$, the Jacobson radical of R_{i}. We call this sequence the

Lipman sequence. Since, in our hypotheses, \bar{R} is a finitely generated R-module, this sequence stabilizes for some n and $R_{h}=\bar{R}$, for $h \geq n$. Recall also that, given a maximal ideal \mathfrak{m}_{j} of \bar{R} the branch sequence of R along \mathfrak{m}_{j} is the sequence of rings $\left(R_{i}\right)_{\mathfrak{m}_{j} \cap R_{i}}$ (cf. [L, p. 669])
Example 2.1 Let K be a field and let $R=K\left[\left[\left(t, u^{2}\right),\left(t, u^{7}\right),\left(t^{2}, u^{7}\right)\right]\right] \subset K[[t]] \times$ $K[[u]]$; we get the following Lipman sequence: $R_{1}=K[[t]] \times K\left[\left[u^{2}, u^{5}\right]\right], R_{2}=$ $K[[t]] \times K\left[\left[u^{2}, u^{3}\right]\right], R_{3}=R_{4}=\cdots=\bar{R}=K[[t]] \times K[[u]]$.

It is possible to associate to a local ring R with $\bar{R}=V_{1} \times \cdots \times V_{d}$ a rooted tree, called the blowing up tree of R, in the following way: the nodes are all local rings occuring in all branch sequences. The root (at level 0) is R, and on level 1 there are the localizations (at its maximal ideals) of $R_{1}=R^{\mathrm{m}}=R^{\mathrm{rad}(R)}$, and so on. If U is a local ring in the tree and $\bar{U}=V_{i_{1}} \times \cdots \times V_{i_{k}}$, then U has k minimal primes $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{k}$. The vector $\mathbf{e}(U)=\left(e_{1}(U), \ldots, e_{d}(U)\right)$ (where $e_{j}(U)=0$ if $j \notin\left\{i_{1}, \ldots, i_{k}\right\}$ and $\left.e_{i_{j}}(U)=e\left(U / \mathfrak{q}_{j}\right), j=1, \ldots, k\right)$ is said the fine multiplicity of U (thus the usual multiplicity of U is $\sum_{i=1}^{d} e_{i}(U)$). If we replace the local rings in the tree with their fine multiplicities, we get the multiplicity tree of R. We denote the nodes of the level i of the multiplicity tree by $\mathbf{e}_{(i)}^{1}, \ldots, \mathbf{e}_{(i)}^{l^{2}}$. In the example above we get the blowing up tree and the multiplicity tree depicted in Fig. 1.

Fig. 1

Remark 2.2 Notice that, since we assumed that \bar{R} is a product of DVR's, each ring R_{i} of the Lipman sequence associated to R is the direct product of its localizations at maximal ideals [B-D'A-F, Corollary 3.2], i.e., the direct product of the local rings which appear at level i in the blowing up tree.

In [B-D'A-F] is given a numerical characterization of those trees which are multiplicity trees of a ring:

Theorem $2.3\left[B-D^{\prime} A-F\right.$, Theorem 5.11] Let \mathbf{T} be a tree of vectors $\left\{\mathbf{e}_{(i)}^{j}=\right.$ $\left.\left(e_{i, 1}^{j}, \ldots, e_{i, d}^{j}\right)\right\}$ of \mathbb{N}^{d} (where $\mathbf{e}_{(0)}$ is the root of the tree and the index (i) denotes the level of the nodes in the tree). The following conditions are equivalent for T :

1) \mathbf{T} is the multiplicity tree of a ring.
2) \mathbf{T} satisfies the three conditions a), b) and c) below:
a) There exists $n \in \mathbb{N}$ such that, for $m \geq n$, $\mathbf{e}_{(m)}^{j}=(0, \ldots, 0,1,0, \ldots, 0)$
(the nonzero coordinate in the j-th position) for any $j=1, \ldots, d$.
b) $e_{i, h}^{j}=0$ if and only if $\mathbf{e}_{(i)}^{j}$ is not in the h-th branch of \mathbf{T} (the h-th branch of the tree is the unique maximal path containing the h-th unit vectors).
c) $\mathbf{e}_{(i)}^{j}=\sum_{\mathbf{e} \in \mathbf{U} \backslash \mathbf{e}_{(i)}^{j}} \mathbf{e}$ for some finite subtree \mathbf{U} of \mathbf{T}, rooted in $\mathbf{e}_{(i)}^{j}$.

The connection between rings and their value semigroups is particularly strict for Arf rings. A ring R is said to be Arf if every regular integrally closed ideal is stable (cf. [L]; recall that a regular ideal I is stable if $(I: I)=z^{-1} I$ for some nonzero divisor $z \in I$). Under our hypotheses the integrally closed ideals are of the form $R(\boldsymbol{\alpha})=\{r \in R \mid v(r) \geq \boldsymbol{\alpha}\}$ (where $\boldsymbol{\alpha} \in v(R)$; cf. [D'A, Remarks 2.1.2]); in this case the element z has to be an element of value $v(z)=\boldsymbol{\alpha}$. Similarly it is possible to define Arf semigroups: if $S=v(R)$ is the value semigroup of a ring and $\boldsymbol{\alpha} \in S$, define $S(\boldsymbol{\alpha})=\{\boldsymbol{\beta} \in S \mid \boldsymbol{\beta} \geq \boldsymbol{\alpha}\}$; then S is said to be Arf if, for every $\boldsymbol{\alpha} \in S, S(\boldsymbol{\alpha})-S(\boldsymbol{\alpha}):=\{\boldsymbol{\beta} \in \mathbb{Z} \mid \boldsymbol{\beta}+S(\boldsymbol{\alpha}) \subseteq$ $S(\boldsymbol{\alpha})\}=S(\boldsymbol{\alpha})-\boldsymbol{\alpha}($ cf. [B-D'A-F, Section 3]). For Arf semigroups it is possible to define the multiplicity tree (cf. [B-D'A-F, Section 5]) and the following result holds:

Proposition 2.4 [B-D'A-F, Proposition 5.10] The following statements are equivalent:
(1) R is Arf.
(2) $S=v(R)$ is Arf and the multiplicity trees of R and S are the same.

Moreover an Arf semigroup is completely described by its multiplicity tree (cf. [B-D'A-F, Proposition 5.9]); hence, in the case of Arf rings, it allows to compute all the numbers involved in the inequality $\lambda(\bar{R} / R) \leq t(R) \lambda(R / \mathfrak{C})$. More precisely we have the following

Proposition 2.5 Let \mathbf{T} be the multiplicity tree of an Arf ring R and let $\mathbf{T}_{\mathfrak{C}}$ be the subtree consisting of all the nodes of \mathbf{T} which are non-unit vectors.

1) If $n(\mathbf{T})$ is the number of nodes of $\mathbf{T}_{\mathfrak{C}}$, then $\lambda(R / \mathfrak{C})=n(\mathbf{T})$.
2) If $\mathbf{e}_{(0)}=\left(e_{(0), 1}, \ldots, e_{(0), d}\right)$ is the root of \mathbf{T}, then $t(R)=e(R)-1=e_{(0), 1}+$ $\cdots+e_{(0), d}-1$.
3) If $\mathbf{e}_{(i)}^{j}=\left(e_{(i), 1}^{j}, \ldots, e_{(i), d}^{j}\right)$ are the nodes of \mathbf{T}, then

$$
\lambda\left(\frac{\bar{R}}{\mathfrak{C}}\right)=\sum_{\mathbf{e}_{(i)}^{j_{i}^{j}} \in \mathbf{T}_{\mathfrak{C}}}\left(\sum_{h=1}^{d} e_{(i), h}^{j}\right)
$$

and

$$
l^{*}(R)=\sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathfrak{c}} \backslash\left\{\mathbf{e}_{(0)}\right\}}\left(e(R)-\sum_{h=1}^{d} e_{(i), h}^{j}\right) .
$$

Proof. 1) By [B-D'A-F, Proposition 5.9], $v(R)=\{\mathbf{0}\} \bigcup_{\mathbf{T}^{\prime}}\left\{\sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}^{\prime}} \boldsymbol{e}_{(i)}^{j}\right\}$, where $\mathbf{0} \in \mathbb{N}^{d}$ and \mathbf{T}^{\prime} ranges over all finite subtrees of \mathbf{T} rooted in $\mathbf{e}_{(0)}$. Hence a chain of points of $v(R)$ is obtained considering a chain of subtrees rooted in $\mathbf{e}_{(0)}: \mathbf{T}_{1} \subseteq \mathbf{T}_{2} \subseteq \cdots \subseteq \mathbf{T}_{h}$. To get a saturated chain, the subtree \mathbf{T}_{i} has to be obtained by \mathbf{T}_{i-1} adding exactly one node of \mathbf{T}. Since $\lambda_{R}(R / \mathfrak{C})$ equals the lenght of a saturated chain of points of $v(R)$ between $\mathbf{0}$ and $\boldsymbol{\delta}$, then we get the conclusion.
2) By Proposition 3.17 in [B-D'A-F], we have that $t(R)=e(R)-1$; the second equality follows by the definition of multiplicity tree.
3) The first equality comes from [B-D'A-F, Corollary 5.13]. As for the second, by definition of $l^{*}(R)$ and from the points 1) and 2) of this proposition, it follows that

$$
\begin{aligned}
& l^{*}(R)=t(R) \lambda_{R}(R / \mathfrak{C})-\lambda_{R}(\bar{R} / R)=(t(R)+1) \lambda_{R}(R / \mathfrak{C})-\lambda_{R}(\bar{R} / \mathfrak{C})= \\
& e(R) n(\mathbf{T})-\sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathfrak{C}}}\left(\sum_{h=1}^{d} e_{(i), h}^{j}\right)=\sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathfrak{C} \backslash\left\{\mathbf{e}_{(0)}\right\}}}\left(e(R)-\sum_{h=1}^{d} e_{(i), h}^{j}\right) .
\end{aligned}
$$

If R is a ring, it is possible to define its Arf closure, R^{\prime} (cf. [L, PropositionDefinition 3.1]), and the multiplicity trees of R and R^{\prime} coincide (cf. [B-D'A-F, Proposition 5.3]). Hence we have:

Corollary 2.6 Let \mathbf{T} be a tree of vectors of \mathbb{N}^{d}. The following conditions are equivalent for \mathbf{T} :

1) \mathbf{T} is the multiplicity tree of a ring.
2) \mathbf{T} is the multiplicity tree of an Arf ring.

3 The main Theorem

Now we are ready to prove the main theorem of this paper.
Theorem 3.1 If n, t, l^{*} are three fixed natural numbers such that $n \geq 1, t \geq 1$ and $0 \leq l^{*} \leq(t-1)(n-1)$, then there exists a ring R, satysfying the hypoteses of this paper, such that $\lambda_{R}(R / \mathfrak{C})=n, t(R)=t$ and $l^{*}(R)=l^{*}$.

Proof. We will prove that there exists an Arf ring R satisfying the statement of this Theorem. Hence, by Proposition 2.5 and Corollary 2.6, it is enought to construct a multiplicity tree \mathbf{T} of a ring R such that $n(\mathbf{T})=n, e_{(0), 1}+\cdots+$ $e_{(0), d}=t+1$ and $\sum_{\mathbf{e}_{(i)}^{j} \in \mathbf{T}_{\mathfrak{c}} \backslash\left\{\mathbf{e}_{(\mathbf{0})}\right\}}\left(t+1-\sum_{h=1}^{d} e_{(i), h}^{j}\right)=l^{*}$. Let l^{*}, n and t
be three integers with $n \geq 1, t \geq 1$ and $0 \leq l^{*} \leq(t-1)(n-1)$; if $n=1$, then $l^{*}=0$ and for any t, the multiplicity tree with one branch, whose nodes are $t+1,1,1, \ldots$, satisfies the conditions of Theorem 2.3 and, if R is an Arf ring with this multiplicity tree, then, by Proposition $2.5, l^{*}(R)=0, \lambda_{R}(R / \mathfrak{C})=n(\mathbf{T})=1$ and $t(R)=t$. Hence we can assume $n>1$. Let be k an integer such that $1 \leq k \leq n-1$ and let \mathbf{T} be the multiplicity tree depicted in Fig. 2.

Fig. 2

In this tree $\mathbf{e}_{(0)}=\cdots=\mathbf{e}_{(n-k-1)}=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$, where $\alpha_{1}+\cdots+\alpha_{k}=t+1$ and $\alpha_{i} \geq 2$, and $\mathbf{e}_{(n-k+1)}^{j}=\left(0, \ldots, 0, x_{j}, 0, \ldots, 0\right)$, where x_{j} is in the j -th place and $1<x_{j} \leq \alpha_{j}$. By Theorem 2.3 and Corollary $2.6, \mathbf{T}$ is the multiplicity tree of an Arf ring R. Hence by Proposition $2.5, \lambda_{R}(R / \mathfrak{C})=n(\mathbf{T})=n, t(R)=t$ and $l^{*}(R)=(k-1) e(R)+\left(\alpha_{1}-x_{1}\right)+\cdots+\left(\alpha_{k}-x_{k}\right)$, so $l^{*}(R)$ can assume all the values between $(k-1) e(R)=(k-1)(t+1)$ and $(k-1) e(R)+e(R)-2 k=$ $k e(R)-2 k=k(t-1)$. By Proposition 2.5, we have $e(R) \geq 2 k$ and $t(R) \geq 2 k-1$, but the inequality $(k-1)(t(R)+1) \leq k(t(R)-1)$ implies that $t(R) \geq 2 k-1$. Hence our construction covers all the possible values of t, when $n>1$ and $(k-1)(t+1) \leq l^{*} \leq k(t-1)$.

Since for $n=2, l^{*} \leq t-1$, it remains to construct suitable multiplicity trees for the cases $n>2$ and $k(t-1)+1 \leq l^{*}(R) \leq k(t+1)-1$ where $1 \leq k \leq n-2$. Assume that $l^{*}=k(t-1)+1+h$, where h is an integer with $0 \leq h \leq 2 k-2$. Now consider the tree \mathbf{T} depicted in Fig. 3, where the number of coordinates of the vectors is $t+1$ (and $t \geq 2$). This tree satisfies the conditions of Theorem 2.3, hence if R is an Arf ring with \mathbf{T} as multiplicity tree, by Proposition 2.5, $\lambda_{R}(R / \mathfrak{C})=n(\mathbf{T})=n, t(R)=t$ and $l^{*}(R)=h+1+k(t-1)=l^{*}$.

Notice that in the tree depicted in Fig. 3 we have $n \geq 1+h+1+k=k+h+2$; therefore we still have to consider the cases $n-h-2<k \leq n-2$, with $h>0$.

Fig. 3

Now, if $k=n-2-x$ with $0 \leq x \leq h-1$, let q and r be the integers such that $h+1=q(x+1)+r$ with $1 \leq r \leq x+1$ and set $\psi(x)=q+1$; consider the tree \mathbf{T} depicted in Fig. 4, where the number of coordinates of the vectors is $t+1$.

Fig. 4

By Theorem 2.3 and Corollary 2.6, \mathbf{T} is the multiplicity tree of an Arf ring R. Hence by Proposition 2.5, $\lambda_{R}(R / \mathfrak{C})=n(\mathbf{T})=n, t(R)=t$ and $l^{*}(R)=$ $(\psi(x)-1)(x+1-r)+\psi(x) r+(t-1) k=q(x+1-r)+(q+1) r+t k-k=$ $q(x+1)+r+t k-k=h+1+t k-k=l^{*}$. By construction $t \geq \psi(x)+1$ and, by
$l^{*}=k(t-1)+h+1 \leq(n-1)(t-1)$, it follows $t \geq \frac{n-k+h}{n-k-1}$. Hence, in order to cover all the possible values of t, we have to show that the following inequalities hold: $\psi(x)<\frac{n-k+h}{n-k-1} \leq \psi(x)+1$. Since $n=k+2+x$, then $\frac{n-k+h}{n-k-1}=\frac{x+2+h}{x+1}=1+\frac{h+1}{x+1}$ and by definition of ψ, we have $\psi(x)<1+\frac{h+1}{x+1} \leq \psi(x)+1$.

4 Remarks and examples

In the next example, fixed two integers n and t, we examine how the three constructions of the proof of Theorem 3.1 arise depending on the values of l^{*}.
Example 4.1 Let $n=4$ and $t=5$. We have $0 \leq l^{*} \leq 12=3 \cdot 4$, hence the possible values of k are 1,2 and 3 .

We use the first construction for $l^{*}=0,1,2,3,4(k=1)$, for $l^{*}=6,7,8$ $(k=2)$ and $l^{*}=12(k=3)$.

We use the second construction for $l^{*}=5(k=1$; here $h=0$ and $n \geq$ $k+h+2)$ and for $l^{*}=9(k=2$, here $h=0$ and $n \geq k+h+2)$.

We use the third construction for $l^{*}=10,11(k=2$, here $h=1,2$, respectively, and $n \leq k+h+1$).

We give an explicit construction of the multiplicity trees and of the rings for the values $l^{*}=8,9,10$.
$\mathbf{1}^{*}=8$. In this case we have more than one choice. A possible multiplicity tree is depicted in Fig. 5 and it is obtained by the tree depicted in Fig. 2, setting $n=4, k=2$, and $\alpha_{1}=\alpha_{2}=3$ (so that $\alpha_{1}+\alpha_{2}-1=5=t$).

Fig. 5

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D'A-F], we construct the ring R in the following way: we start with $R^{0}=K[[t]] \times K[[u]]$, where t, u are indeterminates over a field K; then we set $R^{1}=\left(K+t^{2} K[[t]]\right) \times$ $\left(K+u^{2} K[[u]]\right)=U_{1} \times U_{2}, R^{2}=(1,1) K+\left(t^{3} U_{1} \times u^{3} U_{2}\right)$ and $R=R^{3}=$
$(1,1) K+\left(t^{3}, u^{3}\right) R^{2}=(1,1) K+\left(t^{3}, u^{3}\right) K+\left(\left(t^{6} K+t^{8} K[[t]]\right) \times\left(u^{6} K+u^{8} K[[u]]\right)\right)$. In Fig. 6 is depicted the blowing up tree of R.

Fig. 6
$\mathbf{1}^{*}=\mathbf{9}$. The multiplicity tree is depicted in Fig. 7 and it is obtained by the tree in Fig. 3, setting $n=4, k=2, h=0$ and $t=5$.

Fig. 7

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D'A-F], we construct the ring R in the following way: we start with $R^{0}=K\left[\left[t_{1}\right]\right] \times K\left[\left[t_{2}\right]\right] \times$
$K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right]$, where t_{i} are indeterminates over a field K for every $i=1, \ldots, 6$ and $|K| \geq 6$; then we set $R^{1}=\left((1,1) K+\left(t_{1} K\left[\left[t_{1}\right]\right] \times\right.\right.$ $\left.\left.t_{2} K\left[\left[t_{2}\right]\right]\right)\right) \times K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right]=U_{1} \times K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times$ $\left.K\left[\left[t_{6}\right]\right], R^{2}=\left((1,1) K+\left(t_{1}, t_{2}\right) U_{1}\right)\right) \times K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right]=U_{2} \times$ $K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right], R^{3}=\left((1,1,1,1,1) K+\left(\left(t_{1}, t_{2}\right) U_{2} \times t_{3} K\left[\left[t_{3}\right]\right] \times\right.\right.$ $\left.\left.t_{4} K\left[\left[t_{4}\right]\right] \times t_{5} K\left[\left[t_{5}\right]\right]\right)\right) \times K\left[\left[t_{6}\right]\right]=U_{3} \times K\left[\left[t_{6}\right]\right]$ and $R=R^{4}=(1,1,1,1,1,1) K+$ $\left(\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right) U_{3} \times t_{6} K\left[\left[t_{6}\right]\right]\right)$. In Fig. 8 is depicted the blowing up tree of R.

Fig. 8
$\mathbf{l}^{*}=\mathbf{1 0}$. The multiplicity tree is obtained (cf. Fig. 9) by the tree depicted in Fig. 4, setting $n=4, k=2, h=1$ (hence $x=0$ and $r=0$) and $t=5$.

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D'A-F], we construct the ring R in the following way: we start with $R^{0}=K\left[\left[t_{1}\right]\right] \times$ $K\left[\left[t_{2}\right]\right] \times K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right]$, where t_{i} are indeterminates over a field K for every $i=1, \ldots, 6$ and $|K| \geq 6$; then we set $R^{1}=((1,1) K+$ $\left.\left(t_{1} K\left[\left[t_{1}\right]\right] \times t_{2} K\left[\left[t_{2}\right]\right]\right)\right) \times K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right]=U_{1} \times K\left[\left[t_{3}\right]\right] \times$ $\left.K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right], R^{2}=\left((1,1) K+\left(t_{1}, t_{2}\right) U_{1}\right)\right) \times K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times$ $K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right]=U_{2} \times K\left[\left[t_{3}\right]\right] \times K\left[\left[t_{4}\right]\right] \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right], R^{3}=((1,1,1,1) K+$ $\left.\left(\left(t_{1}, t_{2}\right) U_{2} \times t_{3} K\left[\left[t_{3}\right]\right] \times t_{4} K\left[\left[t_{4}\right]\right]\right)\right) \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right]=U_{3} \times K\left[\left[t_{5}\right]\right] \times K\left[\left[t_{6}\right]\right]$ and $R=R^{4}=(1,1,1,1,1,1) k+\left(\left(t_{1}, t_{2}, t_{3}, t_{4}\right) U_{3} \times t_{5} K\left[\left[t_{5}\right]\right] \times t_{6} K\left[\left[t_{6}\right]\right]\right)$. In Fig. 10 is depicted the blowing up tree of R.

Fig. 9

Fig. 10

We now show that the use of subsemigroups of \mathbb{N}^{d}, with $d>1$, is necessary to
construct rings R with fixed values of $\lambda_{R}(R / \mathfrak{C}), t(R)$ and $l^{*}(R)$. More precisely we will focus our attention to the case $l^{*}(R)=t(R)$ and we will show that, if n is an integer large enough, then, for every $t \geq 1$, there is no local, one-dimensional, Noetherian, complete domain R with $\lambda_{R}(R / \mathfrak{C})=n$ and $l^{*}(R)=t(R)=t$. Actually we will not need to assume that R is complete, but only R analytically irreducible (i.e. the completion \widehat{R} of R with respect ot the \mathfrak{m}-adic topology is a domain; cf. Proposition 4.7).

The following results are given in [De-L-M] under slightly different hypotheses. The assumption in $[\mathrm{De}]$ (and hence also in $[\mathrm{De}-\mathrm{L}-\mathrm{M}]$) that R is excellent is used to get the existence of the canonical module of R isomorphic to an \mathfrak{m} primary ideal and the infinite residue field implies the existence of principal minimal reductions of regular ideals. Under our hypotheses the existence of the canonical ideal of R follows from the fact that R is complete and reduced (cf. [H-K, Satz 6,21]). Moreover we do not need to assume (as in [De-L-M, Corollary 2.13]) that the field K is infinite, since if I is a regular ideal of R and $x \in I$ is an element of minimal value, then $x R$ is a minimal reduction of I (cf. [D'A, Remarks 2.1 (2)]).

Proposition 4.2 [De-L-M, Proposition 2.12] Assume $l^{*}(R)=t(R)$ and let $x \in \mathfrak{m}$ be an element of minimal value $v(x)=\mathbf{m}_{v(\mathfrak{m})}$. Only the following values for $\lambda(R /(\mathfrak{C}+x R))$ and $t(R)$ are possible:
(a) $\lambda(R /(\mathfrak{C}+x R))=3, t(R)=2$ and $e(R)=5$;
(b) $\lambda(R /(\mathfrak{C}+x R))=2$ and $t(R)=e(R)-2$;
(c) $\lambda(R /(\mathfrak{C}+x R))=1$ and $t(R)=e(R)-1$.

Corollary 4.3 [De-L-M, Corollary 2.13] Let K a field and $R=K\left[\left[u^{s} \mid s \in S\right]\right]$, where $S \subseteq \mathbb{N}$ is a numerical semigroup. Assume $l^{*}(R)=t(R)$ and let $x \in \mathfrak{m}$ be an element of minimal value $v(x)=\mathbf{m}_{v(\mathfrak{m})}$. We have the following possibilities for $\lambda(R /(\mathfrak{C}+x R))$:
(a) $\lambda(R /(\mathfrak{C}+x R))=3, t(R)=2$ and $e(R)=5$;
(b) $\lambda(R /(\mathfrak{C}+x R))=2$ and $t(R)=e(R)-2$.

In [De-L-M] examples of rings of the form $R=K\left[\left[t^{s} \mid s \in S\right]\right](S \subseteq \mathbb{N})$ are given for the case (a) (cf. [De-L-M, Example 2.14]) and for the case (b) (cf. [De-L-M, Example 2.11 (1)]). With the construction of Theorem 3.1 we get examples of rings for the case (c) of Proposition 4.2, with value semigroup contained in \mathbb{N}^{e}, where $e \geq 3$ is the multiplicity of R (cf. Fig 3 , with $k=1$ and $h=0$).

Let (R, \mathfrak{m}) be a local, Noetherian, one-dimesional, analytically irreducible domain. Assume also that, if (\bar{R}, \mathfrak{n}) is the integral closure of R in its quotient field, then $R \neq \bar{R}$ and $R / \mathfrak{m} \simeq \bar{R} / \mathfrak{n}$. Under these hypotheses the value semigroup of R is $S=v(R)=\left\{0, s_{1}, s_{2}, \ldots, s_{n(S)-1}, s_{n(S)}, \rightarrow\right\}$, where $s_{1}=e(R)$ and the
arrow means that every integer greater than or equal to s_{n} belongs to S. The largest positive integer not in S is called the Frobenius number of S and is denoted by $g(S)$. Moreover if $I \supseteq J$ are two fractional ideals of R, then $\lambda(I / J)=$ $|v(I) \backslash v(J)| ;$ in particular we have that $\lambda(R / \mathfrak{C})=|\{0,1, \ldots, g(S)\} \cap S|=n(S)$ and that $\lambda(\bar{R} / R)=|\mathbb{N} \backslash S|=g(S)+1-n(S)$. Moreover it is defined the type of S as $t(S)=|T|=|\{q \in \mathbb{N} \backslash S \mid q+s \in S, \forall s \in S \backslash\{0\}\}|$ (for all the definitions and results about numerical semigroups we refer to [B-D-F]). Hence we can define $l^{*}(S)=n(S) t(S)-|\mathbb{N} \backslash S|$. Since $t(S) \geq t(R)$ (cf. [B-D-F, Theorem II.1.16]), we have that $l^{*}(S) \geq l^{*}(R)$ and in [B-D-F, Example II.1.19] is given an example for which the inequality $t(S)>t(R)$ holds. However in the particular case $R=K\left[\left[u^{s} \mid s \in S\right]\right], t(R)=t(S)$ and hence $l^{*}(R)=l^{*}(S)$. Hence Corollary 4.3 can be translated to the semigroup level as the following statement:

Corollary 4.4 Let $S \subseteq \mathbb{N}$ be a numerical semigroup. Assume $l^{*}(S)=t(S)$, let $e=s_{1}$ be the smallest non zero element of S and set $e+S=\{e+s \mid s \in S\}$. We have the following possibilities for $|S \backslash((e+S) \cup\{g(S)+1, \rightarrow\})|$:
(a) $|S \backslash((e+S) \cup\{g(S)+1, \rightarrow\})|=3, t(S)=2$ and $e=5$;
(b) $|S \backslash((e+S) \cup\{g(S)+1, \rightarrow\})|=2$ and $t(S)=e-2$.

Now we are ready to study the numerical semigroups S such that $l^{*}(S)=$ $t(S)$. Notice that, since the inequality $l^{*}(R) \leq(\lambda(R / \mathfrak{C})-1)(t(R)-1)$ holds for the rings of the form $R=K\left[\left[u^{s} \mid s \in S\right]\right]$, then the corresponding inequality $l^{*}(S) \leq(n(S)-1)(t(S)-1)$ holds for numerical semigroups. It follows that, if $l^{*}(S)=t(S)$, then $t(S)>1$.

Proposition 4.5 If n is an integer large enough ($n>14$), then, for any numerical semigroup S such that $n(S)=n, l^{*}(S) \neq t(S)$.

Proof. We will prove that if $l^{*}(S)=t(S)$, then $n(S)$ is bounded by 14. Let $g=g(S)$ and $n=n(S)$. By Corollary 4.4 we have two possibilities for $\mid S \backslash((e+$ S) $\cup\{g+1, \rightarrow\}) \mid$.

If S satisfies case (a) of Corollary 4.4, then $|S \backslash((e+S) \cup\{g+1, \rightarrow\})|=3$, $t(S)=2$ and $e=5$; by the first condition, there exist exactly two non zero elements of S, f and h, such that $f<h<g, f-5 \notin S$ and $h-5 \notin S$. It follows that, if $2 f<g$, then $2 f=h+5 \alpha$ (with $\alpha \geq 0$) and, if $f+h<g$, then $f+h=5 \beta$ (with $\beta>0$). But if both these two equalities hold, then $h=5 \beta-f=2 f-5 \alpha$, that is $3 f=5(\alpha+\beta)$, which is a contradiction since 5 does not divide f. Therefore $f+h \geq g+1$.

Moreover $\{g-4, \ldots, g\}=\left\{5(p-1), f+5 r_{1}, h+5 r_{2}, i_{1}, i_{2}\right\}$, where $i_{1}, i_{2} \notin$ $S, 0 \leq r_{2} \leq r_{1}$ and p is the integer such that $5(p-1)<g<5 p$. Since $i_{1}, i_{2} \in T=\{q \in \mathbb{N} \backslash S \mid q+s \in S, \forall s \in S \backslash\{0\}\}$ and $t(S)=|T|=2$, then $f-5 \notin T$ and $h-5 \notin T$; hence there exist two elements $q_{1}, q_{2} \in S \backslash\{0\}$ such that $(f-5)+q_{1} \notin S$ and $(h-5)+q_{2} \notin S$. This implies $q_{1}, q_{2} \in\{f, h\}$ (in fact any element of S smaller than g is of the form $5 \alpha, f+5 \alpha$ or $h+5 \alpha$, with $\alpha \geq 0$); in particular $f+h-5 \leq g$ (otherwise, if $f+h-5>g$, then also $2 h-5>g$ and q_{2} does not exit). It follows that $g<f+h \leq g+5$.

Let k and j be the integers such that $5 k<f<5(k+1)$ and $5 j<h<5(j+1)$. With this notation $5(k+j)<f+h<5(k+j+2)$. By $g+1 \leq f+h<5(k+j+2)$ and by definition of p, we have $p \leq k+j+2$. On the other side, since $5(k+j)<$ $f+h \leq g+5<5(p+1)$, we have $k+j \leq p$.

Since $l^{*}(S)=t(S) n(S)-|\mathbb{N} \backslash S|=t(S)$, then $|\mathbb{N} \backslash S|=t(S)(n-1)=2(n-1)$. Moreover, by definition of p, k and j, we have $n=p+p-k-1+p-j-1+$ $\varepsilon=3 p-k-j-2+\varepsilon($ where $\varepsilon=|\{5(p-1)+1, \ldots, g\} \cap S|=0,1,2)$ and $|\mathbb{N} \backslash S|=4 k+3(j-k)+2(p-j-1)+\gamma=k+j+2 p-2+\gamma$ (where $\gamma=|\{5(p-1)+1, \ldots, g\} \cap \mathbb{N} \backslash S|=1,2)$. It follows that:

$$
\begin{aligned}
|\mathbb{N} \backslash S|=2(n-1) \Longleftrightarrow & k+j+2 p-2+\gamma=6 p-2(k+j-2)+2 \varepsilon-2 \Longleftrightarrow \\
& 4 p=3(k+j)+\gamma-2 \varepsilon+4 \Longrightarrow p \leq 6
\end{aligned}
$$

(the last inequality comes from the inequalities $k+j \leq p, \varepsilon \geq 0$ and $\gamma \leq 2$).
It follows that, since $k+j \geq p-2$ and $\varepsilon \leq 2$, then $n=3 p-k-j-2+\varepsilon \leq$ $2 p+2 \leq 14$.

If S satisfies case (b) of Corollary 4.4, then $t(S)=e-2$ (hence, since $t(S)>1$, we can assume $e>3)$ and $|S \backslash((e+S) \cup\{g+1, \rightarrow\})|=2$; hence there exists exactly one non zero element f in S, such that $f<g$ and $f-e \notin S$. Hence, by the uniqueness of f, either $2 f \geq g+1$ or, if $2 f<g$, then $2 f=\alpha e$ (with $\alpha>2$).

Moreover $\{g+1-e, \ldots, g\}=\left\{e(p-1), f+e r, i_{1}, i_{2}, \ldots, i_{e-2}\right\}$, where p is the integer such that $(p-1) e<g<p e$ and $i_{1}, i_{2}, \ldots, i_{e-2} \notin S$. Since $i_{1}, i_{2}, \ldots, i_{e-2} \in T=\{q \in \mathbb{N} \backslash S \mid q+s \in S, \forall s \in S \backslash\{0\}\}$ and $t(S)=|T|=e-2$, then $f-e \notin T$; it follows that there exists an element $q \in S \backslash\{0\}$ such that $(f-e)+q \notin S$. This implies that $2 f-e \notin S$; hence $2 f-e \leq g$, that is $f \leq(g+e) / 2$. On the other hand, $2 f \geq g+1$, otherwise $2 f-e=\alpha e-e=$ $(\alpha-1) e \in S$; it follows that $f \geq(g+1) / 2$.

We denote by k the integer such that $k e<f<(k+1) e$. By definition of k, we have $(k+1) e>f \geq(g+1) / 2$ and by definition of p we have $2(k+1) \geq p$, that is $k \geq(p / 2)-1$. Moreover, since $f \leq(g+e) / 2$, by definition of k, we have $k e<f \leq(g+e) / 2$, that is $(2 k-1) e<g$. By definition of p, we have $2 k-1 \leq p-1$, hence $k \leq p / 2$.

Therefore $(p / 2)-1 \leq k \leq p / 2$ and we have to consider only three different cases, $k=(p / 2)-1, p / 2$ (when p is even) and $k=(p-1) / 2$ (when p is odd).

Assume p even and $k=p / 2$. Since $l^{*}(S)=t(S) n(S)-|\mathbb{N} \backslash S|=t(S)$, then $|\mathbb{N} \backslash S|=t(S)(n-1)=(e-2)(n-1)$. Moreover, by definition of p and k, we have $n=p+p-k-1+\varepsilon=(3 / 2) p-1+\varepsilon($ where $\varepsilon=|\{(p-1) e+1, \ldots, g\} \cap S|=0,1)$ and $|\mathbb{N} \backslash S|=(e-1) p / 2+(e-2)(p / 2-1)+\gamma($ where $\gamma=|\{(p-1) e+1, \ldots, g\} \cap \mathbb{N} \backslash S|=$ $1,2, \ldots, e-2)$. It follows that:

$$
\begin{gathered}
|\mathbb{N} \backslash S|=(e-2)(n-1) \Longleftrightarrow(1 / 2) p e-(3 / 2) p=\gamma-\varepsilon(e-2)+e-2 \Longleftrightarrow \\
p(e-3)=2(\gamma-\varepsilon(e-2)+e-2)
\end{gathered}
$$

Since $\varepsilon \geq 0$ and $\gamma \leq e-2$, it follows that $p \leq 4(e-2) /(e-3)$. Hence, since p is an even integer, if $e=4$, then $p \leq 8$, if $e=5$, then $p \leq 6$ and, if $e \geq 6$, then $p \leq 4$. In any case, since $\varepsilon \leq 1$, then $n=(3 / 2) p-1+\varepsilon \leq 12$.

We now consider the case p even and $k=p / 2-1$. Since $l^{*}(S)=t(S) n(S)-$ $|\mathbb{N} \backslash S|=t(S)$, then $|\mathbb{N} \backslash S|=t(S)(n-1)=(e-2)(n-1)$. Moreover, by definition of p and k, we have $n=p+p-k-1+\varepsilon=(3 / 2) p+\varepsilon$ (where $\varepsilon=|\{(p-1) e+1, \ldots, g\} \cap S|=0,1)$ and $|\mathbb{N} \backslash S|=(e-1)(p / 2-1)+(e-2) p / 2+\gamma$ (where $\gamma=|\{(p-1) e+1, \ldots, g\} \cap \mathbb{N} \backslash S| \in\{1,2 \ldots, e-2\}$). It follows that:

$$
\begin{gathered}
|\mathbb{N} \backslash S|=(e-2)(n-1) \Longleftrightarrow(1 / 2) p e-(3 / 2) p=\gamma-\varepsilon(e-2)-1 \Longleftrightarrow \\
p(e-3)=2(\gamma-\varepsilon(e-2)-1) .
\end{gathered}
$$

Since p is an even positive integer, $\varepsilon \geq 0$ and $\gamma \leq e-2$, it follows that $p=2$. But this implies $k=p / 2-1=0$ which is a contradiction to $f>e$.

Finally we consider the case p odd and $k=(p-1) / 2$. Since $l^{*}(S)=$ $t(S) n(S)-|\mathbb{N} \backslash S|=t(S)$, then $|\mathbb{N} \backslash S|=t(S)(n-1)=(e-2)(n-1)$. Moreover, by definition of p and k, we have $n=p+p-k-1+\varepsilon=p+(p-1) / 2+\varepsilon$ (where $\varepsilon=$ $|\{(p-1) e+1, \ldots, g\} \cap S|=0,1)$ and $|\mathbb{N} \backslash S|=(e-1)(p-1) / 2+(e-2)(p-1) / 2+\gamma$ (where $\gamma=|\{(p-1) e+1, \ldots, g\} \cap \mathbb{N} \backslash S| \in\{1,2 \ldots, e-2\}$). It follows that:

$$
\begin{gathered}
|\mathbb{N} \backslash S|=(e-2)(n-1) \Longleftrightarrow p e-3 p=2 \gamma-2 \varepsilon(e-2)+e-3 \Longleftrightarrow \\
p(e-3)=2(\gamma-\varepsilon(e-2))+e-3 .
\end{gathered}
$$

Since $\varepsilon \geq 0$ and $\gamma \leq e-2$, it follows that $p \leq(3 e-7) /(e-3)$ and, since p is an odd integer larger than 1 , we get that $p=3,5$ when $e=4$ and $p=3$ when $e \geq 5$.

It follows that, since $\varepsilon \leq 1$, then $n=p+(p-1) / 2+\varepsilon \leq 8$.
Remark 4.6 We could make the statement of Proposition 4.5 more precise studying which semigroups can be constructed for every single value of p.

If S satisfies case (a), it is proved in Proposition 4.5 that $p \leq 6$. Since $p \geq 2$ we have to consider five cases.

If $p=2$, then, by definition of $p, 2 \cdot 5=10 \geq g+1$. The elements f and h introduced in this proof are smaller than $g+1$. Hence $n=4$ and $g+1=$ $|\mathbb{N} \backslash S|+n=2(n-1)+n=10$. In order to get $t(S)=2$ we find the following semigroups $\{0,5,6,7,10, \rightarrow\}$ and $\{0,5,6,8,10, \rightarrow\}$.

If $p=3$, then, by definition of $p, 3 \cdot 5=15 \geq g+1$. Moreover for the integer k and j introduced in the proof of Proposition 4.5 we have $j, k \geq 1$ and $j+k \leq p$. Hence $n=3 p-k-j-2+\varepsilon=4,5,6,7$ (since $\varepsilon=0,1,2$). If $n=4$, then $g+1=|\mathbb{N} \backslash S|+n=2(n-1)+n=10$ which is a contradiction to $10=(p-1) e<g+1$. If $n=5$, then $g+1=|\mathbb{N} \backslash S|+n=2(n-1)+n=13$; in order to get $t(S)=2$ we find only the semigroup $\{0,5,8,9,10,13, \rightarrow\}$. If $n=6,7$, then $g+1=|\mathbb{N} \backslash S|+n=2(n-1)+n \geq 16$, a contradiction to $15 \geq g+1$.

With similar arguments we get that there are no semigroups satisfying conditions of the case (a) with $4 \leq p \leq 6$.

Analyzing analogously the case (b), it is possible to find semigroups verifying $l^{*}(S)=t(S)$ only for particular subcases.

If p is even and $k=p / 2$ we get, for $e=4$ and $p=4$, the semigroup $S=\{0,4,8,9,12,13,16, \rightarrow\}$ (here $n(S)=6)$. While, for $e \geq 4$ and $p=2$, we get infinite semigroups S (with $n(S)=4$): for example $S=\{0, e, e+1,2 e-1, \rightarrow\}$.

If p is odd and $k=(p-1) / 2$, we obtain, for $e=4$ and $p=5$, the semigroup $S=\{0,4,8,11,12,15,16,19, \rightarrow\}$ (here $n(S)=7$). While, for $e>4$ and $p=3$, we get the semigroups $S=\{0, e, 2 e-2,2 e, 3 e-2, \rightarrow\}$ (with $n(S)=4$).

Using Proposition 4.5 we can prove that, if n is an integer large enough, then, for every $t \geq 1$, there is no analytically irreducible domain R with $\lambda_{R}(R / \mathfrak{C})=n$ and $l^{*}(R)=t(R)=t$ (we remark that we do not need to assume R complete, since also in this case canonical ideal and principal minimal reductions exist, as it is shown in [D'A-De]). This result is not an immediate consequence of Proposition 4.5, since it is possible that $l^{*}(R)=t(R)$ while $l^{*}(v(R)) \neq t(v(R))$; the example introduced in [B-D-F, Example II.1.19] works to show this fact: let K be a field of characteristic different by 2 and let $R=K\left[\left[t^{4}, t^{6}+t^{7}, t^{11}\right]\right]$. The value semigroup of R is $v(R)=\{0,4,6,8,10, \rightarrow\}$ and $t(v(R))=3$ since $T=\{q \in \mathbb{N} \backslash S \mid q+s \in S, \forall s \in S \backslash\{0\}\}=\{2,7,9\}$. Moreover $|\mathbb{N} \backslash v(R)|=6$ and $n(v(R))=4$; hence $l^{*}(v(R))=3 \cdot 4-6=6 \neq 3$. On the other hand, as it is shown in [B-D-F, Example II.1.19], $t(R)=2$, thus $l^{*}(R)=2 \cdot 4-6=2$.

Proposition 4.7 Let (R, \mathfrak{m}) be a local, Noetherian, one-dimesional, analytically irreducible domain. Assume also that, if (\bar{R}, \mathfrak{n}) is the integral closure of R in its quotient field, then $R \neq \bar{R}$ and $R / \mathfrak{m} \simeq \bar{R} / \mathfrak{n}$. If n is an integer large enough $(n>14)$ and $\lambda(R / \mathfrak{C})=n$, then $l^{*}(R) \neq t(R)$.

Proof. Let $S=v(R)$ be the value semigroup of R and $e=e(R)=s_{1}$. We will prove that, if $l^{*}(R)=t(R)$, then $\lambda(R / \mathfrak{C}) \leq 14$.

If $l^{*}(R)=t(R)$, by Proposition 4.2, only the following values for $\lambda(R /(\mathfrak{C}+$ $x R)$) and $t(R)$ are possible:
(a) $\lambda(R /(\mathfrak{C}+x R))=3, t(R)=2$ and $e=5$;
(b) $\lambda(R /(\mathfrak{C}+x R))=2$ and $t(R)=e-2$;
(c) $\lambda(R /(\mathfrak{C}+x R))=1$ and $t(R)=e-1$.

If case (c) holds for R, then $e-1=t(R) \leq t(S) \leq e-1$ implies that $t(R)=t(S)=e-1$ (for the inequality $t(S) \leq e-1 \mathrm{cf}$. [B-D-F, Remark I.2.7 (a)]). Hence $l^{*}(S)=l^{*}(R)$ and therefore $l^{*}(S)=t(S)=e-1$, but, by Corollary 4.4, this is not possible; it follows that R cannot satisfy case (c).

If case (a) holds for R, then $2=t(R) \leq t(S) \leq 5-1$. If $t(S)=2$ we have that $l^{*}(S)=l^{*}(R)$, so $l^{*}(S)=t(S)$; hence we can apply Proposition 4.5 (case (a)) and we get $\lambda(R / \mathfrak{C})=n(S) \leq 14$.

Assume that $t(S)=3,4$. We have $e=5$ and $3=\lambda(R /(\mathfrak{C}+x R))=\mid S \backslash$ $((5+S) \cup\{g+1, \rightarrow\}) \mid$; hence there exist exactly two non zero elements of S, f and h, such that $f<h<g, f-5 \notin S$ and $h-5 \notin S$. It follows that, if $2 f<g$, then $2 f=h+5 \alpha$ (with $\alpha \geq 0$) and, if $f+h<g$, then $f+h=5 \beta$ (with $\beta>0)$. But if both these two equalities hold, then $h=5 \beta-f=2 f-5 \alpha$, that is $3 f=5(\alpha+\beta)$, which is a contradiction since 5 does not divide f. Therefore $f+h \geq g+1$.

Moreover $\{g-4, \ldots, g\}=\left\{5(p-1), f+5 r_{1}, h+5 r_{2}, i_{1}, i_{2}\right\}$, where $i_{1}, i_{2} \notin S$, $0 \leq r_{2} \leq r_{1}$ and p is the integer such that $5(p-1)<g<5 p$. Since $i_{1}, i_{2} \in$ $T=\{q \in \mathbb{N} \backslash S \mid q+s \in S, \forall s \in S \backslash\{0\}\}$ and $t(S)=|T|=3,4$, then at least one of the integers $f-5$ and $h-5$ belongs to T; hence $f+h-5 \in S$. If $f+h-5 \geq g+1$ then also $2 h-5 \geq g+1$ and this implies that $t(R) \geq 3$: in fact by $\lambda(R / x R+\mathfrak{C})=3$ it follows that $\lambda(\mathfrak{m} / x R+\mathfrak{C})=2$, hence there exist two elements $y, z \in R$ such that $\mathfrak{m}=x R+y R+z R+\mathfrak{C}$ and we can assume that $v(y)=f$ and $v(z)=h$, since, if $y_{1}, y_{2} \in R$ and $v\left(y_{1}\right)=v\left(y_{2}\right)$, then there exists a unity $u \in R$ such that $v\left(y_{1}-u y_{2}\right)>v\left(y_{1}\right)$ (cf. [K, Theorem]); moreover, since $\mathfrak{C}=\{r \in \bar{R} \mid v(r) \geq g+1\}$ (cf. [K, Theorem]), by $f+h-5 \geq g+1$ and $2 h-5 \geq g+1$, it follows that $z / x \in \mathfrak{m}^{-1}$. But this is a contradiction to $t(R)=2$. Hence $f+h-5 \leq g$ and therefore $g<f+h \leq g+5$.

Since $l^{*}(R)=t(R)$ or, equivalently, $t(R)(\lambda(R / \mathfrak{C})-1)=\lambda(\bar{R} / R)$, then $2(n(S)-1)=|\mathbb{N} \backslash S|$ and, since $g<f+h \leq g+5$, we can use the same argument as in the proof of Proposition 4.5 (case (a)) to get $n \leq 14$.

If case (b) holds for R, then $e-2=t(R) \leq t(S) \leq e-1$. If $t(S)=e-2$ we have that $l^{*}(S)=l^{*}(R)$, so $l^{*}(S)=t(S)$; hence we can apply Proposition 4.5 (case (b)) and we get $\lambda(R / \mathfrak{C})=n(S) \leq 12$.

Assume that $t(S)=e-1$. We have $2=\lambda(R /(\mathfrak{C}+x R))=\mid S \backslash((e+S) \cup$ $\{g+1, \rightarrow\}) \mid$; hence there exists exactly one non zero element f in S, such that $f<g$ and $f-e \notin S$. Hence, by the uniqueness of f, either $2 f \geq g+1$ or, if $2 f<g$, then $2 f=\alpha e$ (with $\alpha>2$).

Moreover $\{g+1-e, \ldots, g\}=\left\{e(p-1), f+e r, i_{1}, i_{2}, \ldots, i_{e-2}\right\}$, where p is the integer such that $(p-1) e<g<p e$ and $i_{1}, i_{2}, \ldots, i_{e-2} \notin S$. Since $i_{1}, i_{2}, \ldots, i_{e-2} \in T=\{q \in \mathbb{N} \backslash S \mid q+s \in S, \forall s \in S \backslash\{0\}\}$ and $t(S)=|T|=e-1$, then $f-e \in T$; it follows that $2 f-e \in S$. If $2 f-e \geq g+1$, then $t(R)=e-1$: in fact by $\lambda(R / x R+\mathfrak{C})$ it follows that there exits $y \in R$ such that $\mathfrak{m}=x R+y R+\mathfrak{C}$ and we can assume that $v(y)=f$; but $2 f-e \geq g+1$ implies that $y / x \in \mathfrak{m}^{-1}$. But this is a contradiction to $t(R)=e-2$. It follows that $2 f-e \leq g$, that is $f \leq(g+e) / 2$.

Since $l^{*}(R)=t(R)$ or, equivalently, $t(R)(\lambda(R / \mathfrak{C})-1)=\lambda(\bar{R} / R)$, then $(e-$ $2)(n(S)-1)=|\mathbb{N} \backslash S|$. Therefore, if $2 f \geq g+1$ (that is $f \geq(g+1) / 2$), we can use the same argument as in the proof of Proposition 4.5 (case (b)) to get $n \leq 12$.

Otherwise, if $2 f<g$, then $2 f=\alpha e$ (with $\alpha>2$). Denote by k the integer such that $k e<f<(k+1) e$ and by p the integer such that $(p-1) e<g \leq p e$. By definition of p and k, we have $n=p+p-k-1+\varepsilon$ (where $\varepsilon=\mid\{(p-1) e+$ $1, \ldots, g\} \cap S \mid=0,1)$ and $|\mathbb{N} \backslash S|=(e-1) k+(e-2)(p-k-1)+\gamma($ where $\gamma=|\{(p-1) e+1, \ldots, g\} \cap \mathbb{N} \backslash S|=1,2, \ldots, e-2)$. It follows that:

$$
\begin{aligned}
& |\mathbb{N} \backslash S|=(e-2)(n-1) \Longleftrightarrow p(e-2)-(e-2)+\varepsilon(e-2)=k(e-1)+\gamma \\
& \quad \Longrightarrow(p-1)(e-2) \leq k(e-1)+(e-2) \Longrightarrow k \geq(p-2)(e-2) /(e-1)
\end{aligned}
$$

(where the first implication follows by $\varepsilon \geq 0$ and $\gamma \leq e-2$).
Since $k e<f$, then $2 k e<2 f<g$; hence $p>2 k \geq 2(p-2)(e-2) /(e-1)$ or equivalently $p(e-1)>2(p-2)(e-2)$. It follows that $p(e-3)<4(e-2)$; hence,
by $e \geq 4$ (since $e-2=t(R)>1$), it follows that $p<8$ and $n=2 p-k-1+\varepsilon \geq 13$ (since $k \geq 1$ and $\varepsilon \leq 1$).

References

[B-D'A-F] V. Barucci - M. D'Anna - R. Fröberg, Analytically Unramified Onedimensional Semilocal Rings and their Value Semigroups, J. Pure Appl. Algebra 147 (2000) 215-254.
[B-D-F] V. Barucci - D. E. Dobbs - M. Fontana, Maximality properties in numerical semigroups and applications to one-dimensional analytically irreducible local domains, Mem. Amer. Math. Soc 125 (598) (1997).
[D'A] M. D'Anna, The canonical module of a one-dimensional reduced local ring, Comm. Algebra 25 (1997), 2939-2965.
[D'A-De] M. D'Anna - D. Delfino, Integrally closed ideals and type sequences in one dimentional local rings, Rocky Montain J. Math. 27 (1997), 1065-1073.
[De] D. Delfino, On the inequality $\lambda_{R}(\bar{R} / R) \leq t(R) \lambda_{R}(R / \mathfrak{C})$ for onedimensional local rings, J.Algebra 169 (1994), 332-342.
[De-L-M] D. Delfino - L. Leer - R. Muntean, A lenght inequality for onedimensional local rings, Comm. Algebra 28 (2000), 2555-2564.
[D] F. Delgado de la Mata, The semigroup of values of a curve singularity with several branches, Manuscripta Math. 59 (1987), 347-374.
[H-K] J. Herzog - E. Kunz, Kanonische Modul eines Cohen-Macaulay Rings Springer Lecture Notes in Math. 238 (1971).
[K] E. Kunz, The value-semigroup of a one-dimensional Gorestein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.
[L] J. Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649-685.
[M] H. Matsumura, Commutative Ring theory, Cambridge studies in advanced mathematics 8 .
[Ma] E. Matlis, One-dimensional Cohen Macaulay rings, Springer Lecture Notes in Math. 327 (1973).
[Ms] T. Matsuoka, On the degree of singularity of one-dimensional analytically irreducible noetherian rings, J. Math. Kyoto Univ. 11 (1971), 485-491.

[^0]: * email mdanna@dipmat.unict.it
 †email vmicale@dipmat.unict.it

