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1 Introduction

Let R be a local, Noetherian, one-dimensional domain; assume also that R is
analytically irreducible or, equivalently, that the integral closure R of R in its
quotient field is a DVR and is a finite R-module. It is natural to associate to R
a value semigroup v(R) which is a subsemigroup of N and it is well known that
there is a strict connection between R and v(R), when R and R have the same
residue field (cf. [K, Ms]).

More generally, when R is not a domain, but just a reduced ring, if we
assume that R is a finite R-module (or, equivalently, R analytically unramified),
it is again possible to associate to R a value semigroup, which, in this case, is
a subsemigroup of N

d, where d is the number of maximal primes of R (cf.
[D, D’A]).

An important class of examples of such rings is given by the local rings of
an algebric curve over an algebraically closed field in a singular point.

The key fact that allows to connect a ring to its value semigroup is that
it is possible to compute the lenght λR(I/J) (where I ⊇ J are ideals of R)
in terms of the semigroup. In this context one can consider the inequality
λR(R/R) ≤ t(R)λR(R/C) (cf. [Ms, Proposition 3] and [De, Proposition 2.1]),
where C = (R : R) is the conductor of R and t(R) is the Cohen-Macaulay type.

If l∗(R) = t(R)λR(R/C)−λR(R/R), it is proved in [D’A-De, Proposition 2.1]
that 0 ≤ l∗(R) ≤ (t(R)−1)(λR(R/C)−1). It is possible to give a characterization
of rings satisfying the condition l∗(R) ≤ t(R) − 2 and, assuming also that
t(R) = e(R) − 1, of rings satisfying the condition l∗(R) < t(R) (where e(R) is
the multiplicity of R; cf. [De, Theorems 2.3-2.10]). In the case l∗(R) ≥ t(R)
there are results involving the type and the multiplicity of the ring R and the
lenght λ(R/(C + xR)) (where xR is a minimal reduction of the maximal ideal;
cf. [De-L-M, Theorem 2.2]), but a complete classification of such rings seems
out of reach at present.
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It is natural to ask whether, fixed three natural numbers n, t, l∗ such that
n ≥ 1, t ≥ 1 and 0 ≤ l∗ ≤ (t − 1)(n − 1), there exists a ring R such that
λR(R/C) = n, t(R) = t and l∗(R) = l∗.

The main goal of this paper is to give a positive answer to this question,
giving a way to construct such rings. To make this construction we assume
that the rings are complete and Arf. While the first assumption gives just a
simplification of notation (cf. [D’A]), the second one allows to move the problem
from the ring level to the semigroup level, giving the notion of Arf semigroup as
in [B-D’A-F]. The main ingredient of the construction is the multiplicity tree
of a ring (or of an Arf semigroup), introduced in [B-D’A-F].

In the next section we give all the preliminaries to our construction; in
particular we explicitly give the way to read all the integers involved in our
inequality, in terms of multiplicity tree (cf. Proposition 2.5). In section 3 we
give the construction of the multiplicity trees satisfying the conditions requested
(cf. Theorem 3.1). In section 4 we produce an example of the construction for
particular values of n, t and l∗ (cf. Example 4.1) and we study the case l∗(R) =
t(R), showing that if λ(R/C) is large enough, then there is no analytically
irreducible ring R such that l∗(R) = t(R) (cf. Proposition 4.7); this fact implies
that, in order to get a positive answer to the main question, it is necessary to
consider reduced rings and not only analytically irreducible domains.

2 Preliminaries

Throughout the rest of this paper we will assume that (R,m) is a local, complete,
one-dimensional, reduced, Noetherian ring; we will denote by R the integral
closure of R in its total ring of fractions Q and we assume that R 6= R; notice
that R is a finite R-module.

Under these hypotheses R is semilocal and it is a finite R-module (cf. [Ma,
Theorem 10.2]); moreover the number d of maximal ideals of R equals the
number of minimal primes of R (cf. [D’A, Proposition 1.1]). We will denote by
mi the maximal ideals of R and by pi the minimal primes of R. We have the
following commutative diagram

R

R

Q

R/p1 × · · · ×R/pd

V1 × · · · × Vd

Q(R/p1)× · · · ×Q(R/pd)

-

-

-

?

?

?

?

'

'

where Vi = (R/pi) = Rmi
, the integral closure of R/pi in its quotient field

Q(R/pi), is a DVR. We will denote by ti a uniformizing parameter of Vi and by
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vi the valuation function associated to Vi. We also assume that R/m ' Vi/(ti)
for every i and that |R/m| ≥ d.
For any x = (x1, . . . , xd) ∈ Q \ Z (where Z is the set of zero divisors of Q)
we define v(x) = (v1(x1), . . . , vd(xd)). Hence we can define v(R) = {v(r) | r ∈
R \ Z}; more generally, for every regular fractional ideal I of R (where regular
means that I contains a nonzero divisor), we set v(I) = {v(i) | i ∈ I \ Z}.

With these hypotheses and notation, we recall first the following results that
will be used in the sequel (cf. [B-D’A-F]):

• v(R) is an additive subsemigroup of N
d and v(I) is a semigroup ideal of

v(R) (i.e. v(I) + s ⊆ v(I), for every s ∈ v(R)).

• Considering the usual product ordering in N
d, that is (α1, . . . , αd) ≤

(β1, . . . , βd) if and only if αi ≤ βi for i = 1, . . . , d, the set of values
v(I) of a regular fractional ideal I contains an element of smallest value,
i.e. min v(I) exists. We will denote it by mv(I).

• There exists a δ ∈ N
d such that δ + N

d ⊆ v(R).

• The ideals of R are of the form R(δ) = {x ∈ R | v(x) ≥ δ}; the conductor
C = R : R equals the largest ideal R(δ) contained in R.

• If I ⊆ J are two regular fractional ideals of R, then λR(J/I) can be
calculated by means of the sets of values v(J) and v(I). More precisely,
if α,β ∈ v(I),α < β, we let dv(I)(α,β) denote the common length of a
saturated chain of elements of v(I) from α to β. Let mv(I),mv(J) be the
minimal elements in v(I) and v(J) respectively. Then for any sufficiently
large α we set d(v(J) \ v(I)) = dv(J)(mv(J),α) − dv(I)(mv(I),α). This
definition is independent of the choice of α. Then we have λR(J/I) =
d(v(J) \ v(I)).

• If mv(m) = (α1, . . . , αd), the multiplicity of R is e(R) = α1 + · · ·+ αd.

• t(R) = λ(m−1/R) ≤ e(R)− 1.

Notice that these hypotheses are slightly different by the hypotheses of
[De] and [D’A-De]; however the inequalities λR(R/R) ≤ t(R)λR(R/C) and
0 ≤ l∗(R) ≤ (t(R) − 1)(λR(R/C) − 1) are still true, with the same proof: the
existence of the canonical ideal of R follows from the fact that R is complete
and reduced (cf. [H-K, Satz 6,21]) and if I is a regular ideal of R and x ∈ I
is an element of minimal value, then xR is a minimal reduction of I (cf. [D’A,
Remarks 2.1 (2)]).

In [B-D’A-F] has been introduced the notion of multiplicity tree of a ring.
Recall that, if I is an ideal of R, the blowing up RI of I is ∪n>0(I

n : In). We
have (In : In) ⊆ (In+1 : In+1) for each n, and RI = (In0 : In0) for some n0,
since R is Noetherian. Recall that we can associate to R, as in [L, p. 666], a
sequence of semilocal rings R = R0 ⊆ R1 ⊆ · · · where Ri+1 is obtained from Ri

by blowing up rad(Ri), the Jacobson radical of Ri. We call this sequence the
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Lipman sequence. Since, in our hypotheses, R is a finitely generated R-module,
this sequence stabilizes for some n and Rh = R, for h ≥ n. Recall also that,
given a maximal ideal mj of R the branch sequence of R along mj is the sequence
of rings (Ri)mj∩Ri

(cf. [L, p. 669])

Example 2.1 Let K be a field and let R = K[[(t, u2), (t, u7), (t2, u7)]] ⊂ K[[t]]×
K[[u]]; we get the following Lipman sequence: R1 = K[[t]] ×K[[u2, u5]], R2 =
K[[t]]×K[[u2, u3]], R3 = R4 = · · · = R = K[[t]]×K[[u]].

It is possible to associate to a local ring R with R = V1 × · · · × Vd a rooted
tree, called the blowing up tree of R, in the following way: the nodes are all local
rings occuring in all branch sequences. The root (at level 0) is R, and on level 1
there are the localizations (at its maximal ideals) of R1 = Rm = Rrad(R), and so
on. If U is a local ring in the tree and U = Vi1 ×· · ·×Vik

, then U has k minimal
primes q1, . . . , qk. The vector e(U) = (e1(U), . . . , ed(U)) (where ej(U) = 0 if
j /∈ {i1, . . . , ik} and eij

(U) = e(U/qj), j = 1, . . . , k) is said the fine multiplicity

of U (thus the usual multiplicity of U is
∑d

i=1 ei(U)). If we replace the local
rings in the tree with their fine multiplicities, we get the multiplicity tree of R.
We denote the nodes of the level i of the multiplicity tree by e1

(i), . . . , e
li

(i). In
the example above we get the blowing up tree and the multiplicity tree depicted
in Fig. 1.
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Fig. 1

Remark 2.2 Notice that, since we assumed that R is a product of DVR’s,
each ring Ri of the Lipman sequence associated to R is the direct product of its
localizations at maximal ideals [B-D’A-F, Corollary 3.2], i.e., the direct product
of the local rings which appear at level i in the blowing up tree.

In [B-D’A-F] is given a numerical characterization of those trees which are
multiplicity trees of a ring:
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Theorem 2.3 [B-D’A-F, Theorem 5.11] Let T be a tree of vectors {ej

(i) =

(ej
i,1, . . . , e

j
i,d)} of N

d (where e(0) is the root of the tree and the index (i) denotes
the level of the nodes in the tree). The following conditions are equivalent for
T:
1) T is the multiplicity tree of a ring.
2) T satisfies the three conditions a), b) and c) below:

a) There exists n ∈ N such that, for m ≥ n, e
j

(m) = (0, . . . , 0, 1, 0, . . . , 0)

(the nonzero coordinate in the j-th position) for any j = 1, . . . , d.
b) ej

i,h = 0 if and only if e
j

(i) is not in the h-th branch of T (the h-th branch

of the tree is the unique maximal path containing the h-th unit vectors).
c) e

j

(i) =
∑

e∈U\ej

(i)
e for some finite subtree U of T, rooted in e

j

(i).

The connection between rings and their value semigroups is particularly
strict for Arf rings. A ring R is said to be Arf if every regular integrally closed
ideal is stable (cf. [L]; recall that a regular ideal I is stable if (I : I) = z−1I
for some nonzero divisor z ∈ I). Under our hypotheses the integrally closed
ideals are of the form R(α) = {r ∈ R | v(r) ≥ α} (where α ∈ v(R); cf.
[D’A, Remarks 2.1.2]); in this case the element z has to be an element of value
v(z) = α. Similarly it is possible to define Arf semigroups: if S = v(R) is the
value semigroup of a ring and α ∈ S, define S(α) = {β ∈ S | β ≥ α}; then S
is said to be Arf if, for every α ∈ S, S(α) − S(α) := {β ∈ Z | β + S(α) ⊆
S(α)} = S(α)−α (cf. [B-D’A-F, Section 3]). For Arf semigroups it is possible
to define the multiplicity tree (cf. [B-D’A-F, Section 5]) and the following result
holds:

Proposition 2.4 [B-D’A-F, Proposition 5.10] The following statements are
equivalent:
(1) R is Arf.
(2) S = v(R) is Arf and the multiplicity trees of R and S are the same.

Moreover an Arf semigroup is completely described by its multiplicity tree
(cf. [B-D’A-F, Proposition 5.9]); hence, in the case of Arf rings, it allows to
compute all the numbers involved in the inequality λ(R/R) ≤ t(R)λ(R/C).
More precisely we have the following

Proposition 2.5 Let T be the multiplicity tree of an Arf ring R and let TC be
the subtree consisting of all the nodes of T which are non-unit vectors.
1) If n(T) is the number of nodes of TC, then λ(R/C) = n(T).
2) If e(0) = (e(0),1, . . . , e(0),d) is the root of T, then t(R) = e(R) − 1 = e(0),1 +
· · ·+ e(0),d − 1.

3) If e
j

(i) = (ej

(i),1, . . . , e
j

(i),d) are the nodes of T, then

λ

(
R

C

)
=

∑

e
j

(i)
∈TC

(
d∑

h=1

ej

(i),h

)
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and

l∗(R) =
∑

e
j

(i)
∈TC\{e(0)}

(
e(R)−

d∑

h=1

ej

(i),h

)
.

Proof. 1) By [B-D’A-F, Proposition 5.9], v(R) = {0}
⋃

T′

{∑
e

j

(i)
∈T′ ej

(i)

}
,

where 0 ∈ N
d and T′ ranges over all finite subtrees of T rooted in e(0). Hence

a chain of points of v(R) is obtained considering a chain of subtrees rooted in
e(0): T1 ⊆ T2 ⊆ · · · ⊆ Th. To get a saturated chain, the subtree Ti has to
be obtained by Ti−1 adding exactly one node of T. Since λR(R/C) equals the
lenght of a saturated chain of points of v(R) between 0 and δ, then we get the
conclusion.

2) By Proposition 3.17 in [B-D’A-F], we have that t(R) = e(R) − 1; the
second equality follows by the definition of multiplicity tree.

3) The first equality comes from [B-D’A-F, Corollary 5.13]. As for the sec-
ond, by definition of l∗(R) and from the points 1) and 2) of this proposition, it
follows that

l∗(R) = t(R)λR(R/C)− λR(R/R) = (t(R) + 1)λR(R/C)− λR(R/C) =

e(R)n(T) −
∑

e
j

(i)
∈TC

(
d∑

h=1

ej

(i),h

)
=

∑

e
j

(i)
∈TC\{e(0)}

(
e(R)−

d∑

h=1

ej

(i),h

)
.

If R is a ring, it is possible to define its Arf closure, R′ (cf. [L, Proposition-
Definition 3.1]), and the multiplicity trees of R and R′ coincide (cf. [B-D’A-F,
Proposition 5.3]). Hence we have:

Corollary 2.6 Let T be a tree of vectors of N
d. The following conditions are

equivalent for T:
1) T is the multiplicity tree of a ring.
2) T is the multiplicity tree of an Arf ring.

3 The main Theorem

Now we are ready to prove the main theorem of this paper.

Theorem 3.1 If n, t, l∗ are three fixed natural numbers such that n ≥ 1, t ≥ 1
and 0 ≤ l∗ ≤ (t− 1)(n− 1), then there exists a ring R, satysfying the hypoteses
of this paper, such that λR(R/C) = n, t(R) = t and l∗(R) = l∗.

Proof. We will prove that there exists an Arf ring R satisfying the statement
of this Theorem. Hence, by Proposition 2.5 and Corollary 2.6, it is enought to
construct a multiplicity tree T of a ring R such that n(T) = n, e(0),1 + · · · +

e(0),d = t + 1 and
∑

e
j

(i)
∈TC\{e(0)}

(
t+ 1−

∑d

h=1 e
j

(i),h

)
= l∗. Let l∗, n and t
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be three integers with n ≥ 1, t ≥ 1 and 0 ≤ l∗ ≤ (t − 1)(n− 1); if n = 1, then
l∗ = 0 and for any t, the multiplicity tree with one branch, whose nodes are
t+1, 1, 1, . . . , satisfies the conditions of Theorem 2.3 and, if R is an Arf ring with
this multiplicity tree, then, by Proposition 2.5, l∗(R) = 0, λR(R/C) = n(T)=1
and t(R) = t. Hence we can assume n > 1. Let be k an integer such that
1 ≤ k ≤ n− 1 and let T be the multiplicity tree depicted in Fig. 2.
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HHHHHHHHH
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@
@@
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r

r

r

r

r

r
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p p p p p p p p p p p

p p p p p p

(α1, . . . , αk)

(α1, . . . , αk)

(α1, . . . , αk)

(0, . . . , 0, xk)(0, x2, 0, . . . , 0)(x1, 0, . . . , 0)

(0, . . . , 0, 1)(0, 1, 0, . . . , 0)(1, 0, . . . , 0)

�

�

n− k

Fig. 2

In this tree e(0) = · · · = e(n−k−1) = (α1, . . . , αk), where α1 + · · · + αk = t + 1

and αi ≥ 2, and e
j

(n−k+1) = (0, . . . , 0, xj , 0, . . . , 0), where xj is in the j-th place

and 1 < xj ≤ αj . By Theorem 2.3 and Corollary 2.6, T is the multiplicity tree
of an Arf ring R. Hence by Proposition 2.5, λR(R/C) = n(T) = n, t(R) = t
and l∗(R) = (k − 1)e(R) + (α1 − x1) + · · ·+ (αk − xk), so l∗(R) can assume all
the values between (k − 1)e(R) = (k − 1)(t+ 1) and (k − 1)e(R) + e(R)− 2k =
ke(R)−2k = k(t−1). By Proposition 2.5, we have e(R) ≥ 2k and t(R) ≥ 2k−1,
but the inequality (k − 1)(t(R) + 1) ≤ k(t(R) − 1) implies that t(R) ≥ 2k − 1.
Hence our construction covers all the possible values of t, when n > 1 and
(k − 1)(t+ 1) ≤ l∗ ≤ k(t− 1).

Since for n = 2, l∗ ≤ t−1, it remains to construct suitable multiplicity trees
for the cases n > 2 and k(t− 1) + 1 ≤ l∗(R) ≤ k(t+ 1)− 1 where 1 ≤ k ≤ n− 2.
Assume that l∗ = k(t− 1) + 1 + h, where h is an integer with 0 ≤ h ≤ 2k − 2.
Now consider the tree T depicted in Fig. 3, where the number of coordinates
of the vectors is t+ 1 (and t ≥ 2). This tree satisfies the conditions of Theorem
2.3, hence if R is an Arf ring with T as multiplicity tree, by Proposition 2.5,
λR(R/C) = n(T) = n, t(R) = t and l∗(R) = h+ 1 + k(t− 1) = l∗.
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Notice that in the tree depicted in Fig. 3 we have n ≥ 1+h+1+k = k+h+2;
therefore we still have to consider the cases n− h− 2 < k ≤ n− 2, with h > 0.
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(1, 1, 0, . . . , 0)
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�

�

k

(0, 1, 0, . . . , 0)(1, 0, . . . , 0)

(0, . . . , 0, 1, 0)(0, 0, 1, 0 . . . , 0)

�

�

n− k − h− 1

Fig. 3

Now, if k = n− 2− x with 0 ≤ x ≤ h− 1, let q and r be the integers such that
h+ 1 = q(x+ 1) + r with 1 ≤ r ≤ x+ 1 and set ψ(x) = q + 1; consider the tree
T depicted in Fig. 4, where the number of coordinates of the vectors is t+ 1.
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Fig. 4

By Theorem 2.3 and Corollary 2.6, T is the multiplicity tree of an Arf ring
R. Hence by Proposition 2.5, λR(R/C) = n(T) = n, t(R) = t and l∗(R) =
(ψ(x) − 1)(x + 1− r) + ψ(x)r + (t − 1)k = q(x + 1− r) + (q + 1)r + tk − k =
q(x+1)+ r+ tk−k = h+1+ tk−k = l∗. By construction t ≥ ψ(x)+1 and, by
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l∗ = k(t−1)+h+1 ≤ (n−1)(t−1), it follows t ≥ n−k+h
n−k−1 . Hence, in order to cover

all the possible values of t, we have to show that the following inequalities hold:
ψ(x) < n−k+h

n−k−1 ≤ ψ(x)+1. Since n = k+2+x, then n−k+h
n−k−1 = x+2+h

x+1 = 1+ h+1
x+1

and by definition of ψ, we have ψ(x) < 1 + h+1
x+1 ≤ ψ(x) + 1.

4 Remarks and examples

In the next example, fixed two integers n and t, we examine how the three
constructions of the proof of Theorem 3.1 arise depending on the values of l∗.

Example 4.1 Let n = 4 and t = 5. We have 0 ≤ l∗ ≤ 12 = 3 · 4, hence the
possible values of k are 1, 2 and 3.

We use the first construction for l∗ = 0, 1, 2, 3, 4 (k = 1), for l∗ = 6, 7, 8
(k = 2) and l∗ = 12 (k = 3).

We use the second construction for l∗ = 5 (k = 1; here h = 0 and n ≥
k + h+ 2) and for l∗ = 9 (k = 2, here h = 0 and n ≥ k + h+ 2).

We use the third construction for l∗ = 10, 11 (k = 2, here h = 1, 2, respec-
tively, and n ≤ k + h+ 1).

We give an explicit construction of the multiplicity trees and of the rings for
the values l∗ = 8, 9, 10.

l∗ = 8. In this case we have more than one choice. A possible multiplicity tree
is depicted in Fig. 5 and it is obtained by the tree depicted in Fig. 2, setting
n = 4, k = 2, and α1 = α2 = 3 (so that α1 + α2 − 1 = 5 = t).
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Fig. 5

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D’A-F], we
construct the ring R in the following way: we start with R0 = K[[t]] ×K[[u]],
where t, u are indeterminates over a field K; then we set R1 = (K + t2K[[t]])×
(K + u2K[[u]]) = U1 × U2, R

2 = (1, 1)K + (t3U1 × u3U2) and R = R3 =
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(1, 1)K+(t3, u3)R2 = (1, 1)K+(t3, u3)K+((t6K+t8K[[t]])×(u6K+u8K[[u]])).
In Fig. 6 is depicted the blowing up tree of R.
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l∗ = 9. The multiplicity tree is depicted in Fig. 7 and it is obtained by the tree
in Fig. 3, setting n = 4, k = 2, h = 0 and t = 5.
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(1, 1, 0, 0, 0, 0)

(1, 1, 0, 0, 0, 0)

(0, 1, 0, 0, 0, 0)(1, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 1, 0)
(0, 0, 1, 0, 0, 0)

Fig. 7

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D’A-F], we
construct the ring R in the following way: we start with R0 = K[[t1]]×K[[t2]]×
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K[[t3]] ×K[[t4]] ×K[[t5]] ×K[[t6]], where ti are indeterminates over a field K
for every i = 1, . . . , 6 and |K| ≥ 6; then we set R1 = ((1, 1)K + (t1K[[t1]] ×
t2K[[t2]]))×K[[t3]]×K[[t4]]×K[[t5]]×K[[t6]] = U1×K[[t3]]×K[[t4]]×K[[t5]]×
K[[t6]], R

2 = ((1, 1)K+(t1, t2)U1))×K[[t3]]×K[[t4]]×K[[t5]]×K[[t6]] = U2×
K[[t3]]×K[[t4]]×K[[t5]]×K[[t6]], R

3 = ((1, 1, 1, 1, 1)K+((t1, t2)U2×t3K[[t3]]×
t4K[[t4]]× t5K[[t5]]))×K[[t6]] = U3 ×K[[t6]] and R = R4 = (1, 1, 1, 1, 1, 1)K+
((t1, t2, t3, t4, t5)U3 × t6K[[t6]]). In Fig. 8 is depicted the blowing up tree of R.
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R4 = R

K[[t6]]U3

U2

U1

K[[t2]]K[[t1]]

K[[t5]]K[[t3]] K[[t4]]

Fig. 8

l∗ = 10. The multiplicity tree is obtained (cf. Fig. 9) by the tree depicted in
Fig. 4, setting n = 4, k = 2, h = 1 (hence x = 0 and r = 0) and t = 5.

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D’A-F],
we construct the ring R in the following way: we start with R0 = K[[t1]] ×
K[[t2]] ×K[[t3]] ×K[[t4]] ×K[[t5]] ×K[[t6]], where ti are indeterminates over
a field K for every i = 1, . . . , 6 and |K| ≥ 6; then we set R1 = ((1, 1)K +
(t1K[[t1]] × t2K[[t2]])) × K[[t3]] × K[[t4]] × K[[t5]] × K[[t6]] = U1 × K[[t3]] ×
K[[t4]] × K[[t5]] × K[[t6]], R

2 = ((1, 1)K + (t1, t2)U1)) × K[[t3]] × K[[t4]] ×
K[[t5]]×K[[t6]] = U2×K[[t3]]×K[[t4]]×K[[t5]]×K[[t6]], R

3 = ((1, 1, 1, 1)K+
((t1, t2)U2× t3K[[t3]]× t4K[[t4]]))×K[[t5]]×K[[t6]] = U3×K[[t5]]×K[[t6]] and
R = R4 = (1, 1, 1, 1, 1, 1)k+ ((t1, t2, t3, t4)U3 × t5K[[t5]]× t6K[[t6]]). In Fig. 10
is depicted the blowing up tree of R.
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Fig. 9
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Fig. 10

We now show that the use of subsemigroups of N
d, with d > 1, is necessary to
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construct rings R with fixed values of λR(R/C), t(R) and l∗(R). More precisely
we will focus our attention to the case l∗(R) = t(R) and we will show that, if n is
an integer large enough, then, for every t ≥ 1, there is no local, one-dimensional,
Noetherian, complete domain R with λR(R/C) = n and l∗(R) = t(R) = t.
Actually we will not need to assume that R is complete, but only R analytically
irreducible (i.e. the completion R̂ of R with respect ot the m-adic topology is a
domain; cf. Proposition 4.7).

The following results are given in [De-L-M] under slightly different hypothe-
ses. The assumption in [De] (and hence also in [De-L-M]) that R is excellent
is used to get the existence of the canonical module of R isomorphic to an m-
primary ideal and the infinite residue field implies the existence of principal
minimal reductions of regular ideals. Under our hypotheses the existence of the
canonical ideal of R follows from the fact that R is complete and reduced (cf.
[H-K, Satz 6,21]). Moreover we do not need to assume (as in [De-L-M, Corollary
2.13]) that the field K is infinite, since if I is a regular ideal of R and x ∈ I
is an element of minimal value, then xR is a minimal reduction of I (cf. [D’A,
Remarks 2.1 (2)]).

Proposition 4.2 [De-L-M, Proposition 2.12] Assume l∗(R) = t(R) and let
x ∈ m be an element of minimal value v(x) = mv(m). Only the following values
for λ(R/(C + xR)) and t(R) are possible:

(a) λ(R/(C + xR)) = 3, t(R) = 2 and e(R) = 5;

(b) λ(R/(C + xR)) = 2 and t(R) = e(R)− 2;

(c) λ(R/(C + xR)) = 1 and t(R) = e(R)− 1 .

Corollary 4.3 [De-L-M, Corollary 2.13] Let K a field and R = K[[us | s ∈ S]],
where S ⊆ N is a numerical semigroup. Assume l∗(R) = t(R) and let x ∈ m be
an element of minimal value v(x) = mv(m). We have the following possibilities
for λ(R/(C + xR)):

(a) λ(R/(C + xR)) = 3, t(R) = 2 and e(R) = 5;

(b) λ(R/(C + xR)) = 2 and t(R) = e(R)− 2 .

In [De-L-M] examples of rings of the form R = K[[ts | s ∈ S]] (S ⊆ N)
are given for the case (a) (cf. [De-L-M, Example 2.14]) and for the case (b)
(cf. [De-L-M, Example 2.11 (1)]). With the construction of Theorem 3.1 we
get examples of rings for the case (c) of Proposition 4.2, with value semigroup
contained in N

e, where e ≥ 3 is the multiplicity of R (cf. Fig 3, with k = 1 and
h = 0).

Let (R,m) be a local, Noetherian, one-dimesional, analytically irreducible
domain. Assume also that, if (R, n) is the integral closure of R in its quotient
field, then R 6= R and R/m ' R/n. Under these hypotheses the value semigroup
of R is S = v(R) = {0, s1, s2, . . . , sn(S)−1, sn(S),→}, where s1 = e(R) and the
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arrow means that every integer greater than or equal to sn belongs to S. The
largest positive integer not in S is called the Frobenius number of S and is
denoted by g(S). Moreover if I ⊇ J are two fractional ideals of R, then λ(I/J) =
|v(I) \ v(J)|; in particular we have that λ(R/C) = |{0, 1, . . . , g(S)} ∩ S| = n(S)
and that λ(R/R) = |N\S| = g(S)+1−n(S). Moreover it is defined the type of S
as t(S) = |T | = |{q ∈ N \S | q+ s ∈ S, ∀s ∈ S \ {0}}| (for all the definitions and
results about numerical semigroups we refer to [B-D-F]). Hence we can define
l∗(S) = n(S)t(S) − |N \ S|. Since t(S) ≥ t(R) (cf. [B-D-F, Theorem II.1.16]),
we have that l∗(S) ≥ l∗(R) and in [B-D-F, Example II.1.19] is given an example
for which the inequality t(S) > t(R) holds. However in the particular case
R = K[[us | s ∈ S]], t(R) = t(S) and hence l∗(R) = l∗(S). Hence Corollary 4.3
can be translated to the semigroup level as the following statement:

Corollary 4.4 Let S ⊆ N be a numerical semigroup. Assume l∗(S) = t(S), let
e = s1 be the smallest non zero element of S and set e + S = {e + s | s ∈ S}.
We have the following possibilities for |S \ ((e+ S) ∪ {g(S) + 1,→})|:

(a) |S \ ((e+ S) ∪ {g(S) + 1,→})| = 3, t(S) = 2 and e = 5;

(b) |S \ ((e+ S) ∪ {g(S) + 1,→})| = 2 and t(S) = e− 2 .

Now we are ready to study the numerical semigroups S such that l∗(S) =
t(S). Notice that, since the inequality l∗(R) ≤ (λ(R/C) − 1)(t(R) − 1) holds
for the rings of the form R = K[[us | s ∈ S]], then the corresponding inequality
l∗(S) ≤ (n(S)− 1)(t(S)− 1) holds for numerical semigroups. It follows that, if
l∗(S) = t(S), then t(S) > 1.

Proposition 4.5 If n is an integer large enough (n > 14), then, for any nu-
merical semigroup S such that n(S) = n, l∗(S) 6= t(S).

Proof. We will prove that if l∗(S) = t(S), then n(S) is bounded by 14. Let
g = g(S) and n = n(S). By Corollary 4.4 we have two possibilities for |S \ ((e+
S) ∪ {g + 1,→})|.

If S satisfies case (a) of Corollary 4.4, then |S \ ((e+ S) ∪ {g+ 1,→})| = 3,
t(S) = 2 and e = 5; by the first condition, there exist exactly two non zero
elements of S, f and h, such that f < h < g, f − 5 /∈ S and h − 5 /∈ S. It
follows that, if 2f < g, then 2f = h + 5α (with α ≥ 0) and, if f + h < g,
then f + h = 5β (with β > 0). But if both these two equalities hold, then
h = 5β − f = 2f − 5α, that is 3f = 5(α + β), which is a contradiction since 5
does not divide f . Therefore f + h ≥ g + 1.

Moreover {g − 4, . . . , g} = {5(p − 1), f + 5r1, h + 5r2, i1, i2}, where i1, i2 /∈
S, 0 ≤ r2 ≤ r1 and p is the integer such that 5(p − 1) < g < 5p. Since
i1, i2 ∈ T = {q ∈ N \ S | q + s ∈ S, ∀s ∈ S \ {0}} and t(S) = |T | = 2, then
f − 5 /∈ T and h − 5 /∈ T ; hence there exist two elements q1, q2 ∈ S \ {0} such
that (f − 5) + q1 /∈ S and (h− 5) + q2 /∈ S. This implies q1, q2 ∈ {f, h} (in fact
any element of S smaller than g is of the form 5α, f+5α or h+5α, with α ≥ 0);
in particular f + h − 5 ≤ g (otherwise, if f + h − 5 > g, then also 2h − 5 > g
and q2 does not exit). It follows that g < f + h ≤ g + 5.
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Let k and j be the integers such that 5k < f < 5(k+1) and 5j < h < 5(j+1).
With this notation 5(k+j) < f+h < 5(k+j+2). By g+1 ≤ f+h < 5(k+j+2)
and by definition of p, we have p ≤ k+ j+2. On the other side, since 5(k+ j) <
f + h ≤ g + 5 < 5(p+ 1), we have k + j ≤ p.

Since l∗(S) = t(S)n(S)−|N\S| = t(S), then |N\S| = t(S)(n−1) = 2(n−1).
Moreover, by definition of p, k and j, we have n = p+ p− k − 1 + p− j − 1 +
ε = 3p − k − j − 2 + ε (where ε = |{5(p − 1) + 1, . . . , g} ∩ S| = 0, 1, 2) and
|N \ S| = 4k + 3(j − k) + 2(p − j − 1) + γ = k + j + 2p − 2 + γ (where
γ = |{5(p− 1) + 1, . . . , g} ∩ N \ S| = 1, 2). It follows that:

|N \ S| = 2(n− 1) ⇐⇒k + j + 2p− 2 + γ = 6p− 2(k + j − 2) + 2ε− 2 ⇐⇒

4p = 3(k + j) + γ − 2ε+ 4 =⇒ p ≤ 6

(the last inequality comes from the inequalities k + j ≤ p, ε ≥ 0 and γ ≤ 2).
It follows that, since k+ j ≥ p− 2 and ε ≤ 2, then n = 3p− k − j − 2 + ε ≤

2p+ 2 ≤ 14.

If S satisfies case (b) of Corollary 4.4, then t(S) = e − 2 (hence, since
t(S) > 1, we can assume e > 3) and |S \ ((e + S) ∪ {g + 1,→})| = 2; hence
there exists exactly one non zero element f in S, such that f < g and f−e /∈ S.
Hence, by the uniqueness of f , either 2f ≥ g + 1 or, if 2f < g, then 2f = αe
(with α > 2).

Moreover {g + 1 − e, . . . , g} = {e(p − 1), f + er, i1, i2, . . . , ie−2}, where p
is the integer such that (p − 1)e < g < pe and i1, i2, . . . , ie−2 /∈ S. Since
i1, i2, . . . , ie−2 ∈ T = {q ∈ N\S | q+s ∈ S, ∀s ∈ S \{0}} and t(S) = |T | = e−2,
then f − e /∈ T ; it follows that there exists an element q ∈ S \ {0} such that
(f − e) + q /∈ S. This implies that 2f − e /∈ S; hence 2f − e ≤ g, that is
f ≤ (g + e)/2. On the other hand, 2f ≥ g + 1, otherwise 2f − e = αe − e =
(α− 1)e ∈ S; it follows that f ≥ (g + 1)/2.

We denote by k the integer such that ke < f < (k + 1)e. By definition of k,
we have (k + 1)e > f ≥ (g + 1)/2 and by definition of p we have 2(k + 1) ≥ p,
that is k ≥ (p/2) − 1. Moreover, since f ≤ (g + e)/2, by definition of k, we
have ke < f ≤ (g + e)/2, that is (2k − 1)e < g. By definition of p, we have
2k − 1 ≤ p− 1, hence k ≤ p/2.

Therefore (p/2)− 1 ≤ k ≤ p/2 and we have to consider only three different
cases, k = (p/2)− 1, p/2 (when p is even) and k = (p− 1)/2 (when p is odd).

Assume p even and k = p/2. Since l∗(S) = t(S)n(S) − |N \ S| = t(S), then
|N\S| = t(S)(n−1) = (e−2)(n−1). Moreover, by definition of p and k, we have
n = p+p−k−1+ε= (3/2)p−1+ε (where ε = |{(p−1)e+1, . . . , g}∩S| = 0, 1) and
|N\S| = (e−1)p/2+(e−2)(p/2−1)+γ (where γ = |{(p−1)e+1, . . . , g}∩N\S| =
1, 2, . . . , e− 2). It follows that:

|N \ S| = (e− 2)(n− 1) ⇐⇒ (1/2)pe− (3/2)p = γ − ε(e− 2) + e− 2 ⇐⇒

p(e− 3) = 2(γ − ε(e− 2) + e− 2).

Since ε ≥ 0 and γ ≤ e− 2, it follows that p ≤ 4(e− 2)/(e− 3). Hence, since p
is an even integer, if e = 4, then p ≤ 8, if e = 5, then p ≤ 6 and, if e ≥ 6, then
p ≤ 4. In any case, since ε ≤ 1, then n = (3/2)p− 1 + ε ≤ 12.
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We now consider the case p even and k = p/2− 1. Since l∗(S) = t(S)n(S)−
|N \ S| = t(S), then |N \ S| = t(S)(n − 1) = (e − 2)(n − 1). Moreover, by
definition of p and k, we have n = p + p − k − 1 + ε = (3/2)p + ε (where
ε = |{(p−1)e+1, . . . , g}∩S| = 0, 1) and |N\S| = (e−1)(p/2−1)+(e−2)p/2+γ
(where γ = |{(p− 1)e+ 1, . . . , g} ∩ N \ S| ∈ {1, 2 . . . , e− 2}). It follows that:

|N \ S| = (e− 2)(n− 1) ⇐⇒ (1/2)pe− (3/2)p = γ − ε(e− 2)− 1 ⇐⇒

p(e− 3) = 2(γ − ε(e− 2)− 1).

Since p is an even positive integer, ε ≥ 0 and γ ≤ e − 2, it follows that p = 2.
But this implies k = p/2− 1 = 0 which is a contradiction to f > e.

Finally we consider the case p odd and k = (p − 1)/2. Since l∗(S) =
t(S)n(S)−|N\S| = t(S), then |N\S| = t(S)(n−1) = (e−2)(n−1). Moreover,
by definition of p and k, we have n = p+p−k−1+ε = p+(p−1)/2+ε (where ε =
|{(p−1)e+1, . . . , g}∩S| = 0, 1) and |N\S| = (e−1)(p−1)/2+(e−2)(p−1)/2+γ
(where γ = |{(p− 1)e+ 1, . . . , g} ∩ N \ S| ∈ {1, 2 . . . , e− 2}). It follows that:

|N \ S| = (e− 2)(n− 1) ⇐⇒ pe− 3p = 2γ − 2ε(e− 2) + e− 3 ⇐⇒

p(e− 3) = 2(γ − ε(e− 2)) + e− 3.

Since ε ≥ 0 and γ ≤ e − 2, it follows that p ≤ (3e − 7)/(e− 3) and, since p is
an odd integer larger than 1, we get that p = 3, 5 when e = 4 and p = 3 when
e ≥ 5.

It follows that, since ε ≤ 1, then n = p+ (p− 1)/2 + ε ≤ 8.

Remark 4.6 We could make the statement of Proposition 4.5 more precise
studying which semigroups can be constructed for every single value of p.

If S satisfies case (a), it is proved in Proposition 4.5 that p ≤ 6. Since p ≥ 2
we have to consider five cases.

If p = 2, then, by definition of p, 2 · 5 = 10 ≥ g + 1. The elements f and
h introduced in this proof are smaller than g + 1. Hence n = 4 and g + 1 =
|N \ S|+ n = 2(n− 1) + n = 10. In order to get t(S) = 2 we find the following
semigroups {0, 5, 6, 7, 10,→} and {0, 5, 6, 8, 10,→}.

If p = 3, then, by definition of p, 3 · 5 = 15 ≥ g + 1. Moreover for the
integer k and j introduced in the proof of Proposition 4.5 we have j, k ≥ 1 and
j + k ≤ p. Hence n = 3p − k − j − 2 + ε = 4, 5, 6, 7 (since ε = 0, 1, 2). If
n = 4, then g + 1 = |N \ S|+ n = 2(n− 1) + n = 10 which is a contradiction to
10 = (p− 1)e < g + 1. If n = 5, then g + 1 = |N \ S|+ n = 2(n− 1) + n = 13;
in order to get t(S) = 2 we find only the semigroup {0, 5, 8, 9, 10, 13,→}. If
n = 6, 7, then g + 1 = |N \ S| + n = 2(n − 1) + n ≥ 16, a contradiction to
15 ≥ g + 1.

With similar arguments we get that there are no semigroups satisfying con-
ditions of the case (a) with 4 ≤ p ≤ 6.

Analyzing analogously the case (b), it is possible to find semigroups verifying
l∗(S) = t(S) only for particular subcases.

If p is even and k = p/2 we get, for e = 4 and p = 4, the semigroup
S = {0, 4, 8, 9, 12, 13, 16,→} (here n(S) = 6). While, for e ≥ 4 and p = 2, we get
infinite semigroups S (with n(S) = 4): for example S = {0, e, e+ 1, 2e− 1,→}.
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If p is odd and k = (p− 1)/2, we obtain, for e = 4 and p = 5, the semigroup
S = {0, 4, 8, 11, 12, 15, 16, 19,→} (here n(S) = 7). While, for e > 4 and p = 3,
we get the semigroups S = {0, e, 2e− 2, 2e, 3e− 2,→} (with n(S) = 4).

Using Proposition 4.5 we can prove that, if n is an integer large enough, then,
for every t ≥ 1, there is no analytically irreducible domain R with λR(R/C) = n
and l∗(R) = t(R) = t (we remark that we do not need to assume R complete,
since also in this case canonical ideal and principal minimal reductions exist,
as it is shown in [D’A-De]). This result is not an immediate consequence of
Proposition 4.5, since it is possible that l∗(R) = t(R) while l∗(v(R)) 6= t(v(R));
the example introduced in [B-D-F, Example II.1.19] works to show this fact:
let K be a field of characteristic different by 2 and let R = K[[t4, t6 + t7, t11]].
The value semigroup of R is v(R) = {0, 4, 6, 8, 10,→} and t(v(R)) = 3 since
T = {q ∈ N \ S | q + s ∈ S, ∀s ∈ S \ {0}} = {2, 7, 9}. Moreover |N \ v(R)| = 6
and n(v(R)) = 4; hence l∗(v(R)) = 3 · 4− 6 = 6 6= 3. On the other hand, as it
is shown in [B-D-F, Example II.1.19], t(R) = 2, thus l∗(R) = 2 · 4− 6 = 2.

Proposition 4.7 Let (R,m) be a local, Noetherian, one-dimesional, analyti-
cally irreducible domain. Assume also that, if (R, n) is the integral closure of
R in its quotient field, then R 6= R and R/m ' R/n. If n is an integer large
enough (n > 14) and λ(R/C) = n, then l∗(R) 6= t(R).

Proof. Let S = v(R) be the value semigroup of R and e = e(R) = s1. We will
prove that, if l∗(R) = t(R), then λ(R/C) ≤ 14.

If l∗(R) = t(R), by Proposition 4.2, only the following values for λ(R/(C +
xR)) and t(R) are possible:

(a) λ(R/(C + xR)) = 3, t(R) = 2 and e = 5;

(b) λ(R/(C + xR)) = 2 and t(R) = e− 2;

(c) λ(R/(C + xR)) = 1 and t(R) = e− 1 .

If case (c) holds for R, then e − 1 = t(R) ≤ t(S) ≤ e − 1 implies that
t(R) = t(S) = e − 1 (for the inequality t(S) ≤ e − 1 cf. [B-D-F, Remark I.2.7
(a)]). Hence l∗(S) = l∗(R) and therefore l∗(S) = t(S) = e−1, but, by Corollary
4.4, this is not possible; it follows that R cannot satisfy case (c).

If case (a) holds for R, then 2 = t(R) ≤ t(S) ≤ 5 − 1. If t(S) = 2 we have
that l∗(S) = l∗(R), so l∗(S) = t(S); hence we can apply Proposition 4.5 (case
(a)) and we get λ(R/C) = n(S) ≤ 14.

Assume that t(S) = 3, 4. We have e = 5 and 3 = λ(R/(C + xR)) = |S \
((5 + S) ∪ {g + 1,→})|; hence there exist exactly two non zero elements of S,
f and h, such that f < h < g, f − 5 /∈ S and h − 5 /∈ S. It follows that, if
2f < g, then 2f = h+5α (with α ≥ 0) and, if f +h < g, then f +h = 5β (with
β > 0). But if both these two equalities hold, then h = 5β − f = 2f − 5α, that
is 3f = 5(α+ β), which is a contradiction since 5 does not divide f . Therefore
f + h ≥ g + 1.
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Moreover {g−4, . . . , g} = {5(p−1), f +5r1, h+5r2, i1, i2}, where i1, i2 /∈ S,
0 ≤ r2 ≤ r1 and p is the integer such that 5(p − 1) < g < 5p. Since i1, i2 ∈
T = {q ∈ N \ S | q + s ∈ S, ∀s ∈ S \ {0}} and t(S) = |T | = 3, 4, then at
least one of the integers f − 5 and h− 5 belongs to T ; hence f + h− 5 ∈ S. If
f + h − 5 ≥ g + 1 then also 2h − 5 ≥ g + 1 and this implies that t(R) ≥ 3: in
fact by λ(R/xR + C) = 3 it follows that λ(m/xR + C) = 2, hence there exist
two elements y, z ∈ R such that m = xR+yR+ zR+C and we can assume that
v(y) = f and v(z) = h, since, if y1, y2 ∈ R and v(y1) = v(y2), then there exists
a unity u ∈ R such that v(y1 − uy2) > v(y1) (cf. [K, Theorem]); moreover,
since C = {r ∈ R| v(r) ≥ g + 1} (cf. [K, Theorem]), by f + h − 5 ≥ g + 1
and 2h − 5 ≥ g + 1, it follows that z/x ∈ m−1. But this is a contradiction to
t(R) = 2. Hence f + h− 5 ≤ g and therefore g < f + h ≤ g + 5.

Since l∗(R) = t(R) or, equivalently, t(R)(λ(R/C) − 1) = λ(R/R), then
2(n(S) − 1) = |N \ S| and, since g < f + h ≤ g + 5, we can use the same
argument as in the proof of Proposition 4.5 (case (a)) to get n ≤ 14.

If case (b) holds for R, then e− 2 = t(R) ≤ t(S) ≤ e− 1. If t(S) = e− 2 we
have that l∗(S) = l∗(R), so l∗(S) = t(S); hence we can apply Proposition 4.5
(case (b)) and we get λ(R/C) = n(S) ≤ 12.

Assume that t(S) = e − 1. We have 2 = λ(R/(C + xR)) = |S \ ((e + S) ∪
{g + 1,→})|; hence there exists exactly one non zero element f in S, such that
f < g and f − e /∈ S. Hence, by the uniqueness of f , either 2f ≥ g + 1 or, if
2f < g, then 2f = αe (with α > 2).

Moreover {g + 1 − e, . . . , g} = {e(p − 1), f + er, i1, i2, . . . , ie−2}, where p
is the integer such that (p − 1)e < g < pe and i1, i2, . . . , ie−2 /∈ S. Since
i1, i2, . . . , ie−2 ∈ T = {q ∈ N\S | q+s ∈ S, ∀s ∈ S \{0}} and t(S) = |T | = e−1,
then f−e ∈ T ; it follows that 2f−e ∈ S. If 2f−e ≥ g+1, then t(R) = e−1: in
fact by λ(R/xR+C) it follows that there exits y ∈ R such that m = xR+yR+C

and we can assume that v(y) = f ; but 2f − e ≥ g + 1 implies that y/x ∈ m−1.
But this is a contradiction to t(R) = e − 2. It follows that 2f − e ≤ g, that is
f ≤ (g + e)/2.

Since l∗(R) = t(R) or, equivalently, t(R)(λ(R/C)− 1) = λ(R/R), then (e−
2)(n(S) − 1) = |N \ S|. Therefore, if 2f ≥ g + 1 (that is f ≥ (g + 1)/2), we
can use the same argument as in the proof of Proposition 4.5 (case (b)) to get
n ≤ 12.

Otherwise, if 2f < g, then 2f = αe (with α > 2). Denote by k the integer
such that ke < f < (k + 1)e and by p the integer such that (p− 1)e < g ≤ pe.
By definition of p and k, we have n = p+ p− k− 1 + ε (where ε = |{(p− 1)e+
1, . . . , g} ∩ S| = 0, 1) and |N \ S| = (e − 1)k + (e − 2)(p − k − 1) + γ (where
γ = |{(p− 1)e+ 1, . . . , g} ∩ N \ S| = 1, 2, . . . , e− 2). It follows that:

|N \ S| = (e− 2)(n− 1) ⇐⇒ p(e− 2)− (e− 2) + ε(e− 2) = k(e− 1) + γ

=⇒ (p− 1)(e− 2) ≤ k(e− 1) + (e− 2) =⇒ k ≥ (p− 2)(e− 2)/(e− 1)

(where the first implication follows by ε ≥ 0 and γ ≤ e− 2).
Since ke < f , then 2ke < 2f < g; hence p > 2k ≥ 2(p− 2)(e− 2)/(e− 1) or

equivalently p(e−1) > 2(p−2)(e−2). It follows that p(e−3) < 4(e−2); hence,
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by e ≥ 4 (since e−2 = t(R) > 1), it follows that p < 8 and n = 2p−k−1+ε ≥ 13
(since k ≥ 1 and ε ≤ 1).
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