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values of t(R)Ar(R/€) — Ar(R/R)
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1 Introduction

Let R be a local, Noetherian, one-dimensional domain; assume also that R is
analytically irreducible or, equivalently, that the integral closure R of R in its
quotient field is a DVR and is a finite R-module. It is natural to associate to R
a value semigroup v(R) which is a subsemigroup of N and it is well known that
there is a strict connection between R and v(R), when R and R have the same
residue field (cf. [K, Ms]).

More generally, when R is not a domain, but just a reduced ring, if we
assume that R is a finite R-module (or, equivalently, R analytically unramified),
it is again possible to associate to R a value semigroup, which, in this case, is
a subsemigroup of N, where d is the number of maximal primes of R (cf.
[D, D’A)).

An important class of examples of such rings is given by the local rings of
an algebric curve over an algebraically closed field in a singular point.

The key fact that allows to connect a ring to its value semigroup is that
it is possible to compute the lenght Ar(I/J) (where I D J are ideals of R)
in terms of the semigroup. In this context one can consider the inequality
Ar(R/R) < t(R)Ar(R/€) (cf. [Ms, Proposition 3] and [De, Proposition 2.1]),
where € = (R : R) is the conductor of R and t(R) is the Cohen-Macaulay type.

If I*(R) = t(R)Ar(R/€)—Ar(R/R), it is proved in [D’A-De, Proposition 2.1]
that 0 < I*(R) < (t(R)—1)(Ar(R/€)—1). It is possible to give a characterization
of rings satisfying the condition {*(R) < t(R) — 2 and, assuming also that
t(R) = e(R) — 1, of rings satisfying the condition [*(R) < ¢(R) (where e(R) is
the multiplicity of R; cf. [De, Theorems 2.3-2.10]). In the case I*(R) > t(R)
there are results involving the type and the multiplicity of the ring R and the
lenght A\(R/(€ + zR)) (where xR is a minimal reduction of the maximal ideal;
cf. [De-L-M, Theorem 2.2]), but a complete classification of such rings seems
out of reach at present.
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It is natural to ask whether, fixed three natural numbers n, ¢, [* such that
n>1¢t>1and 0 <I* < (t —1)(n — 1), there exists a ring R such that
Ar(R/€) =n, t(R) =t and I*(R) = I*.

The main goal of this paper is to give a positive answer to this question,
giving a way to construct such rings. To make this construction we assume
that the rings are complete and Arf. While the first assumption gives just a
simplification of notation (cf. [D’A]), the second one allows to move the problem
from the ring level to the semigroup level, giving the notion of Arf semigroup as
in [B-D’A-F]. The main ingredient of the construction is the multiplicity tree
of a ring (or of an Arf semigroup), introduced in [B-D’A-F].

In the next section we give all the preliminaries to our construction; in
particular we explicitly give the way to read all the integers involved in our
inequality, in terms of multiplicity tree (cf. Proposition 2.5). In section 3 we
give the construction of the multiplicity trees satisfying the conditions requested
(cf. Theorem 3.1). In section 4 we produce an example of the construction for
particular values of n, t and [* (cf. Example 4.1) and we study the case [*(R) =
t(R), showing that if A\(R/€) is large enough, then there is no analytically
irreducible ring R such that I*(R) = ¢(R) (cf. Proposition 4.7); this fact implies
that, in order to get a positive answer to the main question, it is necessary to
consider reduced rings and not only analytically irreducible domains.

2 Preliminaries

Throughout the rest of this paper we will assume that (R, m) is a local, complete,
one-dimensional, reduced, Noetherian ring; we will denote by R the integral
closure of R in its total ring of fractions @ and we assume that R # R; notice
that R is a finite R-module.

Under these hypotheses R is semilocal and it is a finite R-module (cf. [Ma,
Theorem 10.2]); moreover the number d of maximal ideals of R equals the
number of minimal primes of R (cf. [D’A, Proposition 1.1]). We will denote by
m; the maximal ideals of R and by p,; the minimal primes of R. We have the
following commutative diagram

R/p1x -+ x R/pqg

|

V1><'~~><Vd

|

= Q(R/p1) % - % Q(R/pa)

12

Q+—HN+—

where V; = (R/p;) = Ru,, the integral closure of R/p; in its quotient field
Q(R/p;), is a DVR. We will denote by ¢; a uniformizing parameter of V; and by



v; the valuation function associated to V;. We also assume that R/m ~ V;/(¢;)
for every ¢ and that |R/m| > d.
For any © = (21,...,24) € Q \ Z (where Z is the set of zero divisors of Q)
we define v(x) = (vi(x1),...,v4(xq)). Hence we can define v(R) = {v(r) | r €
R\ Z}; more generally, for every regular fractional ideal I of R (where regular
means that I contains a nonzero divisor), we set v(I) = {v(i) |1 € I \ Z}.
With these hypotheses and notation, we recall first the following results that
will be used in the sequel (cf. [B-D’A-F]):

e v(R) is an additive subsemigroup of N and v(I) is a semigroup ideal of
v(R) (i.e. v(I)+ s Cwv(l), for every s € v(R)).

e Considering the usual product ordering in N¢, that is (ay,...,aq) <
(B1,...,0q) if and only if a; < f; for i = 1,...,d, the set of values
v(I) of a regular fractional ideal I contains an element of smallest value,
i.e. minv(I) exists. We will denote it by m, ().

e There exists a § € N such that § + N¢ C v(R).

e The ideals of R are of the form R(§) = {z € R | v(x) > §}; the conductor

¢ = R: R equals the largest ideal R(J) contained in R.

e If I C J are two regular fractional ideals of R, then Ar(J/I) can be
calculated by means of the sets of values v(J) and v(I). More precisely,
if a,8 € v(I),x < B, we let dy()(cx,3) denote the common length of a
saturated chain of elements of v(I) from a to 3. Let m, ), m,(s) be the
minimal elements in v(I) and v(J) respectively. Then for any sufficiently
large a we set d(v(J) \ v(I)) = dyyy (M), @) — dy(ry (M), ). This
definition is independent of the choice of a. Then we have Ag(J/I) =
d(v(J) \ v(I))-

o If my(y) = (a1,...,aq), the multiplicity of R is e(R) = a1 + -+ + aq.

e t(R)=AXm !/R) <e(R) - 1.

Notice that these hypotheses are slightly different by the hypotheses of
[De] and [D’A-De]; however the inequalities Ar(R/R) < t(R)Ar(R/€) and
0 <I*(R) < (t(R) — 1)(Ar(R/€) — 1) are still true, with the same proof: the
existence of the canonical ideal of R follows from the fact that R is complete
and reduced (cf. [H-K, Satz 6,21]) and if I is a regular ideal of R and © € I
is an element of minimal value, then xR is a minimal reduction of I (cf. [D’A,

Remarks 2.1 (2)]).

In [B-D’A-F] has been introduced the notion of multiplicity tree of a ring.
Recall that, if I is an ideal of R, the blowing up R’ of I is U,~o(I™ : I™). We
have (I : I™) C (I"*1 : ["*1) for each n, and R! = (I™ : I"™) for some ny,
since R is Noetherian. Recall that we can associate to R, as in [L, p. 666], a
sequence of semilocal rings R = Ry C R; C --- where R;4; is obtained from R;
by blowing up rad(R;), the Jacobson radical of R;. We call this sequence the



Lipman sequence. Since, in our hypotheses, R is a finitely generated R-module,
this sequence stabilizes for some n and R, = R, for h > n. Recall also that,
given a maximal ideal m; of R the branch sequence of R along m; is the sequence
of rings (Ri)m;nr, (cf. [L, p. 669])

Example 2.1 Let K be a field and let R = K[[(t,u?), (t,u7), (2, )]] C K[[t]] x
K{[[u]]; we get the following Lipman sequence: Ry = K[[t]] x K[[ 2 ub], Ry =
KI[t]] x K[[u? v’]], Rs = Ry = -+ = R = K[[t]] x K[[u]].

It is possible to associate to a local ring R with R=V; x--- x Vy arooted
tree, called the blowing up tree of R, in the following way: the nodes are all local
rings occuring in all branch sequences. The root (at level 0) is R, and on level 1
there are the localizations (at its maximal ideals) of Ry = R™ = R"4() and so
on. If U is a local ring in the tree and U = V;, x - - - x Vi., then U has k minimal
primes qi,...,qs. The vector e(U) = (e1(U),... ,eq(U)) (where e;(U) = 0 if
J & ity ... vixy and e;;(U) = e(U/a;),j =1,... ,k) is said the fine multiplicity
of U (thus the usual multiplicity of U is 2% | e;(U)). If we replace the local
rings in the tree with their fine multiplicities, we get the multzplzczty tree of R.
We denote the nodes of the level i of the multiplicity tree by e( yree el(i). In
the example above we get the blowing up tree and the multiplicity tree depicted
in Fig. 1.

. K] Kl L (1,0) NOR
| K] K]} 1,0) (0.2
0 KA L0 (0.2
R (1,2)
Fig. 1

Remark 2.2 Notice that, since we assumed that R is a product of DVR’s,
each ring R; of the Lipman sequence associated to R is the direct product of its
localizations at maximal ideals [B-D’A-F, Corollary 3.2], i.e., the direct product
of the local rings which appear at level 7 in the blowing up tree.

In [B-D’A-F] is given a numerical characterization of those trees which are
multiplicity trees of a ring:



Theorem 2.3 [B-D’A-F, Theorem 5.11] Let T be a tree of vectors {e{i) =

(e{)l, . ,e{,d)} of N (where eg) is the root of the tree and the index (i) denotes
the level of the nodes in the tree). The following conditions are equivalent for
T:
1) T is the multiplicity tree of a ring.
2) T satisfies the three conditions a), b) and c) below:

a) There exists n € N such that, for m > n, egm) = (0,...,0,1,0,...,0)
(the nonzero coordinate in the j-th position) for any j =1,... ,d.

b) e, =0 if and only if eii) is not in the h-th branch of T (the h-th branch
of the tree is the unique mazimal path containing the h-th unit vectors).

c) ezi) = ZeeU\e{i) e for some finite subtree U of T, rooted in ez )

i

The connection between rings and their value semigroups is particularly
strict for Arf rings. A ring R is said to be Arf if every regular integrally closed
ideal is stable (cf. [L]; recall that a regular ideal I is stable if (I : I) = 2711
for some nonzero divisor z € I). Under our hypotheses the integrally closed
ideals are of the form R(a) = {r € R | v(r) > a} (where a € v(R); cf.
[D’A, Remarks 2.1.2]); in this case the element z has to be an element of value
v(z) = a. Similarly it is possible to define Arf semigroups: if S = v(R) is the
value semigroup of a ring and a € S, define S(a) = {8 € S| B> a}; then S
is said to be Arf if, for every @ € S, S(a) = S(a) :={B € Z | B+ S(a) C
S(a)} = S(a) — a (cf. [B-D’A-F, Section 3]). For Arf semigroups it is possible
to define the multiplicity tree (cf. [B-D’A-F, Section 5]) and the following result
holds:

Proposition 2.4 [B-D’A-F, Proposition 5.10] The following statements are
equivalent:

(1) R is Arf.

(2) S =wv(R) is Arf and the multiplicity trees of R and S are the same.

Moreover an Arf semigroup is completely described by its multiplicity tree
(cf. [B-D’A-F, Proposition 5.9]); hence, in the case of Arf rings, it allows to
compute all the numbers involved in the inequality A(R/R) < t(R)A(R/€).
More precisely we have the following

Proposition 2.5 Let T be the multiplicity tree of an Arf ring R and let T¢ be
the subtree consisting of all the nodes of T which are non-unit vectors.

1) If n(T) is the number of nodes of T¢, then A(R/€) = n(T).

2) If e(0)y = (e(0),15- - - €(0),a) 5 the root of T, then t(R) = e(R) — 1 = e(gy,1 +
"'Jre(‘o),dfl‘. ‘

3) If ezi) = (efim, e efi%d) are the nodes of T, then



and

d
I*(R) = > (e(R) - e{i),h> .
h=1

e{i) €Te\{ew)}

Proof. 1) By [B-D’A-F, Proposition 5.9], v(R) = {0} U {Ze{_)eT, ey}

where 0 € N? and T’ ranges over all finite subtrees of T rooted in €(p). Hence
a chain of points of v(R) is obtained considering a chain of subtrees rooted in
€(0): Ty C Ty C--- CTy. To get a saturated chain, the subtree T; has to
be obtained by T;_; adding exactly one node of T. Since Ar(R/€) equals the
lenght of a saturated chain of points of v(R) between 0 and 4, then we get the
conclusion.

2) By Proposition 3.17 in [B-D’A-F|, we have that ¢(R) = e(R) — 1; the
second equality follows by the definition of multiplicity tree.

3) The first equality comes from [B-D’A-F, Corollary 5.13]. As for the sec-
ond, by definition of {*(R) and from the points 1) and 2) of this proposition, it
follows that

I"(R) = t(R)Ar(R/€) = Ar(R/R) = (t(R) + )Ar(R/€) — Ar(R/€) =

d d
e(R)n(T) — Z <hzlegi)’h> Z <e(R)th€€;>,h>-

e/, €Te e/, €Te\{e)}

If R is a ring, it is possible to define its Arf closure, R’ (cf. [L, Proposition-
Definition 3.1]), and the multiplicity trees of R and R’ coincide (cf. [B-D’A-F,
Proposition 5.3]). Hence we have:

Corollary 2.6 Let T be a tree of vectors of N¢. The following conditions are
equivalent for T:

1) T is the multiplicity tree of a ring.

2) T is the multiplicity tree of an Arf ring.

3 The main Theorem
Now we are ready to prove the main theorem of this paper.

Theorem 3.1 Ifn, t, [* are three fixed natural numbers such thatn >1,t> 1
and 0 < I* < (t—1)(n —1), then there exists a ring R, satysfying the hypoteses
of this paper, such that Agr(R/€) =n, t(R) =t and I*(R) = I*.

Proof. We will prove that there exists an Arf ring R satisfying the statement
of this Theorem. Hence, by Proposition 2.5 and Corollary 2.6, it is enought to
construct a multiplicity tree T of a ring R such that n(T) = n, e + -+

d j * *
€(0),a = t+1 and Ze{i)eTc\{e(o)} (t—i— 1->1 ezi),h) =1[*. Let I*, n and ¢



be three integers with n > 1, ¢ > 1 and 0 < I* < (¢t — 1)(n —1); if n = 1, then
[* = 0 and for any ¢, the multiplicity tree with one branch, whose nodes are
t+1,1,1,..., satisfies the conditions of Theorem 2.3 and, if R is an Arf ring with
this multiplicity tree, then, by Proposition 2.5, I*(R) = 0, Ag(R/€) = n(T)=1
and t(R) = t. Hence we can assume n > 1. Let be k an integer such that
1<k <n-—1andlet T be the multiplicity tree depicted in Fig. 2.

(ala -aak) n—k
(a1,...,0p) |
Fig. 2
In this tree ey = -+ = €(p—x—1) = (a1,...,01), where oy + -+ +ap =t +1

and a; > 2, and egn7k+1) =(0,...,0,2;,0,...,0), where z; is in the j-th place
and 1 < z; < ;. By Theorem 2.3 and Corollary 2.6, T is the multiplicity tree
of an Arf ring R. Hence by Proposition 2.5, Ar(R/€) = n(T) = n, t(R) =t
and I*(R) = (k— 1e(R) + (a1 —x1) + -+ - + (o — ), so I*(R) can assume all
the values between (k —1)e(R) = (k—1)(t+ 1) and (k — 1)e(R) + e(R) — 2k =
ke(R)—2k = k(t—1). By Proposition 2.5, we have e(R) > 2k and t(R) > 2k—1,
but the inequality (k — 1)(¢(R) + 1) < k(t(R) — 1) implies that t(R) > 2k — 1.
Hence our construction covers all the possible values of ¢, when n > 1 and
(k=1)(t+1) <" <k(t—1).

Since for n = 2, I* < t—1, it remains to construct suitable multiplicity trees
for the casesn > 2 and k(t—1)+1 < I*(R) < k(t+1)—1where 1 <k <n-—2.
Assume that I* = k(¢ — 1) + 1 + h, where h is an integer with 0 < h < 2k — 2.
Now consider the tree T depicted in Fig. 3, where the number of coordinates
of the vectors is t + 1 (and ¢ > 2). This tree satisfies the conditions of Theorem
2.3, hence if R is an Arf ring with T as multiplicity tree, by Proposition 2.5,
Ar(R/€)=n(T) =n,t(R)=tand I*(R)=h+1+k(t—1)=1*%



Notice that in the tree depicted in Fig. 3 we haven > 1+h+1+k =k+h+2;
therefore we still have to consider the cases n — h —2 < k <n — 2, with A > 0.

(1,0,...,0) (0,1,0,...,0)
r (1,1,0,...,0)'
L o0
L (1,1,0,...,0) ...,0,1,0)
r (1,
hon| (L0
L (1,...,1,0) { (0,...,0,1)
(1,...,1)
1,...,1
n—k—h-1 (1.1
Le (1,...,1)
[ —
t+1
Fig. 3

Now, if k =n—2 — 2 with 0 <a < h —1, let ¢ and r be the integers such that
h+1=gqx+1)+rwith1<r <ax+1 and set ¢)(x) = g+ 1; consider the tree
T depicted in Fig. 4, where the number of coordinates of the vectors is t + 1.



(1,0,...,0) ) ) (0,1,0,...,0)
r (1,1,0,...,0)%
© (1,1,0,...
L (1,1,0, 0,1,0,...,0)
-~ (1,
. (1,...,1,0,...,0)
L (1,...,1,0,...,0) ) (0, 0,1,0,...,0)
-
z+1 (@)

Fig. 4

By Theorem 2.3 and Corollary 2.6, T is the multiplicity tree of an Arf ring
R. Hence by Proposition 2.5, Agr(R/€) = n(T) = n, t(R) =t and I*(R) =
(@) —D@+1-—r)+@@)r+t—Dk=qx+1—-7)+(q+1)r+th—k=
g(x+1)+r+tk—k=h+1+4+tk—k =1*. By construction ¢t > t(x)+ 1 and, by



*=k(t—1)+h+1< (n—1)(t—1), it follows t > % Hence, in order to cover
all the possible values of ¢, we have to show that the following inequalities hold:
Y(x) < Z=EEL < op(z)+1. Since n = k+2+ =, then 2=2EL — % = 1—&-’;—1}

and by definition of ¢, we have ¢(z) < 1+ 25 <4(x) + 1.

4 Remarks and examples

In the next example, fixed two integers n and ¢, we examine how the three
constructions of the proof of Theorem 3.1 arise depending on the values of [*.

Example 4.1 Let n = 4 and t = 5. We have 0 < [* < 12 = 3 -4, hence the
possible values of k are 1, 2 and 3.

We use the first construction for [* = 0,1,2,3,4 (k = 1), for I* = 6,7,8
(k=2) and I* =12 (k = 3).

We use the second construction for [* = 5 (k = 1; here h = 0 and n >
k+h+2)and for *=9 (k=2,here h=0and n > k+ h + 2).

We use the third construction for [* = 10,11 (k = 2, here h = 1, 2, respec-
tively, and n < k+ h + 1).

We give an explicit construction of the multiplicity trees and of the rings for
the values [* = 8,9, 10.
1" = 8. In this case we have more than one choice. A possible multiplicity tree

is depicted in Fig. 5 and it is obtained by the tree depicted in Fig. 2, setting
n=4,k=2,and o1 = as =3 (so that a1 + as — 1 =5 =1).

Fig. 5

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D’A-F], we
construct the ring R in the following way: we start with R® = K[[t]] x K|[u]],
where ¢, u are indeterminates over a field K; then we set R! = (K + t2K[[t]]) x
(K + U2K[[u]]) = U1 X UQ, R2 = (1,1)K+ (t3U1 X U3U2) and R = R3 =

10



(L DK+, v’)R? = (1, ) K+ (%, v’) K+ ((° K+ K [[t]]) x (u®K +u® K [[u]])).
In Fig. 6 is depicted the blowing up tree of R.

: KT[t]] : KT[ul]
Ur Us
T2

R*=R
Fig. 6

I* = 9. The multiplicity tree is depicted in Fig. 7 and it is obtained by the tree
in Fig. 3, settingn =4, k=2, h=0and ¢t = 5.

(1,0,0,0,0,0) . (0,1,0,0,0,0)

(1,1,0.0,0,00% (0,0,1,0,0,0)
® . 0(050707071a0)
(15 1705 07Oa O) L
(1,1,1,1,1,0) (0,0,0,0,0,1)
(17 1’ 17 17 17 1)

Fig. 7

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D’A-F], we
construct the ring R in the following way: we start with R® = K[[t1]] x K[[t2]] x

11



K][ts]] x K[[ts]] x K[[ts]] x K][[ts]], where t; are indeterminates over a field K
for every i = 1,..., 6 and |K| > 6; then we set R = ((1,1)K + (t1K[[t1]] x
ta K [[ta]])) % K[ta]] % K [ta]] < K [fts]] % K[tg]] = U1 x K [fts] x K [t4]) x K [[t5] x
K], B2 = (1, K + (1, £2)01)) % Kfts] x K[[t2]] x K[ts]) x K [fte]] = Ua x
K([ts]] x K[[ta]] x K[[ts]] x K[[te]], B* = ((1,1,1,1, 1)K + ((t1, t2)Us x t3 K [[t3]] ¥
LK) % 5K ([15]) x Klts]] = Us x Klts]] and R = R = (1,1,1,1,1, 1)K +
((t1,t2,t3,ta,t5)Us X teK[[te]]). In Fig. 8 is depicted the blowing up tree of R.

K{[t1]] o K[[t2]]
\Ul
U2 ‘ [ ] [ ] [ ]

Fig. 8

I* = 10. The multiplicity tree is obtained (cf. Fig. 9) by the tree depicted in
Fig. 4, settingn =4, k=2, h=1 (hence z =0 and r = 0) and ¢t = 5.

From this multiplicity tree, using the proof of Corollary 5.8 in [B-D’A-F],
we construct the ring R in the following way: we start with R® = K[[t1]] x
K{[t2]] x K[[ts]] x K[[ta]] x K[[t5]] x K[[ts]], where t; are indeterminates over
a field K for every i = 1,..., 6 and |K| > 6; then we set R* = ((1,1)K +
(1 K[[1]] % BE[6]) < Kllts)) x K[lt]] % K[ts]) x Klfte] = Uy x K] x
Kl[ta]) x K(lts]] x K[tel], B = (LK + (i1, 12)01)) % K[ts]] x K][ta] %
Kts]) % Klte]] = Us x K[ta]) x K[[a]) % Kta]) % Ktel), B = (1,1, 1, )K +
((t1, t2)Us x t3 K [[ts]] x taK[[ta]])) x K[[ts] x K[[te]] = Us x K[[t5]] x K[[te]] and
R=R'=(1,1,1,1,1, 1)k + ((t1, ta, t3,ta)Us x t5 K[[t5]] x teK[[te]]). In Fig. 10
is depicted the blowing up tree of R.

12



(1,0,0,0,0,0) , (0,1,0,0,0,0)

(1,1,0,0,0,0)7  (0,0,1,0,0,0)

(1,1,0,0,0,0) (0,0,0,1,0,0)

(1,1,1,1,0,0) (0,0,0,0,1,0) (0,0,0,0,0,1)

(1,1,1,1,1,1)
Fig. 9
K[t:]] y K{[t2]]
U |

Fig. 10

We now show that the use of subsemigroups of N¢, with d > 1, is necessary to

13



construct rings R with fixed values of Ag(R/€), t(R) and I*(R). More precisely
we will focus our attention to the case [*(R) = t(R) and we will show that, if n is
an integer large enough, then, for every ¢ > 1, there is no local, one-dimensional,
Noetherian, complete domain R with Ar(R/€) = n and [*(R) = ¢(R) = t.
Actually we will not need to assume that R is complete, but only R analytically
irreducible (i.e. the completion R of R with respect ot the m-adic topology is a
domain; cf. Proposition 4.7).

The following results are given in [De-L-M] under slightly different hypothe-
ses. The assumption in [De] (and hence also in [De-L-M]) that R is excellent
is used to get the existence of the canonical module of R isomorphic to an m-
primary ideal and the infinite residue field implies the existence of principal
minimal reductions of regular ideals. Under our hypotheses the existence of the
canonical ideal of R follows from the fact that R is complete and reduced (cf.
[H-K, Satz 6,21]). Moreover we do not need to assume (as in [De-L-M, Corollary
2.13]) that the field K is infinite, since if I is a regular ideal of R and = € I
is an element of minimal value, then xR is a minimal reduction of I (cf. [D’A,

Remarks 2.1 (2)]).

Proposition 4.2 [De-L-M, Proposition 2.12] Assume [*(R) = t(R) and let
x € m be an element of minimal value v(x) = My(my. Only the following values

for N\R/(€ + zR)) and t(R) are possible:
(a) MR/(€ +zR)) =3, t(R) = 2 and e(R) = 5;
(b) MR/(€ + zR)) =2 and t(R) = e(R) — 2;
(¢) N\R/(€+zR)) =1 and t(R) = e(R) — 1 .

Corollary 4.3 [De-L-M, Corollary 2.13] Let K a field and R = K[[u® | s € S]],
where S C N is a numerical semigroup. Assume I*(R) = t(R) and let x € m be
an element of minimal value v(r) = my(ym). We have the following possibilities

for A(R/(€ + zR)):
(a) M(R/(€+zR)) =3, t(R) =2 and e(R) = 5;
(b) MR/(€+zR)) =2 and t(R) =e(R) — 2 .

In [De-L-M] examples of rings of the form R = K[[t* | s € S]] (S C N)
are given for the case (a) (cf. [De-L-M, Example 2.14]) and for the case (b)
(cf. [De-L-M, Example 2.11 (1)]). With the construction of Theorem 3.1 we
get examples of rings for the case (c) of Proposition 4.2, with value semigroup
contained in N¢ where e > 3 is the multiplicity of R (cf. Fig 3, with &k =1 and
h =0).

Let (R,m) be a local, Noetherian, one-dimesional, analytically irreducible
domain. Assume also that, if (R,n) is the integral closure of R in its quotient
field, then R # R and R/m ~ R/n. Under these hypotheses the value semigroup
of Ris S = v(R) = {0,51,82,...,8y(5)~1,5n(5), —}, Where s; = e(R) and the
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arrow means that every integer greater than or equal to s, belongs to S. The
largest positive integer not in S is called the Frobenius number of S and is
denoted by ¢(S). Moreover if I D J are two fractional ideals of R, then A\(I/J) =
[o(I) \ v(J)|; in particular we have that A\(R/€) =1{0,1,...,9(S)} N S| = n(S)
and that A(R/R) = [N\ S| = g(S)+1—n(S). Moreover it is defined the type of S
ast(S)=|T|=[{qg e N\ S| g+s €S Vse S\{0}} (for all the definitions and
results about numerical semigroups we refer to [B-D-F]). Hence we can define
1*(S) = n(S)t(S) — IN\ S|. Since ¢(S) > t(R) (cf. [B-D-F, Theorem I1.1.16)),
we have that [*(S) > I*(R) and in [B-D-F, Example I1.1.19] is given an example
for which the inequality ¢(S) > ¢(R) holds. However in the particular case
R=K[u®|seldS], t(R) =t(S) and hence [*(R) = I*(S). Hence Corollary 4.3
can be translated to the semigroup level as the following statement:

Corollary 4.4 Let S C N be a numerical semigroup. Assume [*(S) = t(S), let
e = s1 be the smallest non zero element of S and set e+ S = {e+s|s € S}.
We have the following possibilities for |S\ ((e +5) U {g(S) +1,—})|:

(a) 1S\ ((e+ S)U{g(S)+1,—})|=3,t(S)=2 and e =5;
() 1S\ ((e+S)U{g(S)+1,-}|=2and t(S)=e—2.

Now we are ready to study the numerical semigroups S such that [*(S) =
t(S). Notice that, since the inequality I*(R) < (A(R/€) — 1)(¢(R) — 1) holds
for the rings of the form R = K[[u® | s € S]], then the corresponding inequality
1*(S) < (n(S) — 1)(¢(S) — 1) holds for numerical semigroups. It follows that, if
1*(S) = t(9), then t(S) > 1.

Proposition 4.5 If n is an integer large enough (n > 14), then, for any nu-
merical semigroup S such that n(S) = n, I*(S) # t(S).

Proof. We will prove that if I*(S) = ¢(S5), then n(S) is bounded by 14. Let
g = g(S) and n = n(S). By Corollary 4.4 we have two possibilities for |S\ ((e +
SYu{g+1,—})|

If S satisfies case (a) of Corollary 4.4, then |[S\ ((e+ S)U{g+1,—})| =3,
t(S) = 2 and e = 5; by the first condition, there exist exactly two non zero
elements of S, f and h, such that f < h < g, f—5¢ Sand h—5¢ S. Tt
follows that, if 2f < g, then 2f = h + 5 (with « > 0) and, if f +h < g,
then f+ h = 54 (with § > 0). But if both these two equalities hold, then
h=58—f=2f—ba, that is 3f = 5(a + ), which is a contradiction since 5
does not divide f. Therefore f +h > g+ 1.

Moreover {g — 4,...,g9} = {6(p — 1), f + 5r1,h + bra,i1,i2}, where i1,is ¢
S, 0 < ry < 7 and p is the integer such that 5(p — 1) < g < 5p. Since
i1,i2 € T ={qeN\S|qg+seSVse S\{0}} and t(S) = |T| = 2, then
f—5¢ T and h —5 ¢ T; hence there exist two elements ¢1,¢2 € S\ {0} such
that (f —5)+q1 ¢ S and (h —5) + g2 ¢ S. This implies q1,¢2 € {f, h} (in fact
any element of S smaller than g is of the form 5a, f+ 5« or h+5a, with a > 0);
in particular f +h — 5 < g (otherwise, if f +h —5 > g, then also 2h — 5 > ¢
and g2 does not exit). It follows that g < f +h < g+ 5.
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Let k and j be the integers such that 5k < f < 5(k+1) and 55 < h < 5(j+1).
With this notation 5(k+j) < f+h < 5(k+j+2). Byg+1 < f+h <5(k+j+2)
and by definition of p, we have p < k4 j+2. On the other side, since 5(k+j) <
f+h<g+5<5(p+1), wehave k+j <p.

Since I*(S) = t(S)n(S) — N\ S| = ¢(S), then [N\ S| = ¢(S)(n—1) = 2(n—1).
Moreover, by definition of p, k and j, we have n=p+p—-k—-14+p—5—1+
e=3p—k—j—2+¢ (wheree = [{b(p—1)+1,...,9} NS| =0,1,2) and
IN\S| =4k +3(j —k)+2p—j—-1)+v =k+j+2p— 2+~ (where
y=|{blp—1)+1,...,9} NN\ S| =1,2). It follows that:

IN\S|=2n—1)<=k+j+2p—24+7=6p—2(k+j—2)+2 -2 =
dp=3k+j)+v—2e4+4=p<6

(the last inequality comes from the inequalities k + j < p, ¢ > 0 and v < 2).

It follows that, since k+j >p—2ande <2, thenn=3p—k—j—24+e <
2p+2 < 14.

If S satisfies case (b) of Corollary 4.4, then ¢(S) = e — 2 (hence, since
t(S) > 1, we can assume e > 3) and |S'\ ((e+ S)U {g +1,—})| = 2; hence
there exists exactly one non zero element f in S, such that f <gand f—e ¢ S.
Hence, by the uniqueness of f, either 2f > g+ 1 or, if 2f < g, then 2f = ae
(with o > 2).

Moreover {g+1 —e,...,g} = {e(p — 1), f + er,i1,ia,...,4c—2}, where p
is the integer such that (p — l)e < g < pe and 41,42,...,%c—2 ¢ S. Since
i1,42,...,5c—20 €T ={q € N\S | g+s€ 5,Vs € S\{0}} and ¢t(S) = |T| = e—2,
then f —e ¢ T; it follows that there exists an element ¢ € S\ {0} such that
(f —e)+q ¢ S. This implies that 2f — e ¢ S; hence 2f — e < g, that is
f < (g+e)/2. On the other hand, 2f > g + 1, otherwise 2f —e = ae — e =
(a — 1)e € S; it follows that f > (¢ +1)/2.

We denote by k the integer such that ke < f < (k + 1)e. By definition of k,
we have (k+ 1)e > f > (g + 1)/2 and by definition of p we have 2(k + 1) > p,
that is & > (p/2) — 1. Moreover, since f < (g + e)/2, by definition of k, we
have ke < f < (g + e)/2, that is (2k — 1)e < g. By definition of p, we have
2k —1<p-—1, hence k < p/2.

Therefore (p/2) — 1 < k < p/2 and we have to consider only three different
cases, k = (p/2) — 1,p/2 (when p is even) and k = (p — 1)/2 (when p is odd).

Assume p even and k = p/2. Since I*(S) = ¢(S)n(S) — [N\ S| = ¢(S), then
IN\S| =t(S)(n—1) = (e—2)(n—1). Moreover, by definition of p and k, we have
n = p+p—k—1+e = (3/2)p—1+4¢c (wheree = [{(p—1)e+1,...,¢9}NS| =0,1) and
IN\S| = (e—1)p/2+(e—2)(p/2—1)+~ (where v = [{(p—1)e+1,...,g}NN\S| =
1,2,...,e —2). It follows that:

IN\S|=(e—=2)(n—1) <= (1/2)pe — (3/2)p=7—€c(e—2)+ e —2 <
ple —3) =2(y —ele—2)+e—2).

Since € > 0 and v < e — 2, it follows that p < 4(e —2)/(e — 3). Hence, since p
is an even integer, if e = 4, then p < 8, if e = 5, then p < 6 and, if e > 6, then
p < 4. In any case, since ¢ < 1, then n = (3/2)p— 1 +¢ < 12.
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We now consider the case p even and k = p/2 — 1. Since I*(S) = t(S)n(S) —
IN\ S| = t(5), then I[N\ S| = t(S)(n — 1) = (e — 2)(n — 1). Moreover, by
definition of p and k, we have n = p+p—k —14+¢ = (3/2)p + £ (where
e=|{(p—1e+1,...,9}NS|=0,1) and [N\ S| = (e—1)(p/2—1)+(e—2)p/2+~
(where y =|{(p—1e+1,...,g} NN\ S| € {1,2...,e —2}). It follows that:

IN\S|=(e=2)(n—1) <= (1/2)pe = (3/2)p=7—¢c(e-2) -1 —
ple—3)=2(y—ele—-2) - 1)

Since p is an even positive integer, € > 0 and v < e — 2, it follows that p = 2.
But this implies £ = p/2 — 1 = 0 which is a contradiction to f > e.

Finally we consider the case p odd and & = (p — 1)/2. Since I[*(S) =
t(S)n(S) —|N\ S| =t(S), then [N\ S| =¢(S)(n—1) = (e—2)(n—1). Moreover,
by definition of p and k, we have n = p+p—k—1+4¢ = p+(p—1)/2+¢ (where e =
{(p—1)e+1,...,9}NS|=0,1) and [N\ S| = (e—=1)(p—1)/24(e—2)(p—1)/2+7~
(where y=|{(p—1e+1,...,g} NN\ S| € {1,2...,e —2}). It follows that:

IN\S|=(e—2)(n—1)<=pe—3p=2y—2c(e—2)+e— 3+
ple —3) =2(y —e(e—2)) +e—3.

Since ¢ > 0 and v < e — 2, it follows that p < (3e — 7)/(e — 3) and, since p is
an odd integer larger than 1, we get that p = 3,5 when e = 4 and p = 3 when
e > 5.

It follows that, since ¢ <1, thenn=p+ (p—1)/2+¢ <8.

Remark 4.6 We could make the statement of Proposition 4.5 more precise
studying which semigroups can be constructed for every single value of p.

If S satisfies case (a), it is proved in Proposition 4.5 that p < 6. Since p > 2
we have to consider five cases.

If p = 2, then, by definition of p, 2-5 = 10 > g+ 1. The elements f and
h introduced in this proof are smaller than ¢ + 1. Hence n = 4 and g+ 1 =
IN\ S|+ n=2(n—1)+n=10. In order to get t(S) = 2 we find the following
semigroups {0,5,6,7,10, —} and {0,5,6,8,10, —}.

If p = 3, then, by definition of p, 3-5 = 15 > g + 1. Moreover for the
integer k and j introduced in the proof of Proposition 4.5 we have j,k > 1 and
j+k <p Hencen =3p—k—j—2+4+¢ =4,56,7 (since ¢ = 0,1,2). If
n=4,then g+ 1= |N\S|+n=2(n—1)+n =10 which is a contradiction to
100=(p—-1)e<g+1.Ifn=>5theng+1=|N\S|+n=2n-1)+n=13;
in order to get t(S) = 2 we find only the semigroup {0,5,8,9,10,13,—}. If
n =6,7, then g+ 1 =[N\ S|+ n =2(n—1)+n > 16, a contradiction to
15>g+ 1.

With similar arguments we get that there are no semigroups satisfying con-
ditions of the case (a) with 4 < p <6.

Analyzing analogously the case (b), it is possible to find semigroups verifying
1*(S) = t(S) only for particular subcases.

If pis even and k = p/2 we get, for e = 4 and p = 4, the semigroup
S =1{0,4,8,9,12,13,16, —} (here n(S) = 6). While, for e > 4 and p = 2, we get
infinite semigroups S (with n(S) = 4): for example S = {0,e,e +1,2e — 1, —}.
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If pis odd and k = (p — 1) /2, we obtain, for e = 4 and p = 5, the semigroup
S = {0,4,8,11,12,15,16,19, —} (here n(S) = 7). While, for e > 4 and p = 3,
we get the semigroups S = {0, ¢e,2e — 2,2¢,3e — 2, —} (with n(S) = 4).

Using Proposition 4.5 we can prove that, if n is an integer large enough, then,
for every t > 1, there is no analytically irreducible domain R with Ag(R/€) =n
and I*(R) = t(R) =t (we remark that we do not need to assume R complete,
since also in this case canonical ideal and principal minimal reductions exist,
as it is shown in [D’A-De]). This result is not an immediate consequence of
Proposition 4.5, since it is possible that [*(R) = t(R) while I*(v(R)) # t(v(R));
the example introduced in [B-D-F, Example I1.1.19] works to show this fact:
let K be a field of characteristic different by 2 and let R = K[[t*, 6 4+ ¢7,¢!1]].
The value semigroup of R is v(R) = {0,4,6,8,10,—} and t(v(R)) = 3 since
T={qeN\S|qg+seS5Vse S\{0}} ={2,7,9}. Moreover [N\ v(R)| =6
and n(v(R)) = 4; hence I*(v(R)) = 3-4— 6 = 6 # 3. On the other hand, as it
is shown in [B-D-F, Example I1.1.19], ¢(R) = 2, thus [*(R) =2 -4 — 6 = 2.

Proposition 4.7 Let (R,m) be a local, Noetherian, one-dimesional, analyti-
cally irreducible domain. Assume also that, if (R,n) is the integral closure of
R in its quotient field, then R # R and R/m ~ R/un. If n is an integer large
enough (n > 14) and A\(R/€) = n, then I*(R) # t(R).

Proof. Let S = v(R) be the value semigroup of R and e = e(R) = s7. We will
prove that, if [*(R) = ¢(R), then A\(R/€) < 14.

If I*(R) = t(R), by Proposition 4.2, only the following values for A\(R/(€ +
xR)) and t(R) are possible:

(a) A(R/(€+zR)) =3, t(R) =2 and e = 5;
(b) M(R/(€+2xR)) =2 and t(R) = e — 2;
(¢c) MR/(€+2zR))=1and t(R)=e—1.

If case (c) holds for R, then e — 1 = ¢(R) < t(S) < e — 1 implies that
t(R) = t(S) = e — 1 (for the inequality t(S) < e —1 cf. [B-D-F, Remark 1.2.7
(a)]). Hence I*(S) = I*(R) and therefore {*(S) = ¢(S) = e—1, but, by Corollary
4.4, this is not possible; it follows that R cannot satisfy case (c).

If case (a) holds for R, then 2 = #(R) < ¢(S) <5 — 1. If t(S) = 2 we have
that I*(S) = I*(R), so I*(S) = ¢(5); hence we can apply Proposition 4.5 (case
(a)) and we get A(R/€) =n(S) < 14.

Assume that ¢(S) = 3,4. We have e = 5 and 3 = A(R/(€ 4+ zR)) = |S\
((54+S)U{g+1,—})|; hence there exist exactly two non zero elements of S,
f and h, such that f < h <g, f—5¢ Sand h—5 ¢ S. It follows that, if
2f < g, then 2f = h+ 5« (with a > 0) and, if f +h < g, then f+h =50 (with
B > 0). But if both these two equalities hold, then h =55 — f = 2f — 5a, that
is 3f = 5(aw + ), which is a contradiction since 5 does not divide f. Therefore
F+h>g+1.
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Moreover {g—4,...,9} ={5(p—1), f+5r1, h+5ra,i1,i2}, where i1,is ¢ S,
0 < ry <7y and p is the integer such that 5(p — 1) < g < 5p. Since 41,12 €
T={¢eN\S|qg+seSVse S\{0}}and ¢t(S) = |T| = 3,4, then at
least one of the integers f — 5 and h — 5 belongs to T'; hence f + h—5 € S. If
f+h—=52>g+1 then also 2h — 5 > g + 1 and this implies that ¢(R) > 3: in
fact by A(R/xR + €) = 3 it follows that A(m/zR + €) = 2, hence there exist
two elements y, z € R such that m = xR+ yR+ 2R+ € and we can assume that
v(y) = f and v(z) = h, since, if y1,y2 € R and v(y1) = v(y2), then there exists
a unity u € R such that v(y; — uy2) > v(y1) (cf. [K, Theorem]); moreover,
since € = {r € R| v(r) > g+ 1} (cf. [K, Theorem]), by f+h —5> g+ 1
and 2h — 5 > g + 1, it follows that z/z € m~!. But this is a contradiction to
t(R) = 2. Hence f +h —5 < g and therefore g < f +h < g+ 5.

Since I*(R) = t(R) or, equivalently, t(R)(A(R/€) — 1) = A R/R), then
2(n(S) — 1) = IN\ S| and, since ¢ < f+ h < g+ 5, we can use the same
argument as in the proof of Proposition 4.5 (case (a)) to get n < 14.

If case (b) holds for R, then e — 2 =t(R) < t(S) <e—1. If t(S) = e —2 we
have that I*(S) = I*(R), so I*(S) = t(S); hence we can apply Proposition 4.5
(case (b)) and we get A(R/€) = n(S) < 12.

Assume that t(S) = e — 1. We have 2 = A(R/(€+zR)) = |S\ ((e+ S) U
{g+1,—})|; hence there exists exactly one non zero element f in S, such that
f<gand f —e ¢ S. Hence, by the uniqueness of f, either 2f > g + 1 or, if
2f < g, then 2f = ae (with a > 2).

Moreover {g+ 1 —e,...,g} = {e(p — 1), f + er,i1,ia,...,%c—2}, where p
is the integer such that (p — 1)e < g < pe and iy,42,...,%.—2 ¢ S. Since
i1,12,...,5e—2 € T ={q € N\S | g+s€ S5,Vs € S\{0}} and ¢t(S) = |T| = e—1,
then f—e € T} it follows that 2f —e € S. If 2f —e > g+ 1, then ¢(R) = e—1: in
fact by A\(R/zR+€) it follows that there exits y € R such that m = zR+yR+¢€
and we can assume that v(y) = f; but 2f —e > g + 1 implies that y/z € m~1.
But this is a contradiction to t(R) = e — 2. It follows that 2f — e < g, that is
f<(g+e)/2 _

Since I*(R) = t(R) or, equivalently, t(R)(A(R/€) — 1) = A(R/R), then (e —
2)(n(S) — 1) = [N\ S|. Therefore, if 2f > g+ 1 (that is f > (g + 1)/2), we
can use the same argument as in the proof of Proposition 4.5 (case (b)) to get
n <12.

Otherwise, if 2f < g, then 2f = ae (with a > 2). Denote by k the integer
such that ke < f < (k+ 1)e and by p the integer such that (p — 1)e < g < pe.
By definition of p and k, we have n =p+p—k —1+4¢ (wheree = [{(p— 1)e+
1,...,9}NS| =0,1) and [N\ S| = (e — Dk + (e — 2)(p — k — 1) + v (where
y=H{p—-1De+1,...,g} NN\ S| =1,2,...,e—2). It follows that:

IN\S|=(e—2)(n—1)<=ple—2)—(e—2)+ele—2)=k(e—1)+~
= (p-De-2)<kle-1)+(e-2)=k>(p-2)(c—-2)/(e-1)
(where the first implication follows by € > 0 and v < e — 2).

Since ke < f, then 2ke < 2f < g; hence p > 2k > 2(p —2)(e — 2)/(e — 1) or
equivalently p(e—1) > 2(p—2)(e—2). It follows that p(e —3) < 4(e —2); hence,
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by e > 4 (since e—2 = t(R) > 1), it follows that p < 8 and n = 2p—k—1+4¢ > 13
(since k > 1 and € < 1).
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