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THE KNOWN MEASURES WITH L1-BOUNDED

PARTIAL SUMS BELONG TO RadL1.

Mats Erik Andersson

September 8th, 2000

It has long been known that any formal Fourier series ν ∼ ∑

ckeikθ with the

property that the partial sums sNν =
∑N
−N ckek are uniformly bounded in L1-

norm, must in fact be the Fourier–Stieltjes series of a measure ν ∈ M0(T). For
convenience the characters ek are defined by ek(θ) = eikθ. The algebra M0(T)
consists of all measures in the measure algebra M(T), whose Fourier coefficients
vanish at infinity. Let henceforth Mb denote the vector space of all measures ν with
supN ‖sNν‖1 finite. Clearly every ν ∈ Mb is a continuous measure.

The above result was achieved by Helson [H] and settled a conjecture by Stein-
haus. The first to construct a singular measure in Mb was Weiss [W]. Next, Katznel-
son [K] developed a variant with the added touch that all partial sums be positive.
Later on also Brown and Hewitt [B-H] have given a general construction, produc-
ing singular measures with positive partial sums and prescribed decay of Fourier
coefficients. As known to the present author, no further publication adresses the
construction of measures with L1-bounded partial sums.

It is the intent of this paper to display the fact that the above three papers
produce measures in the radical RadL1. More precisely the result is as follows.

Synopsis. The singular measures known in the literature to belong to Mb, do all
all here the property ν ∗ ν ∈ L2(T).

The three published constructions demand separate handling, so are confined to
one section each.

Analysis of Weiss’ construction.

The result of Weiss’ deals with classical Riesz products and lacunary index sets.
Recall that the original Riesz product concerns expressions

∞
∏

k=1

(1 + ak cos nkθ),

converging weak-∗ in M(T). Here −1 6 ak 6 1 and the integers 0 < n1 < n2 < . . .
are lacunary in the sense nk+1/nk > 3. This is the setting for Weiss’ contribution.
General facts of relevance to Riesz products are found in the monograph by Graham
and McGehee [G-M]. Later on, a generalised Riesz product will be described.
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Theorem [W]. Let the real parameters {ak} of a Riesz product satisfy the condition

(†) |ak|
(

|a1|+ · · · + |ak|
)

= O(1).

Then the resulting measure belongs to Mb.

This result was originally applied with ak = 1/
√

k, which clearly gives
∑k

1 aj ∼
2
√

k and
∑k

1 a2
j ∼ log k. As is well known [G-M, Thm. 7.2.1], the divergence

expressed by the second relation makes the Riesz product a singular measure and
it belongs to Mb by Weiss’ theorem.

It should be observed that the stronger decay |ak|
(

|a1|+ · · ·+ |ak|
)

= o(1) does
not improve the conclusion as far as producing an absolutely continuous measure.

This can be seen when studying bk = 1/
√

k log k, upon which
∑k

1 bj ∼ 2
√

k/
√

log k

and
∑k

1 b2
j ∼ log log k. Hence the resulting measure is still singular.

Proposition 1. Let the measure ν be constructed according to the preceding theo-
rem. Then ν ∗ ν ∈ L2(T) and sN (ν ∗ ν) → ν ∗ ν in L2 as well as in L1. In contrast,
sNν does not converge in M(T), should

∑

a2
k = ∞ take place.

The last statement is clear, since the L1-functions sNν tend weak-∗ to the sin-
gular measure ν, whence no convergence in norm is possible. It thus suffices to
demonstrate ν ∗ ν ∈ L2, from which the remaining claim follows. A simple case of
real analysis prepares for this.

Lemma 2. Consider sequences {xk}∞1 of positive numbers, such that for all indices
k > 1, the inequality xk(x1 + · · ·+xk) 6 1 holds. For any such sequence and p > 2,
the series

∑

xp
k converges.

Observe first that the already mentioned example xk = 1/
√

2k shows the condi-
tion p > 2 to be best possible.

Put now X(k) = [x1 + · · ·+ xk]2. Clearly the two identities

X(k) + x2
1 + · · ·+ x2

k = 2x1x1 + 2x2(x1 + x2) + · · ·+ 2xk(x1 + · · · + xk),

X(k) −X(k − 1) = 2xk(x1 + · · ·+ xk−1 + 1
2
xk),

and the assumption on {xk}∞1 together imply

X(k) < 2k and 0 < X(k)−X(k − 1) < 2.

Let also γ = 1 + 2/x2
1. Then k > 2 provides

X(k)

X(k − 1)
= 1 +

X(k) −X(k − 1)

X(k − 1)
so γ−1X(k) < X(k − 1) < X(k).

By the mean value theorem applied to the square root function

n
∑

k=2

xp
k =

n
∑

k=2

[
√

X(k) −
√

X(k − 1)
]p

<

n
∑

k=2

[

X(k)−X(k − 1)

2
√

X(k − 1)

]p

<

n
∑

k=2

γp

2

X(k)−X(k − 1)

X(k)p/2
.
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On the other hand, applications of the mean value theorem to t 7→ t−p/2 produces
ξk ∈ [X(k − 1), X(k)], yielding

X(k − 1)1−
p

2 −X(k)1−
p

2 =
(

p
2
− 1

)X(k) −X(k − 1)

ξ
p/2
k

>
(

p
2 − 1

)X(k) −X(k − 1)

X(k)p/2
.

Thus

n
∑

k=2

xp
k < γp(p− 2)−1

n
∑

k=2

[

X(k − 1)(2−p)/2 −X(k)(2−p)/2
]

< γp(p− 2)−1x2−p
1 .

This gives the claimed convergence.
Now the proposition can be completed. On grounds of the standard procedure

in constructing Riesz products, it is clear by identifying Fourier coefficients, that if
ν is constructed with the parameters ak ∈ [−1, 1], then ν ∗ν is also a Riesz product
based on the same independent set, but with parameters {a2/2}∞1 . By assumption
there is ρ > 0, such that {ρ|ak|} satisfies the condition of the lemma, so one may
conclude the convergence of

∑

a4
k. By known theory, this now says that ν ∗ν ∈ L2.

The proof of the proposition has been completed.

Generalised Riesz products.

Both papers [K] and [B-H] consider measures arising from weak-∗ convergence
of products of a common kind

ν = ∗-lim
m→∞

∏m

j=1

(

1− Pj

)

.

Here each Pj is a real valued polynomial with a particular condition on its spectrum.
Write Rm for the m:th partial product and Pj =

∑

k 6=0 pj,kek. Then it is demanded
that for each m, the spectra of

ekRm, for all k with pj,k 6= 0,

be pairwise disjoint. In particular, it follows that

ν̂(k) is a finite product (over j) with at most one factor from each of the
non-zero elements of {pj,k}k 6=0.

Introduce now distance functions

σp(µ) = ‖µ̂‖p
`p =

∑

k
|µ̂(k)|p

for p > 1 and measures µ ∈ M(T). In particular, σ1(f) = ‖f‖A(T) and σ2(f)1/2 =
‖f‖L2 . Thus, by the spectral condition, the partial products obey

σp(Rm) = σp

(

[1− Pm]Rm−1

)

= σ(Rm−1) +
∑

k 6=0

|pm,k|p σp(Rm−1)

= σ(Rm−1)
[

1 + σp(Pm)
]

,
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which by induction gives

σp(Rm) =

m
∏

j=1

[

1 + σp(Pj)
]

.

Observe finally that

ν ∗ ν = ∗-lim
m→∞

Rm ∗ Rm = ∗-lim
m→∞

m
∏

j=1

(

1 + Pj ∗ Pj

)

and

σ2(Rm ∗Rm) =

m
∏

j=1

[

1 + σ2(Pj ∗ Pj)
]

=

m
∏

j=1

[

1 + σ4(Pj)
]

.

Thus it follows that ν ∗ ν ∈ L2 as soon as
∏∞

j=1[1 + σ4(Pj)] < ∞. This will be
achieved for Katznelson’s construction as well as for Brown’s and Hewitt’s.

Analysis of Katznelson’s measure.

In [K] the above-mentioned polynomials take the form

Pj(θ) = Re γN
−1/2
j

∑Nj

k=1
ein log neinλjθ,

where γ is a constant, the integers λj increase fast enough to provide spectral
disjointness, and Nj satisfies (see [K], relation (4))

22(j+2)
∥

∥

∥

∏j−1

1
(1− Pj)

∥

∥

∥

2

A(T)
< Nj .

In particular, Nj > 22(j+2). Furthermore, it is clear that for a constant A

σ4(Pj) = 2Nj ·
(

2−1γN
−1/2
j

)4
< A · 4−j .

Thus

‖ν ∗ ν‖2
L2 = lim

m→∞
σ2(Rm ∗ Rm) 6

∞
∏

j=1

(1 + A · 4−j) < ∞,

which is the claimed property ν ∗ ν ∈ L2.
It could be recalled that the singularity of ν is based on the value ‖Pj‖2 =

√

σ2(Pj) = γ/
√

2 for all j > 1.

The measures of Brown and Hewitt.

In a sense the construction of Brown and Hewitt builds on the idea of Katznelson,
so this last analysis must by necessity resemble the previous calculation.

This time the polynomials Pj are of a more intricate nature. Among other
things the non-zero coefficients |pj,k|, for k > 1, of Pj , form a non-increasing finite
sequence. In addition, |pj,k| 6 ω(|k|), where {ω(n)}∞n=0 is a given admissible se-
quence. The details must be extracted from [B-H]. For the present purpose, it is
important that {ω(n)}∞n=0 is positive, non-increasing, and tends to zero.
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In the inductive procedure of constructing Pm+1, one has to satisfy (see [B-H],
relation (7.2.6) )

ω(l) ‖Rm‖A(T) < 2−m−2

by choosing l large enough. Thus one finds

ω(l) < 2−m−2σ1(Rm)−1 = 2−m−2
∏m

j=1

[

1 + σ1(Pj)
]−1

6 2−m−2.

The construction then proceeds to build Pj from frequencies of order at least l, i.e.,
if pm+1,k 6= 0, then |k| > l. Thus

|pm+1,k| 6 2−m−2, all k.

On the other hand, in the central result [B-H, Thm. 6.3], the inequality (6.3.10) is
equivalently providing positive constants α and β with

α 6 ‖Pj‖2
2 = σ2(Pj) 6 β, all j > 1.

Hence there is an estimate for all m > 2

σ4(Pm) =
∑

k
|pm,k|4 6 2−2(m+1)

∑

k
|pm,k|2 6 β · 2−2m−2.

The partial products can now be estimated as

‖Rm ∗Rm‖2
2 = σ2(Rm ∗ Rm) =

m
∏

j=1

[

1 + σ4(Pj)
]

6

m
∏

j=1

(

1 + β · 2−2j−2
)

.

Letting m →∞, it is clear that Rm ∗ Rm converge in L2, so in fact ν ∗ ν ∈ L2(T),
where as before ν = ∗-limm→∞ Rm. This was the intended property.

Concluding remarks.

It is clear that not every measure in M0(T) belongs to RadL1. A particular
example is the Riesz product

µ = ∗-lim
m→∞

m
∏

k=2

[

1 + (log k)−1 cos 3kθ
]

.

This measure is very far from being in Mb. There is even a result of Salem–
Zygmund’:

Theorem [Z, page 287]. If µ ∈ Mb, then

log n

n

∑n

k=−n
|µ̂(k)| = O(1).

This decay of Fourier coefficients is in fact obtained for the function ` ∈ L1 defined
by ` ∼ ∑∞

n=2
cos nθ
log n . Many more elements in Mb ∩ L1 may be constructed using

Polya’s concavity theorem.
There seem to be available only the above three constructions, for the purpose

of producing singular measures in Mb ∩Ms(T). Based on the just presented calcu-
lations, it is thus natural to ask the following question.
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Problem. Is Mb \ RadL1 non-empty?

Surrendering something to the radical, it seems more reasonable to come to
terms with the next question. For k = 2 examples are plentiful, as has just been
demonstrated.

Problem. Are there other k > 3, such that some singular measure µ ∈ Mb has its
k-fold self-convolution µk ∈ L1(T), but still is such that µk−1 ∈ Mb \ L1(T)?
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