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ON THE RESOLVENT PROPERTIES OF THE GENERATORS

OF SOME C0–GROUPS

ALEXANDER V. KISELEV

Abstract. The C0–groups with polynomial growth in the Hilbert space are considered.
The possibility of expressing the condition of the polynomial growth in terms of some
integral estimates on the resolvent of the generator is investigated. In the general case
of functional growth such necessary and sufficient conditions are given for one class of
generators permitting functional model representation when the spectrum of the generator
is known to be absolutely continuous.

1. Preliminaries

The group of operators T (t) acting in the Hilbert space H is called [1] C0–group, if

lim
t→0

T (t)x = x

for all x ∈ H. C0–group is called a group with polynomial growth if, further, the following
condition is satisfied:

‖T (t)‖ ≤ M(1 + |t|s)
for some s > 0 and M < ∞.

The linear operator L, defined by

Lx = lim
t→0

1

it
(T (t)x− x), x ∈ D(L),

is called generator of the corresponding C0–group, where D(L) is the set of elements x ∈ H,
for which the limit in the latter expression exists in H.

In the book [1] it’s shown, that the uniform boundedness of a C0–group of operators in the
Hilbert space is necessary and sufficient for the similarity of it’s generator to a self-adjoint
operator. Morethanthat, in [9, 12] it’s proved that the validity of two conditions

sup
ε>0

ε

∞∫

−∞

‖(L− k − iε)−1u‖2dk ≤ C‖u‖2

sup
ε>0

ε

∞∫

−∞

‖(L∗ − k − iε)−1u‖2dk ≤ C‖u‖2,

(1.1)

for all u ∈ H is equivalent to the uniform boundedness of the C0–group exp(iLt).
In [11] a number of results is proved that link the properties of the generator of a C0–group

with polynomial growth to the value s determining its growth. In particular, the following
propositions hold.
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Theorem 1.1. If L is densely defined closed operator in Hilbert space H, then for all s > 0
the following assertions are equivalent:

(i) There exists M1 ≥ 0 such that:

‖(L− λ)−n‖ ≤ M1
1

|λ|n
(

1 +

(
n

|λ|

)s)

for all λ ∈ iR \ {0} and n = 1, 2, . . . .
(ii) L generates a C0–group in H and there exists M2 ≥ 0 such that

‖ exp(itL)‖ ≤ M2(1 + |t|s)
for all t ∈ R.

Theorem 1.2. If L is densely defined closed operator in Hilbert space H, σ(L) ⊂ R and

the following estimates hold for all u ∈ H
∫

�

‖(L− k ± iε)−1u‖2dk ≤ M
1

ε

(

1 +
1

εd

)

‖u‖2

∫

�

‖(L∗ − k ± iε)−1u‖2dk ≤ M
1

ε

(

1 +
1

εd

)

‖u‖2,

(1.2)

then the operator L generates a C0–group in H and there exists a positive C such that

‖ exp(iLt)‖ ≤ C(1 + |t|d)
for all t ∈ R.

Theorem 1.3. If L generates a C0–group with polynomial growth in the Hilbert space H,

i. e. there exists such nonnegative C < ∞ that

‖ exp(itL)‖ ≤ C(1 + |t|s)
for all t ∈ R, then the estimates (1.2) hold for all ε > 0, M = M(C, s) < ∞ and d = 2s.

In the theorems 1.2, 1.3 there exists a gap between the necessary and sufficient conditions
of polynomial growth. There is no such gap in the case of uniformly bounded C0–groups
in Hilbert space H, but, as we are going to prove in the next section, this gap originates
quite naturally in the case considered and thus the conditions of the theorems 1.2 and 1.3
provide “almost” tight results.

2. The gap between necessary and sufficient conditions

In the present section we are going to prove the following result showing that the condi-
tions of the theorem 1.3 are exact at least in the power scale.

Proposition 2.1. For any γ > 0 and δ > 0 there exist an operator Lδ in the Hilbert space

H and vector u ∈ H, such that:

1. ‖ exp(iLδt)‖ ≤ |t|γ and ‖ exp(iLδti)‖ = |ti|γ for some subsequence ti of real numbers,

satisfying the condition limi→∞ |ti| = ∞;
2



2. For all ε > 0, ε << 1 the following estimate holds:

∞∫

−∞

‖(Lδ − k + iε)−1u‖2dk ≥ C(δ, γ)
1

ε1+2γ−δ
.

Proof. We’re going to prove the analogous result in the case of discrete C0–group of operators
in the Hilbert space H generated by bounded linear operator T . To this end let us choose l2

as the Hilbert space H and construct the weighted shift operator T satisfying the required
property.

First we require that ‖T‖n = n. Consider the sequence {ai}∞i=−∞:

{ . . . . . . . . .
︸ ︷︷ ︸

symmetrically defined

, 1
︸︷︷︸

0th cell

, 1,
1

1
,

2
√

2,
2
√

2,
1
2
√

2
,

1
2
√

2
, . . . , n

√
n

︸︷︷︸

n times

,
1

n
√

n
︸︷︷︸

n times

, . . . } (2.1)

Now let’s define the operator T as follows:

(Tu)i+1 := aiui.

Such operator can be represented in the form of the following infinite matrix:

T ∼



















. . .
...

...
...

...
...

...
. . . 0 0 0 0 0 0 . . .

. . . a−i
. . . 0 0 0 0 . . .

. . . 0
. . . 0 0 0 0 . . .

. . . 0 0 a0
. . . 0 0 . . .

. . . 0 0 0
. . . 0 0 . . .

. . . 0 0 0 0 ai 0 . . .
...

...
...

...
...

...
. . .



















(2.2)

In the case considered we can compute the norms of the powers of the operator T in the
following way:

‖T n‖ = max
i0

i0+n∏

i0

ai,

which, in turn, implies, that ‖T n‖ = n. Hence we managed to introduce the operator T
with required property.

Let’s calculate the resolvent (T − λ)−1 applied to the vector

u ≡ (. . . , 0, . . . , 0, 1
︸︷︷︸

1st cell

, 0, . . . , 0, . . . ).

We immediately obtain:

(T − λ)−1u =

(

. . . , 0,−1

λ
,−a1

λ
,−a1a2

λ2
, . . . ,−a1 · · ·an

λn+1
, . . .

)

.
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Figure 1. Illustration of bk ≡ b(k) behaviour.

We’re going to estimate the following integral:

2π∫

0

‖(T − λ)−1u‖2dθ, where λ = |λ|eiθ.

It’s clear that for our operator T and vector u

2π∫

0

‖(T − λ)−1u‖2dθ = 2π‖(T − λ)−1u‖2 =

= 2π

(
1

|λ|2 +
a2

1

|λ|4 + · · ·+ a2
1 · · ·a2

n

|λ|2n+2
+ · · ·

)

=

= 2π
∞∑

k=0

∏k
i=0 a2

i

|λ|2k+2
(2.3)

Let’s define bk ≡
∏k

i=0 ai. Later we’ll see that bk behaves itself as shown on figure 1.
By the definition of bk it’s clear that the sequence of maximums of bk is equal to the

sequence {‖T k‖}∞k=1. Hence bk = 1, 2, 3, . . . , n, . . . represents the sequence of maximal values
for bk. Solving the equation bk ≡ b(k) = m with respect to k immediately leads to k(m) =
m2 + 1, hence m =

√
k − 1, where m is the m-th member of the sequence of maximums for

bk (see figure 1).
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Then for (2.3) we obtain the following estimate:

2π∫

0

‖(T − λ)−1u‖2dθ >

∞∑

m=1

m2

|λ|2k(m)+2
=

∞∑

m=1

m2

|λ|2m2+4
.

Actually, we just left out all the non-maximal values of bk in the latter estimate.
By [5], the last inequality implies that

2π∫

0

‖(T − λ)−1u‖2dθ > C

∞∫

1

x2

|λ|2x2 dx ∼ 1

ε3/2
, where ε = |λ| − 1.

Now let’s modify the operator T in the following way. Consider the modification of the
sequence (2.1) and the corresponding operator T (see (2.2)):







. . . . . . . . .
︸ ︷︷ ︸

symmetrically defined

, 1
︸︷︷︸

0th cell

, 1,
1

1
,

2
√

2,
2
√

2,
1
2
√

2
,

1
2
√

2
,

4
√

4
︸︷︷︸

4 times

,
1
4
√

4
︸︷︷︸

4 times

,
9
√

9
︸︷︷︸

9 times

,
1
9
√

9
︸︷︷︸

9 times

, . . .







(2.4)

In (2.4) we have in fact left only such elements







n1/n
︸︷︷︸

n times

,
1

n1/n
︸︷︷︸

n times







of (2.1) that
√

n ∈ N.
The sequence (2.4) can be further generalized. Let’s now leave in (2.1) only such “parts”







n1/n
︸︷︷︸

n times

,
1

n1/n
︸︷︷︸

n times







that n1/j ∈ N, j = 1, 2, . . . . The case when j = 1 was discussed earlier; the case when j = 2
results in (2.4).

Clearly, for any j we still have ‖T n‖ 6 n, moreover, there always exists such subsequence
nj of n = 1, 2, . . . that ‖T nj‖ = nj. The equality (2.3) holds true too. Hence the behaviour
of bk in this case is essentially the same as shown on figure 1.

We again denote the maximums of bk by m. For j = 2 we obtain m = {1, 2, 4, 9, 16, . . .}.
In the general case m = {kj}∞k=1. Now k(m) (the values k for which bk = m) cannot be
calculated in the same simple manner as for j = 1 (for example, one can check that for
j = 2 k(m) = 1

3

√
m(1+2m), and for j = 3 k(m) = 1

2
m2/3(1+m2/3), etc.), but for arbitrary

j and large enough values of m we can obtain, that

k(m) ∼ m
j+1

j , m � 1.
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Figure 2. Detalization of bk(k) behaviour

Proceeding quite analogously to the case of j = 1, we obtain the following estimate for
(2.3):

2π∫

0

‖(T − λ)−1u‖2dθ >

∞∑

s=1

s2j

|λ|2sj+1+2
�

∞∫

0

x2j

|λ|2xj+1 dx =
|λ|=1+ε

Γ(1+2j
1+j

)

1 + j

1

ε
1+2j
1+j

.

The latter implies that

2π∫

0

‖(T − λ)−1u‖2dθ > Const
1

ε2−1/j
when j � 1.

But we have not proved the required estimate

(2.3) ' Const
1

ε3−δ(j)
, δ(j) −→

j→∞
0 when j � 1.

yet. So let’s analize the figure 1 once more (see figure 2).
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Let’s rewrite the part of the sum (2.3), corresponding to the m-th “hunch” of this graphic,
in terms of the integral:1

2

m
j+1

j
∫

m
j+1

j −m

( m
√

m)2x 1

|λ|2x+2
dx =

1
log m

m
+ log |λ|

[
m2

|λ|2m(j+1)/j+2
− 1

|λ|2m(j+1)/j−2m+2

]

. (2.5)

Thus
2π∫

0

‖(T − λ)−1u‖2dθ > C
∞∑

k=1

1
j log k

kj + log |λ|

[
k2j

|λ|2kj+1+2
− 1

|λ|2kj+1−2kj+2

]

.

The first term inside the square brackets here is absolutely the same we got before when
summing the maximal points of bk only.

The second term inside the square brackets is small in comparison with the first one when
k � 1, hence

2π∫

0

‖(T − λ)−1u‖2dθ >

∞∑

k=1

1
j log k

kj + log |λ|

[
k2j

|λ|2kj+1+2

]

∼=
log |λ|=log(1+ε)∼ε

∞∑

k=1

1
j log k

kj + ε

[
k2j

|λ|2kj+1

]

.

Finally we obtain for every positive Const:

2π∫

0

‖(T − λ)−1u‖2dθ > C

∞∫

Const

1
j log x

xj + ε
· x2j

|λ|2xj+1 dx ≥ C̃
1

ε

1

ε2−δ(j)
= C̃

1

ε3−δ(j)
, (2.6)

where δ(j) ↓ 0 as j →∞.
In the latter estimate we utilized the following idea. For d > Const

∞∫

Const

1
j log x

xj + ε
· x2j

|λ|2xj+1 dx >

∞∫

d

1
j log x

xj + ε
· x2j

|λ|2xj+1 dx. (2.7)

Let’s choose such d that:

j log k

kj
6 εα, α = 1− δ; δ > 0 when k > d.

This implies that j log k
kj + ε 6 2εα, since ε < εα. Let d be determined from the following

equality:
j log d

dj
= εα

Then
∞∫

d

1
j log x

xj + ε
· x2j

|λ|2xj+1 dx >

∞∫

d

1

2εα

k2j

|λ|2kj+1 dk =
1

2εα

2
−1−2j
1+j

1 + j

1

ε1+ j
1+j

∞∫

2εd1+j

t
1+2j
1+j

−1e−tdt.

1It’s quite simple to prove that the substitution of the sum by the integral for the large enough values of
m can be made in this case.
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It’s left to prove that α = 1− δ could be chosen arbitrary close to 1 and the latter integral
is uniformly non-zero. Thus we need εd1+j 6 C uniformly. But in our case

εdj+1 =
(j log d)δ/α+1d

dδj/α
= (j log d)δ/α+1 · d1− δj

α .

Hence we have to satisfy the following inequality:

δ >
1

j
.

Let δ = 2
j
. Thus we immediately obtain:

∞∫

d

1
j log x

xj + ε
· x2j

|λ|2xj+1 dx >
1

2ε1−2/j

1

ε1+ j
1+j

2
−1−2j
1+j

1 + j

∞∫

2C

t
1+2j
1+j

−1e−tdt

︸ ︷︷ ︸

=C0

≡ C0

2(1 + j)

1

ε2+ j
j+1

− 2
j

2
−1−2j
1+j .

Since 2 + j
j+1

− 2
j

is arbitrary close to 3 when j � 1, we have proved the following
proposition:

Lemma. For any δ > 0 there exists an operator Tδ acting in Hilbert space H and a vector

u such that:

1. ‖T n
δ ‖ 6 n and ‖T nj

δ ‖ = nj for some subsequence nj of natural numbers;

2.
2π∫

0

‖(Tδ − λ)−1u‖dθ > C(δ)
1

(|λ| − 1)3−δ
,

where λ = |λ|eiθ.

This proposition together with the proof given can be easily generalized to the following
one:

Lemma. For any δ > 0 there exists an operator Tδ acting in Hilbert space H and a vector

u such that:

1. ‖T n
δ ‖ 6 nγ and ‖T nj

δ ‖ = nγ
j for some subsequence nj of natural numbers;

2.
2π∫

0

‖(Tδ − λ)−1u‖dθ > C(δ)
1

(|λ| − 1)1+2γ−δ
,

where λ = |λ|eiθ.

In order to prove this proposition one has to consider the sequence {ai}∞i=−∞ constructed
analogously to (2.1) and (2.4) from the blocks







(nγ)1/n

︸ ︷︷ ︸

n times

,
1

(nγ)1/n

︸ ︷︷ ︸

n times







.
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The rest of the proof described above remains intact, although slight modifications to the
estimatory sums and integrals are to be made. For example, the integral in (2.5) has to be
modified as follows:

m
γ

j+1
j

∫

m
γ

j+1
j −m

(
m
√

mγ
)2x 1

|λ|2x+2
dx.

The definition of m here is changed accordingly: in the general situation it denotes the

maximal values of
(
∏k

i=0 ai

)γ

rather then the maximal values of just
∏k

i=0 ai.

To finish the proof of the Proposition 2.1 we now apply the Caley transformation to the
operator Tδ as in [9, 11] which leads to the result claimed.

3. C0–groups with functional growth generated by the operators with purely absolutely
continuous spectrum

In the present section we are going to prove the results analogous to the ones from [11]
for the arbitrary C0–group with functional growth acting in the Hilbert space H in the case
when the generator of such C0–group admits functional model representation [1] and its
spectrum is absolutely continuous. To this end we first provide the necessary background,
following [1, 10, 8, 6, 7].

3.1. Functional model approach. We are going to consider a class of operators of the
form [8] L = A+ iV, where A is a selfadjoint operator in H defined on the domain D(A) and
the perturbation V admits the factorization V = αJα

2
, where α is a nonnegative selfadjoint

operator in H and J is a unitary operator in E ≡ R(α). This factorization corresponds
to the polar decomposition of the operator V . In order that the expression A + iV be
meaningful, we impose the condition that V be (A)-bounded with the relative bound less
then 1, i.e. D(A) ⊂ D(V ) and for some a and b (a < 1) the condition

‖V u‖ ≤ a‖Au‖+ b‖u‖, u ∈ D(A)

is satisfied, see [4]. Then the operator L is well-defined on the domain D(L) = D(A).
Alongside with the operator L we are going to consider the maximal dissipative operator

L‖ = A + iα2

2
and the one adjoint to it, L−‖ ≡ L‖∗ = A − iα2

2
. Since the functional model

for the dissipative operator L‖ will be used below, we require that L‖ be completely non-
selfadjoint, i.e. that it has no reducing selfadjoint parts. This requirement is not restrictive
in our case due to the Proposition 1 in [8].

Now we are going to briefly describe the construction of the selfadjoint dilatation of the
completely nonselfadjoint dissipative operator L‖, following [1, 10], see also [8].

The characteristic function S(λ) of the operator L‖ is the contractive, analytic operator-
valued function acting in the Hilbert space E, defined for Imλ > 0 by

S(λ) = I + iα(L−‖ − λ)−1α, Imλ > 0. (3.1)

In the case of unbounded α the characteristic function is first defined by the latter expression
on the manifold E ∩D(α) and then extended by continuity to the whole space E.

9



The formula (3.1) makes it possible to consider S(λ) for Imλ < 0 with S(λ) = (S∗(λ))−1.
Finally, S(λ) possesses boundary values on the real axis in the strong sense: S(k) ≡ S(k +
i0), k ∈ R (see [1]).

Consider the model space H = L2( I S∗
S I ), which is defined in [10] as the Hilbert space of

two-component vector-functions (g̃, g) on the axis (g̃(k), g(k) ∈ E, k ∈ R) with metric

((
g̃

g

)

,

(
g̃

g

))

=

∞∫

−∞

((
I S∗(k)

S(k) I

)(
g̃(k)

g(k)

)

,

(
g̃(k)

g(k)

))

E⊕E

dk.

It is assumed here that the set of two-component functions has been factored by the set of
elements with the norm equal to zero.

Let’s define the following orthogonal subspaces in H :

D− ≡
(

0

H−
2 (E)

)

, D+ ≡
(

H+
2 (E)

0

)

, K ≡ H	 (D− ⊕D+),

where H
+(−)
2 (E) denotes the Hardy class of analytic functions f in the upper (lower) half

plane with the values in the Hilbert space E.
The subspace K can be described as K = {(g̃, g) ∈ H : g̃ + S∗g ∈ H−

2 (E), Sg̃ + g ∈
H+

2 (E)}. Let PK be the orthogonal projection of H onto K:

PK

(
g̃

g

)

=

(
g̃ − P+(g̃ + S∗g)

g − P−(Sg̃ + g)

)

,

where P± are orthogonal projections of L2(E) onto H±
2 (E).

The following result holds [1, 10]: the operator (L‖ − λ0)
−1 is unitary equivalent to the

operator PK(k − λ0)
−1|K for all λ0, Imλ0 < 0. In effect this means, that the operator of

multiplication by k serves as the minimal (closImλ6=0(k− λ)−1K = H) selfadjoint dilatation
[1] of the operator L‖.

The characteristic function of the operator L is defined by the following expression:

Θ(λ) ≡ I + iJα(L∗ − λ)−1α, Imλ 6= 0,

and is a meromorphic, J-contractive (Θ∗(λ)JΘ(λ) ≤ J, Imλ > 0) operator-function [2].
The characteristic function Θ(λ) admits factorization in the form of the ratio of two bounded
analytic operator-functions (in the corresponding half-planes Imλ < 0, Imλ > 0) triangular
with respect to the decomposition of the space E into the orthogonal sum

E = (X+E)⊕ (X−E), X± ≡
I ± J

2
.

Following [7], we define the subspaces N̂± in H as follows:

N̂± ≡
{(

g̃

g

)

:

(
g̃

g

)

∈ H, X−(g̃ + S∗g) + X+(Sg̃ + g) = 0

}

and introduce the following designation:

N± = closPKN̂±.
10



Then, as it is shown in [8], one gets for Imλ < 0 (Imλ > 0) and (g̃, g) ∈ N̂−(+),
respectively:

(L− λ)−1PK

(
g̃

g

)

= PK
1

k − λ

(
g̃

g

)

.

The absolutely continuous and singular subspaces of the nonselfadjoint operator L were
defined in [6]: let2 N ≡ N̂+ ∩ N̂−, Ñ± ≡ PKN̂±, Ñe ≡ Ñ+ ∩ Ñ−, then

Ne ≡ clos
(

Ñe

)

= closPKN

Ni ≡ K 	Ne(L
∗).

(3.2)

We call operator L an “operator with purely absolutely continuous spectrum” if Ne = H,
i.e. PKN is dense in K.

3.2. Characterization of the C0–group with functional growth in terms of its

generator. Consider arbitrary nonnegative continuous function on the right semiaxis, f ∈
C(R+).

We call a C0–group T (t) in Hilbert space H, satisfying the following condition

‖T (t)‖ ≤ Mf(|t|) (3.3)

for all t ∈ R, C0–group with functional growth of operators in the Hilbert space H.
Let the generator L of a group T (t) with functional growth belong to the class described

in section 3.1 (i. e. it admits a model representation described in the latter section of the
present work). Let’s further restrict ourselves to the case when σ(L) ⊂ R.

We are primarily interested in obtaining necessary (respectively, sufficient) conditions of
(3.3) in the form of a pair of integral estimates for the resolvent of the operator L generating
the group T (t):

∫

�

‖(L− k − iε)−1u‖2dk ≤ C
1

ε
g(ε)‖u‖2

∫

�

‖(L∗ − k − iε)−1u‖2dk ≤ C
1

ε
g(ε)‖u‖2,

(3.4)

where g ∈ C(R+) is some continuous nonnegative function of ε > 0, considered for all
u ∈ H.

One can prove the following results:

Theorem 3.1. Let the spectrum of L be absolutely continuous. Then for every nonnegative

function g ∈ C(R+), satisfying the condition g(ε) ≤ M < ∞ when ε � 1, the estimates

(3.4) suffice for the operator L to be a generator of C0–group in Hilbert space H with

‖ exp(iLT )‖ ≤ Mf(|t|)

for all t ∈ R and function f(t), defined for t > 0 by f(t) ≡ g(1/t).

2The linear set N is called a set of “smooth” vectors of the operator L (see [8])
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Proof. Let t > 0. Then

eitke−εt = − 1

2πi

∞∫

−∞

eixt
[
(k − x + iε)−1 − (k − x− iε)−1

]
dx

for any ε > 0.
Then in the conditions of the Theorem one immediately obtains

eitLe−εtu = − 1

2πi

∞∫

−∞

eixt
[
(L− x + iε)−1 − (L− x− iε)−1

]
udx (3.5)

on the set of “smooth” vectors Ñe of L [8] (provided, that the latter integral exists). Then

ε

π

∣
∣
∣
∣
∣
∣

∫

�

eixt(
[
(L− x + iε)−1(L− x− iε)−1

]
u, v)dx

∣
∣
∣
∣
∣
∣

≤

≤ ε

π

∣
∣
∣
∣
∣
∣

∫

�

‖(L− x− iε)−1u‖ · ‖(L∗ − x− iε)−1v‖dx

∣
∣
∣
∣
∣
∣

≤

≤ ε

π





∫

�

‖(L− x− iε)−1u‖2dx





1/2 



∫

�

‖(L∗ − x− iε)−1u‖2dx





1/2

≤ C̃‖u‖‖v‖g(ε)

for all u, v ∈ Ñe, which justifies the formula (3.5) and for all u, v from a linear manifold
dense in H the following estimate is obtained:

∣
∣(exp(iLt)e−εtu, v)

∣
∣ ≤ M‖u‖‖v‖g(ε).

Having chosen ε ≡ 1/t, we get

|(exp(iLt)u, v)| ≤ M‖u‖‖v‖g(1/t)

for all u, v ∈ H and t > 0.
The boundedness of exp(iLt) when t < 0 can be shown in an analogous fashion.

Theorem 3.2. Let the spectrum of L be absolutely continuous. Let the Laplace-type trans-

form of nonnegative f ∈ C(R+)

g′(ε) ≡
∞∫

0

e−2εt(f(t))2dt

is finite for all ε ∈ (0,∞), admitting the estimate g ′(ε) ≤ C for ε � 1. Then the condition

(3.4) with g(ε) = εg′(ε) is necessary for the operator L to generate a functionally bounded

C0–group,

‖ exp(iLt)‖ ≤ Mf(|t|) for all t ∈ R.

Proof. For all z ∈ C+, k ∈ R

1

k − z
= i

∞∫

0

eizte−itkdt.

12



Then in the conditions of the Theorem we get for all u ∈ Ñe and z ∈ C+:

(L− z)−1PK

(
g̃

g

)

= i

∞∫

0

dteiztPKe−itk

(
g̃

g

)

= i

∞∫

0

dteizt exp(−iLt)PK

(
g̃

g

)

,

provided that the latter integral exists. The Plancherel theorem applied to the right hand
side of the latter identity gives

∫

�

‖(L−k−iε)−1u‖2dk =

∫

�




1√
2π

∞∫

0

eikt[e−εte−iLtu]dt,
1√
2π

∞∫

0

eikt[e−εte−iLtu]dt



 dk =

= 2π

∞∫

0

e−2εt‖ exp(−iLt)‖2dt ≤ C

∞∫

0

e−2εt(f(t))2‖u‖2dt = C‖u‖2 1

ε
g(ε).

for all u ∈ Ñe, i. e. for the linear manifold dense in H.
The corresponding estimate for (L−k + iε)−1 is obtained based on the following identity:

‖ exp(iLt)‖ = ‖(exp(iLt))∗‖ = ‖ exp(−iL∗t)‖.
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