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AN ELEMENTARY THEORY OF L1C-SETS.

Mats Erik Andersson

Utkast avslutat den 11 februari i n̊adens år 2000.

A set E ⊆ Z is said to be a set of L1-convergence, abbreviated to L1C-set, if

‖snf − f‖1 → 0 as n → ∞ for every f ∈ L1
E . Here snf(θ) =

∑n

−n f̂(k) exp(ikθ)

is a symmetric partial sum of f and L1
E = L1

E(T) is the closed subspace of L1(T)

consisting of E-spectral functions: f̂(k) = 0 for all k /∈ E. Of course the circle
group T is provided with the normalized Haar measure, denoted λ in case of need.
In the following text the word polynomial always means trigonometric polynomial.

Using Banach–Steinhaus’ theorem on uniform boundedness and also the dense-
ness of E-spectral polynomials in L1

E it is easily seen that E is an L1C-set exactly
when

κ1(E) = sup
{‖snf‖1
‖f‖1

; f ∈ L1
E \ {0}, n > 0

}

is finite. Furthermore, we use the notion CL1C-set to signify that E has the stronger
property supm∈Z κ1(E +m) < ∞. An alternative way of viewing the boundedness,
is to realize that L1

E is a homogeneous space in the sense of Katznelson and the
techniques developed in [K], Chapters II and III, can be applied.

The intentions behind the present exposition is to display the close parallels of
L1C-sets to the following, already well established, two notions. The set E ⊆ Z is
said to be a set of uniform convergence, abbreviated UC-set, in case

κ(E) = sup
{‖snf‖∞
‖f‖∞

; f ∈ CE \ {0}, n > 0
}

is finite, where CE is the space of E-spectral continuous functions. Equivalently,
‖snf − f‖∞ → 0 as n → ∞ for every function f in CE . The specialized notion
of a CUC-set means that supm∈Z

κ(E + m) < ∞. Finally, recall that E is a
Sidon set in case there is a finite constant c(E) such that for any f ∈ CE the
inequality ‖f‖A(T) 6 c(E) ‖f‖∞ obtains. Rudin [R], Theorem 2.1, lists equivalent
characterizations.

To my knowledge the name L1C-set was coined by J. Fournier in [F]. In an
extended remark the author indicated that he himself and S. Hartman had gained
insight into this notion. However, I have not been able to locate any further printed
material in this direction. It will, not particularly surprising, turn out that all
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2 MATS ERIK ANDERSSON

results about UC-sets found in [P], [T], and [ST] have counterparts for L1C-sets.
To a large extent the statements are verbatim to those in the old setting.

The inclusion relations in the following lemma were observed already in [F]. For
convenience the proof is carried out. The five classes of sets E ⊆ Z are denoted in
the obvious manner.

Lemma 1. Sidon⊆UC⊆L1C and CUC⊆CL1C. In addition the different set

constants obey κ1(E) 6 κ(E) 6 c(E).

Proof. It suffices to prove the inequalities and the second relation. Consider then
a UC-set E. Pedemonte’s Theorem 1 in [P] provides a sequence of measures µn ∈
M(T) for n > 0 with ‖µn‖ 6 κ(E) and µ̂n

∣∣
E

= χ[−n,n]

∣∣
E

, the latter denoting

the characteristic function of the indicated interval. For any f ∈ L1
E we find

snf = µn ∗ f , whence

‖snf‖1 = ‖µn ∗ f‖1 6 ‖µn‖ ‖f‖1 6 κ(E) ‖f‖1

and this establishes κ1(E) 6 κ(E).

Furthermore, the simple observation supm κ1(E + m) 6 supm κ(E + m) estab-
lishes the inclusion CUC⊆CL1C.

Consider finally a Sidon set E with Sidon constant c(E). Rudin’s characteriza-
tion of Sidon sets in [R] provides to each ρ ∈ `∞(E) a measure µ ∈ M(T) such that
µ̂
∣∣
E

= ρ and also ‖µ‖ 6 c(E) ‖ρ‖∞ . In particular there are measures µn satisfying

µ̂n

∣∣
E

= χ[−n,n]

∣∣
E

and ‖µn‖ 6 c(E). By Pedemonte’s theorem this is κ(E) 6 c(E).

Later on some comments will be made on the fact that the inclusions are strict.
Meanwhile, the next result will give an ample supply of examples. The statement
is implicitly presented in [F]. For comparison it can be noted that a Λ(1)-set need
not be a UC-set, even though it is a CL1C-set. Fournier–Pigno [FP] provides a
4/3-Sidon set, which is Λ(p) for all p < ∞ and hence is a CL1C-set, but nonetheless
is not a UC-set.

It must be recalled that Pedemonte found the existence of {µn}
∞
0 , as above, to

characterize UC-sets. Since, by Example 20, there are L1C-sets which are not UC-
sets, we conclude that in general the partial sums sn on L1

E , for L1C-sets E, cannot
be obtained as uniformly bounded convolution operators extending to L1(T).

Recall that E is said to be a Λ(p)-set in the case that for some 0 < q < p (and
hence all) there is a constant cq = Λ(p, q, E) with the property ‖f‖p 6 cq ‖f‖q for all
f ∈ Lp

E . This says that Lq
E = Lp

E as metric spaces. For detailed information see [R]
and [H2]. In particular, the notation Λ(p, q, E) is explained in Hare’s presentation.

Proposition 2. Every Λ(1)-set is also a CL1C-set.

Proof. Let E be a Λ(1)-set. According to Hare’s [H2] proof of Bachelis–Ebenstein’s
theorem, it is possible to choose a p > 1 that is independent of the finer structure
of E and only depends on the structure constant Λ(1, 1/2, E). The outcome is
that E must in fact be a Λ(p)-set and hence there is some constant C such that
‖f‖p 6 C ‖f‖1 for all f ∈ L1

E . Here C only depends on p and Λ(1, 1/2, E).

Next, M. Riesz’ theorem (cf. [Z], Theorem VII.2.4) provides for this particular p
a further constant cp such that ‖sng‖p 6 cp ‖g‖p for all g ∈ Lp and all n > 0.
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Thus we consider any f ∈ L1
E+m, excepting the zero-function. The above prepa-

rations now prove the inequality

‖snf‖1
‖f‖1

6
‖snf‖p

‖f‖1
6

C ‖snf‖p

‖f‖p

6 C cp,

where the second inequality is due to the Λ(p)-property and its translation in-
variance. Since this calculation holds independently of the integer m ∈ Z, the
conclusion is supm κ1(E + m) 6 C cp. This means that E in fact must be a CL1C-
set.

Remark. The point of the above proof is that given a collection {Eα}α∈A of Λ(1)-
sets with uniformly bounded structure constants, that is supα Λ(1, 1/2, Eα) < ∞,
then also supα,m κ1(Eα + m) < ∞. In a loose manner of speaking: a uniform

collection of Λ(1)-sets is also a uniform collection of CL1C-sets. A possibly more
general result than Proposition 2 will later appear as Theorem 8.

Two quick and entertaining results that appear via Λ(p)-sets are clearly worth-
while to record. The first is analytic, the second arithmetic in character.

Corollary 3. If L1
E is reflexive, then E is a CL1C-set.

Proof. According to [H2], Corollary, the reflexivity of L1
E is equivalent to the Λ(1)-

property of E. An application of the preceding proposition establishes the claim.

Corollary 4. Suppose E ⊆ Z has the property that for all a, s, t ∈ Z the counting

inequality |E ∩ {a, a + s, a + t, a + s + t}| 6 3 obtains. Then E is a CL1C-set.

Proof. The condition states that E does not contain parallelepipeds of dimension 2.
Hence Hare’s argument [H], top of page 153, says that E is a Λ(4)-set and hence
also a Λ(1)-set as well as a CL1C-set.

The possibility to distinguish between L1C and CL1C-sets is of course essential.
An easy particular case where they coincide should be recorded first.

Lemma 5. Every L1C-set E ⊆ N is in fact a CL1C-set.

Proof. Let f ∈ L1
E+m be non-trivial. Every symmetric partial sum of f can be writ-

ten as a difference between at most two expressions of the form eimθsk{e
−imθf(θ)},

where the value of k changes. It follows that

sup
n>0

‖snf‖1
‖f‖1

6 2 sup
k>0

∥∥sk

(
e−imθf(θ)

)∥∥
1

‖f‖1
6 2κ1(E).

This certifies supm κ1(E + m) 6 2κ1(E), so E is a CL1C-set.

The just presented result is the counterpart of Lemma 6 in Travaglini [T]. It also
displays rudiments of the way a CL1C-set has stronger inner structure than L1C-
sets have. The decisive additional property required of the former class corresponds
in essence to Soardi–Travaglini’s Proposition 1 in [ST], where UC and CUC-sets
are distinguished. This earlier result is preferably understood as the existence of a
multiplier generated as convolution with a measure. In the new setting of CL1C-
sets, the multiplier still exists, but it no longer a priori arises from a measure.
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Theorem 6. An L1C-set E is also a CL1C-set if and only if the natural analytic

projection P : L1
E → H1

E ⊆ L1
E , determined by eikt 7→ χN(k) eikt, is bounded.

Proof. Suppose E is an L1C-set, that the natural projection P : L1
E → H1

E is
bounded, denoting with ‖P‖ its multiplier norm, and take f ∈ L1

E arbitrarily.

Consider sn

(
eimtf(t)

)
. This can be written eimt

∑
|k+m|6n f̂(k)eikt and is hence

expressible as a sum or difference between one or two expressions of the form
eimt sN(Pf) and eimt sN (f − Pf). It follows that

∥∥sn

(
eimtf(t)

)∥∥
1

6 2κ1(E)
{
‖Pf‖L1

E

+‖f−Pf‖L1
E

}
6 2κ1(E)

{
1+2 ‖P‖

}
‖eimtf‖1.

Consequently supm κ1(E + m) ≤ κ1(E)
{
1 + 2 ‖P‖

}
, so E is a CL1C-set.

Conversely we take a CL1C-set E. We consider on L1
E the new norm

||| f ||| = sup
{∥∥e−imtsn

(
eimtf(t)

)∥∥
L1

E

; n ∈ N, m ∈ Z

}
.

Immediately we find

‖f‖L1
E

6 lim inf
n→∞

‖snf‖L1
E

6 ||| f ||| .

The property of being a CL1C-set generates a finite ρ with κ1(E + m) ≤ ρ, for all
m ∈ Z. The inequality

∥∥e−imtsn

(
eimtf(t)

) ∥∥
L1

E

6 κ1(E + m) ‖eimtf(t)‖L1
E+m

6 ρ ‖f‖L1
E

now ensures ||| f ||| 6 ρ ‖f‖L1
E

and hence ‖ ‖L1
E

and ||| ||| are equivalent norms.

Let now P denote the natural projection, initially defined at least for all E-
polynomials. When g is a polynomial from L1

E , there is an integer M > 0 such that
Pg(t) = eiMtsM

(
e−iMtg(t)

)
. This leads to the estimate

‖Pg‖L1
E

=
∥∥eiMtsM

(
e−iMtg(t)

)∥∥
L1

E

6 ||| g ||| 6 ρ ‖g‖L1
E

.

Since the polynomial subspace is dense in L1
E , the projection P may be extended

to the whole of L1
E with preserved norm, that is ‖P‖ 6 supm κ1(E + m). This is

the claimed boundedness and the proof is complete.

Example 7. It is not possible to remove the assumption that E be an L1C-set
in Theorem 6. This is because E = N trivially has the projection P bounded on
L1

E = H1. However, N is no L1C-set, much less a CL1C-set. This can be seen from
Theorem 13 below, or more constructively in Lemma 14.

The Zygmund class L log L consists of all f ∈ L1(T) such that
∫
|f | log+ |f | dλ

is finite. We write L1
E log L1

E for L1
E ∩ L log L.

Theorem 8. Assume E ⊆ Z has the property L1
E = L1

E log L1
E. Then E is a

CL1C-set.

Proof. According to Zygmund’s theorem, see [Z], Theorem 2.8, page 254, there are

two constants A,B > 0 such that ‖f̃‖1 6 A
∫
|f | log+ |f | dλ + B for the conjugate

function f̃ to any f ∈ L log L.



L1C-SETS 5

Since if̃ ∼
∑∞
−∞ sign(n)f̂(n) en, where en(θ) = exp(inθ), we conclude

2snf = 2 f̂(0) + i e−n−1[en+1f ]̃ − i en+1[e−n−1f ]̃ .

Consequently the trivially bounded and linear mappings sn : L1
E → L1

E have the
property

‖snf‖1 6 ‖f‖1 + 1
2

∥∥[en+1f ]̃
∥∥

1
+ 1

2

∥∥[e−n−1f ]̃
∥∥

1

6 ‖f‖1 + B + A

∫
|f | log+ |f | dλ.

Hence supn ‖snf‖1 < ∞ holds for every f ∈ L1
E . According to Banach–Steinhaus’

theorem we conclude that supn ‖sn‖L1
E
→L1

E

< ∞, whence E at least is an L1C-set.

With the same technique supn ‖Psn‖L1
E
→L1

E

< ∞ and a simple weak-∗ argument

provides therefore also ‖P‖L1
E
→L1

E

< ∞. According to Theorem 6, E is thus even

a CL1C-set.

Now we can reprove Proposition 2, although with essentially the same idea.

Corollary 9. Every Λ(1)-set is a CL1C-set.

Proof. To a given Λ(1)-set E there is p > 1 with L1
E = Lp

E , according to Bachelis–
Ebensteins’ theorem. It follows that L1

E ⊇ L1
E log L1

E ⊇ Lp
E = L1

E , so the preceding
theorem can be applied to conclude the CL1C-property of E.

Next, three results are listed with statements identical to the older cases of
UC-sets, granted the obvious reformulation for L1C-sets. The published proofs for
UC-sets can be read verbatim, except the replacement of the inequality ‖f ∗µ‖∞ ≤
‖f‖∞ ‖µ‖ for the now relevant form ‖f ∗ µ‖1 ≤ ‖f‖1 ‖µ‖. Therefore only the third
result is here provided with an explicit proof.

Proposition 10 (Cf. [T], Theorem 3). A ⊆ N is an L1C-set, and hence CL1C-set,

if and only if there are q > 1 and κ1 > 1 such that

sup
n>1

κ1

(
A ∩

[
N, dqNe

])
6 κ1.

The ceiling function dxe yields the least integer exceeding x.

Proposition 11 (Cf. [T], Theorem 2). If A ⊆ N, B ⊆ Z
− are L1C-sets, and hence

also CL1C-sets, then A ∪B is at least an L1C-set.

Proposition 12 (Cf. [ST], Proposition 2). If there is a set E ⊆ Z which is an

L1C-set, but not a CL1C-set, then the union of two CL1C-sets need not even be an

L1C-set.

Proof. Suppose E is an L1C-set without being a CL1C-set. Consider now the sets

E+
n = E∩[0, n] , E−n = E∩[−n, 0[ , H+ =

∞⋃

n=1

(
E+

n +22n
)
, H− =

∞⋃

n=1

(
E−n +22n

)
.

According to Proposition 10 both H+ and H− are L1C-sets. By Lemma 5 they are
even CL1C-sets. It is now claimed that H+ ∪H− cannot be an L1C-set.
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Consider to this end a polynomial g ∈ L1
E and denote with P the analytic

projection as before. One may suppose that spec g ⊆ [−N,N ]. Let now gN (θ) =
exp{i22Nθ} g(θ), whence gN ∈ L1

H+∪H−
. Furthermore,

‖Pg‖1 =
∥∥ei22Nθ Pg(θ)

∥∥
1

=
∥∥s22N+N gN − s22N−1 gN

∥∥
1

6 2κ1

(
H+ ∪H−

)
‖gN‖1 = 2κ1

(
H+ ∪H−

)
‖g‖1.

The freedom in choosing g implies ‖P‖ = ‖P‖L1
E
→L1

E

6 2κ1(H
+∪H−). Since E is

not a CL1C-set, Theorem 6 provides ‖P‖ = ∞, from which follows that H+ ∪H−

cannot be an L1C-set. This completes the proof.

As was the case for UC-sets, we now know that the natural union problem stands
and falls with the non-coincidence of the two classes L1C and CL1C.

Prior to the closer comparison of interrelation between UC and L1C-sets, an
arithmetic property of L1C-sets should be brought to light. Since, by Proposition 2,
every Λ(1)-set is a CL1C-set, the following result can be seen as a generalization of
Rudin’s Theorem 4.1 in [R].

Theorem 13 (Cf. [P], Theorem 4). There is a constant b > 1 such that no L1C-set

E can contain arithmetic progressions of length exceeding 2 bκ1(E).

We use a lemma to take care of the technical calculation:

Lemma 14. Let Kn be the Fejér kernel. There is a constant γ > 0 such that

inf
k∈Z

sup
m≥0

∥∥sm

(
eikθKn(θ)

)∥∥
1

> γ log(n + 2).

Proof of Theorem 13. Assume the progression {k−nl, . . . , k− l, k, k+ l, . . . , k+nl}
is contained in the L1C-set E. Then f(θ) = eikθ Kn( lθ ) ∈ L1

E and ‖f‖1 = 1.
According to Lemma 14 we find

γ log(n + 2) 6 sup
m>0

‖smf‖L1
E

6 κ1(E),

which is the estimate n + 2 6 exp{κ1(E)/γ}. For n ≥ 1 the length of the arith-
metic progression above is 2n + 1, so it is now obvious that this length is at most
2 exp{κ1(E)/γ}. Taking b = exp γ−1 the claimed statement has been achieved.

Proof of Lemma 14. We need to use the standard kernels as well as the conjugate
versions, see [Z] for details. Known properties of the Dirichlet kernel and the
relation K2n+1 = 1

2n+2D2n+1 + 2n+1
2n+2K2n together demonstrate

sup
m,k

∥∥∥sm

(
eikθ{K2n+1 −K2n}

)∥∥∥
1

= O
(

log n
n

)
as n →∞.

Thus it suffices to show

lim inf
n→∞

inf
k>0

sup
m>0

∥∥sm(eikθK2n)
∥∥

1

log(n + 2)
> 0.
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Denote Ar = (Kr + iK̃r)/2 =
∑

06j6r(1−
j

r+1 )eijθ. It is straightforward (a picture

on the coefficient side is most illuminating) to obtain for n, k > 0 the decomposition

sn+k(eikθK2n) = n
2n+1eikθKn−1 + n+1

2n+1

( k+n∑

j=M(k,n)

eijθ
)
− are

−i(n−k+r+1)θ Ar,

where M(k, n) = max(k − 2n,−n − k), 0 6 r 6 n − 1, and 0 6 ar 6 n/(2n + 1).
An inequality obtains from this consideration.

‖sn+k(eikθK2n)‖1 >
n+1
2n+1

‖Dn‖1 −
n

2n+1
− n

2n+1
‖An−1‖1

>
1
2

(
‖Dn‖1 − ‖An‖1 − 1

)
.

However, ‖Dn‖1 ∼ 2π−2 log(n+2) and ‖An‖1 ∼ (2π)−1 log(n+2) together provide
the estimate

inf
k≥0

sup
m≥0

‖sm(eikθk2n)‖1
log(n + 2)

>
‖Dn‖1 − ‖An‖1 − 1

2 log(n + 2)
∼ 1

2

(
2

π2 −
1
2π

)
.

This last constant is positive, whence the claim has been verified.
For completeness the asymptotics of ‖An‖1 should be derived. We have

1
2
‖K̃n‖1 =

∫ π

0

K̃n dλ =
∑ {

1
πj

(
1− j

n+1

)
; 1 6 j 6 n, j odd

}

= 1
2π

∑n

j=1

1
j

+O(1).

Since
∣∣ ‖An‖−‖K̃n‖1/2

∣∣ 6 ‖Kn‖1/2 = 1/2, the claimed asymptotic relation holds.

To put the next few results into perspective, let us note that an L1C-set is
characterized by the property supn ‖sn‖L1

E
→L1

E

< ∞, which a priori is weaker than

the property of UC-sets exhibited below in Lemma 15. On the other hand, a CL1C-
set is recognized by the preceding property and simultaneously ‖P‖L1

E
→L1

E

< ∞.
Again these two together represent weaker demands than those Lemma 16 a priori
puts on every CUC-set.

The following two auxiliary results are known, but will help to understand in
what respect UC-sets are subject to harder restrictions. In particular, a significant
strengthening of Lemma 15 was achieved in [DP], Theorem 5, to the effect that for
any UC-set E one has ME∪Z− (T) ⊆ M0(T). Of course ME(T) is here the vector
subspace of E-spectral measures and M0(T) consists of the measures whose Fourier
coefficients vanish at infinity.

Lemma 15. For a UC-set E the norm estimate ‖sn‖ME→L1
E

6 κ(E) holds for

all n. In particular, ME(T) ⊆ M0(T).

Proof. Let µ ∈ ME(T). For each f ∈ C(T) holds µ ∗ f ∈ CE(T), so

‖(snµ) ∗ f‖∞ = ‖sn(µ ∗ f)‖1 6 κ(E) ‖µ ∗ f‖∞ 6 κ(E) ‖µ‖ ‖f‖∞ .

It follows that

‖snµ‖L1
E

= sup
f∈C(T)

‖snµ ∗ f‖∞
‖f‖∞

6 κ(E) ‖µ‖ME
,

which is the first claim. According to Helson’s theorem [He] any measure µ ∈ M(T)
with supn ‖snµ‖1 < ∞ must belong to M0(T). This completes the last part of the
claim.
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Lemma 16. Let P denote the analytic projection. If E is a CUC-set, then Pµ ∈
ME(T) for every µ ∈ ME(T) and in addition ‖P‖ME→ME

6 ‖P‖CE→CE
< ∞. In

particular, ME(T) = L1
E(T).

Proof. Let E be a CUC-set. Choose measures νn such that ν̂n

∣∣
E

= χ[0,n]

∣∣
E

and
‖νn‖ 6 κ(E) for all n > 0. This is possible according Soardi–Travaglini’s theorem.
In particular, ‖νn‖ 6 ‖P‖CE→CE

is achievable.
For µ ∈ ME(T) one deduces µ ∗ νn ∈ ME(T) and ‖µ ∗ νn‖ 6 ‖P‖CE→CE

‖µ‖ME
,

where (µ ∗ νn)̂ (k) = µ̂(k) for all k ∈ E, 0 6 k 6 n, and (µ ∗ νn)̂ (k) = 0 otherwise.
There is consequently a weak-∗ accumulation point µ̃ ∈ ME(T) of the sequence
{µ ∗ νn}

∞
n=0. Since

̂̃µ(k) = lim
n→∞

(µ ∗ νn)̂ (k) =

{
µ̂(k), k > 0, k ∈ E,

0, otherwise,

it is clear that Pµ = µ̃ ∈ ME(T) and additionally ‖Pµ‖ME
6 ‖P‖CE→ CE

‖µ‖ME
,

due to ‖µ̃‖ME
6 lim infn→∞ ‖µ ∗ νn‖ME

.
Furthermore, µ ∈ ME(T) decomposes as µ = Pµ + (µ− Pµ) with specPµ ⊆ N

and spec (µ− Pµ) ⊆ Z
−. By F. and M. Riesz’ theorem (cf. [K], page 89) both Pµ

and µ− Pµ are elements in L1
E(T) and so the same conclusion obtains for µ itself.

This was the last claim.

Neither of the two conclusions of Lemma 15 and 16 characterize the two classes.
In fact they are characteristic of L1C and CL1C-sets, as the following result clearly
demonstrates.

Lemma 17. Two norm estimates hold for L1C-sets. Namely,

sup
n

‖sn‖ME→L1
E

6 2κ1(E) + 1 and

‖P‖ME→L1
E

6 ‖P‖L1
E
→L1

E

[
2κ1(E) + 1

]

Proof. Let µ ∈ ME and n ≥ 1. Denoting Fejér means as σnµ = Kn ∗ µ we have

[ 2sn σ2n−1µ− σn−1 ]̂ (k) = χ[−n,n](k)
{

2
(
1− |k|

2n

)
−

(
1− |k|

n

)}
µ̂(k)

= µ̂(k)χ[−n,n](k).

This says snµ = 2snσ2n−1µ− σn−1µ, whence it follows that

‖snµ‖1 6 2κ1(E) ‖σ2n−1µ‖1 + ‖µ‖ME
6

(
2κ1(E) + 1

)
‖µ‖ME

.

In other words ‖sn‖ME→L1
E

6 2κ1(E) + 1 for all n.

The same representation provides Psnµ = P (2 snσ2n−1 − σn−1)µ, from which
the obvious weak-∗ argument produces

‖Pµ‖L1
E

6 lim inf
n→∞

‖P (2 snσ2n−1 − σn−1)µ‖1 6 ‖P‖L1
E
→L1

E

{
2κ1(E) + 1

}
‖µ‖ME

.

This completes the proof.

Recall that E is a Riesz set if ME(T) = L1
E(T). A Rajchman set has the property

that µ ∈ M(T), µ̂
∣∣
Ec

∈ c0(E
c) implies µ̂

∣∣
E
∈ co(E), that is µ ∈ M0(T). According

to [HP] this latter property is equivalent to the statement ME(T) ⊆ M0(T).
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Corollary 18. Every CL1C-set is a Riesz set and every L1C-set is a Rajchman

set.

Proof. For any L1C-set E, we now know supn ‖sn‖ME→L1
E

< ∞. By Helson’s

theorem [He], every measure in ME(T) has Fourier coefficients vanishing at infinity.
Thus E is a Rajchman set.

For a CL1C-set E we additionally have ‖P‖ME→L1
E

< ∞ from Lemma 17. The

same argument as in the proof of Lemma 16 demonstrates that also in the present
case ME(T) = L1

E(T), so E is thus a Riesz set.

It can be observed that any UC-set which is not a Riesz set, must in fact be
L1C without being CL1C and would thus resolve the union problem for L1C-sets.
The existence of UC-sets which are not Riesz sets has to my knowledge not been
discussed in the literatur, nor will it be resolved in this exposition. The next result
is mentioned in passing only, and is meant to stress that weaker facts than the
Λ(1)-property, for which some p > 1 yields L1

E = Lp
E , force sets to be Riesz sets.

Corollary 19. Every E ⊆ Z such that L1
E = L1

E log L1
E is a Riesz set.

Proof. Every such E is CL1C, according to Theorem 8. Hence Corollary 18 shows
E to be a Riesz set.

Two already published examples due to Fournier and Fournier–Pigno clearly
demonstrate that there are intricate structural properties distinguishing UC-sets
from L1C-sets. For ease of reading, the two parts will be presented separately.
The reference in parentheses indicates to which of the above conclusions it acts as
counterexample against reversability.

Example 20 (Cf. Lemma 15). There is a Riesz E set which is CL1C but not UC.

In particular, ME(T) = L1
E(T), supn ‖sn‖ME→L1

E

< ∞, ‖P‖ME→L1
E

< ∞, but

supn ‖sn‖CE→CE
= ∞.

Proof. Fournier and Pigno construct in [FP] a 4/3-Sidon set E, which is non-UC
but still Λ(p) for all p < ∞. Since it is Λ(1) we know that it must be CL1C
and by Corollary 18 or [R], Proposition 5.1(b), ME(T) = L1

E . The two cases of
boundedness in the statement thus express that E is CL1C, whereas the non-UC-
property provides the final lack of uniform bound.

Example 21 (Cf. Lemma 16). There are CL1C-sets which are UC but not CUC-

sets. In particular, ME(T) = L1
E, supn ‖sn‖ME→L1

E

< ∞, supn ‖sn‖CE→CE
< ∞,

‖P‖ME→L1
E

< ∞, but ‖P‖CE→CE
= ∞.

Proof. We follow Fournier [F]. Let H = {h1 < h2 < . . . } ⊆ N be an infinite strongly
Hadamard sequence. The set H−H was in [F] proved to be UC but non-CUC. On
the other hand, [B],Théorème 5, page 359, proves

H2 =
{∑∞

k=1
εkhk ; εk ∈ {0,±1},

∑
|εk| = 2

}

to be a Λ(p)-set for every p < ∞. Hence H2 and H − H ⊆ H2 are both CL1C-
sets. Again Corollary 18 provides ME(T) = L1

E(T) and therefore the respective
boundedness properties are simply the interpretation of membership in the three
set classes mentioned in the statement.

The most obvious direction for further research is to resolve the natural union
problem. Refering to Proposition 12 the next formulation is relevant.
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Problem. Construct an L1C-set which is not CL1C.

As discussed above this problem would be resolved already if the next construction
is possible.

Problem. Construct a UC-set which is not a Riesz set.
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