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Abstract

We study the existence of homoclinic orbits for first order time-dependent Hamiltonian
systems ż = JHz(z, t), where H(z, t) depends periodically on t and Hz(z, t) is asymptotically
linear in z as |z| → ∞. We also consider an asymptotically linear Schrödinger equation in RN .

1 Introduction

In this paper we shall be concerned with the existence of homoclinic orbits of the Hamiltonian

system

(H) ż = JHz(z, t),

where z = (p, q) ∈ RN ×RN = R2N and

J =

(

0 −I
I 0

)

is the standard symplectic matrix. We assume that the Hamiltonian H is 1-periodic in t, H ∈

C(R2N ×R,R), Hz ∈ C(R2N ×R,R2N ) and Hz is asymptotically linear as |z| → ∞. Recall that

a solution z of (H) is said to be homoclinic (to 0) if z 6≡ 0 and z(t) → 0 as |t| → ∞. In recent

years several authors studied homoclinic orbits for Hamiltonian system via critical point theory.

In particular, second order systems were considered in [1], [2], [4]-[6], [13]-[15], and those of first

order in [3], [7]-[9], [17], [18], [20]. We emphasize that in all these papers the nonlinear term was

assumed to be superlinear at infinity. To the best of our knowledge, the existence of homoclinics

for first order Hamiltonian systems has not been previously studied by variational methods.
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Let H(z, t) = 1
2Az · z+G(z, t) and assume without loss of generality that H(0, t) ≡ 0. Suppose

σ(JA)∩iR = ∅ (σ denotes the spectrum). Let µ1 be the smallest positive, µ−1 the largest negative

µ such that σ(J (A + µI)) ∩ iR 6= ∅ and set µ0 := min{µ1,−µ−1}. We introduce the following

assumptions:

(H1) A is a constant symmetric 2N × 2N -matrix such that σ(JA) ∩ iR = ∅;

(H2) G is 1-periodic in t, G(z, t) ≥ 0 for all z, t and Gz(z, t)
/

|z| → 0 uniformly in t as z → 0;

(H3) G(z, t) = 1
2A∞(t)z · z + F (z, t), where Fz(z, t)

/

|z| → 0 uniformly in t as |z| → ∞ and

A∞(t)z · z ≥ µz · z for some µ > µ1;

(H4) 1
2Gz(z, t) · z −G(z, t) ≥ 0 for all z, t;

(H5) There exists δ ∈ (0, µ0) such that if |Gz(z, t)| ≥ (µ0 − δ)|z|, then 1
2Gz(z, t) · z −G(z, t) ≥ δ.

In Section 3 we shall make some comments on these assumptions. The main result of this paper

is the following

Theorem 1.1 Assume (H1)− (H5). Then system (H) has at least one homoclinic orbit.

It follows from (H2) and (H3) that |Gz(z, t)| ≤ c|z| for some c > 0 and all z, t. Therefore

Φ(z) :=
1

2

∫

R

(−J ż −Az) · zdt−

∫

R

G(z, t)dt(1.1)

is continuously differentiable in the Sobolev space H
1

2 (R,R2N ) and critical points z 6= 0 of Φ

correspond to homoclinic solutions of (H) (see e.g. [19, Section 10]). It will be shown later that

Φ has the so-called linking geometry; therefore it follows from [11] that there exists a Palais-Smale

sequence (zn) with Φ(zn) → c > 0. However, it is not clear whether this sequence is bounded

and therefore it cannot be used in order to construct a critical point z 6= 0. To circumvent this

difficulty we adapt a method due to Jeanjean [10]. More precisely, we consider a family (Φλ)1≤λ≤2

of functionals such that Φ1 = Φ and show that for almost all λ ∈ [1, 2] there exists a bounded

Palais-Smale sequence. This we do in Section 2, and in Section 3 we use the above result in

order to prove Theorem 1.1. Finally, in Section 4 we consider an asymptotically linear Schrödinger

equation.

2 Abstract Result

Let E− be a closed separable subspace of a Hilbert space E and let E+ := (E−)⊥. For u ∈ E we

shall write u = u+ + u−, where u± ∈ E±. On E we define the norm

‖u‖τ := max{‖u+‖,
∞
∑

k=1

1

2k
|〈u−, ek〉|},

where (ek) is a total orthonormal sequence in E−. The topology generated by ‖ · ‖τ will be called

the τ -topology.
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Recall from [11] that a homotopy h = I − g : [0, 1]×A→ E, where A ⊂ E, is called admissible

if:

(i) h is τ -continuous, i.e. h(sn, un)
τ
→ h(s, u) whenever sn → s and un

τ
→ u;

(ii) g is τ -locally finite-dimensional, i.e. for each (s, u) ∈ [0, 1] × A there exists a neighborhood U

of (s, u) in the product topology of [0, 1] and (E, τ) such that g(U ∩ ([0, 1] × A)) is contained in a

finite-dimensional subspace of E.

Admissible maps are defined similarly. Recall also that admissible maps and homotopies are neces-

sarily continuous and on bounded subsets of E the τ -topology coincides with the product topology

of E−weak and E+
strong.

Let Φ ∈ C1(E,R), R > r > 0 and u0 ∈ E
+ with ‖u0‖ = 1 be given and define

M := {u = u− + ρu0 : ‖u‖ ≤ R, ρ ≥ 0}, N := {u ∈ E+ : ‖u‖ = r},

Γ := {h ∈ C([0, 1] ×M,E) : h is admissible, h(0, u) = u and

s 7→ Φ(h(s, u)) is nonincreasing}.

The boundary of M in Ru0 ⊕E− will be denoted by ∂M .

Theorem 2.1 Let E = E+ ⊕ E− be a Hilbert space with E− separable and orthogonal to E+.

Suppose that

(i) ψ ∈ C1(E,R), ψ ≥ 0, ψ is weakly sequentially lower semicontinuous and ψ ′ is weakly sequen-

tially continuous;

(ii) Φλ(u) := 1
2‖u

+‖2 − λ(1
2‖u

−‖2 + ψ(u)) = A(u)− λB(u), 1 ≤ λ ≤ 2;

(iii) there exist R > r > 0, b > 0 and u0 ∈ E
+, ‖u0‖ = 1, such that Φλ|N ≥ b > 0 ≥ sup∂M Φλ for

all λ ∈ [1, 2].

Then for almost every λ ∈ [1, 2] there exists a bounded sequence (un) such that Φ′λ(un) → 0 and

Φλ(un) → cλ ≥ b, where

cλ := inf
h∈Γ

sup
u∈M

Φλ(h(1, u)).

This theorem should be compared with Theorem 1.1 in [10], where a similar result was proved

for functionals having the mountain pass geometry. Note also that it follows from Theorem 3.4 in

[11] and Corollary 6.11 in [21] that for any λ a (not necessarily bounded) sequence (un) as above

exists. Although no variational characterization of cλ was given in [11, 21], it is easy to obtain such

characterization by a slight modification of the arguments there.

The conclusion of Theorem 2.1 is a direct consequence of Lemma 2.3 below.

Since B(u) ≥ 0, λ 7→ cλ is nonincreasing. Therefore c′λ = dcλ

dλ exists for almost every λ ∈ [1, 2].

Let λ ∈ (1, 2] be an arbitrary (fixed) value where c′λ exists and let (λn) ⊂ [1, 2] be a strictly

increasing sequence such that λn → λ.

Lemma 2.2 There exists a sequence hn ∈ Γ and k = k(c′λ) > 0 such that for almost all n:

(i) If Φλ(hn(1, u)) ≥ cλ − (λ− λn), then ‖hn(1, u)‖ ≤ k.

(ii) supu∈M Φλ(hn(1, u)) ≤ cλ + (2− c′λ)(λ− λn).
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Proof Our argument is a straightforward modification of the one in Proposition 2.1 of [10]. We

include it for the reader’s convenience.

By the definition of cλn
, there exists hn ∈ Γ such that

sup
u∈M

Φλn
(hn(1, u)) ≤ cλn

+ (λ− λn).(2.1)

(i) If Φλ(hn(1, u)) ≥ cλ − (λ− λn) for some u ∈M, then

Φλn
(hn(1, u)) − Φλ(hn(1, u))

λ− λn
≤
cλn

− cλ
λ− λn

+ 2.

Since c′λ exists, there is n(λ) such that if n ≥ n(λ), then

−c′λ − 1 ≤
cλn

− cλ
λ− λn

≤ −c′λ + 1.(2.2)

Therefore, for n ≥ n(λ),

B(hn(1, u)) =
Φλn

(hn(1, u)) − Φλ(hn(1, u))

λ− λn
≤ −c′λ + 3

and

A(hn(1, u)) = Φλn
(hn(1, u)) + λnB(hn(1, u))

≤ cλn
+ (λ− λn) + λn(−c′λ + 3).

Note that the right-hand side above is bounded independently of n. Since ψ ≥ 0, then either

A(hn(1, u)) or B(hn(1, u)) tends to infinity as ‖hn(1, u)‖ → ∞, and it follows that ‖hn(1, u)‖ ≤ k

for some k and all u ∈M , n ≥ n(λ).

(ii) Since Φλn
(v) ≥ Φλ(v) for any v ∈ E, it is easy to see from (2.1) and (2.2) that

Φλ(hn(1, u)) ≤ Φλn
(hn(1, u)) ≤ cλ + (cλn

− cλ) + (λ− λn)

≤ cλ + (2− c′λ)(λ− λn).

2

Lemma 2.3 (i) cλ ≥ b for all λ.

(ii) Let k = k(c′λ) be the constant of Lemma 2.2. Then there exists a sequence (un) such that

‖un‖ ≤ k + 4 for all n, Φ′λ(un) → 0 and Φλ(un) → cλ.

Proof (i) The proof can be easily deduced from the argument on p. 456 in [11] or from the proof

of Theorem 6.10 in [21]. Therefore we only sketch it briefly. Let G : [0, 1] ×M → Ru0 ⊕ E− be

given by

G(s, u) := g(s, u)− + (‖g(s, u)+‖ − r)u0,

where g ∈ Γ and g(s, u) = g(s, u)+ + g(s, u)− ∈ E+ ⊕ E−. G is an admissible homotopy and

G(s, u) = 0 if and only if g(s, u) ∈ N . Since Φλ|∂M ≤ 0 and Φλ(u) ≥ Φλ(g(s, u)) ≥ b whenever
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g(s, u) ∈ N , 0 /∈ G([0, 1] × ∂M). Hence deg(G(s, ·),M, 0), where deg denotes the degree of [11], is

well-defined and

deg(G(1, ·),M, 0) = deg(G(0, ·),M, 0) = 1.

Therefore G(1, ū) = 0 for some ū, so g(1, ū) ∈ N and Φ(g(1, ū)) ≥ b.

(ii) If the conclusion is not true, there exists ε > 0 such that ‖Φ′
λ(u)‖ ≥ ε for all u with ‖u‖ ≤ k+4

and |Φλ(u) − cλ| ≤ ε. In order to obtain a contradiction we shall construct a certain deformation

by modifying an argument which may be found on pp. 454-455 of [11] and in Lemmas 6.7, 6.8 of

[21]. Choose gn satisfying the conclusions of Lemma 2.2 with n so large that (2− c′λ)(λ− λn) ≤ ε

and ε0 := λ− λn ≤ ε. For u ∈ F := {u ∈ E : ‖u‖ ≤ k + 4, cλ − ε0 ≤ Φλ(u) ≤ cλ + ε} we set

w(u) :=
2Φ′λ(u)

‖Φ′λ(u)‖2
.

Since on bounded sets vn
τ
→ v if and only if v+

n → v+ and v−n ⇀ v−, it follows from the

weak sequential continuity of Φ′λ that the map v 7→ 〈Φ′λ(v), w(u)〉 is τ -continuous on F (i.e.,

〈Φ′λ(vn), w(u)〉 → 〈Φ′λ(v), w(u)〉 as vn
τ
→ v). Hence there exists a τ -open neighborhood Uu of u

such that

〈Φ′λ(v), w(u)〉 > 1

for all v ∈ Uu ∩ F . Let U0 := Φ−1
λ (−∞, cλ − ε0). Since Φλ is τ -upper semicontinuous (by the

weak lower semicontinuity of B, cf. [11, Remark 2.1(iv)]), U0 is τ -open, the family (Uu)u∈F ∪ U0

is a τ -open covering of F ∪ U0, and we can find a τ -locally finite τ -open refinement (Nj)j∈J with

a corresponding τ -Lipschitz continuous partition of unity (λj)j∈J . For each j we can either find

u ∈ F such that Nj ⊂ Uu, or if such u does not exist, then we have Nj ⊂ U0. In the first case we

set wj = w(u), in the second wj = 0. Let N :=
⋃

j∈J Nj ; then N is τ -open and N ⊃ F ∪U0. Define

V (u) :=
∑

j∈J

λj(u)wj

and consider the initial value problem

dη

ds
= −V (η), η(0, u) = u

for all u with ‖u‖ ≤ k and cλ − ε0 ≤ Φλ(u) ≤ cλ + ε. According to [11, 21], V is τ -locally and

locally Lipschitz continuous. So in particular, for each u as above there exists a unique solution

η(·, u). Since wj is either 0 or ‖wj‖ = ‖w(u)‖ = 2
/

‖Φ′λ(u)‖ ≤ 2/ε, V is bounded and η(·, u) exists

as long as it does not approach the boundary of N . Furthermore, 〈Φ′
λ(u), V (u)〉 ≥ 0 for all u ∈ N

and 〈Φ′λ(u), V (u)〉 > 1 whenever u ∈ F . Therefore

‖η(s, u)− u‖ = ‖

∫ s

0

dη

dt
dt ‖ ≤

∫ s

0
‖V (η(t, u))‖dt ≤

2s

ε
,

s 7→ Φλ(η(s, u)) is nonincreasing and if Φλ(η(s, u)) ≥ cλ − ε0, then

Φλ(η(s, u)) − Φλ(u) =

∫ s

0

d

dt
Φλ(η(t, u))dt

= −

∫ s

0
〈Φ′λ(η(t, u)), V (η(t, u))〉dt < −s.
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It follows that if ‖u‖ ≤ k and cλ−ε0 ≤ Φλ(u) ≤ cλ +ε, then ‖η(s, u)‖ ≤ k+4 whenever 0 ≤ s ≤ 2ε.

So η(s, u) exists for 0 ≤ s ≤ 2ε and Φλ(η(2ε, u)) < cλ − ε0. According to Proposition 2.2 in [11] or

Lemma 6.8 in [21], η is an admissible homotopy.

Now we complete the proof of (ii) by setting

g(s, u) :=

{

gn(2s, u), 0 ≤ s ≤ 1
2

η(4εs − 2ε, gn(1, u)), 1
2 ≤ s ≤ 1.

Then g ∈ Γ and Φλ(g(1, u)) ≤ cλ − ε0 for all u ∈M , a contradiction to the definition of cλ. 2

3 Proof of Theorem 1.1

Throughout this section we assume that the hypotheses (H1)− (H5) are satisfied even though some

lemmas below remain valid under weaker conditions.

Let Lz := −J ż−Az and denote the inner product in L2(R,R2N ) by (·, ·). Since σ(JA)∩iR = ∅,

it follows from the results of Sections 8 and 10 of [19] that if E := D(|L|
1

2 ) (D denotes the domain),

then E is a Hilbert space with inner product

〈z, v〉D := (z, v) + (|L|
1

2 z, |L|
1

2 v)

and E = H
1

2 (R,R2N ). Moreover, to L there corresponds a bounded selfadjoint operator L : E → E

such that

〈Lz, v〉D =

∫

R

(−J ż −Az) · vdt,

E = E+ ⊕E−, where E± are L-invariant and 〈z+, z−〉D = (z+, z−) = 0 whenever z± ∈ E±. Also,

〈Lz, z〉D is positive definite on E+ and negative definite on E−. We introduce a new inner product

in E by setting 〈z, v〉 := 〈Lz+, v+〉D − 〈Lz−, v−〉D. Then 〈Lz, z〉D = ‖z+‖2 − ‖z−‖2, where ‖ · ‖ is

the norm corresponding to 〈·, ·〉. It is easy to see from [19, Corollary 10.2] and the definitions of

µ0, µ±1 that

‖z+‖2 ≥ µ1(z
+, z+), ‖z−‖2 ≥ −µ−1(z

−, z−) and ‖z‖2 ≥ µ0(z, z).(3.1)

Let

ψ(z) :=

∫

R

G(z, t)dt.

Clearly, ψ ≥ 0 and it follows from Fatou’s lemma that ψ is weakly sequentially lower semicontinuous.

Since |Gz(z, t)| ≤ c|z| and zn ⇀ z implies zn → z in L2
loc(R,R

2N ), it is easily seen that ψ′ is weakly

sequentially continuous. So (i) of Theorem 2.1 is satisfied. Set

Φλ(z) :=
1

2
‖z+‖2 − λ(

1

2
‖z−‖2 + ψ(z)), 1 ≤ λ ≤ 2.

Then Φ1 ≡ Φ (cf. (1.1)).

Remark 3.1 (i) Let {Eµ : µ ∈ R} be the resolution of identity corresponding to L. Then E0 is

the orthogonal projector of E onto E− and Eµ(E) ⊃ E− whenever µ ≥ 0. If µ is as in (H3), then
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µ > µ1 and since µ1 is in the spectrum of L [19, Corollary 10.2], it follows that Eµ(E) 6= E− and

there exists z0 ∈ E
+, ‖z0‖ = 1, such that

∫

R

(−J ż0 −Az0 − µz0) · z0dt = 1− µ(z0, z0) < 0.(3.2)

(ii) Hypothesis (H2) implies that Hz(z, t) = Az + o(|z|) as z → 0, where A is independent

of t. In general, A = A(t); however, as was observed in [3], in many cases one can get rid of

t-dependence of A by a suitable 1-periodic symplectic change of variables. If this is not possible,

then the assumption σ(JA) ∩ iR = ∅ in (H1) should be replaced by the one that 0 is in a gap

(µ−1, µ1) of the spectrum of L = −J d
dt − A(t), and in (H3) the constant µ should be larger than

µ1. Also (H5) should be changed accordingly. Note that by a result in [8] the spectrum of L is

completely continuous and is the union of disjoint closed intervals.

(iii) Assuming (H1)−(H4), a sufficient condition for (H5) to be satisfied is that s 7→ s−1Gz(sz, t)·

z is nondecreasing for all s > 0. Indeed, suppose |z| = 1. Then

1

2
Gz(sz, t) · sz −G(sz, t) =

∫ s

0

(

Gz(sz, t) · z

s
−
Gz(σz, t) · z

σ

)

σdσ

and the integrand is nonnegative. Since s−1Gz(sz, t) ·z → 0 uniformly in t as s→ 0, we either have

Gz(σz, t) · z = G(σz, t) = 0 and hence Gz(σz, t) = 0 for 0 ≤ σ ≤ s (recall G ≥ 0), or Gz(sz, t) 6= 0

and the left-hand side above is positive. Moreover, since s−1Gz(sz, t) · z ≥
1
2µ1 for all s ≥ s0 (s0

independent of z and t), the integrand is positive and bounded away from 0 for small σ and large

s. Hence the conclusion. Let us also note that if G is twice differentiable with respect to z, then

s 7→ s−1Gz(sz, t) · z is nondecreasing if and only if Gzz(z, t)z · z ≥ Gz(z, t) · z for all z, t.

Choose now z0 ∈ E
+ as in Remark 3.1(i) and let

N := {z ∈ E+ : ‖z‖ = r} and M := {z = z− + ρz0 : ‖z‖ ≤ R, ρ ≥ 0},

R > r > 0 to be determined.

Lemma 3.2 There exist r > 0 and b > 0 (independent of λ) such that Φλ|N ≥ b.

Proof Choose p > 2. By (H2) and (H3), for any ε > 0 there exists Cε > 0 such that

G(z, t) ≤ ε|z|2 + Cε|z|
p.

Hence

ψ(z) =

∫

R

G(z, t)dt ≤ ε‖z‖2
2 + Cε‖z‖

p
p ≤ c(ε‖z‖2 + Cε‖z‖

p),

where c is independent of ε (‖ · ‖s denotes the usual norm in Ls(R,R2N )). Since ε was chosen

arbitrarily, it follows that ψ(z) = o(‖z‖2) as z → 0 and there are r > 0, b > 0 (independent of λ)

such that Φλ(z) = 1
2‖z‖

2 − λψ(z) ≥ b > 0 for z ∈ N . 2

Lemma 3.3 There exists R > r (R independent of λ) such that Φλ|∂M ≤ 0.
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Proof Since G(z, t) ≥ 0 according to (H2), we have

Φ(z−) = −
1

2
‖z−‖2 −

∫

R

G(z−, t)dt ≤ 0.

Noting that Φλ(z) ≤ Φ(z) for any z ∈ E, it suffices to prove that Φ|∂M ≤ 0 whenever R is large

enough. If this is not true, then there exist zn = ρnz0 + z−n , ‖zn‖ → ∞, such that

Φ(zn)

‖zn‖2
=

1

2
δ2n −

1

2
‖v−n ‖

2 −

∫

R

G(zn, t)

‖zn‖2
dt ≥ 0,(3.3)

where δn = ρn

‖zn‖
and v−n = z−n

‖zn‖
. Therefore δn ≥ ‖v−n ‖. Since δ2n + ‖v−n ‖

2 = 1, δn → δ > 0 and

v−n ⇀ v− weakly in E after passing to a subsequence. Set v = δz0 + v−. Since (z0, v
−) = 0, it

follows from (H3) and (3.2) that

δ2 − ‖v−‖2 −

∫

R

A∞(t)v · vdt ≤ δ2 − ‖v−‖2 − µδ2(z0, z0)− µ(v−, v−) < 0.

Therefore there exists a bounded interval I such that

δ2 − ‖v−‖2 −

∫

I
A∞(t)v · vdt < 0.

On the other hand, by (3.3),

0 ≤
1

2
δ2n −

1

2
‖v−n ‖

2 −

∫

I

G(zn, t)

‖zn‖2
dt

=
1

2
δ2n −

1

2
‖v−n ‖

2 −
1

2

∫

I
A∞(t)vn · vndt−

∫

I

F (zn, t)

‖zn‖2
dt,

where vn = δnz0 + v−n . Since vn ⇀ δz0 + v− = v in E, vn → v in L2(I,R2N ). By (H2) and (H3) it

is easy to check that |F (z, t)| ≤ c|z|2 for all z ∈ R2N . Since F (z, t)
/

|z|2 → 0 as |z| → ∞, it follows

from Lebesgue’s dominated convergence theorem that

lim
n→∞

∫

I

F (zn, t)

‖zn‖2
dt = lim

n→∞

∫

I

F (zn, t)

|zn|2
|vn|

2dt = 0,

and therefore

δ2 − ‖v−‖2 −

∫

I
A∞(t)v · vdt ≥ 0,

a contradiction. Consequently, there exists R > 0 such that Φλ(z) ≤ Φ(z) ≤ 0 for z ∈ ∂M. 2

Combining Lemmas 3.2, 3.3 and Theorem 2.1 we obtain

Corollary 3.4 For almost every λ ∈ [1, 2] there exists a bounded sequence (zn) ⊂ E such that

Φ′λ(zn) → 0 and Φλ(zn) → cλ.

Remark 3.5 Let (zn) ⊂ E be a bounded sequence. Then, up to a subsequence, either

(i) lim
n→∞

sup
y∈R

∫ y+R

y−R
|zn|

2dt = 0 for all 0 < R <∞, or

(ii) there exist α > 0, R > 0 and yn ∈ R such that lim
n→∞

∫ yn+R

yn−R
|zn|

2dt ≥ α > 0.

In the first case we shall say that (zn) is vanishing, in the second that it is nonvanishing.
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Lemma 3.6 For any bounded vanishing sequence (zn) ⊂ E, we have

lim
n→∞

∫

R

G(zn, t)dt = lim
n→∞

∫

R

Gz(zn, t) · z
±
n dt = 0.

Proof Since (zn) is vanishing, by the concentration-compactness lemma of P.L. Lions [12, 21],

zn → 0 in Ls for all 2 < s < ∞ (usually this lemma is stated for z ∈ H 1; however, a simple

modification of the argument of Lemma 1.21 in [21] shows that the conclusion remains valid in

H
1

2 ). On the other hand, by assumptions (H2) and (H3), for any ε > 0 there exists Cε > 0 such

that

|Gz(z, t)| ≤ ε|z|+ Cε|z|
p−1,(3.4)

where p > 2. Hence
∫

R

G(zn, t)dt ≤ c(ε‖zn‖
2 + Cε‖zn‖

p
p),

∫

R

|Gz(zn, t)| |z
±
n |dt ≤ c(ε‖zn‖ ‖z

±
n ‖+ Cε‖zn‖

p−1
p ‖z±n ‖p)

(c independent of ε), and the conclusion follows. 2

Lemma 3.7 Let λ ∈ [1, 2] be fixed. If a bounded sequence (vn) ⊂ E satisfies

0 < lim
n→∞

Φλ(vn) ≤ cλ and lim
n→∞

Φ′λ(vn) = 0,

then there exist yn ∈ Z such that, up to a subsequence, un(t) := vn(t+ yn) satisfies

un ⇀ uλ 6= 0, Φλ(uλ) ≤ cλ and Φ′λ(uλ) = 0.

Proof Since 〈Φ′λ(vn), vn〉 = 0,

lim
n→∞

λ

∫

R

(
1

2
Gz(vn, t) · vn −G(vn, t))dt = lim

n→∞
Φλ(vn) > 0,

and it follows from Lemma 3.6 that (vn) is nonvanishing, that is, there exist α > 0, R > 0 and

ȳn ∈ R such that

lim
n→∞

∫ ȳn+R

ȳn−R
|vn|

2dt ≥ α > 0.

Hence we may find yn ∈ Z such that, setting un(t) := vn(t+ yn),

lim
n→∞

∫ 2R

−2R
|un|

2dt ≥ α > 0.(3.5)

Since G(z, t) is 1-periodic in t, (un) is still bounded,

0 < lim
n→∞

Φλ(un) ≤ cλ and lim
n→∞

Φ′λ(un) = 0.(3.6)

Therefore, up to a subsequence, un ⇀ uλ and un → uλ a.e. in R for some uλ ∈ E. Since un → uλ

in L2
loc(R,R

2N ), it follows from (3.5) that uλ 6= 0. Recall ψ′ is weakly sequentially continuous.

Therefore Φ′λ(un) ⇀ Φ′λ(uλ) and by (3.6), Φ′λ(uλ) = 0.
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Finally, by (H4) and Fatou’s lemma,

cλ ≥ lim
n→∞

(Φλ(un)−
1

2
〈Φ′λ(un), un〉)

= lim
n→∞

λ

∫

R

(
1

2
Gz(un, t) · un −G(un, t))dt

≥ λ

∫

R

(
1

2
Gz(uλ, t) · uλ −G(uλ, t))dt = Φλ(uλ).

2

Corollary 3.8 If the sequence (vn) in Lemma 3.7 is nonvanishing, then the hypothesis lim
n→∞

Φλ(vn)

> 0 may be omitted.

Lemma 3.9 There exists a sequence (λn) ⊂ [1, 2] and (zn) ⊂ E \ {0} such that

λn → 1, Φλn
(zn) ≤ cλn

and Φ′λn
(zn) = 0.

Proof This is a straightforward consequence of Corollary 3.4 and Lemma 3.7. 2

Lemma 3.10 The sequence (zn) obtained in Lemma 3.9 is bounded.

Proof We modify an argument of [10]. Assume ‖zn‖ → ∞ and set wn = zn
/

‖zn‖. Then we

can assume that, up to a subsequence, wn ⇀ w. We shall show that (wn) is neither vanishing nor

nonvanishing thereby obtaining a contradiction.

Step 1. Nonvanishing of (wn) is impossible.

If (wn) is nonvanishing, we proceed as in the proof of Lemma 3.7 and find α > 0, R > 0 and yn ∈ Z

such that if w̃n(t) := wn(t+ yn), then

∫ 2R

−2R
|w̃n(t)|2dt ≥ α for almost all n.

Moreover, since Φ′λn
(zn) = Φ′λn

(z̃n) = 0, where z̃n(t) = zn(t + yn), for any φ ∈ C∞0 (R,R2N ) we

have

〈w̃+
n , φ〉 − λn〈w̃

−
n , φ〉 − λn

∫

R

A∞(t)w̃n · φdt− λn

∫

R

Fz(z̃n, t) · φ

|z̃n|
|wn|dt = 0.(3.7)

Since ‖w̃n‖ = ‖wn‖ = 1, up to a subsequence, w̃n ⇀ w̃ in E, w̃n → w̃ in L2
loc(R,R

2N ) and

w̃n(t) → w̃(t) a. e. in R. In particular, w̃ 6= 0. Since |Fz(z, t)| ≤ c|z| for all z, t, it follows from

(H3) and Lebesgue’s dominated convergence theorem that passing to the limit in (3.7) gives

〈w̃+, φ〉 − 〈w̃−, φ〉 −

∫

R

A∞(t)w̃ · φdt = 0,

that is, equation ż = J (A+A∞(t))z has a nontrivial solution in E, which contradicts the already

mentioned fact that the spectrum of the operator −(J d
dt + (A + A∞(t)) is continuous (cf. [8]).

Therefore nonvanishing of (wn) is impossible.
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Step 2. Also vanishing of (wn) is impossible.

By contradiction, suppose that (wn) is vanishing. Since Φ′λn
(zn) = 0, we have

〈Φ′λn
(zn), z+

n 〉 = ‖z+
n ‖

2 − λn

∫

R

Gz(zn, t) · z
+
n dt = 0,

〈Φ′λn
(zn), z−n 〉 = −λn‖z

−
n ‖

2 − λn

∫

R

Gz(zn, t) · z
−
n dt = 0.

Since ‖wn‖
2 = ‖w+

n ‖
2 + ‖w−n ‖

2 = 1,

∫

R

Gz(zn, t) · (λnw
+
n − w−n )

‖zn‖
dt = 1.

Setting

Ωn := {t ∈ R :
|Gz(zn, t)|

|zn|
≤ µ0 − δ},

we obtain using Hölder’s inequality, the relation (w+, w−) = 0 and (3.1) that

∫

Ωn

Gz(zn, t) · (λnw
+
n − w−n )

‖zn‖
dt ≤ (µ0 − δ)

∫

Ωn

|wn| |λnw
+
n − w−n |dt

≤ (µ0 − δ)λn‖wn‖
2
2 ≤

(µ0 − δ)λn

µ0
< 1

for almost all n. Hence

lim
n→∞

∫

R\Ωn

Gz(zn, t) · (λnw
+
n − w−n )

‖zn‖
dt > 0,(3.8)

and since |Gz(z, t)| ≤ c|z|, it follows that

∫

R\Ωn

Gz(zn, t) · (λnw
+
n − w−n )

‖zn‖
dt ≤ c̃

∫

R\Ωn

|wn|
2dt ≤ c̃ meas(R \ Ωn)(p−2)/p‖wn‖

2/p
p

for some c̃ > 0. Since (wn) is vanishing, wn → 0 in Lp(R,R2N ) and we obtain from (3.8) that

meas(R \ Ωn) →∞ as n→∞. So by (H4) and (H5),

∫

R

(
1

2
Gz(zn, t) · zn −G(zn, t))dt ≥

∫

R\Ωn

(
1

2
Gz(zn, t) · zn −G(zn, t))dt ≥

∫

R\Ωn

δdt→∞.

However, recalling that Φλn
(zn) ≤ cλn

and 〈Φ′λn
(zn), zn〉 = 0, we obtain

∫

R

(
1

2
Gz(zn, t) · zn −G(zn, t))dt ≤

cλn

λn
,

a contradiction because the right-hand side above is bounded. 2

Proof of Theorem 1.1 We have shown that there exist λn → 1 and a bounded sequence (zn)

such that Φλn
(zn) ≤ cλn

and Φ′λn
(zn) = 0. Therefore

Φ′(zn) = Φ′λn
(zn) + (λn − 1)(z−n + ψ′(zn)) = (λn − 1)(z−n + ψ′(zn)) → 0.
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Since 〈Φ′λn
(zn), z±n 〉 = 0, we obtain using (3.4) that

‖z+
n ‖

2 = λn

∫

R

Gz(zn, t) · z
+
n dt ≤

1

4
‖zn‖

2 + C‖zn‖
p,

‖z−n ‖
2 = −

∫

R

Gz(zn, t) · z
−
n dt ≤

1

4
‖zn‖

2 + C‖zn‖
p,

where p > 2. Hence ‖zn‖
2 ≤ 1

2‖zn‖
2 + 2C‖zn‖

p and ‖zn‖ ≥ c for some c > 0. If (zn) is vanishing,

it follows from Lemma 3.6 that the middle terms above tend to 0; therefore zn → 0. Hence (zn) is

nonvanishing. According to Corollary 3.8 there exist yn ∈ Z such that if z̃n(t) := zn(t+ yn), then

z̃n ⇀ z̃ 6= 0 and Φ′(z̃) = 0. This completes the proof. 2

4 Asymptotically linear Schrödinger equation

In this section we consider the Schrödinger equation

(S) −∆u+ V (x)u = f(x, u),

where x ∈ RN , V ∈ C(RN ,R) and f ∈ C(RN ×R,R). Suppose that 0 is not in the spectrum of

−∆ + V in L2(RN ) (denoted 0 /∈ σ(−∆ + V )). Let µ1 be the smallest positive and µ−1 the largest

negative µ such that 0 ∈ σ(−∆+V −µ) and as in Section 1, set µ0 := min{µ1,−µ−1}. Furthermore,

denote F (x, u) =
∫ u
0 f(x, s)ds. It is well-known that if V is periodic in each of the x-variables, then

the spectrum of −∆ + V (in L2) is bounded below but not above and consists of disjoint closed

intervals [16, Theorem XIII.100]. Similarly as in Section 1, we introduce the following hypotheses:

(S1) V is 1-periodic in xj for j = 1, . . . , N , and 0 /∈ σ(−∆ + V );

(S2) f is 1-periodic in xj for j = 1, . . . , N , F (x, u) ≥ 0 for all x, u and f(x, u)/u→ 0 uniformly in

x as u→ 0;

(S3) f(x, u) = V∞(x)u + g(x, u), where g(x, u)/u → 0 uniformly in x as |u| → ∞ and V∞(x) ≥ µ

for some µ > µ1;

(S4) 1
2uf(x, u)− F (x, u) ≥ 0 for all x, u;

(S5) There exists δ ∈ (0, µ0) such that if f(x, u)/u ≥ µ0 − δ, then 1
2uf(x, u)− F (x, u) ≥ δ.

Theorem 4.1 If the hypotheses (S1) − (S5) are satisfied, then (S) has a solution u 6= 0 such that

u(x) → 0 as |x| → ∞.

It is well-known (see e.g. [11, 19, 21]) that the functional

Φ(u) :=
1

2

∫

RN

(|∇u|2 + V (x)u2)dx−

∫

RN

F (x, u)dx

is of class C1 in the Sobolev space E := H1(RN ) and critical points of Φ correspond to solutions

u of (S) such that u(x) → 0 as |x| → ∞. If σ(−∆ + V ) ∩ (−∞, 0) 6= 0, then E = E+ ⊕E−, where

E± are infinite-dimensional, and the proof of Theorem 4.1 follows by repeating the arguments of

Section 3. Note only that in Lemma 3.7 we now have yn ∈ ZN . If σ(−∆ + V ) ⊂ (0,∞), then

E− = {0}, µ−1 = −∞ and Φ has the mountain pass geometry. Theorem 4.1 remains valid in this

case, and it is in fact already contained in Theorem 1.2 of [10].
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(1993), 561-590.

[19] C.A. Stuart, Bifurcation into spectral gaps, Bull. Belg. Math. Soc., Supplement, 1995.

[20] K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence

of subharmonic orbits, J. Diff. Eqns. 94 (1991), 315-339.

[21] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
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