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1. INTRODUCTION

We consider the existence of nontrivial 2π-periodic solutions of asymptotically linear Hamilto-
nian systems

ż = JH ′(z, t), z ∈ R2N , (S)

where

J :=

(

0 −I
I 0

)

is the standard symplectic matrix, H ∈ C2(R2N×R,R) is 2π-periodic in t, H ′ denotes the gradient
of H with respect to the first 2N variables and there exist s > 0, c > 0 such that
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(H0) |Hzz(z, t)| ≤ c(1 + |z|s) for all (z, t) ∈ R2N ×R.

In what follows we assume that there exist two symmetric 2N × 2N -matrices A(t) and A0(t)
with continuous and 2π-periodic entries such that

H(z, t) =
1

2
A(t)z · z + G(z, t), (1.1)

where G′(z, t) = o(|z|) uniformly in t as |z| → ∞ and

H(z, t) =
1

2
A0(t)z · z + G0(z, t), (1.2)

with G
′

0(z, t) = o(|z|) uniformly in t as |z| → 0. We denote by · and | ∗ | the usual inner product
and norm in R2N . The Hamiltonian system (S) satisfying (1.1) and (1.2) is called asymptotically
linear both at infinity and at zero. Moreover, it is called nonresonant at infinity if 1 is not a
Floquet multiplier of the linear system ż = JA(t)z; nonresonance at 0 is defined in a similar way
by replacing A(t) with A0(t).

Before introducing our assumptions on H(z, t) and stating the main results, let us recall some
earlier work on asymptotically linear Hamiltonian systems. The case of (S) nonresonant at infinity
was considered in [2, 3] under the additional assumptions that Hzz is bounded and A,A0 are time-
independent; in [4] Hzz was bounded and (S) was also nonresonant at zero. In [5] A,A0 were
time-independent and in [6] Hzz was bounded. For (S) resonant at infinity it was assumed in [7]
that A(t) is a constant matrix, [8, 9] considered the strongly resonant case and [14] studied (S)
under the assumption that A(t), A0(t) are so-called finitely degenerate, which is a strong condition.
Moreover, no results on the existence of multiple solutions were obtained in [7-9, 14]. Recently
Kryszewski and the first author [1] constructed an infinite dimensional cohomology theory and a
Morse theory corresponding to it. These theories were applied to the study of Hamiltonian systems
and wave equations. In particular, the case of (S) resonant at infinity was studied in [1] under
the hypotheses that G′(z, t) is bounded and G(z, t) → ∞ (or −∞) uniformly in t as |z| → ∞.
This was done by computing the new critical groups (the E-cohomology groups) at zero and at
infinity. However, in the case of resonance at 0, [1] contained no detailed computation of critical
groups there; it was only shown that the groups at zero and at infinity were different under certain
assumptions.

The purpose of the present paper is to develop a method to compute the E-cohomology groups
both at infinity and at zero when resonance occurs at infinity and at zero simultaneously. We admit
H such that G′(z, t) and G′

0(z, t) are unbounded and G(z, t), G0(z, t) may change sign. Under rather
weak conditions we obtain at least two nontrivial solutions for (S).

In order to state our assumptions, we introduce a control function h∞ : R+ → R+ such that
h∞(t) is increasing in t and

1 ≤
th∞(t)

H∞(t)
≤ α < 2, h∞(s + t) ≤ m(h∞(s) + h∞(t)) for any s, t ∈ R+,

where H∞(t) =
∫ t
0 h∞(s)ds and α,m are constants. Evidently, h∞(t) = tσ with 0 < σ < 1 is a

simple example. Now we assume

2



(H1) |G′(z, t)| ≤ c(1 + h∞(|z|)) for all z ∈ R2N and t ∈ R;

(H±
2 ) lim inf

|z|→∞

±G(z, t)

H∞(|z|)
:= a±(t) � 0 uniformly for t ∈ R.

Here and in the sequel the letter c will be repeatedly used to denote various positive constants
whose exact value is irrelevant. For a function a we write a(t) � 0 if a(t) ≥ 0 and strict inequality
holds on a set of positive measure.

Since different behavior of H at zero and infinity plays an important role in the existence of
nontrivial 2π-periodic solutions of (S), we need some hypotheses on G0 around zero.

Let h0 : R+ → R+ be a control function (for G0) such that

2 < β ≤
th0(t)

H0(t)
≤ γ for t small, (1.3)

where H0(t) =
∫ t
0 h0(s)ds, and β, γ are constants. Obviously, h0(t) = tδ with δ > 1 satisfies (1.3).

Moreover, although h0 is defined only for small t > 0, we may assume without loss of generality
that it has been extended so that (1.3) holds for all t ∈ R+. We suppose that

(H3) |G′
0(z, t)| ≤ ch0(|z|) for |z| small;

(H±
4 ) lim inf

|z|→0

±G′
0(z, t) · z

H0(|z|)
:= b±(t) � 0 uniformly for t ∈ R.

Remark 1.1. It is easy to see that c1t ≤ H∞(t) ≤ c2t
α for large t and H0(t) ≤ ctβ for small t > 0.

Moreover, if z = z1 + z2 ∈ Lα([0, 2π],R2N ) and w ∈ Lα([0, 2π],R2N ), then

|
∫ 2π

0
G′(z, t) · wdt|

≤ c

∫ 2π

0
(1 + h∞(|z1|) + h∞(|z2|))|w|dt

≤ c

∫ 2π

0
(1 + |z1|

α−1 + h∞(|z2|))|w|dt

≤ c(1 + ‖z1‖
α−1
α )‖w‖α + c

∫ 2π

0
h∞(|z2|)|w|dt,

and similarly, |
∫ 2π
0 G′

0(z, t)·wdt| ≤ c‖z‖β−1
β ‖w‖β (‖·‖α denotes the usual norm in Lα([0, 2π],R2N )).

Remark 1.2. (H1) and (H3) imply that G′(z, t) = o(|z|) uniformly in t as |z| → ∞ and G′
0(z, t) =

o(|z|) uniformly in t as |z| → 0. However, (H1) does not imply that |G′(z, t)| is bounded. Since
a±(t) and b±(t) may be zero on a set of positive measure, G(z, t) and G′

0(z, t) · z may not be of
constant sign; moreover, G(z, t) may be bounded on a subset of positive measure. So our results
will extend different conclusions contained in [1] (and [7-10, 14]). In [1] it was assumed that G ′(z, t)
is bounded and G(z, t) →∞ (or −∞) uniformly in t as |z| → ∞.

In order to state our main result, we shall need the notion of E-Morse index which was introduced
in [1] and will be recalled in Section 2. It is a kind of relative Morse index for the quadratic form
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∫ 2π
0 (−Jż−Az) · zdt, where A = A(t) is a symmetric 2N ×2N -matrix. Denote this index by j−(A),

the nullity of this quadratic form by j0(A) and let j+(A) = −j−(A) − j0(A). If we denote the
Maslov-type index (cf. [3, 4, 6]) of A by (j, n), then j = j−(A) and n = j0(A) (cf. Remark 7.2 of
[1]). Now we state the main results.

Theorem 1.1. Suppose that H ∈ C2(R2N ×R,R) satisfies (H0), (H1) and one of the conditions
(H±

2 ). Then (S) has a nontrivial 2π-periodic solution in each of the following two cases:

(i) (H−
2 ) and j−(A) /∈ [j−(A0), j−(A0) + j0(A0)];

(ii) (H+
2 ) and j+(A) /∈ [j+(A0), j+(A0) + j0(A0)].

Theorem 1.2. Suppose that H ∈ C1(R2N × R,R) satisfies (H1) and (H3). Then (S) has a
nontrivial 2π-periodic solution in each of the following four cases:

(i) (H+
2 ), (H+

4 ) and j−(A) + j0(A) 6= j−(A0) + j0(A0);
(ii) (H+

2 ), (H−
4 ) and j−(A) + j0(A) 6= j−(A0);

(iii) (H−
2 ), (H+

4 ) and j−(A) 6= j−(A0) + j0(A0);
(iv) (H−

2 ), (H−
4 ) and j−(A) 6= j−(A0).

If the difference between the E-Morse indices at zero and at infinity is large enough, we obtain
the following results on the existence of multiple solutions.

Theorem 1.3. Suppose that H ∈ C2(R2N ×R,R) satisfies (H0), (H1) and (H3). Then (S) has
at least two nontrivial 2π-periodic solutions in each of the following four cases:

(i) (H+
2 ), (H+

4 ) and |j+(A)− j+(A0)| ≥ 2N ;
(ii) (H+

2 ), (H−
4 ) and |j+(A) + j−(A0)| ≥ 2N ;

(iii) (H−
2 ), (H+

4 ) and |j−(A) + j+(A0)| ≥ 2N ;
(iv) (H−

2 ), (H−
4 ) and |j−(A)− j−(A0)| ≥ 2N.

Corollary 1.1. Suppose that H ∈ C2(R2N × R,R) satisfies (H0), (H1), one of the conditions
(H±

2 ) and A(t) = A0(t) ≡ 0 (hence H(z, t) = G(z, t) = G0(z, t)). Furthermore, let H ′(z, t) = o(|z|)
uniformly in t for |z| → 0. Then (S) has at least two nontrivial 2π-periodic solutions in each of the
following two cases:

(i) (H+
2 ) and either there exists a δ > 0 such that H(z, t) ≤ 0 whenever |z| < δ or (H3), (H−

4 )
are satisfied;

(ii) (H−
2 ) and either there exists a δ > 0 such that H(z, t) ≥ 0 whenever |z| < δ or (H3), (H+

4 )
are satisfied.

Remark 1.3. Theorem 1.1 extends Theorem 7.5 in [1] where G′ was assumed to be bounded and
G(z, t) → ∞ (or −∞) uniformly in t as |z| → ∞. Theorem 1.2 is a new result. Theorem 1.3
extends Theorem 7.8 in [1] where 0 was nondegenerate (j0(A0) = 0, i.e., (S) is nonresonant at
zero), G′ was bounded and G(z, t) → ∞ (or −∞) uniformly in t as |z| → ∞. Corollary 1.1 is a
generalization of Corollary 7.9 of [1].
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2. PRELIMINARIES

In this section we recall some basic facts about the infinite dimensional cohomology theory and
Morse theory of [1].

Assume that E is a real Hilbert space and there is a filtration (En)∞n=1 of E, i.e., an increasing
sequence of closed subspaces of E such that E = cl(

⋃∞
n=1 En)(cl denotes the closure). Suppose that

a sequence (dn)∞n=1 of nonnegative integers is given and let E = {En, dn}
∞
n=1. If (X,A) is a closed

pair of subsets of E, then for any integer q we define the q-th E-cohomology group of (X,A) with
coefficients in F by the formula

Hq
E(X,A) := [(Hq+dn(X ∩En, A ∩En))∞n=1],

where [(ξn)∞n=1] is the equivalence class of sequences (ξ ′n)∞n=1 such that ξ′n = ξn for almost all n (cf.
[1]). When F is a field, H∗

E(X,A) is a (graded) vector space over F . We shall use the symbol [G]
to denote the group [(Gn)∞n=1] if Gn = G for almost all n.

Let Φ ∈ C1(E,R) be a functional satisfying the (PS)∗-condition with respect to E , that is,
whenever a sequence (yj)

∞
j=1 is such that Φ(yj) is bounded, yj ∈ Enj

for some nj, nj → ∞ and
Pnj

∇Φ(yj) → 0 as j → ∞, then (yj)
∞
j=1 has a convergent subsequence. Here Pnj

denotes the
orthogonal projector of E onto Enj

. If p is an isolated critical point of Φ, then there exists
an admissible pair (W,W−) for Φ and p (i.e., a kind of Gromoll-Meyer pair with filtration, see
Definition 2.3 and Proposition 2.6 of [1]) and the q-th critical group (q ∈ Z) of Φ at p with respect
to E can be defined by

Cq
E(Φ, p) := Hq

E(W,W−).

It was proved in [1] that the critical groups C∗
E(Φ, p) are well-defined and have a certain continuity

property (see Propositions 2.7 and 2.8 of [1]).

If the critical set K = K(Φ) is compact, then there exists an admissible pair (W,W −) for Φ
and K (cf. Lemma 2.13 of [1]). The critical groups of (Φ,K) given by

Cq
E(Φ,K) := Hq

E(W,W−)

are well-defined and have a continuity property (cf. Propositions 2.12 and 2.14 of [1]). Further
properties of critical groups and E-cohomology groups, including the Morse inequalities, may be
found in [1].

For an arbitrary linear self-adjoint operator L, denote the Morse index of L by M−(L). Suppose
that L is a Fredholm operator of index 0 and Qn : R(L) → R(L) ∩ En is the orthogonal projector
of R(L) onto R(L) ∩En. Define the E-Morse index M−

E (L) of L by the formula

M−
E (L) := lim

n→∞
(M−(QnL|R(L)∩En

)− dn).

Although this limit does not exist in general, it exists for operators L associated with (S) provided
the sequence (dn) is chosen properly.

Now we turn to the asymptotically linear Hamiltonian system (S). Let E := H
1

2 (S1,R2N ) be
the Sobolev space of 2π-periodic R2N - valued functions

z(t) = a0 +
∞
∑

k=1

(ak cos kt + bk sin kt), a0, ak, bk ∈ R2N ,
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such that
∞
∑

k=1
k(|ak|

2 + |bk|
2) < ∞. Then E is a Hilbert space with a norm ‖ · ‖ induced by the inner

product 〈·, ·〉 given by

〈z, z′〉 := 2πa0 · a
′
0 + π

∞
∑

k=1

k(ak · a
′
k + bk · b

′
k).

Set
Fk := {ak cos kt + bk sin kt : ak, bk ∈ R2N}, k ≥ 0,

and

En :=
n
⊕

k=0

Fk ≡ {z ∈ E : z(t) = a0 +
n
∑

k=1

(ak cos kt + bk sin kt)}.

Then (En)∞n=1 is a filtration of E. Denote E = {En, dn} with dn := N(1 + 2n) = 1
2 dimEn.

Suppose that B(t) is a symmetric 2N × 2N -matrix with continuous 2π-periodic entries. Then
the operator B given by the formula

〈Bz,w〉 :=

∫ 2π

0
B(t)z · wdt

is compact. According to Proposition 5.2 of [1] (see also the argument following Proposition 7.1
there), the operator LB given by

〈LBz, w〉 :=

∫ 2π

0
(−Jż −B(t)z) · wdt (2.1)

is A-proper and M−
E (LB) is well-defined and finite.

Denote
j−(B) := M−

E (LB),
j+(B) := M+

E (LB) := M−
E (−LB),

j0(B) := M 0(LB) := dimker(LB).
(2.2)

Then j−(B) + j+(B) + j0(B) = 0 (cf. p. 3214 of [1]). Since M 0(LB) is in fact the number of
linearly independent 2π-periodic solutions of the linear system ż = JB(t)z, 0 ≤ M 0(LB) ≤ 2N.

It is well known (cf. [11]) that under condition (H1) z(t) is a 2π-periodic solution of (S) if and
only if it is a critical point of the C1-functional

Φ(z) = 1
2

∫ 2π
0 (−Jż −A(t)z) · zdt−

∫ 2π
0 G(z, t)dt := 1

2〈Lz, z〉 − ϕ(z)

= 1
2

∫ 2π
0 (−Jż −A0(t)z) · zdt−

∫ 2π
0 G0(z, t)dt := 1

2〈L0z, z〉 − ϕ0(z).

Moreover, Φ ∈ C2(E,R) if (H0) is satisfied. By (1.1), (1.2) and [1, 5, 11] (or by Remark 1.1),
∇ϕ(z) = o(‖z‖) as ‖z‖ → ∞ and ∇ϕ0(z) = o(‖z‖) as ‖z‖ → 0. In particular, (S) has the trivial
solution z = 0.

3. COMPUTATION OF CRITICAL GROUPS

Let L := LB and L0 := LB0
(cf. (2.1)) and introduce a new filtration E ′ := {E′

n, dn}
∞
n=1, where

E′
n := (R(L) ∩En)⊕ ker(L) and dn = N(1 + 2n) as before. Then L,L0 are A-proper with respect

to E ′ (because they are with respect to E) and

M−
E ′(L) = M−

E (L) ≡ j−(A) and M−
E ′(L0) = M−

E (L0) ≡ j−(A0).
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(see the proof of Theorem 7.5 of [1]). In this section we will compute the critical groups C q
E ′(Φ, 0)

and Cq
E ′(Φ,K(Φ)). For this aim, we first show how conditions (H1) and (H±

2 ) imply (PS)∗ with
respect to E ′.

Lemma 3.1. Suppose that (H±
2 ) holds. Then

lim inf
‖z‖→∞

z∈ker(L)

±
∫ 2π
0 G(z, t)dt

H∞(‖z‖)
> 0.

Proof. Since dimker(L) < ∞, the norm ‖ · ‖ and the L∞-norm are equivalent on ker(L). Moreover,
if z ∈ ker(L) and z(t0) = 0 for some t0, then z ≡ 0. Therefore δ‖z‖ ≤ |z(t)| ≤ c‖z‖ for some
δ, c > 0 and all t. Since h∞ is increasing and h∞(s + t) ≤ m(h∞(s) + h∞(t)), it is easy to see
that c1h∞(‖z‖) ≤ h∞(|z|) ≤ c2h∞(‖z‖) and therefore c3H∞(‖z‖) ≤ H∞(|z|) ≤ c4H∞(‖z‖) for a
suitable choice of constants. Hence it follows from (H±

2 ) that for any ε > 0 and ‖z‖ > R = R(ε),

±
∫ 2π

0

G(z, t)

H∞(|z|)
·

H∞(|z|)

H∞(‖z‖)
dt

≥
∫ 2π

0
(a±(t)− ε)

H∞(|z|)

H∞(‖z‖)
dt

≥ c3

∫ 2π

0
a±(t)dt− 2πεc4.

Since a±(t) � 0 and ε is arbitrary, the conclusion follows. 2

Lemma 3.2. Assume (H1) and (H±
2 ). Then Φ satisfies (PS)∗ with respect to E ′. Moreover, under

these hypotheses Φ|E′
n

satisfies the usual (PS)-condition for each n.

Proof. We only consider the case where (H−
2 ) holds, the other one is similar. Let (zj) be a (PS)∗-

sequence, i.e., zj ∈ E′
nj

,Φ(zj) is bounded, P ′
nj
∇Φ(zj) → 0 and nj → ∞ as j → ∞ (P ′

n is the
orthogonal projector onto E ′

n). By Theorem 4.5 in [1], we may find c > 0 and n0 > 0 such that
‖P ′

nLz‖ ≥ c‖z‖ for all z ∈ R(L)∩En and n ≥ n0. For z ∈ E′
n, write z = w+z0 ∈ R(L)∩En⊕ker(L).

Then P ′
nj
∇Φ(zj) = P ′

nj
Lwj − P ′

nj
∇ϕ(zj) → 0.

Since
∫ 2π

0
h∞(|z0|)|y|dt ≤ c

∫ 2π

0
h∞(‖z0‖)|y|dt ≤ ch∞(‖z0‖)‖y‖

(cf. the proof of Lemma 3.1), we obtain by Remark 1.1 and the Sobolev embedding theorem that

c‖wj‖ ≤ ‖P ′
nj

Lwj‖ ≤ c(1 + ‖wj‖
α−1 + h∞(‖z0

j ‖)).

Therefore ‖wj‖ ≤ c(1+h∞(‖z0
j ‖)). Moreover, by Remark 1.1 again and by the mean value theorem,

Φ(zj) ≥ −c‖wj‖
2 − ϕ(zj) + ϕ(z0

j )− ϕ(z0
j )

= −c‖wj‖
2 −

∫ 2π

0
(G(zj , t)−G(z0

j , t))dt− ϕ(z0
j )

≥ −c‖wj‖
2 − c(1 + ‖wj‖

α−1 + h∞(‖z0
j ‖))‖wj‖ − ϕ(z0

j )

≥ −c(1 + h2
∞(‖z0

j ‖))− ϕ(z0
j ).
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If ‖z0
j ‖ → ∞, then it follows from Lemma 3.1 that

Φ(zj)

h2
∞(‖z0

j ‖)
≥ −c−

ϕ(z0
j )

h2
∞(‖z0

j ‖)

= −c +
−ϕ(z0

j )

H∞(‖z0
j ‖)

·
H∞(‖z0

j ‖)

h2
∞(‖z0

j ‖)
→ ∞

as j →∞ because
H2
∞(t)

h2
∞(t)

·
1

H∞(t)
≥ ct2−α →∞ whenever t →∞. This contradicts the boundedness

of Φ(zj). It follows that ‖z0
j ‖ and hence ‖zj‖ is bounded. Recalling the compactness of ∇ϕ, we see

that (zj) has a convergent subsequence. 2

In order to compute Cq
E ′(Φ, 0), we first prove the following auxiliary results.

Lemma 3.3. Suppose that (H3) and (H±
4 ) hold. Then for any sequence (zn) ∈ E such that

zn = z0
n + wn, where z0

n ∈ ker(L0), wn ∈ (ker(L0))
⊥, ‖zn‖ → 0 and ‖z0

n‖
‖zn‖

→ 1, we have

lim inf
n→∞

±
∫ 2π
0 G′

0(zn, t) · zndt

H0(‖zn‖)
> 0.

Proof. First, by the definition of h0, it is easy to check that

(
s

t
)β ≤

H0(s)

H0(t)
≤ (

s

t
)γ for s ≥ t > 0 and s, t small. (3.1)

Since h0 may be extended in such a way that (1.3) holds for all t > 0, we may assume that also
the above inequality holds for all t > 0.

Let z = w + z0 ∈ (ker L0)
⊥ ⊕ ker L0. Since w ∈ L2([0, 2π],R2N ), for each ε1 > 0 there exists

R(ε1) > 0, independent of w and such that

meas{t ∈ [0, 2π] : |w(t)| > R(ε1)‖w‖} < ε1.

Set
Ωn = {t ∈ [0, 2π] : |wn(t)| ≤ R(ε1)‖wn‖};

then meas([0, 2π] \ Ωn) < ε1. As
∫ 2π
0 b±(t)dt > 0, we may choose ε1 so small that

∫

Ωn

b±(t)dt ≥
1

2

∫ 2π

0
b±(t)dt > 0.

Since ker L0 is finite dimensional, we may assume

|zn(t)| ≤ c(R(ε1) + c)‖zn‖ whenever t ∈ Ωn.

For any ε2 > 0, by (H±
4 ), we have that

±G′
0(zn, t) · zn

H0(|zn|)
≥ b±(t)− ε2

8



whenever t ∈ Ωn and n is large enough. Since H0 is increasing, H0(|zn|) ≥ H0(‖zn‖) for |zn| ≥ ‖zn‖.

On the other hand, recalling that
‖z0

n‖

‖zn‖
→ 1, we obtain

|zn(t)|

‖zn‖
≥
|z0

n(t)| − |wn(t)|

‖zn‖
≥

δ‖z0
n‖ −R(ε1)‖wn‖

‖zn‖
→ δ

as t ∈ Ωn and n →∞, where δ is as in the proof of Lemma 3.1. This and (3.1) imply

H0(|zn|)

H0(‖zn‖)
≥ (

δ

2
)γ for t ∈ Ωn, |zn(t)| ≤ ‖zn‖ and n large enough.

Since it is easy to check by (3.1) that

|
∫ 2π

0

H0(|zn|)

H0(‖zn‖)
dt| ≤ c1

for some c1 > 0, it follows, for n large enough, that

∫

Ωn

±G′
0(zn, t) · zn

H0(‖zn‖)
dt

≥
∫

Ωn

(b±(t)− ε2)
H0(|zn|)

H0(‖zn‖)
dt

≥ c2

∫

Ωn

b±(t)dt− c1ε2

≥ c3

∫ 2π

0
b±(t)dt− c1ε2

= c4 − c1ε2,

(3.2)

where the constants ci are independent of ε1, ε2. On the other hand, we may assume without loss
of generality that (H3) holds for all z. Indeed, suppose that (H3) is satisfied whenever |z| ≤ δ0.
Since h0 may be extended so that (1.3) holds for all t, then by (1.3) and (3.1) it is easy to check
that

β

γ
(
s

t
)β−1 ≤

h0(s)

h0(t)
≤

γ

β
(
s

t
)γ−1 for all s ≥ t > 0.

It follows that h0(t) ≥ ctβ−1 for t > δ0. Hence by the asymptotic linearity of H ′(z, t),

|G′
0(z, t)| ≤ c|z| ≤ c̃h0(|z|) for some c̃ > 0 and all |z| > δ0. (3.3)

Using (H3), which now holds for all z, we see that

| ±G′
0(zn, t) · zn|

H0(|zn|)
≤

ch0(|zn|)|zn|

H0(|zn|)
≤ c.

Since meas([0, 2π] \ Ωn) < ε1, it follows that

|
∫

[0, 2π]\Ωn

±G′
0(zn, t) · zn

H0(‖zn‖)
dt|

≤ c

∫

[0, 2π]\Ωn

H0(|zn|)

H0(‖zn‖)
dt

≤ cε
1

2

1 (

∫ 2π

0

H2
0 (|zn|)

H2
0 (‖zn‖)

dt)
1

2 .

9



If |zn| ≤ ‖zn‖, then
H0(|zn|)

H0(‖zn‖)
≤ 1. Otherwise, by (3.1),

H0(|zn|)

H0(‖zn‖)
≤ (

|zn|

‖zn‖
)γ .

Using this and the Sobolev embedding of E into L2γ([0, 2π],R2N ), we obtain that

|
∫

[0, 2π]\Ωn

±G0(zn, t) · zn

H0(‖zn‖)
dt| ≤ cε

1

2

1 (3.4)

for n large enough. Combining (3.2), (3.4) and letting n be large enough, we have

∫ 2π

0

±G0(zn, t)

H0(‖zn‖)
dt ≥ c4 − c1ε2 − cε

1

2

1 > 0

since c, c1, c4 are independent of ε1, ε2 and ε1, ε2 may be chosen arbitrarily small. 2

Lemma 3.4. Assume (H3), (H±
4 ) and set

D(ρ, θ) := {z ∈ E : z = z0 + w ∈ ker(L0)⊕ (ker(L0))
⊥,

0 < ‖z‖ ≤ ρ and ‖w‖ ≤ θ‖z‖}.

Then there exist ρ > 0 and θ ∈ (0, 1) such that

±〈∇Φ(z), z0〉 < 0 for all z ∈ D(ρ, θ).

Proof. Assume by contradiction that for any n there exists zn = z0
n+wn ∈ ker(L0)⊕(ker(L0))

⊥ such

that 0 < ‖zn‖ < 1
n
, ‖wn‖ ≤

1
n
‖zn‖ but ±〈∇Φ(zn), z0

n〉 ≥ 0. This implies that ‖zn‖ → 0,
‖z0

n‖

‖zn‖
→ 1

as n →∞ and

−
∫ 2π

0
±G′

0(zn, t) · z0
ndt = −〈±ϕ0(zn), z0

n〉 = ±〈∇Φ(zn), z0
n〉 ≥ 0;

it follows that

lim sup
n→∞

∫ 2π
0 ±G′

0(zn, t) · z0
ndt

h0(‖zn‖)‖zn‖
≤ 0.

By (3.1) and the definition of h0,

h0(|zn|)

h0(‖zn‖)
≤ cmax{(

|zn|

‖zn‖
)β−1, (

|zn|

‖zn‖
)γ−1}.

Therefore, using (H3) and (3.3), we obtain

|

∫ 2π
0 ±G′

0(zn, t) · wndt

h0(‖zn‖)‖zn‖
|

≤ c(

∫ 2π

0

h2
0(|zn|)

h2
0(‖zn‖)

dt)
1

2 (

∫ 2π

0

|wn|
2

‖zn‖2
dt)

1

2

≤ c
‖wn‖

‖zn‖
→ 0
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as n →∞. Finally, in view of Lemma 3.3,

lim inf
n→∞

∫ 2π
0 ±G′

0(zn, t) · z0
ndt

h0(‖zn‖)‖zn‖
= lim inf

n→∞

∫ 2π
0 ±G′

0(zn, t) · zndt

h0(‖zn‖)‖zn‖
> 0.

This contradicts the preceding estimate about the upper limit. 2

Using the above lemmas we can now compute the critical groups C q
E ′(Φ, 0) by making a pertur-

bation and using the continuity property of C q
E ′(Φ, 0).

Lemma 3.5. Assume (H3) and (H+
4 ) (or (H−

4 )). Then
(i) (H+

4 ) implies that Cq
E ′(Φ, 0) = [F ] for q = j−(A0) + j0(A0) and [0] otherwise;

(ii) (H−
4 ) implies that Cq

E ′(Φ, 0) = [F ] for q = j−(A0) and [0] otherwise.

Proof. (i) For any λ ∈ [0, 1] and z = z0 + w ∈ ker(L0)⊕ (ker(L0))
⊥ = E we consider the following

perturbation of Φ:

Φλ(z) := Φ(z)−
1

2
λ‖z0‖2 =

1

2
〈L0z − λz0, z〉 − ϕ0(z).

We claim that there exists a neighborhood N of 0 such that 0 is the unique critical point of Φλ in
N for any λ ∈ [0, 1]. In fact, if z ∈ D(ρ, θ), then by Lemma 3.4 z0 6= 0 and

〈∇Φλ(z), z0〉 = 〈∇Φ(z), z0〉 − λ〈z0, z0〉 < 0.

If z ∈ {z ∈ E : 0 < ‖z‖ ≤ ρ} \ D(ρ, θ), then ‖w‖ > θ‖z‖. Let w = w+ + w−; then there exists a
constant c such that ±〈L0w

±, w±〉 ≥ c‖w±‖2. Therefore

〈∇Φλ(z), w+ − w−〉

= 〈L0w,w+ − w−〉 − 〈∇ϕ0(z), w+ − w−〉

≥ ‖w+ + w−‖2(c−
‖∇ϕ0(z)‖

‖w+ + w−‖
)

≥ ‖w+ + w−‖2(c−
‖∇ϕ0(z)‖

θ‖z‖
)

> 0

for sufficiently small ρ and ‖z‖ ≤ ρ. The above arguments imply that 0 is the only critical point
of Φλ in N := {z : ‖z‖ ≤ ρ} for all λ ∈ [0, 1]. Since ‖P ′

nL0w‖ ≥ c‖w‖ whenever w ∈ R(L0) ∩ E′
n

and n is large enough, it is easy to see that Φλ satisfies (PS)∗ in N . Moreover, supN |Φλ| < ∞ and
the mapping λ 7−→ ∇Φλ is continuous uniformly in z ∈ N . By Corollary 2.9 of [1], C ∗

E ′(Φλ, 0) is
independent of λ ∈ [0, 1]. Therefore

C∗
E ′(Φ, 0) = C∗

E ′(Φ1, 0).

On the other hand, since ker L0 is finite dimensional and L0 is A-proper, it is easy to check that
the operator L̄0 defined by L̄0z = L0z − z0 is invertible and A-proper.

M−(P ′
nL̄0z|E′

n
) is the Morse index of the quadratic form

〈L̄0z, z〉 = 〈L0w,w〉 − 〈z0, z0〉, z ∈ E′
n,

and according to Theorem 4.5 in [1], this form is nondegenerate for almost all n. By Lemma 4.2 of
[1], E′

n = R(L0) ∩E′
n ⊕ P ′

n ker(L0); therefore z = w + z0 = w̃ + z̃0 ∈ R(L0) ∩E′
n ⊕ P ′

n ker(L0) and

11



w− w̃ = z̃0− z0. Since P ′
ny → y uniformly for y on bounded subsets of ker(L0) and w− w̃ ∈ R(L0),

it follows that

sup{‖w − w̃‖ : z = w + z0 = w̃ + z̃0 ∈ E′
n, ‖z‖ = 1} → 0 as n →∞.

So for n large, M−(P ′
nL̄0z|E′

n
) is the sum of the Morse indices of the form 〈L0w̃, w̃〉, w̃ ∈ R(L0)∩E′

n

and −〈z̃0, z̃0〉, z̃0 ∈ ker(L0). Hence, according to the definition of E ′-Morse index, we have

M−
E ′(L̄0) = M−

E ′(L0) + dimker(L0) ≡ j−(A0) + j0(A0),

and by Theorem 5.3 of [1],

Cq
E ′(Φ1, 0) = [F ] for q = j−(A0) + j0(A0) and [0] otherwise.

(ii) The proof is analogous with Φλ(z) := 1
2 〈L0z + λz0, z〉 − ϕ0(z). 2

Next we turn to the computation of the critical groups C q
E ′(Φ,K(Φ)).

Lemma 3.6. Suppose that (H1) and one of the conditions (H±
2 ) hold and K = K(Φ) is finite.Then

(i) (H+
2 ) implies that Cq

E ′(Φ,K) = [F ] for q = j−(A) + j0(A) and [0] otherwise;
(ii) (H−

2 ) implies that Cq
E ′(Φ,K) = [F ] for q = j−(A) and [0] otherwise.

Proof. (i) Let E ′
n = (R(L)∩En)⊕ker(L) = E+

n ⊕E−
n ⊕ker(L) be the decomposition corresponding

to the positive, the negative and the zero part of the operator L on E ′
n. Then there exist c∗ > 0

and n0 > 0 such that ±〈Lz±, z±〉 ≥ c∗‖z±‖2 for all z± ∈ E±
n , n ≥ n0. Consider the following set:

Un := {z = z+ + z− + z0 ∈ E′
n : ‖z+‖2 −

c∗

8‖L‖
‖z−‖2 −

λH2
∞(‖z0‖)

1 + ‖z0‖2
≤ M},

where z± ∈ E±
n , z0 ∈ ker(L); the constants λ > 0,M > 0 will be determined later. An outer normal

vector to ∂Un (the boundary of Un) is

νn = νn(z) = z+ − dz− −
λ

2
p′(‖z0‖)

z0

‖z0‖
,

where d =
c∗

8‖L‖
and p(t) =

H2
∞(t)

1 + t2
. We claim that Φ|E′

n
has no critical point in E ′

n \ Un. In fact,

by Remark 1.1, it is easy to check that

‖∇ϕ(z)‖ ≤ c(1 + ‖z+‖α−1 + ‖z−‖α−1 + h∞(‖z0‖)) for z ∈ E.

Therefore, for ε small enough and n ≥ n0,

〈∇Φ(z), νn〉

= 〈Lz+, z+〉 − d〈Lz−, z−〉 − 〈∇ϕ(z), νn〉

≥ c∗‖z+‖2 + dc∗‖z−‖2 −

c1(1 + h∞(‖z0‖) + ‖z+‖α−1 + ‖z−‖α−1)(‖z+‖+ d‖z−‖+ λ|p′(‖z0‖)|)

≥
1

2
c∗‖z+‖2 −

d

2
c∗‖z−‖2 − c1ελ

2|p′(‖z0‖)|2 − c1ε
−1h2

∞(‖z0‖)− c2.
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Here we have used the inequalities xy ≤ ε−1x2 + εy2 and xyα−1 ≤ x2 + εy2 + c which hold for all
x, y ≥ 0, ε > 0 and an appropriate c = c(ε). By the definition of h∞, we see that

|p′(t)|2 ≤
4H4

∞(t)

(1 + t2)4
(
α

t
(1 + t2) + t)2, h2

∞(t) ≤
4H2

∞(t)

1 + t2
+ c

for t > 0. Let λ > 10c1
εc∗

. Since
H∞(t)

1 + t2
→ 0 as t →∞, it is easy to verify that

c1ελ
2|p′(‖z0‖)|2 + c1ε

−1h2
∞(‖z0‖) ≤

λc∗

2

H2
∞(‖z0‖)

1 + ‖z0‖2
+ c.

Therefore

〈∇Φ(z), νn〉 ≥
c∗

2
(‖z+‖ − d‖z−‖2 − λp(‖z0‖))− c

≥
c∗

2
M − c

> 0

for an appropriate M . So Φ|E′
n

has no critical point outside Un and on ∂Un. It is easy to construct
a pseudogradient vector field V on E ′

n such that 〈V (z), νn(z)〉 > 0 on ∂Un. This implies that the
flow of −V points into Un on ∂Un.

Next we show that on Un

Φ(z) → −∞ if and only if ‖z0 + z−‖ → ∞ (3.5)

and the convergence is uniform with respect to the choice of n ≥ n0. Indeed, if z ∈ Un, then
‖z+‖2 ≤ M + d‖z−‖2 + λp(‖z0‖), and since p(t) ≤ c(1 + h2

∞(t)), it follows using the mean value
theorem as in the proof of Lemma 3.2 that

Φ(z) =
1

2
(〈Lz+, z+〉+ 〈Lz−, z−〉)− ϕ(z)

≤
1

2
‖L‖‖z+‖2 −

1

2
c∗‖z−‖2 − ϕ(z0) + ϕ(z0)− ϕ(z)

≤
1

2
‖L‖‖z+‖2 −

1

2
c∗‖z−‖2 − ϕ(z0)

+c(1 + h∞(‖z0‖) + ‖z+‖α−1 + ‖z−‖α−1)‖z+ + z−‖

≤ ‖L‖‖z+‖2 −
1

4
c∗‖z−‖2 + ch2

∞(‖z0‖)− ϕ(z0) + c

≤ (−
1

4
c∗ + d‖L‖)‖z−‖2 + ‖L‖λp(‖z0‖) + ch2

∞(‖z0‖) + ‖L‖M − ϕ(z0) + c

≤ −
c∗

8
‖z−‖2 + ch2

∞(‖z0‖)− ϕ(z0) + c.

In view of the definition of h∞ and Lemma 3.1, we have that

lim
t→∞

h2
∞(t)

H∞(t)
≤ lim

t→∞
ctα−2 = 0 and lim inf

‖z0‖→∞

ϕ(z0)

H∞(‖z0‖)
> 0;

consequently,

lim
‖z0‖→∞

ϕ(z0)

h2
∞(‖z0‖)

= ∞,
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and Φ(z) → −∞ uniformly in n as ‖z− + z0‖ → ∞.
On the other hand, if z ∈ Un and ‖z0 + z−‖ ≤ c, then ‖z+‖ ≤ c̃ for an appropriate c̃ > 0; hence

Φ(z) → −∞ implies that ‖z0 + z−‖ → ∞.

Now we adapt an argument of Lemma 7.6 in [1]. Choose a > 0 such that K = K(Φ) ⊂ {z ∈
E : |Φ(z)| < a}. By (3.5), there exists R2 = R2(a) (R2 independent of n) such that

D2 := {z ∈ Un : ‖z− + z0‖ ≥ R2} ⊂ Un ∩ Φ−a.

Using (3.5) again, we first find b > a with the property that Φ−b ∩ Un ⊂ D2, and then R1 > R2

such that
D1 := {z ∈ Un : ‖z0 + z−‖ ≥ R1} ⊂ Φ−b ∩ Un.

Define ξ : [0, 1] ×D2 → D1 as follows:

ξ(t, z) =

{

z if ‖z− + z0‖ ≥ R1,

z+ + z−+z0

‖z−+z0‖(tR1 + (1− t)‖z− + z0‖) if ‖z− + z0‖ ≤ R1.

It is easy to see that ξ is a strong deformation retraction of D2 onto D1 (since p′ > 0, ξ does not
leave Un). By (PS)∗, K(Φ|E′

n
) ⊂ Un \ Φ−1([−b,−a]) for n ≥ n0 (possibly after choosing a larger

n0). Therefore, using the flow of −V , it is easy to construct a strong deformation retraction η of
Φ−a ∩ Un onto Φ−b ∩ Un. Let ξ ∗ η denote the deformation η followed by ξ. Then ξ ∗ η is a strong
deformation retraction of Φ−a ∩ Un onto D1. Applying the flow of −V again, we obtain a strong
deformation retraction of Φa∩E′

n onto (Φ−a∩E′
n)∪Un. Finally, by the above-mentioned properties

and the strong excision (cf. Property 1.2 of [1]), we have that for n ≥ n0,

Hq(Φa ∩E′
n,Φ−a ∩E′

n) ∼= Hq((Φ−a ∩E′
n) ∪ Un,Φ−a ∩E′

n)
∼= Hq(Un,Φ−a ∩ Un) (excision)
∼= Hq(Un, D1)

∼=

{

F if q = j−(A) + j0(A) + dn,
0 otherwise.

Since the excision property implies that

Hq
E ′(Φ

a,Φ−a) ∼= Hq
E ′(Φ

−1([−a, a]),Φ−1(−a))

and (Φ−1([−a, a]),Φ−1(−a)) is an admissible pair for Φ and K (cf. Proposition 2.5 of [1]), the
conclusion of case (i) follows from the definition of C ∗

E ′(Φ,K(Φ)).

(ii) Set

Vn := {z ∈ E′
n : ‖z−‖2 −

c∗

8‖L‖
‖z+‖2 −

λH2
∞(‖z0‖)

1 + ‖z0‖2
≤ M}.

Then an outer normal vector to ∂Vn is

νn = νn(z) = z− −
c∗

8‖L‖
z+ −

λ

2
p′(‖z0‖)

z0

‖z0‖
, where p(t) =

H2
∞(t)

1 + t2
.

By an argument similar to that in case (i), there exist λ and M such that

〈∇Φ(z), νn〉 ≤ − c∗

2 (‖z−‖2 − c∗

8‖L‖‖z
+‖2 − λp(‖z0‖)) + c

≤ − c∗

2 M + c
< 0,
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where c is independent of n ≥ n0. It follows that Φ|E′
n

has no critical point in E ′
n \ Vn and

there exists a pseudogradient vector field V such that the flow of −V points outwards on ∂Vn.
Furthermore,

‖z−‖2 ≤
c∗

8‖L‖
‖z+‖2 +

λH2
∞(‖z0‖)

1 + ‖z0‖2
+ M for z ∈ Vn;

consequently,

Φ(z) =
1

2
〈Lz+, z+〉+

1

2
〈Lz−, z−〉 − ϕ(z)

≥
1

2
c∗‖z+‖2 −

1

2
‖L‖‖z−‖2 − ϕ(z0)

−c(1 + h∞(‖z0‖) + ‖z+‖α−1 + ‖z−‖α−1)‖z+ + z−‖

≥
c∗

8
‖z+‖2 − ch2

∞(‖z0‖)− ϕ(z0)− c.

Since by Lemma 3.1,

lim
‖z0‖→∞

−ϕ(z0)

h2
∞(‖z0‖)

= ∞,

it follows that Φ(z) → ∞ uniformly in n as ‖z+ + z0‖ → ∞. As in case (i) we also see that the
reverse implication is true.

It follows that we can find a > 0 such that K = K(Φ) ⊂ {z ∈ E : |Φ(z)| < a} and Φ−a ∩E′
n ⊂

E′
n \ Vn. Since Φa ∩ Vn is a bounded set, we find R0 > 0 such that

Φa ∩ Vn ⊂ D := {z ∈ Vn : ‖z+ + z0‖ ≤ R0}.

Since also D is bounded, there exists b > a such that D ⊂ Φb ∩ Vn. Similarly as in the proof of
Lemma 7.6 in [1], we find a strong deformation retraction ξ of E ′

n onto D ∪ ∂Vn (we can e.g. use
the flow of −νn to deform E ′

n onto Vn and that of νn to deform Vn onto D ∪ ∂Vn). By (PS)∗,
we may assume that K(Φ|E′

n
) ⊂ Vn \ Φ−1[a, b] for n ≥ n0, so the flow of −V provides a strong

deformation retraction of E ′
n \ Vn onto Φ−a ∩ E′

n. Moreover, the flow of −V induces a strong
deformation retraction η of (E ′

n \ Vn) ∪ D onto Φa ∩ E′
n. Now it is easy to see that the mapping

η ∗ ξ is a strong deformation retraction of E ′
n onto Φa ∩E′

n. Therefore

Hq(Φa ∩E′
n,Φ−a ∩E′

n) ∼= Hq(E′
n,Φ−a ∩E′

n)
∼= Hq(E′

n, E′
n \ Vn)

∼=

{

F if q = j−(A) + dn,
0 otherwise.

Now by the same argument as in case (i) we get the conclusion. 2

Remark 3.1. For the computation of the usual relative homology groups, see [12, 13, 15]. We
emphasize that the results of [12, 13, 15] cannot be used directly to deal with strongly indefinite
functionals.

4. PROOFS OF THE MAIN RESULTS

Based on the computations of the critical groups C ∗
E ′(Φ, 0) and C∗

E ′(Φ,K), we can prove the
main results of Section 1.
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Proof of Theorem 1.1.

(i) By Lemma 3.6, (H−
2 ) implies that Cq

E ′(Φ,K) = [F ] for q = j−(A) and [0] otherwise. On the
other hand, if 0 is the only critical point of Φ, then C q

E ′(Φ,K) = Cq
E ′(Φ, 0). It follows from the shifting

theorem (cf. Theorem 5.4 of [1]) that C q
E ′(Φ, 0) = [Cq−j−(A0)(ϕ̃0, 0)], where ϕ̃0 is defined on a subset

of ker(L0). Since dimker(L0) = j0(A0), C
q
E ′(Φ, 0) = [0] whenever q /∈ [j−(A0), j

−(A0) + j0(A0)]. So

by our assumption, C
j−(A)
E ′ (Φ, 0) = [0] 6= C

j−(A)
E ′ (Φ,K), a contradiction.

(ii) Since j−(A) + j0(A) + j+(A) = 0, the conclusion follows from Lemma 3.6-(i) and a similar
argument. 2

Proof of Theorem 1.2. It follows from Lemmas 3.5 and 3.6 that C q
E ′(Φ, 0) 6= Cq

E ′(Φ,K) for some
q, hence K 6= {0}.

Proof of Theorem 1.3. We only prove the case (i) as an example. The other cases are similar.
Since

(H+
2 ) implies that Cq

E ′(Φ,K) =

{

[F ] for q = j−(A) + j0(A),
[0] otherwise,

and

(H+
4 ) implies that Cq

E ′(Φ, 0) =

{

[F ] for q = j−(A0) + j0(A0),
[0] otherwise,

there exists a nonzero critical point z0. Suppose there are no other ones, then by Theorem 5.4 of
[1], Cq

E ′(Φ, z0) = [Cq−r0(ϕ̃0, 0)] for some r0 ∈ Z and some functional ϕ̃0 defined on a space Z with
dimZ ≤ 2N . In this case the Morse inequalities read

tj
−(A0)+j0(A0) +

2N−2
∑

i=0

bit
α+i = tj

−(A)+j0(A) + (1 + t)Q(t),

where bi ∈ [Z] and α ∈ Z. That the sum on the left-hand side above contains at most 2N − 1
nonzero terms follows from the fact that if C0(ϕ̃0, 0) 6= 0, then ϕ̃0 has a local minimum at 0 and
Cp(ϕ̃0, 0) = 0 for p 6= 0, and if C2N (ϕ̃0, 0) 6= 0, then ϕ̃0 has a local minimum there and Cp(ϕ̃0, 0) = 0
for p 6= 2N. By comparing the exponents, we can find i and j such that α + i = j−(A) + j0(A)
and α + j = j−(A0) + j0(A0)± 1, where i, j ∈ {0, 1, · · · , 2N − 2}. So |j+(A)− j+(A0)| = |j−(A) +
j0(A)− j−(A0)− j0(A0)| = |i− j ± 1| ≤ 2N − 1, a contradiction. 2

Proof of Corollary 1.1. We only prove case (ii). Since A = A0 ≡ 0, j−(0) = −N and j0(0) = 2N
(cf. Proposition 7.1 of [1]). Consequently, by Lemma 3.6, C q

E ′(Φ,K) = [F ] if q = N and [0]
otherwise. On the other hand, by Corollary 5.5 of [1] and Lemma 3.5, C q

E ′(Φ, 0) = [F ] if q = −N
and [0] otherwise. If Φ has only one nontrivial critical point, then by the Morse inequalities,

t−N +
2N−2
∑

i=0

bit
α+i = tN + (1 + t)Q(t),

and similarly as in the proof of Theorem 1.3, we get a contradiction. 2
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