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SOME BANACH SPACES WITH UNIFORMLY

NORM-BOUNDED PARTIAL SUMS

Mats Erik Andersson

Utkast av den 9 april i n̊adens år 1999
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Spaces of measures and functions on the unit circle, such that their

partial Fourier sums are uniformly bounded in L
1-norm are introduced and studied.

They are made into Banach spaces by a suitable norm. The emerging five spaces are
demonstrated to be strict subsets of M( � ), L

1 and H
1 respectively. Non-boundedness

under conjugation is discussed.
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Convergence properties of the partial sums of a given formal Fourier series are
central to important parts of analysis. In particular, the pointwise uniform conver-
gence has been studied extensively. Here another viewpoint will be taken. Given a
formal Fourier series and its partial sums

∞∑

n=−∞

cneinθ and sN =
N∑

n=−N

cneinθ,

we single out those with the property that

sup
N>0

‖sN‖L1 < ∞.

An elementary argument with weak-∗ compactness produces a measure µ in M(T)
such that the formal series in fact must be the Fourier–Stieltjes series of µ; corre-
spondingly we henceforth denote the partial sums by sNµ.

We first introduce a norm ‖ ‖ on subsets of M(T) by the prescription

‖µ‖ = sup
N>0

‖sNµ‖1.
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2 MATS ERIK ANDERSSON

From now on we indiscriminately write ‖µ‖1 and ‖fdθ‖1 = ‖f‖1 for the variation
norm of general finite measures µ and of the absolutely continuous measures identi-
fied with functions f ∈ L1(T). We use normalised Haar measure. In addition, ‖f‖1

will also denote the H1-norm of the boundary function whenever f is an element
of H1(T). Since the new norm just introduced will be used extensively, it carries
no index or markings whatsoever.

In the subsequent sections we will find reasons to study the following spaces,
a priori linear subspaces of M(T).

Mb = {µ ∈ M(T) ; ‖µ‖ < ∞}

L1
b =

{
f ∈ L1 ; ‖f‖ < ∞

}

H1
b =

{
f ∈ H1 ; ‖f‖ < ∞

}

L1
b0 =

{
f ∈ L1 ; ‖f − sNf‖1 → 0 as N →∞

}

H1
b0 =

{
f ∈ H1 ; ‖f − sNf‖1 → 0 as N →∞

}

They will all turn out to be Banach spaces with respect to ‖ ‖ and in addition to
be convolution ideals of M(T). Clearly L1

b0 and H1
b0 are linear subspaces of L1

b and
H1

b respectively.
The weak-∗ argument alluded to above immediately yields an important property

of the new norm.

Observation. ‖µ‖1 6 ‖µ‖ for all µ ∈ Mb.

In the course of this exposition we will be able to deduce the following inclusion
relations as linear spaces.

Proposition. M(T) ) Mb ) L1
b , L1 ) L1

b ) L1
b0, and H1 ) H1

b ) H1
b0.

Some words on earlier references and scientific credit is appropriate before pro-
ceeding to the main body of this manuscript; the precise statements alluded to
will appear elsewhere in the text. Some explicit properties of Mb are presented in
Zygmund’s book [Z] and more information will be extracted from the very same
recource. Among the named contributions in [Z] we find important results of Hel-
son [H] and Salem–Zygmund. Two illuminating examples that Mb contains singular
measures were established by M. Weiss [We] and Katznelson [K2] respectively. Two
qualitative improvements on Helson’s theorem were deduced by Pigno, Smith [PS]
and Fournier [F]. Finally, the most substantial treatment of Mb and L1

b known to
me, although of somewhat differing intentions, is the exposition by Wojtaszczyk
[Wo]. It overlaps to some degree with my text.

Finally, some comments on the contents of this excercitio academicum. Its pur-
pose is to display as much as is known to me on the above five spaces and efforts to
condense the material were not judged desirable, mainly due to the wish of present-
ing a document upon which later research of a deeper character may be founded.
Throughout the text there will appear small examples of a fairly trivial character
just to illustrate aspects of the spaces in question. They are probably neither very
original nor unknown, but they improve intuition on this new norm and its prop-
erties. Section 1 deals with the basic properties of Mb and some technical tools for
calculations inside the five spaces. Decay properties of the Fourier coefficients are
treated in the second section. Section 3 concentrates on non-inclusions between H1,
H1

b , and H1
b0. To end the exposition, section 4 displays that harmonic conjugation

is not bounded on any one of the spaces L1
b and L1

b0.
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1. Basic properties and classical results

Immediate steps must be taken to secure completeness under the new norm.

Proposition 1.1. Mb ⊇ L1
b ⊇ H1

b are closed subspaces of M(T) and they are also
convolution ideals there.

Proof. The first claim will follow if the spaces are Banach space with respect to
‖ ‖, thanks to the observation above. Consider a formal absolutely convergent series∑

µn in Mb under its own norm. A forteriori
∑
‖µn‖1 6

∑
‖µ‖ < ∞, whence

∑
µn

converges inside M(T) to some measure µ ∈ M(T). Obviously sNµ =
∑

sNµn is
also absolutely convergent and independently of N

‖sNµ‖1 6
∑

‖sNµn‖1 6
∑

‖µn‖.

In consequence, ‖µ‖ 6
∑
‖µn‖ and µ ∈ Mb. This means that Mb indeed is a closed

subspace of M(T). An identical argument works for L1
b and H1

b also.
Consider finally ν ∈ M(T), as well as µ ∈ Mb or f ∈ L1

b and H1
b respectively.

Since
‖sN (µ ∗ ν)‖1 = ‖ν ∗ sNµ‖1 6 ‖ν‖1‖sNµ‖1 6 ‖ν‖1‖µ‖,

we find ‖µ ∗ ν‖ 6 ‖µ‖ ‖ν‖1 and µ ∗ ν ∈ Mb.
Since L1 and H1 are convolution ideals in M(T), the above argument applied to

µ = fdt supplies the verification of ideal structure also for these funcion spaces. �

Remark. It is appropriate to extract from the above proof the operator inequality
‖ν ∗ µ‖ 6 ‖ν‖1‖µ‖ for the action of M(T) on Mb. In particular, the Fejér means
satisfy ‖σnµ‖ 6 ‖µ‖. This could equally well be derived from ‖sNµ‖ 6 ‖µ‖, which
holds by definition of the norm. It is appropriate to compare this to the property
that their respective integral kernels have ‖KN‖(log N)−1 and ‖DN‖(log N)−1 both
tending to 4π−2 with increasing N . This will be verified later on.

Proposition 1.2. L1
b0 and H1

b0 are Banach spaces under ‖ ‖ and in addition closed
convolution ideals of M(T).

Proof. Consider a sequence {fk}∞1 ⊆ L1
b0 such that

∑
‖fk‖ < ∞. The previous

proposition provides f =
∑

fk as an element in L1
b . We must prove ‖sNf−f‖1 → 0.

To an arbitrary ε > 0 we choose N such that
∑∞

N+1 ‖fk‖ < ε/4. Since ‖smfk −
fk‖1 → 0 as m →∞ for each individual k ∈ [1, N ], there is an M with the property
that

m > M implies max
16k6N

‖smfk − fk‖1 < ε/2N.

In consequence, the condition m > M also implies

‖smf − f‖1 =
∥∥sm

( ∑∞

1
fk

)
−

∑∞

1
fk

∥∥
1

6
∑N

k=1
‖smfk − fk‖1 +

∥∥∥ sm

(∑∞

N+1
fk

)∥∥∥
1

+
∥∥∥

∑∞

N+1
fk

∥∥∥
1

< N ·
ε

2N
+ 2

∑∞

k=N+1
‖fk‖ < ε.

Hence f is in fact an element of L1
b0 and this proves L1

b0 to be a Banach space. Since
H1

b0 is the intersection of L1
b0 with H1

b , the same conclusion holds for this space.
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As regards to the ideal structure we consider any f ∈ L1
b0 and ν ∈ M(T).

Immediately we deduce f ∗ ν ∈ Mb. However, also

‖sN (f ∗ ν)− f ∗ ν‖1 = ‖ν ∗ (sNf − f)‖1 6 ‖ν‖1‖sNf − f‖1 → 0 as N →∞,

since f ∈ L1
b0. This proves L1

b0 to be a convolution ideal in M(T) and the claim for
H1

b0 follows as before.

The next observation is proved in [Z], pages 148–149, but an alternative demon-
tration follows from Helson’s theorem in the next section.

Observation 1.3. Mb consists of continuous measures alone.

Most of the functions with strong integrability properties are elements in L1
b0.

For all 1 < p < ∞ we know that (see [Z], page 266)

‖sNf‖1 6 ‖sNf‖p 6 Cp‖f‖p, ‖s̃Nf‖1 6 ‖s̃Nf‖p 6 Cp‖f‖p,

and in addition

‖snf − f‖1 6 ‖snf − f‖p → 0, ‖s̃nf − f̃‖1 6 ‖s̃nf − f̃‖p → 0.

This means that ∪p>1L
p ⊆ L1

b0 and ∪p>1H
p ⊆ H1

b0. Even more elementary we find
L2 ↪→ L1

b0 of unit norm, since Parseval’s formula provides ‖sNf‖1 6 ‖sNf‖2 6 ‖f‖2
as well as ‖sNf − f‖1 6 ‖sNf − f‖2 → 0 with increasing N .

Theorem 1.4. Mb contains singular measures and consequently Mb ) L1
b:

(1) (Weiss [We]) There is a Riesz product µ ∈ Msing(T) ∩Mb,
(2) (Katznelson [K]) There is a singular Riesz product in Mb such that for all N

the positivity sNµ > 0 obtains.

We shall repeatedly have need for the Dirichlet and Fejér kernels and their con-
jugates. To set our standards, dictated by sNf = DN ∗ f with normalised Haar
measure, the definitions are repeated here for convenience.

Dn(θ) =
n∑

k=−n

eikθ =
sin(n + 1

2 )θ

sin 1
2
θ

,

Kn(θ) =

n∑

k=−n

(
1− |k|

n+1

)
eikθ =

1

n + 1

{
sin n+1

2 θ

sin 1
2θ

}2

,

D̃n(θ) =
n∑

k=−n

sign k eikθ, and K̃n(θ) =
n∑

k=−n

sign k
(
1− |k|

n+1

)
eikθ.

Observe the convention sign 0 = 0 and that K−1 = 0 etcetera, including D̃0 =

K̃0 = 0. In addition, we will at several instances have need of the standard results
‖Dn‖1 = 4π−2 log(n + 1) +O(1) and ‖D̃n‖1 = 2π−1 log(n + 1) +O(1).
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A substantial amount of relevant examples of L1-functions will be constructed
based on the next classical result.

Lemma 1.5. Let {an}
∞
n=0 be a positive and convex sequence. Then

∑∞
−∞ a|n|e

inθ

represents a positive function f in L1. In addition,

lim
n→∞

‖f − snf‖1 = lim
n→∞

4π−2anlog n.

It follows that f ∈ Mb if and only if an log n stays bounded.

The argument is standard and may be found in [Z], pages 183–185. A slightly
stronger statement will be derived presently. Let us at this point single out a special
and well known function. The preceding Lemma essentially gives the properties
mentioned below.

Definition. The following function belongs to L1
b .

`(θ) =
∑

n>2

2 cosnθ

log n
=

∑

|n|>2

einθ

log |n|
.

In addition, `(θ) + (4/ log 2− 2/ log 3)(1 + cos θ) > 1/ log 2 everywhere.

An application of the lemma to ` really gives slightly more information:

Observation 1.6. L1
b ) L1

b0.

The additional elements in L1
b produced by the Lemma are relatively few, as the

following refined argument displays.

Proposition 1.7. Let {an}∞n=0 be positive and convex. If f ∼
∑∞
−∞ a|n|e

inθ be-

longs to Mb, then A = limn→∞ an log n exists finitely and f ∈ A` + L1
b0.

Proof. Recall that any sequence with the specified properties necessarily also has
n∆an → 0 and that

∑
n>0(n + 1)∆2an becomes a positive convergent series,

summing to a0 − lim an. Here the difference notation ∆an = an − an+1 and
∆2an = an − 2an+1 + an+2 is used. In particular, ∆an log n → 0 as n →∞.

Considering next the equality

∆an log n = an log n− an+1 log(n + 1) + an+1 log n+1
n ,

the known properties of {an} tells us that the convergence an → 0 is equivalent to
the existence of limn→∞ an log n in the extended interval [0,∞].

The last lemma says further that f ∈ Mb implies boundedness of an log n, which
in turn forces an → 0 with increasing index and that A = limn→∞ an log n exists
as a finite positive number.

Two expansions are readily established by two summations by parts:

sNf =
N−2∑

n=0

(n + 1)∆2anKn + N∆aN−1KN−1 + aNDN and

f =
∞∑

n=0

(n + 1)∆2anKn,

the infinite series being convergent in L1.
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Take now g = A` and denote its Fourier coefficients with bn = A/ log |n| for
|n| > 2 and b0 = b±1 = 0. The expansions of g similar to those of f are immediate.
Except for ∆2b1 < 0 the same kind of positivity and convergence hold for g as for f .

Observe that the ingredients were arranged so as to give

(an − bn) logn = an log n−A → 0 as n →∞.

It is clear that in L1 the difference (f − g)− sN (f − g) is given by

−(aN − bN )DN +
∑∞

n=N−1
(n + 1){∆2an −∆2bn}Kn −N{∆an −∆bn}KN−1.

We know that the series and the last term converge to zero in L1 as N increases.
Hence we deduce that

‖(f − g)− sN (f − g)‖1 = 4π−2|aN − bN | log N + o(1) → 0 as N →∞.

The conclusion is f −A` = f − g ∈ L1
b0, and the claim has been fully established.

Remark. It is not true that L1
b/L1

b0 is of dimension 1. This follows from an example
in section 3.

Recall next the standard notation µτ and fτ for µτ (E) = µ(E − τ) and fτ (θ) =
f(θ − τ). Since the norm ‖ ‖1 is translation invariant and sNµτ = (sNµ)τ we
conclude the following result.

Observation 1.8. Mb is translation invariant with all norms preserved after trans-
lation.

This means that the property of being a homogeneous space (see Katznelson [K] for
a treatment) for any of our five spaces is equivalent to the validity of ‖µτ −µ‖ → 0
as τ → 0.

Theorem 1.9. L1
b0 is a homogeneous space, whereas L1

b is not. In particular, there
are g ∈ L1

b \ L1
b0 with ‖gτ − g‖ 6→ 0, as τ → 0.

Proof. It obvious that as an operator ‖sN‖L1

b
→L1

b
= 1, all N. The assumption that

L1
b were a homogeneous space, would lead to ‖f−sNf‖ → 0, as N →∞, according

to [K], Theorem II:1.1. However, the last lemma demonstrates that ` ∈ L1
b , in spite

of the fact that ‖`− sN`‖1 → 4π−2, whence lim infN ‖`− sN`‖ > 4π−2. It follows
that L1

b impossibly can be a homogeneous space in its own norm and hence that
there are elements g ∈ L1

b with ‖g − gτ‖ 6→ 0.

On the other hand it is claimed that for any f ∈ L1
b0 one always has ‖f−fτ‖ → 0

as τ → 0. To that end one takes an arbitrary ε > 0 and choose a corresponding
M with ‖smf − f‖1 < ε/3 for all m > M , thanks to f ∈ L1

b0. Since L1 is a
homogeneous space in its own norm, f ∈ L1 and since s0f, . . . , sMf are continuous,
there is a δ > 0 with the property

|τ | < δ, 0 6 k 6 M implies ‖f − fτ‖1, ‖skf − (skf)τ‖1 < ε/3.

The present proof needs ‖f − fτ‖ = supN>0 ‖sNf − (sNf)τ‖1 < ε for all |τ | < δ.
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For the indices 0 6 N 6 M the choice of δ provides ‖sNf − (sNf)τ‖1 < ε/3 if
only |τ | < δ. The remaining case N > M follows from the next inequality, valid as
soon as |τ | < δ.

‖sNf − (sNf)τ‖1 = ‖sNf − f + f − fτ + (f − sN )τ‖1

6 ‖sNf − f‖1 + ‖f − fτ‖1 + ‖(f − sNf)τ‖1

= 2‖sNf − f‖1 + ‖f − fτ‖1 < ε.

Hence |τ | < δ implies ‖f − fτ‖ 6 ε, which means that L1
b0 indeed is a homogeneous

space in its own norm.

Corollary 1.10. The closed linear hull in L1
b of the polynomial subspace is exactly

the space L1
b0.

Proof. Every polynomial is trivially an element of L1
b0, whence the norm-closure

must be a subspace of L1
b0. But L1

b0 is a homogeneous space, so [K], Theorem
I:2.11, shows that for the Fejér means σNf the convergence ‖σNf − f‖ → 0, as
N →∞, obtains for all f ∈ L1

b0. Hence the polynomials are dense in L1
b0.

At this stage we can formally strengthen the definition of L1
b0 simply by inter-

preting the previous result as producing three different characterisations of L1
b0.

Lemma 1.11. In L1
b0 the convergence ‖sNf − f‖ → 0 obtains as N →∞ for each

individual f ∈ L1
b0. The same holds in H1

b0.

Proof. L1
b0 is a homogeneous space with supN ‖sN‖L1

b0
→L1

b0
= 1. The norm conver-

gence of sNf to f follows from [K], Theorem II:1.1. Finally, H1
b0 ⊆ L1

b0 takes care
of the last claim.

Theorem 1.12.

L1
b0 = {f ∈ L1

b ; ‖sNf − f‖ → 0 as N →∞}

= {f ∈ L1
b ; ‖sNf − f‖1 → 0 as N →∞}

= {f ∈ L1
b ; τ 7→ fτ is cont. in L1

b-norm}.

Proof. Write X1, X2, and X3 for the three braced spaces in the given order. By
definition L1

b0 = X2. By the argument used in the preceding Theorem we have the
implications (the first is trivial)

‖sNf − f‖ → 0 ⇒ ‖sNf − f‖1 → 0 ⇒ τ 7→ fτ is cont. and L1
b-valued.

In consequence, X1 ⊆ X2 ⊆ X3. The last Lemma yields L1
b0 ⊆ X1 ⊆ X2 = L1

b0,
whence X1 = X2.

Consider now an element f ∈ X3, such that the L1
b-valued map τ 7→ fτ is norm-

continuous. Due to the relation ‖ ‖L1 6 ‖ ‖L1

b
, the Fejér kernel Kn ensures that∫

Kn(τ)fτ dτ/2π = Kn ∗ f in L1
b as well as L1. The continuity of τ 7→ fτ provides

the convergence ‖Kn ∗f−f‖ → 0 as τ → 0. Since Kn ∗f is a polynomial, it follows
that

X3 ⊆ {polyn.}
L1

b
= L1

b0 = X2,

according to the last Corollary. Hence L1
b0 ⊆ X3 ⊆ L1

b0 and the proof is complete.
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Example. We now know that the element `(θ) =
∑

n>2
2 cos nθ
log n ∈ L1

b \L1
b0 has the

property ‖`− `τ‖ 6→ 0 as τ → 0, in spite of the fact that ‖`− `τ‖1 → 0; this latter
limit since ` ∈ L1.

On the other hand, a result of Doss [D] demonstrates that lim supτ→0 ‖µ−µτ‖1 =
2‖ν‖1, where µ = gdθ+ν, ν ⊥ dθ. Mb contains singular measures, so ‖µ−µτ‖ 6→ 0
occurs in Mb. The preceding paragraph shows that it also occurs in L1

b .

It is convenient at this point to introduce a subset of Mb as follows.

M+
b = {µ ∈ Mb ; sNµ > 0, all N > 0}.

Obviously, M+
b is a nonempty positive cone as a subset of Mb. By Katznelson’s

example [K2] there are non-trivial singular measures in this cone. On the other
hand, M+

b contains also many harmonic functions.
A theorem by Sidon [S] and Armitage [A] demonstrates that any function g

harmonic in the unit disk and non-negative on T has the property that every partial
sum of g(eiθ/2) is non-negative, and hence that this latter function belongs to M+

b .
The theorem alluded to also says that this radius r = 1/2 is the largest possible
with this property. In conclusion, we have established M+

b ∩ Msing(T) 6= ∅ and

M+
b ∩ L1

b0 6= ∅.
To round off this section, some simple observations on computational properties

of the present norm will be provided.

Lemma 1.13. For every µ ∈ M(T) and N > 1 holds ‖s0µ‖1 = |µ̂(0)| 6 ‖sNµ‖1.
Consequently, ‖µ‖ = supN>1 ‖snµ‖1.

Proof. Trivially, ‖s0µ‖1 =
∣∣ ∫

dµ
∣∣ =

∣∣ ∫ sNµ dθ/2π
∣∣ 6 ‖sNµ‖1. The supremum

defining ‖µ‖ and involving N > 0 may hence be reduced to N > 1 without loss of
information.

Proposition 1.14. The equality ‖µ‖ = ‖s0µ‖1 obtains for µ ∈ Mb if and only if
µ belongs to eiαM+

b for some α. If this is the case, then ‖sNµ‖1 = ‖µ‖ for all N .

Remark. This result is the counterpart to the well-known characterisation that

f ∈ L1 has ‖f‖1 = |f̂(0)| if and only if f(eiθ) = eiα|f(eiθ)| almost everywhere.

Here α is uniquely determined for f 6≡ 0 by eiαf̂(0) > 0.

Proof. Consider first µ = eiαν, ν ∈ M+
b . Then |µ| = ν = e−iαµ. Hence sNµ =

eiαsNν for all N > 0 and, in addition,

‖sNµ‖1 = ‖sNν‖1 =

∫
sNν dθ/2π = ν̂(0) = e−iαµ̂(0) = |µ̂(0)| = ‖s0µ‖1.

From this follows ‖µ‖ = ‖s0µ‖1 = ‖sNµ‖1 for all N .
Suppose on the other hand that ‖µ‖ = ‖s0µ‖, µ 6= 0. Since by the last Lemma

every N > 0 gives ‖sNµ‖1 > |µ̂(0)| = ‖s0µ‖1, we must deduce the equality ‖sNµ‖ =
|µ̂(0)| = |ŝNµ(0)| for all N . The Fourier coefficient ŝNµ(0) does not depend on N ,
so the remark above provides a single α (µ 6= 0 makes some sNµ non-trivial) such
that eiαµ̂(0) > 0 and sNµ = eiα|sNµ| for all N . Now the measure ν = e−iαµ has
the property sNν > 0 for all N , whence indeed µ ∈ eiαM+

b .



NORM-BOUNDED PARTIAL SUMS 9

Observation 1.15. ‖µ‖ > limN→∞ ‖sNµ‖1 does occur.

Consider for this purpose the Fejér element k2(θ) = 3
2 + 2 cos θ + cos 2θ. Then

k2(θ) = 1
2
(sin 3

2
θ/ sin 1

2
)2 > 0 and every N > 2 has ‖sNk2‖1 = 3

2
= ‖s0k2‖1. On the

other hand, s1k2(θ) = 3
2 + 2 cos θ assumes both signs, whence ‖s1k2‖1 > 3

2 , which

is to be interpreted as ‖k2‖ = ‖s1k2‖1 > 3
2

= limN→∞ ‖sNk2‖1.

This last observation is just a scratch on the surface, as the next result shows.
An even more explicit version will be discussed in the next section.

It is convenient to introduce a norm by the prescription |||µ ||| = limN→∞ ‖sNµ‖1.
That this defines a norm, finite exactly on Mb, is elementary. In fact, one quickly
establishes ‖µ‖1 6 |||µ ||| 6 ‖µ‖. That this new norm is not complete on L1

b0 is the
content of the next result.

Proposition 1.16. sup

{
‖f‖

||| f |||
; f ∈ L1

b0 \ {0}

}
= ∞.

Proof. Since ‖sNf−f‖1 → 0 obtains for all f ∈ L1
b0, as N →∞, we find ‖sNf‖1 →

‖f‖1 and ||| f ||| = ‖f‖1 in L1
b0.

That the supremum in the statement would be finite, is the same as claiming the
equivalence ‖ ‖ ∼ ||| ||| on L1

b0. This would mean that (L1
b0, ||| ||| ) = (L1

b0, ‖ ‖1), by
the previous paragraph, would be a complete normed space. This can be refuted
as follows.

Take an element f ∈ L1 \ L1
b0 and polynomials pn such that pn → f in L1.

Since {pn}∞1 ⊆ L1
b0 and ||| pn − pm ||| = ‖pn − pm‖1 → 0 as n, m → ∞, we deduce

that {pn}∞1 is a Cauchy sequence also in (L1
b0, ||| ||| ). However, from L1-lim pn = f

and ‖ ‖1 6 ||| ||| , it follows that the only possible point of convergence, that is
f ∈ L1 \ L1

b0, is such that the Cauchy sequence {pn}∞1 cannot be convergent in
(L1

b0, ||| ||| ).

2. Coefficient properties.

The demands put on a measure by the requirement of having norm-bounded
partial sums do not put restraints on individual Fourier coefficients, since addition
of aeinθ just changes the norm, without disturbing the membership of Mb. The
asymptotics of the coefficients, however, are heavily influenced by this demand. The
following statement was first conjectured by Steinhaus and subsequently proved by
Helson.

Helson’s Theorem [H]. For any µ ∈ Mb, lim|n|→∞ |µ̂(n)| = 0 obtains.

The argument used in the proof was later named as the Helson translation lemma.
As an immediate corollary we see that

µ ∈ Mb implies
1

2N + 1

N∑

n=−N

|µ̂(n)|2 → 0 as N →∞.

By Wiener’s theorem it follows that Mb contains only continuous measures, a result
achieved also by other means in [Z], as mentioned in the first section.

A different way of capturing the decay of the Fourier coefficients, in a mean value
sense this time, is provided by the following result. Its proof is based on Hardy’s
inequality for functions in H1. Essentially the same technique will be employed in
the next section to get one useful strengthened form, valid for analytic functions.
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Salem–Zygmund’s Theorem [Z]. If µ ∈ Mb, then for a finite constant C and
all n

log n

n

∑n

k=−n
|µ̂(k)| 6 C‖µ‖.

To my knowledge only two efforts have been made to give a quantitavely strength-
ened version of Helson’s theorem. The earliest result was obtained by Pigno–Smith
[PS] and then later Fournier [F] established a statement using another method.
Each of the two papers exhibit a function L(b) yielding the conclusion below, but
as neither seems optimal, Fournier remarks on this, they will not be repeated here.

Theorem 2.1. ([PS] and [F]) There exists an integer-valued function L(b) defined
on ] 0, 1[, such that in cardinality

∣∣{n ∈ Z ; |µ̂(n)| > b ‖µ‖}
∣∣ 6 L(b),

for every measure µ belonging to Mb.

It seems that the reason for the discrepancies between M(T) and Mb is due to
the fact that the Dirichlet and Fejér kernels share essentially the same behaviour
in norm inside L1

b0, but of course differ significantly in L1. This is the content of
the next few paragraphs.

It is evident that ‖DN‖ coincides with

sup
06n6N

‖Dn‖1 = 4π−2 log N +O(1).

As a general tool to estimate ‖sNµ‖1 we also have the inequality, obtained by
realising the partial sum as convolution with the corresponding Dirichlet kernel,

‖sMµ‖1
‖µ‖1

6 ‖DM‖1 = 4π−2 log M +O(1).

An application of this with µ = KN dθ, and taking maximum of all M between 0
and N , provides the upper bound in the next claim.

Proposition 2.2.

‖KN‖

{
6 4π−2 log N +O(1),

> 4π−2 log N −O(log log N).

Proof. For 0 < M 6 N and N > 2, we have

sMKN =
M∑

n=−M

(
1− |n|

N+1

)
einθ =

(
1− M

N+1

)
DM +

M−1∑

n−M+1

(
M−|n|
N+1

)
einθ

=
(
1− M

N+1

)
DM + M

N+1
KM−1.

Since
∥∥ M

N+1
KM−1

∥∥
1

= M
N+1

, it follows that

‖sMKN‖1 =
∥∥(

1− M
N+1

)
DM

∥∥
1

+O(1) = 4π−2
(
1− M

N+1

)
log M +O(1).
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A choice of M as the integer closest to (N + 1)/ logN provides a lower bound for
‖KN‖ as

4π−2 log N − 1

log N
log

N + 1

log N
+O(1) = 4π−2 log N −O(log log N).

The proof is complete.

This last proposition provides us with explicit functions to describe the dis-
tance from L1

b to L1 using the natural identity as embedding. Writing dN =
sup{‖p‖/‖p‖1 ; p polynomial of degree N} we find from the proposition and its im-
mediately preceding displayed formula, that for suitable constants c2 > c1 > 0

c1 log(N + 1) 6 dN 6 c2 log(N + 1).

This quantifies the last proposition in section 1.

3. The analytic spaces.

When considering norm-bounded partial sums inside the Hardy space H1, the
added analyticity and its consequences causes the previous results for L1

b to have
counterparts of a more elusive character. They simply need stronger methods than
do L1

b or L1
b0. It is at this point also worthwhile to recall the set inclusion H1

b0 ⊇
∪p>1H

p from the first section.

Lemma 3.1. Let {an}
N+1
n=0 be a positive and convex sequence with the added prop-

erty that aN+1 = 0 < aN . The analytic polynomial A(z) =
∑N

n=0 anzn has an
expansion

2A(eiθ) = a0 +

N−1∑

n=0

(n + 1)∆2anKn(θ) + (N + 1)aNKN (θ)

+ i
N−1∑

n=1

(n + 1)∆2anK̃n(θ) + i(N + 1)aNK̃N (θ).

In particular, Re A(eiθ) > 0 and sign(θ) ImA(eiθ) > 0 for all |θ| 6 π.

Proof. Starting from A(eiθ) = 1
2
a0 + 1

2
a0 +

∑N+1
n=1 an cos nθ+ i

∑N+1
n=1 an sin nθ, two

repeated summations by parts give the claimed expansion, just bearing in mind
that AN+1 = 0 yields ∆aN = aN . Due to Kn > 0 and sign(θ)K̃n(θ) > 0 for all
n > 0, the claimed inequalities follow from ∆2an > 0, which is due to the convexity.

Proposition 3.2.

i)
∥∥1 + N

N+1
z + N−1

N+1
z2 + · · ·+ 1

N+1
zN

∥∥
1

= 2π−1 log(N + 1) +O(1).

ii) The function AN (z) = 1+2z+3z2 + · · ·+NzN−1 +(N−1)zN + · · ·+z2N−2

has the properties that ‖AN‖1 = N and ‖sMAN‖1 = 2π−1M log M +O(1)
for all 0 < M 6 N − 1. In particular, these M give

‖sMAN‖1
‖AN‖1

= 2π−1 M

N
log M +O(1) and

‖AN‖

‖AN‖1
= 2π−1 log N +O(1).



12 MATS ERIK ANDERSSON

Proof. The Lemma can be applied with an = 1− n
N+1 , 0 6 n 6 N + 1, and gives

1 + N
N+1

eiθ + N−1
N+1

e2iθ + · · ·+ 1
N+1

eiNθ = 1
2
a0 + 1

2
KN (θ) + i

2
K̃N (θ).

Since D̃∗
n(θ) = D̃n(θ)− sinnθ, has sign · D̃∗

n > 0 and ‖D̃∗
N‖1 = 2π−1 log n + O(1),

the representation

K̃n = 1
n+1

n∑

ν=1

D̃n = 1
n+1

n∑

ν=1

D̃∗
n +O(1)

shows that

‖K̃n‖1 = 2π−1 1
n+1

n∑

ν=1

log n +O(1) = 2π−1 log n!1/n+1 +O(1)

= 2π−1 log n +O(1).

Due to ‖Kn‖1 = 1 the first claim follows.
Observing ei(1−N)θAN (eiθ) = NKN−1(θ) we deduce ‖AN‖1 = N . Furthermore,

we see that for 0 < M 6 N − 1

eiMθsMAN (e−iθ) = (M + 1) + Meiθ + · · ·+ eiMθ,

whence an application of i) verifies the norm

‖sMAN‖1 = 2π−1M log M +O(M).

We need to consider also N −1 6 M 6 2N−3 in order to decide on ‖AN‖, since
s2N−2AN = AN . For such M a little reflection on the different partial sums shows
that ‖sMAN‖1 = ‖AN−s2N−3−MAN‖1, which essentially recovers the partial sums
already calculated in norm. We may therefore deduce

‖AN‖

‖AN‖1
= max

16M<N

‖sMAN‖1
‖AN‖1

+O(1) = 2π−1 log N +O(1)

and the claim has been demonstrated.

In the first section the classical construction of elements in L1
b based on convex

sequences was discussed. There is also a counterpart for the analytic spaces, whose
at first surprising strength is due to the extra demands posed by analyticity.

Proposition 3.3. Let an decrease to zero and consider f(z) =
∑∞

n=0 anzn, a func-
tion analytic in the interior of the unit disk. The following properties occur or fail
simultaneously.

(1) f ∈ H1
b0,

(2) f ∈ H1,

(3) Im f(eiθ) =
∑

n>1 an sin nθ ∈ L1,

(4)
∑

n>2 ∆an log n < ∞, and

(5)
∑

n>1 n−1an < ∞.
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Proof. (1)⇒(2)⇒(3) is obvious. Assume therefore Im f ∈ L1. We aim at proving
Re f , Im f ∈ L1

b0 from this assumption.
According to Zygmund [Z], Theorem V:1.14, an ↘ 0 makes Im f ∈ L1 equivalent

to
∑

∆aN log n < ∞ and in case of their truth, even ‖ Im f − sN Im f‖1 → 0. In
particular, (3)⇔(4) and their validity implies Im f ∈ L1

b0.
Furthermore, the argument after formula [Z], V:(1.16), gives property (5) as

equivalent to (4), given the present decreasing sequence. In the proof of that equi-
valence, it was remarked that an log n → 0 is a consequence.

A summation by parts argument provides 2sN Re f = a0 +
∑N−1

n=0 ∆anDn +
aNDN , from which the expression

Re f − sN Re f = − 1
2aNDN + 1

2

∞∑

n=N

∆anDn

is useful to us. Taking norms we find

‖Re f − sN Re f‖1 6 C

{
aN log N +

∞∑

n=N

∆an log n

}
→ 0 as N →∞.

Hence first Re f ∈ L1
b0 and then f ∈ L1

b0 follow. This shows that the only remaining
implication (3)⇒(1) holds true.

Remark. Re f is always continuous on T \ {0} and has a generalised Riemann inte-
gral on T; cf. [Z], V:1.8, yielding this from the assumption an ↘ 0 only. Conse-
quently, Re f(eiθ)dθ is a Radon measure on T, but not necessarily a measure in
Lebesgue’s sense. This influences H1

b only indirectly, since Im f determines the
membership f ∈ H1

b .
The same construction as above can be modified to produce a class of elements

in H1
b as follows. The preceding Proposition shows that the condition cannot be

relaxed unless substantially altered in character.

Proposition 3.4. Let the real number α and the sequence {an}
∞
n=0 ⊂ C be such

that an → 0 and
∑∞

n=2 |an − eiαan+1| logn < ∞. Then
∑∞

n=0 anzn ∈ H1
b0.

Proof. The general case can be reduced in the following manner. Write bn = einαan.
Then

∑
|bn − bn+1| log n =

∑
|an − eiαan+1| logn, so the simple identity

∑
anzn =

∑
bnwn

∣∣∣
w=e−iα

reduces general α to the case of α = 0.
Take now the stated conditions on {an}∞0 for α = 0. In particular,

∑∞
n=3 |∆an| 6∑

|∆an| log n < ∞, whence aN =
∑∞

n=N ∆an for all N . Multiplying we get
aN log N =

∑∞
N ∆an log N , from which follows

|aN | log N 6

∞∑

n=N

|∆an| logn → 0 as N →∞.

Next a summation by parts yields

N∑

n=1

2an sin nθ =

N−1∑

n=1

∆anD̃n(θ) + aND̃N (θ),

∞∑

n=1

2an sin nθ =

∞∑

n=1

∆anD̃n(θ),



14 MATS ERIK ANDERSSON

the latter equality being momentarily understood pointwise. In L1-norm as N →∞

∥∥∥
∑∞

n=N+1
an sin nθ

∥∥∥
1

6 1
2 |aN |

∥∥D̃N

∥∥
1

+ 1
2

∑∞

n=N
|∆an|

∥∥D̃n

∥∥
1

6 C
{
|aN | log N +

∑∞

n=N
|∆an| log N

}
→ 0

Consequently
∑∞

n=1 an sin nθ ∈ L1
b0. Furthermore, a similar argument based on

a0 +
N∑

n=0

2an cos nθ =
N−1∑

n=0

∆anDn(θ) + aNDN (θ)

provides
∑∞

n=0 an cos nθ ∈ L1
b0, adding up to the conclusion

∑∞
n=0 anzn ∈ H1

b0.

We need also to understand how certain elementary multiplication operators
behave on H1

b , the main reason being a desire to understand how coefficient shifts
affect the norm.

Proposition 3.5. Consider f ∈ H1
b and n > 0. Then ‖znf‖ = ‖f‖ always,

whereas ‖zf‖ 6 ‖f‖ and ‖znf‖ 6 2‖f‖. In addition, ‖f‖ = |f̂(0)| = |f(0)| if and
only if f is constant.

Remark. Observe that in general znf(z) ∈ L1
b when f ∈ H1

b . It will be seen in
the next sextion that the uniform boundedness for these multiplication operators
is particular to the subspace H1

b of L1
b , it breaks down for L1

b0.

Proof. Since sN (znf) = znsN−nf for N > n, while = 0 otherwise, it is obvious
that ‖znf‖ = supM>0 ‖sMf‖1 = ‖f‖.

Furthermore, sN (zf) = zsN+1f , for N > 1. An earlier lemma, telling that only
partial sums with N > 1 are needed, then demonstrates

‖zf‖ = sup
n>1

‖sN (zf)‖1 = sup
N>2

‖sNf‖1 6 ‖f‖.

On the other hand, n > 2 and f ∈ H1
b give znf(z) = a0z

n+· · ·+an+an+1z+. . . ,
whence

sN (znf) =

{
znsn+Nf if N > n,

zn (sn+Nf − sn−N−1f) if 0 6 N < n.

Hence ‖sN (znf)‖1 6 2‖f‖ for each N , and ‖znf‖ 6 2‖f‖ follows.
Finally, since every function in the Nevanlinna class N which has a positive

boundary function, must in fact be constant and since H1
b ⊆ N , we observe that

M+
b ∩ N consists of positive constant functions alone. The Proposition that char-

acterised the property ‖µ‖ = ‖s0µ‖1 in Mb, now proves the claim as to when

‖f‖ = |f̂(0)| takes place inside H1
b .

Example. Considerations of k(z) = 1 + 2z + z2 gives an obvious case when ‖k‖ =
‖s1‖1 > supN 6=1 ‖sNk‖1 = 2 = ‖z k(z)‖, and hence an example that zf can have

smaller norm than f ∈ H1
b .

Now we are ready to derive a counterpart of Salem–Zygmund’s Theorem that is
able to capture more of the properties intrinsic to H1

b . The result will be useful in
showing that the Hardy space H1 is strictly larger that H1

b .
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Proposition 3.6. Let f(z) =
∑∞

n=0 anzn be a function in H1
b . Then for N, M > 0

the inequality ∥∥∥∥
∑N

n=0
aM+nzn

∥∥∥∥
1

6 2
∥∥f

∥∥

obtains. In particular, all of the functions
∑∞

n=0 aM+nzn,
∑N

n=0 aM+nzn, and∑N
n=0 aM−nzn in H1

b , have norms not exceeding 2 ‖f‖. For the latter expression
0 6 N 6 M is assumed.

Proof. sM+Nf − sM−1f =
∑N

n=0 aM+nzn+M ensures the inequality

∥∥∥∥
∑N

n=0
aM+nzn

∥∥∥∥
1

= ‖sM+Nf − sM−1f‖1 6 2 ‖f‖.

This holds true for all N, M > 0.
For each of the three functions in the second part of the statement, every partial

sum has L1-norm at most 2 ‖f‖ by the first claim. It follows that their norms in
H1

b are at most the stated quantity.

Theorem 3.7. For every function f(z) =
∑∞

n=0 anzn in H1
b , the following two

inequalities hold for every M > 0.

∞∑

n=0

|aM+n|

n + 1
6 2π ‖f‖ and

M∑

n=0

|aM−n|

n + 1
6 2π ‖f‖.

Proof. Hardy’s inequality
∑∞

n=0
|bn|
n+1

6 π
∥∥∑∞

n=0 bnzn
∥∥

1
can be applied to the norm

estimates from the previous Proposition:

∥∥∥∥∥
∞∑

n=0

aM+nzn

∥∥∥∥∥
1

6 2 ‖f‖ and

∥∥∥∥∥
M∑

n=0

aM−nzn

∥∥∥∥∥
1

6 2 ‖f‖.

The claimed inequalities are results of this application.

For convenience, let us introduce an analytic variant of the Fejér kernel.

FN (z) =

2N∑

n=0

(
1− |n−N|

N+1

)
zn.

Somewhat abusively one can formally write this as FN (z) = zNKN (z). Obviously
‖FN‖1 = 1 for all N .

Corollary 3.8. H1 ) H1
b .

Proof. We first fix a sequence {ak}∞k=0 according to ak > 0,
∑∞

k=0 ak = 1, and
study the function

f(z) =
∑∞

k=0
akFNk

(z),

where the integers Nk increase without bound. We readily observe

‖f‖1 6
∑∞

k=0
ak‖FNk

‖1 =
∑∞

k=0
ak = 1,
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whence in particular f ∈ H1. Every Taylor coefficient of f is easily seen to be
positive; write f(z) =

∑
bnzn. From each FNk

we get a contribution

∞∑

n=0

bNk+n

n + 1
> ak

Nk∑

n=0

1

n + 1

(
1−

n

Nk + 1

)

= ak

{
Nk∑

n=0

1

n + 1
−

1

Nk + 1

Nk∑

n=0

n

n + 1

}

= ak {log Nk +O(1)} .

By the preceding Theorem we conclude that ‖f‖ > Cak log Nk +O(1) for every k.
A choice of increase for {Nk}∞0 rapid enough, more specifically ak log Nk → ∞,
shows that the function f can be made to satisfy f ∈ H1 \H1

b .

Lemma 3.9. Consider complex numbers ak such that
∑
|ak| < ∞, and also nat-

ural numbers Nk, Mk with the property Mk + 2Nk + 1 6 Mk+1. Write f(z) =∑∞
k=0 akzMkFNk

(z). Then f ∈ H1. Furthermore, f ∈ H1
b ⇔ sup |ak| logNk < ∞

and f ∈ H1
b0 ⇔ |ak| logNk → 0 as k →∞.

Proof. Since ‖FN‖1 = 1, ‖f‖1 6
∑
|ak| < ∞ shows f ∈ H1.

The demand on Mk +2Nk +1 6 Mk+1 ensures that at most one of the members
akzMkFNk

(z) gives a contribution to particular Taylor coefficient. In particular,
any index N such that Ml−1 + 2Nl−1 + 1 6 N < Ml gives

f(z)− sNf(z) =
∑∞

k=l
akzMkFNk

(z),

and ‖f − sNf‖1 = O
(∑∞

k=l |ak|
)

follows for these special values of N .
Should on the other hand Ml 6 N < Ml + 2Nl + 1 be the case, then f − sNFf

would coincide with

alz
Ml {FNl

(z)− sN−Ml
FNl

(z)}+
∑∞

k=l+1
akzMkFNk

(z)

and for this case emerges

‖f − sNf‖1 = |al|
∥∥FNl

− sN−Ml
f
∥∥

1
+O

( ∑∞

k=l+1
|ak|

)
.

From earlier computation we know

max
06n6M

‖FM − snFM‖1 = 2π−1 log M +O(1),

whence we may for f deduce the property

sup
N>Ml

‖f − sNf‖1 = sup
k>l

2π−1|ak| logNk + o(1).

Immediately we get f ∈ H1
b0 if and only if |ak| log Nk → 0. Using the triangle

inequality
∣∣ ‖f‖1 − ‖sNf‖1

∣∣ 6 ‖f − sNf‖1, it is a simple matter to verify the

membership f ∈ H1
b as claimed.
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Now we are in a position give the last example to prove that all the five spaces
studied in this text are indeed distinct spaces.

Proposition 3.10. H1
b \H1

b0 6= ∅.

Proof. Choose in the previous Lemma the indices Nk according to |ak| log Nk → 1.
The function so constructed belongs to H1

b , but ‖f − snj
f‖1 → 2π−1 for a suitable

integer sequence nj tending to infinity. It follows that f /∈ H1
b0.

A surely well-known corollary, to which I was unable to find a reference, follows
immediately from this example.

Corollary 3.11. The partial sums of a function in H1 need not converge to the
function itself in norm.

Proof. Any function in H1 \H1
b0 ⊃ H1

b \H1
b0 6= ∅ makes a good counter example.

Remark. We see that, not even the stronger demand that the partial sums be
bounded suffices to get convergence in L1-norm.

Observation 3.12. L1
b \ ∪c∈C

(
c` + L1

b0

)
6= ∅, that is dim L1

b/L1
b0 > 2.

This was claimed in the first section and can now be seen as follows. Take any
c ∈ C and construct any f as in the last Lemma above. Then

(f − c`)− sMk−1(f − c`) =
∑

j>k

ajz
Mj FNj

(z) + c(sMk−1`− `).

The series converges to zero in L1, whence

lim sup
N→∞

∥∥(f − c`)− sN (f − c`)
∥∥

1
> |c| lim

N→∞
‖sn`− `‖1 = 4π−2|c|.

Consequently the membership f − c` ∈ L1
b0 implies c = 0 and f ∈ L1

b0. A choice of
indices Mk and Nk such that f ∈ L1

b \ L1
b0 is thus sufficient to produce the desired

example to the effect that L1
b is large enough.

Observation 3.13. The Taylor coefficients of a function in H1
b0 can tend to zero

arbitrarily slowly.

Take δn ↘ 0 arbitrary and consider a fixed positive decreasing sequence {ak}∞k=0

such that
∑

ak = 1. Take Nk = 1 for all k and determine the integers Mk according
to i) M0 = 0, ii) Mk+1 > Mk + 3, and iii) δ−1

k aMk
→∞.

Write f(z) =
∑∞

k=0 akzMkF1(z). The last Lemma shows that f ∈ H1
b0. Since

Mn > 3n > n, the limiting behaviour δk
−1f̂(Mk + 1) = δk

−1aMk
→∞ shows that

the Taylor coefficients of f tend to zero at a slower rate than δk does.

Of course the statement can be interpreted in L1
b0 also, saying that the Fourier

coefficients can have arbitrarily slow decay.

4. Behaviour under harmonic conjugation.

Having found that the introduced spaces are distinct from L1 as well as H1, one
should wonder how L1

b and L1
b0 behave with respect to harmonic conjugation. It

turns out that neither space is closed in this sense. As a consequence, neither L1
b

nor L1
b0 has a bounded projection onto H1.

Recall the classical result that
∑

n>2
2 sin nθ
log n

is not a Fourier–Stieltjes series,

cf. [Z], page 186, and that this is the formal Fourier series conjugate to `(θ) =∑
n>2

2 cos nθ
log n

in L1
b . We deduce a first negative property.
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Observation 4.1. L1
b is not closed with respect to harmonic conjugation. More

specifically, the harmonic conjugates need not even be integrable.

Recall at this point a result from the preceding section. Denote the multiplication
operator f(θ) 7→ eiθf(θ) by Tz. Itself and all powers T n

z , n ∈ Z, are well defined
in Mb. In fact, for each k ∈ Z, |µ̂(k)| 6 ‖µ‖1 6 ‖µ‖ so

‖sN Tn
z µ‖1 6 ‖sN+|n|f‖1 +

N+|n|∑

k=N+1

max
(
|µ̂(k)|, |µ̂(−k)|

)
6

(
|n|+ 1

)
‖µ‖,

which is ‖T n
z ‖Mb→Mb

6 |n|+1. In comparison, we know that ‖T n
z ‖H1

b
→L1

b
6 2 for

all n.
Since L1

b0 is a homogeneous space where the partial summation operators are
uniformly bounded, the uniform boundedness of T n

z on L1
b0 is equivalent to bound-

edness of the conjugation operator.

Proposition. If some projection L1
b0 → H1

b0 is bounded, then also the natural
projection

∑∞
n=−∞ aneinθ 7→

∑∞
n=0 anzn is bounded L1

b0 → H1
b0.

Proof (Rudin’s proof of Newman’s theorem; cf. [Ho]).
Suppose P : L1

b0 → H1
b0 is bounded and the restriction of P to H1

b0 is the
identity. Both L1

b0 and H1
b0 being homogeneous spaces, the mapping described by

P̃ f =
∫ π

−π
[Pfθ]−θ dθ/2π is well-defined and continuous L1

b0 → H1
b0. In addition,

‖P̃‖ 6 ‖P‖. Here the translation invariance ‖fθ‖ = ‖f‖ and the continuity θ → fθ

entered.
For n > 0 we have

[
P [einx]θ

]
−θ

=
[
e−inθPeinx

]
−θ

= e−inθein(x+θ) = einx, while

n < 0 gives Peinx = a0 + a1e
ix + a2e

2ix + · · · ∈ H1
b0 and hence

[
P (einx)θ

]
−θ

= a0e
−inθ + a1e

−i(n−1)θ + a2e
−i(n−2)θ + . . . .

All the multiples of θ are here non-zero, whence we conclude

P̃ einx =

{
einx, n > 0,

0, n < 0.

This shows that P̃ is the natural projection, and its boundedness is contained in
‖P̃‖ 6 ‖P‖ < ∞.

Corollary 4.3. If any projection L1
b0 → H1 is bounded, the same holds for the

natural projection.

The proof is identical, since H1 is a homogeneous space in its own norm.

Proposition 4.4. Not all conjugate functions of elements in L1
b0 are members

of L1.

Proof. The sequence {an = (log n log log n)−1}∞n=3 is positive, decreasing and con-
vex. Since an log n → 0 as n →∞, the function f(θ) =

∑
|n|>3 a|n|e

inθ is member

of L1
b0.

The conjugation operator is of weak (1, 1)-type, so the analytic function F (z) =∑
n>3 anzn is an element in ∪p<1H

p. However, according to Hardy’s inequality,

F does not belong to H1, to wit we have
∑

n>3 n−1an =
∑

n>3(n logn log log n)−1

diverging to infinity. It follows that the harmonic conjugate f̃ of f is not integrable.
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Corollary 4.5. supn∈Z ‖T n
z ‖L1

b0
→L1

b0
= ∞.

Proof. L1
b0 is a homogeneous space that has norm convergence of the partial sums

for each function in the space. Were in fact the supremum finite, then [K], Theorem
II:1.4, would demonstrate the closedness of L1

b0 under conjugation. This is not the
case by the last proposition, so the claim follows.

Corollary 4.6. There are no bounded projections from L1
b0 into either H1, H1

b ,
or H1

b0.

Proof. For H1 and H1
b0 the conclusion follows immediately from the last few results.

On the other hand we readily see

‖Pf‖H1 6 ‖Pf‖H1

b
6 ‖P‖L1

b0
→H1

b
‖f‖L1

b0
,

that is to say ‖P‖L1

b0
→H1 6 ‖P‖L1

b0
→H1

b
. Consequently, any bounded projection

L1
b0 → H1

b is simultaneously bounded L1
b0 → H1. We already showed that no

projection of the latter kind exists.

To round off we may also deduce that L1
b0 is fairly large.

Observation 4.7. L1
b0 )

⋃
p>1 Lp.

The simple reason is that each Lp with p > 1 is invariant with respect to harmonic
conjugation.
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