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NORM-BOUNDED PARTIAL SUMS II
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Utkast av den 21 september i n̊adens år 1999.
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An investigation on consequences of norm-boundedness for partial sums

is continued. This time the richness in structure of L
1

b
in relation to L

1

b0
is made

apparent. Next, a rudimentary theory for the dual spaces is initiated. In particu-

lar, L
1

b0

∗ and H
1

b0

∗ can be realised as convolution algebras consisting of functions

integrable to any finite order on the unit circle.

Contents

5. Structural properties of L1
b .

6. The space dual to L1
b0.

7. Relations to other norms.
8. The remaining dual spaces.

This report is a direct continuation of a previous presentation with similar
aims [An]. References will be made at will to that paper and the numbering of
results will be continued here. Rather few steps will be taken to recollect the
material from the preceding report.

5. Structural properties of L1
b .

The interrelation between L1
b and L1

b0 can be understood from the general theory
of Segal algebras.

Definition. Given a commutative Banach algebra (A, ‖ ‖A), a subalgebra B ⊆ A
is an A-Segal algebra provided (i) the natural injection of B into A as well as
multiplication from A × B to B are continuous mappings, and (ii) B is a dense
ideal of A and is also a Banach algebra in its own norm ‖ ‖B .

The relative completion of B with respect to A is defined to be the space and
norm

B̃A =
⋃

r>0

SB(r)
A
, ||| f ||| = inf {r ; f ∈ SB(r)

A}.

Here E
A

denotes completion in A-norm and SB(r) = {f ∈ B ; ‖f‖B 6 r} is a
closed ball.
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2 MATS ERIK ANDERSSON

It was established by Burnham [B] that in case A has bounded approximate

units, then B̃A is in its turn an A-Segal algebra. In our case it turns out that L1
b

is the relative completion of L1
b0 with respect to L1 and the new norm agrees with

the one we use on L1
b0. These two spaces were briefly mentioned as examples in [B]

and [Wa].
It is a consequence of general results, see [B], Corollary 15, and the Module

factorisation theorem of Hewitt, that L1 ∗ L1
b = L1

b0. Even in our special case,
the general methods of Burnham give useful information on the position of L1

b0

inside L1
b . Specifically, L1

b is the unique, largest ideal of L1, wherein L1
b0 becomes a

closed ideal.
Now it is even possible to identify L1 ∗ Mb with almost no additional effort.

For integrable functions f ∈ L1 we consider the approximation number EN (f) =
inf ‖f −pn‖1, where infimum is taken over all polynomials pN of degree at most N .
It is a standard fact that EN (f) = o(1).

Theorem 5.1. L1 ∗Mb = L1
b0.

Proof. Let f ∈ L1 and µ ∈ Mb. For each polynomial pN of degree at most N an
identity obtains:

f ∗ µ− sN(f ∗ µ) = (f − pN ) ∗ (µ− sNµ).

It follows that

‖f ∗ µ− sN (f ∗ µ)‖1 6 EN (f) ‖µ− sNµ‖1 6 2 ‖µ‖EN (f),

which is o(1) as N →∞. Consequently f ∗ µ ∈ L1
b0 and then L1 ∗Mb ⊆ L1

b0. The
set equality follows from the known identity L1 ∗ L1

b = L1
b0.

It is rewarding to express the construction of the space Mb in a form displaying
the connection to approximation numbers. For µ ∈M(T) we extend the notion of
approximation numbers beyond L1 simply by denoting EN (µ) = inf ‖µ− pN dm‖1.
It is clear that EN (µ) is decreasing to the limit ‖µs‖1, where µs is the singular
part of µ. In particular, the property µ ∈Mb ∩Ms(T) holds true when ‖µ− sNµ‖1
and EN (µ) both are of order O(1). In a sense this means that the particular
approximation sNµ is close to being optimal among all polynomials of this degree.

Proposition 5.2. Let {an}∞n=−∞ be even and convex on [0,∞[, with a|n| → 0.
For each µ ∈M(T) two characterisations appear:

i) µ ∗ a ∈ L1
b ⇔ µ ∗ a ∈Mb ⇔ aN ‖sNµ‖1 = O(1),

ii) µ ∗ a ∈ L1
b0 ⇔ aN ‖sNµ‖1 = o(1),

where a is the L1-function a(θ) =
∑∞

n=−∞ ane
inθ.

Proof. It is well known that a =
∑∞

n=0 bnKn, sNa = aN DN +
∑N−1
n=0 bnKn, and

sNa− a = aN DN −
∑∞

n=N bnKn. Here bn > 0 and
∑∞

n=0 bn = a0.
Convolving with µ we have the representations

sN (µ ∗ a) = aN sNµ+

N−1∑

n=0

bnKn ∗µ, sN(µ ∗ a)−µ ∗ a = aN sNµ−
∞∑

n=N

bnKn ∗µ.
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One observes two variation bounds: ‖∑N−1
n=0 bnKn ∗ µ‖1 6 ‖µ‖1

∑
bn = a0 ‖µ‖1,

uniformly in N , and ‖∑∞
N bnKn ∗ µ‖1 6 ‖µ‖1

∑∞
n=N bn → 0 as N →∞. Hence

‖sN (µ ∗ a)‖1 = aN ‖sNµ‖1 +O(1), ‖sN (µ ∗ a)− µ ∗ a ‖1 = aN ‖sNµ‖1 + o(1).

All claims follow from these when one takes into account that trivially a ∈ L1

provides µ ∗ a ∈ L1.

From the proof we note a useful result for future reference.

Observation 5.3. With assumptions as in Proposition 5.2,

‖sN (µ ∗ a)‖1 = aN ‖sNµ‖1 +O(1) and ‖sN (µ ∗ a)−µ ∗ a ‖1 = aN‖sNµ‖1 + o(1).

Recall next the special element `(θ) =
∑

n>2(log n)−1 cosnx in L1
b \ L1

b0.

Corollary 5.4. For each Riesz product ν, parameters satisfying
∑k

j=1 |aj | = o(k),

the membership ν ∗ ` ∈ L1
b0 obtains. In particular, any Riesz product in M0(T)

enjoys this property.

Proof. Weiss’ theorem [We] yields for the Riesz product ν =
∏∞
j=1(1 + aj cosnjθ)

the inequality

‖sNν‖1 6 C|ak|
(
|a1|+ · · ·+ |ak|

)
, Nk 6 N < Nk+1, Nk = n1 + · · ·+ nk.

The lacunarity produces Nk > n1(1 + ρ + · · · + ρk−1) and hence k 6 C logNk.
It follows that ‖sNν‖1 = C|ak| o(logN) for N in [Nk, Nk+1[. By the previous
proposition the convolution ν ∗ ` is an element of L1

b0. It is obvious that M0(T) is
a sufficient assumption.

A small digression from the main subject is motivated at this point, since it illus-
trates the optimality of Helson’s theorem and hence relates to the present material.

Proposition. Let ρ be a positive, unbounded, and increasing function on N. Then

there is a probability measure ν such that ν̂(n) = 1/2 for infinitely many n, yet

‖sNν‖1 6 ρ(N) from some point N > N1 onwards.

Proof. Let A be the positive constant such that Weiss’ theorem ensures ‖sNν‖1 6

A |ak|
(
|a1|+ · · ·+ |ak|

)
when Nk 6 N < Nk+1; see the preceding proof for notation.

Define n′k = min{n > 1 ; ρ(n) > Ak} and choose n1 = n′1, nk = max{3nk−1, n
′
k}

for k > 2. We claim that the Riesz product based on {nk} and ak ≡ 1 has the
desired property. Since nk > 3nk−1, the classical construction as well as Weiss’
theorem apply. According to the latter we have for Nk 6 N < Nk+1

‖sNν‖1 6 Ak 6 ρ(nk) 6 ρ(Nk) 6 ρ(N).

This is the claim for N > N1 = n1, once we observe ν̂(nk) = 1/2 for all k.

As mentioned above, this demonstrates that Helson’s theorem is sharp with
respect to the assumption ‖snµ‖1 = O(1) producing µ ∈M0(T).

Closely related to absorption properties of the function `, in the sense of col-
lapsing measures into elements of L1

b0 via convolution, is the space M` of measures
displayed in the next result.
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Theorem 5.5. M` = {µ ∈ M(T) ; ‖sNµ‖1 = o(logN)} is a closed subspace of

M(T) as well as an ideal. Equivalently, M` = {µ ∈M(T) ; µ∗ ` ∈ L1
b0}. This space

of measures has the property Mac(T) ⊂M` ⊆Mc(T).

Proof. The two descriptions of M` as a set are identical by Proposition 5.2. Con-
volution with ` is a continuous mapping from M(T) to L1

b . Since M` is the inverse
image of the closed subspace L1

b0 of L1
b under this mapping, the closedness of M`

in M(T) follows immediately.

Furthermore, µ ∈ M` and ν ∈ M(T) imply ‖sN (µ ∗ ν)‖1 6 ‖sNµ‖1‖ν‖1 =
o(logN), whence M` becomes an ideal.

The subsequent Lemma 5.6, fully independent of the present proof, shows that
every µ ∈ M` is void of discrete part, that is M` ⊆ Mc(T). Finally, ` ∗ L1 ⊆
L1
b ∗ L1 = L1

b0 demonstrates L1 ∼= Mac(T) ⊂M`.

Remark. Naturally one can prove closedness directly from only the assumption
‖sNµn‖1 = o(logN) for each term in an absolutely convergent series

∑
µn, without

any reference to either L1
b0 or L1

b whatsoever. By Corollary 5.4 M` is easily seen to
contain elements which are not in M0(T).

To be able to construct some subspaces of L1
b the next result is instrumental.

Lemma 5.6. Let µ ∈M(T) and denote its discrete part by µd. Then holds

lim inf
N→∞

‖sNµ‖1
logN

>
4

π2
‖µd‖1.

Proof. Take an ε > 0 less that ‖µd‖1. There is a finite set E ⊆ T such that
‖µd−µε‖1 < ε, so in particular ‖µε‖1 > ‖µd‖1− ε. Here the measure µε is defined
by µε(G) = µd(G ∩E).

Since E is finite, there is a symmetric interval J ⊆ T around zero such that
(i) x + 2J are disjoint for x ∈ E and (ii) |µ− µε|(E + 2J) < ε. Write V = E + J
and U = E + 2J . Finally, there is Nε such that N > Nε implies

∫
T\J

|DN | dm <

ε ‖DN‖1.
Denote Dε

N = DN χJ , which for N > Nε provides (1 − ε)‖DN‖1 < ‖Dε
N‖1 <

‖DN‖1. The convolution product µε ∗Dε
N (θ) =

∑
x∈E µ({x})Dε

N (θ− x) has terms
of disjoint support, whence ‖µε ∗Dε

N‖1 = ‖µε‖1 ‖Dε
N‖1.

For any ν ∈M(T) one has an estimate

∫

V

|ν ∗Dε
N (θ)| dm(θ) 6

∑

x∈E

∫

x+J

∫

θ+J

|DN (θ − t)| d|ν|(t)dm(θ)

=
∑

x∈E

∫

J

∫

x+θ+J

|DN (x+ θ − t)| d|ν|(t)dm(θ)

6
∑

x∈E

∫

J

∫

x+2J

|DN (x+ θ − t)| d|ν|(t)dm(θ)

=
∑

x∈E

∫

x+2J

∫

J

|DN (x+ θ − t)| dm(θ)d|ν|(t)

6 ‖DN‖1 |ν|(U).



NORM-BOUNDED PARTIAL SUMS II 5

In particular,
∣∣ ‖χV ·µ∗Dε

N‖1−‖χV ·µε ∗Dε
N‖1

∣∣ 6 ‖DN‖1 |µ−µε|(U) < ε ‖DN‖1,
which is used presently. These facts taken together say that for N > Nε one has

‖µ ∗DN‖1 > ‖µ ∗Dε
N‖1 − ε ‖DN‖1 ‖µ‖1

> ‖χV · µ ∗Dε
N‖1 − ε ‖DN‖1 ‖µ‖1

> ‖χV · µε ∗Dε
N‖1 − ε ‖DN‖1 − ε ‖DN‖1 ‖µ‖1

= ‖µε‖1 ‖DN‖1 − ε ‖DN‖1(1 + ‖µ‖1).

Here the last equality is due to χV · µε ∗Dε
N = µε ∗Dε

N . Consequently

lim inf
N→∞

‖µ ∗DN‖1
‖DN‖1

>
(
‖µd‖1 − ε

)
− ε(1 + ‖µ‖1).

The freedom in choosing ε demonstrates that the limit inferior cannot fall below
the value ‖µd‖1, which is exactly the claimed statement.

With only slightly different techniques it is possible to prove that for discrete
measures the statement above is true with the full limit replacing limes inferior.
The routine demonstration is left for the reader to fill in.

Lemma 5.7. Let µ ∈Md(T). Then lim
N→∞

‖sNµ‖1
logN

=
4

π2
‖µd‖1.

Now we are in a position to produce a varied selection of subspaces inside L1
b , as

well as strictly between L1
b and L1

b0. The result may be considered as an explicit
version of Burnham’s general observation [B], Theorem 13.

Proposition 5.8. Let N be a closed subalgebra of Md(T) with variation norm.

Then {µ ∗ ` ; µ ∈ N} is a closed subspace of L1
b and {µ ∗ ` + f ; µ ∈ N , f ∈ L1

b0}
is an ideal of L1 and Mb, closed in the norm of the latter and intermediate to L1

b0

and L1
b.

Proof. Assume that
∑∞

n=1 ‖µn ∗ `+ fn‖ <∞ with µn ∈ N and fn ∈ L1
b0. For each

n > 1, since sNfn → fn in L1, Lemma 5.7 and Proposition 5.2 show that

‖µn‖1 = lim
N→∞

π2

4
‖sN (µn ∗ `+ fn)− µn ∗ `− fn‖1

6
π2

2 ‖µn ∗ `+ fn‖.

It now follows that

∞∑

n=1

‖µn‖1 6
π2

2

∞∑

n=1

‖µn ∗ `+ fn‖ <∞

and hence µ =
∑
µn converges in N . Next,

‖fn‖ 6 ‖µn ∗ `+ fn‖+ ‖µn ∗ `‖ 6 ‖µn ∗ `+ fn‖+ ‖µn‖1 ‖`‖
6
(
1 + π2

2
‖`‖
)
‖µn ∗ `+ fn‖,

from which f =
∑
fn converges absolutely in L1

b0. These two convergence results
taken together demonstrate that

µ ∗ `+ f =
∞∑

n=1

[
µn ∗ `+ fn

]



6 MATS ERIK ANDERSSON

converges in L1
b . It follows that the two kinds of subspaces considered indeed are

closed.
The second space is an ideal in L1 due to a simple inclusion calculation:

L1 ∗ (µ ∗ `+ f) ⊆ µ ∗ L1
b0 + L1

b0 ⊆ L1
b0.

Finally, Theorem 5.1 gives Mb ∗ (µ ∗ `+ f) ⊆ L1
b0 making the algebra an ideal also

in Mb.

Theorem 5.9. The closed ideal {µ∗`+f ; µ ∈Md(T), f ∈ L1
b0} is strictly smaller

than L1
b.

Remark. Of course this is the least translation invariant ideal of L1
b containing L1

b0

and `. The only translation invariant spaces produced by Proposition 5.8 appears
for N = Md(T) and ∅.
Proof. Consider with the aid of Lemma 3.9 the element g =

∑∞
k=0 akz

MkFNk
in

H1
b \H1

b0 ⊂ L1
b . We intend to show that g = µ ∗ `+ f for µ ∈ Md(T) and f ∈ L1

b0

is an impossibility.
Assuming the contrapositive, we observe

‖g − µ ∗ `− sN (g − µ ∗ `)‖ = ‖f − sNf‖ → 0 as N →∞
and

g − µ ∗ `− sMk−1(g − µ ∗ `) =
∑

j>k

aj z
Mj FNj

+ sMk−1(µ ∗ `)− µ ∗ `.

From this follows

‖sMk−1(µ ∗ `)− µ ∗ `‖1 → 0, as k →∞,

which says ‖sMk−1µ‖1/ log(Mk − 1) = o(1) by Proposition 5.2. Next, Lemma 5.6
implies µ = 0, and hence g = f ∈ L1

b0. This contradiction proves the claim.

We finish this section with a discussion of multipliers acting on Mb. Recall that
a convolution measure algebra B is called an L-algebra if µ ∈ B and ν � µ implies
ν ∈ B. Since they contain the constant functions but not the whole of L1 and H1

respectively, it is clear that neither Mb, L
1
b , H

1
b , L

1
b0, nor H1

b0 are L-algebras. The
question arises what space of functions ensures that f dµ belongs to the same space
among these as µ itself does? It is useful to recall that M0(T), of which Mb is an
ideal, in fact is an L-algebra.

Lemma 5.10.

∥∥∥
N∑

n=0

zn

log(n+ 2)

∥∥∥
1
∼ C log logN as N →∞.

Proof. Let an = [log(n+ 2)]−1 − [log(N + 3)]−1. Then ∆an ∼ 1
n log2 n

, aN = ∆aN ,

and ∆2an ∼ 1
n2 log2 n

.

Lemma 3.1 and the fact that K̃n has sign independent of n show

∥∥∥
N∑

n=0

zn

log(n+ 2)

∥∥∥
1

= O(1) + C

N∑

n=2

1

n log n
∼ C log logN.

This verifies the claim.

The multiplication operator T kz has been defined by T kz µ = eikθ dµ. We see from
section 3 that T kz has operator norm 1 as acting H1

b 7→ H1
b for k > 0 and norm at

most 2 as a mapping H1
b 7→ L1

b for general k ∈ Z.
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Lemma 5.11. (1) ‖T kz ‖Mb→Mb
6 C log(|k|+ 2).

(2) ‖T kz ‖L1
b0
→L1

b0
> C log log(|k|+ 3).

Proof. Write for simplicity ek(θ) = eikθ. Obviously we may suppose k > 1 for the
sake of proving (1). It is clear that

sN T
k
z µ =

N∑

n=−N

µ̂(n− k)en = ek

N−k∑

n=−N−k

µ̂(n)en.

In case 0 6 N < k, it follows that

‖sN T kz µ‖1 = ‖(e−kDN ) ∗ µ‖1 6 C log(N + 2)‖µ‖1 6 C log(k + 2)‖µ‖,

whereas N > k yields sN T
k
z µ = ek {sN+kµ− (eNDk) ∗ µ+ eN−k ∗ µ}, whence

‖sN T kz µ‖1 6 ‖µ‖+ C log(k + 2)‖µ‖1 6 C log(k + 2)‖µ‖.

Taken together they demonstrate ‖T kz µ‖ 6 C log(|k|+ 2)‖µ‖, which is claim (1).

On the other hand, the functions gN (θ) =
∑N

0
cos kθ

log (|k|+2)
∈ L1

b0 have uniformly

bounded norms. According to Lemma 5.10 one finds

‖T kz g|k|‖ > ‖s|k|(T kz g|k|)‖1 ∼ C log log(|k|+ 3).

This is the last claim.

We next consider Beurling algebras Aω as consisting of expansions
∑∞

−∞ ane
inθ

with finite norm ‖f‖ω =
∑ |an|ωn, where {ωn}∞−∞ is a positive sequence, submul-

tiplicative for both positive and negative indices.
We say that Aω is a multiplier space on Mb in case f ∈ Aω and µ ∈ Mb imply

f dµ ∈Mb and that for some constant independent of f and µ the norm inequality
‖f dµ‖ 6 C ‖f‖ω ‖µ‖ obtains.

Theorem 5.12. The following statements each imply the subsequent ones in the

order stated.

(1) inf
n

ωn
log(|n|+ 2)

> 0.

(2) Aω is a multiplier space on Mb.

(3) inf
n

ωn
log log(|n|+ 3)

> 0.

Remark. It is clear that this gap at the moment prevents the characterisation of
the weights ensuring Aω to be a multiplier space. From the proof it will become
clear that any improvement of Lemma 5.11 will in an immediate manner improve
on the present result.

Proof. A brief moment of reflection gives the presentation

f dµ =
∞∑

k=−∞

ak T
k
z µ, for f(θ) =

∞∑

k=−∞

ake
ikθ.
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Taking norms in Mb of the first series demonstrates, by Lemma 5.11,

‖f dµ‖ 6 C

∞∑

k=−∞

|ak| log(|k|+ 2) ‖µ‖.

Now the statement (1) clearly implies (2) for a constant only depending on ω.
Take on the other hand, according to Lemma 5.11, a function gk ∈ L1

b0 with
‖T kz gk‖ > C log log(|k| + 3) ‖gk‖, where C is a universal constant and gk 6≡ 0 .
Assuming (2) to hold, the algebra Aω by necessity has the property

log log(|k| + 3) ‖gk‖ 6 C ‖eikθgk‖ 6 C ‖eikθ‖ω ‖gk‖ = C ωk ‖gk‖.

From this inequality, the statement (3) follows immediately.

For the analytic spaces one has sharper results. The method of proof is the same
as in Theorem 5.12, but incorporating knowledge of ‖T kz ‖H1

b
→L1

b
6 2, for all k ∈ Z,

and ‖T kz ‖H1
b
→H1

b
= 1, for k > 0, respectively.

Theorem 5.13. (1) ‖ρf‖ 6 2 ‖ρ‖A(T) ‖f‖ for all ρ ∈ A(T) and f ∈ H1
b . In other

words, A(T) is a multiplier space from H1
b into L1

b .

(2) The analytic algebra A+ = A(T) ∩H1 is a multiplier space on H1
b , and in

fact ‖ρf‖ 6 ‖ρ‖A+ ‖f‖ for all ρ ∈ A+ and f ∈ H1
b .

6. The space dual to L1
b0.

We let ‖ ‖∗ denote the norm dual to ‖ ‖. When φ ∈ L∞ we have |
∫
fφ dm| 6

‖f‖1 ‖φ‖∞ 6 ‖φ‖∞ ‖f‖, whence φ ∈ L1
b0
∗ with ‖φ‖∗ 6 ‖φ‖∞. The continuity of φ

in its action on L1
b0 is a consequence of the obvious

∣∣∣
∫
fφ dm−

∫
sNf φ dm

∣∣∣ 6 ‖f − sNf‖1‖φ‖∞ → 0,

since sNf converges to f in L1
b0.

In general we consider φ ∈ L1
b0
∗, f ∈ L1

b0 and denote the dual pairing by 〈f, φ〉.
Based on sNf → f in L1

b0 we have

〈f, φ〉 = lim
N→∞

〈sNf, φ〉 = lim
N→∞

N∑

n=−N

f̂(n) 〈einθ, φ〉.

Each einθ ∈ L1
b0, so the notation φn = 〈e−inθ, φ〉 indicates a formal Fourier series

φ ∼ ∑
φn e

inθ, which will in time turn out to arise from an integrable function.
Clearly the partial sum snφ allows us a formulation for the L1

b0–L
1
b0
∗-duality com-

pletely determining φ, using the density of the polynomial subspace:

〈f, φ〉 = lim
N→∞

〈f, sNφ〉,




sNφ(θ) =

∑N

n=−N
φne

inθ,

φn = 〈e−inθ, φ〉.

Here we define 〈f, ψ〉 =
∫
fψ dm for ψ ∈ L∞. For polynomial ψ the notation is

consistent.
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Notation. For φ ∈ L1
b0
∗ the relation φ ∼∑∞

−∞ φne
inθ means simply that 〈f, φ〉 =

limN→∞〈f, sNφ〉 for all f ∈ L1
b0.

There is an expansion at our disposal:

〈f, sNφ〉 =

∫
f(θ)

{∑N

−N
φne

inθ
}
dm(θ) =

N∑

n=−N

f̂(n)φ−n.

Obviously 〈sNf, φ〉 = 〈f, sNφ〉, so |〈f, sNφ〉| 6 ‖φ‖∗ ‖sNf‖ 6 ‖φ‖∗‖f‖, from which
follows sNφ ∈ L1

b0
∗ with ‖sNφ‖∗ 6 ‖φ‖∗.

Conversely, one considers a formal series
∑∞

−∞ φne
inθ such that for a constant C

∣∣∣
∑N

n=−N
f̂(n)φ−n

∣∣∣ 6 C ‖sNf‖, all f ∈ L1
b0, N > 0.

The pairing 〈f, φ〉 =
∑∞

−∞ f̂(n)φ−n is linear and well defined for polynomials and

is such that |〈f, φ〉| 6 C ‖f‖. The density of polynomials in L1
b0 shows that 〈f, φ〉 =

limN→∞〈sNf, φ〉 determines a unique functional φ ∈ L1
b0
∗ with ‖φ‖∗ 6 C. The

continuity obtains from

∣∣〈sNf, φ〉 − 〈sMf, φ〉
∣∣ =

∣∣〈sNf − sMf, φ〉
∣∣ 6 C ‖sNf − sMf‖ → 0, N,M →∞.

We summarize our observations, just remarking that the identification of ‖φ‖∗ from
all possible C is standard functional analysis.

Proposition 6.1. L1
b0
∗ consists of formal expansions φ ∼ ∑∞

−∞ φne
inθ with the

following properties. The dual pairing is written 〈f, φ〉 and for the partial sums

sNφ(θ) =
∑N

−N φne
inθ, where φn = 〈e−inθ, φ〉, the following hold.

(1) 〈f, sNφ〉 =

∫
f sNφdm =

∑N

n=−N
f̂(n)φ−n.

(2) For some constant C and all f ∈ L1
b0, N > 0

∣∣〈f, sNφ〉
∣∣ 6 C ‖sNf‖, 〈f, sNf〉 = 〈sNf, φ〉.

The minimal constant C coincides with ‖φ‖∗. In particular, ‖sNφ‖∗ 6 ‖φ‖∗.

Two useful representations of L1
b0
∗ are important and will provide much infor-

mation. The next result is the first method, whose proof will be delayed somewhat
in order to display immediate consequences thereof. In Theorem 6.6 the second
technique of representation is displayed.

Theorem 6.2. For each φ ∈ L1
b0
∗ there exists a function element gφ ∈

⋂
p>1 L

p,

determined almost everywhere, such that 〈f, φ〉 = 〈f, gφ〉 for all f ∈ L1
b0. In addi-

tion, ‖gφ‖p 6 ‖φ‖∗ for all 1 6 p 6 2, and in general ‖gφ‖p 6 C · p ‖φ‖∗.

Since φn = ĝφ(n), this tells us that the formal series in fact corresponds to a
proper Fourier expansion.
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Corollary 6.3. The maximal ideal space ∆L1
b0 is isomorphic to Z.

Proof. We need to determine all multiplicative functionals on L1
b0. Let the non-

trivial φ ∈ L1
b0
∗ be multiplicative and consider its representative gφ.

For all polynomials p and q we find∫
p(α)q(β) gφ(α)gφ(β) dm(α)dm(β) = 〈p, φ〉〈q, φ〉

= 〈p ∗ q, φ〉 =

∫
p ∗ q(θ) gφ(θ) dm(θ)

=

∫
p(α)q(β) gφ(α+ β) dm(α)dm(β).

It is a routine use of approximation arguments to deduce that this implies

(∗) gφ(α+ β) = gφ(α)gφ(β)

almost everywhere in Haar measure on T×T. Hence gφ is a measurable homomor-
phism of T into C.

Next it is claimed that gφ is non-zero almost everywhere. In the contrary case
there is an α such that gφ(α) is zero and (∗) holds for almost every β. For all
such points one deduces gφ(α + β) = 0, whence gφ = 0 almost everywhere. This
contradicts the non-triviality of φ.

We have found that gφ is a measurable homomorphism of T into C \ {0}. It is
well known - see for example [K] - that this forces gφ(θ) = einθ for some n ∈ Z, i.e.,
φ corresponds to a character of the circle group. The claimed result is precisely
this statement.

We introduce the translation operator on L1
b0
∗ by declaring φτ of φ ∈ L1

b0
∗ to

be determined by φτ ∼
∑
φne

−inτ einθ, that is (φτ )n = e−inτφn. The result is
that the representative for φτ is [gφ]τ and the expected duality 〈f, φτ 〉 = 〈f−τ , φ〉
obtains.

Observation 6.4. L1
b0
∗ is translation invariant and ‖φτ‖∗ = ‖φ‖∗. In addition,

φτ
w→ φ as τ → 0.

Since ‖f−τ‖ = ‖f‖ and 〈f, φτ 〉 = 〈f−τ , φ〉, we deduce ‖sNφτ‖∗ = ‖sNφ‖∗. By
Proposition 6.1 φτ ∈ L1

b0
∗ and ‖φτ‖∗ = ‖φ‖∗. Furthermore,∣∣〈f, φ− φτ 〉

∣∣ =
∣∣〈f − f−τ , φ〉

∣∣ 6 ‖φ‖∗ ‖f − f−τ‖.
The continuity in L1

b0 for the translation operator demonstrates that φτ converges
weak-∗ to φ.

Remark. This observation shows that L1
b0
∗ is a homogeneous space in its weak

topology. Whether the same is true in the norm topology is unclear; it remains to
confirm or refute ‖φ− φτ‖∗ → 0.

Proposition 6.5. L1
b0
∗ ( L1

b0 ( L1 as sets and ‖φ‖1 6 ‖φ‖ 6 ‖φ‖∗ for all

φ ∈ L1
b0
∗, given the identification of φ with gφ in their identical action on L1

b0.

Proof. Proposition 6.2 shows ‖sNgφ‖1 6 ‖sNφ‖∗ 6 ‖φ‖∗ for all N , whence ‖gφ‖ 6

‖φ‖∗ and L1
b0
∗ ⊆ L1

b0 via φ ↔ gφ, recalling gφ ∈ L2 ⊆ L1
b0. On the other hand,∑

n>2(log n log log n)−1einθ will later in Example 6.13 (a result independent of the

present argument) be seen to belong to L1
b0 \ L1

b0
∗.

It will be clear from later examples that there exist many functionals in L1
b0
∗

which arise from unbounded functions.
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Theorem 6.6. Letting hφ(θ) = gφ(−θ), the duality pairing may be expressed

i) 〈f, φ〉 = lim
N→∞

sNf ∗ hφ(0),
ii) sNf ∗ hφ(τ) = 〈f, sNφτ 〉 = 〈f−τ , sNφ〉.

For f ∈ L1
b0 and φ ∈ L1

b0
∗, the expression limN→∞ f ∗ sNφ(θ) defines a continu-

ous function. Likewise τ 7→ 〈f, φτ 〉 introduces a continuous function denoted f ? φ.
In fact, they are identical functions. We have also ‖f ? φ‖C(T) 6 ‖f‖ ‖φ‖∗.

This last result has to await its proof until the already pending proof has been
completed! The second representation is instrumental in demonstrating L1

b0
∗ to be

a convolution subalgebra of L1.

Proof of Theorem 6.2. Consider a finite p > 1. We know from the theory of Riesz’
that ‖ ‖ 6 Cp ‖ ‖p, whence for polynomial f

∣∣〈f, φ〉
∣∣ 6 ‖φ‖∗ ‖f‖ 6 Cp ‖φ‖∗ ‖f‖p.

In consequence, the restriction of φ to Lp belongs to Lp∗ with ‖φ
∣∣
Lp‖Lp∗ 6 Cp ‖φ‖∗;

this being based on Lp ⊆ L1
b0. We conclude the existence of a function gp ∈ Lp

′

such that gp = φ
∣∣
Lp as elements in Lp∗.

Each polynomial h gives 〈h, φ〉 = 〈h, φ
∣∣
Lp〉 = 〈h, gp〉 =

∫
hgp dm, whence

〈f, φ〉 = lim
N→∞

〈sNf, φ〉 = lim
N→∞

∫
sNf gp dm, all f ∈ L1

b0.

From the inequality

∣∣〈f, sNgp〉
∣∣ =

∣∣〈sNf, φ
∣∣
Lp〉
∣∣ =

∣∣〈sNf, φ〉
∣∣ 6 ‖φ‖∗ ‖sNf‖,

the membership gp ∈ L1
b0
∗ obtains, with ‖gp‖∗ 6 ‖φ‖∗.

In case p, q > 1 are considered, ‖gp‖1 6 ‖gp‖p′ = ‖φ
∣∣
Lp‖Lp∗ 6 Cp ‖φ‖∗ as well

as ‖gq‖1 6 Cq ‖φ‖∗, so gp − gq is integrable. Since polynomial h gives

∫
h(gp − gq) dm = 〈h, φ〉 − 〈h, φ〉 = 0,

we deduce that gp = gq almost everywhere. This means that for p > 1

‖g2‖p′ = ‖gp‖p′ 6 Cp ‖φ‖∗ = Cp′ ‖φ‖∗,

since Cp = Cp′ . From C2 = 1 every 1 6 p 6 2 gives ‖g2‖p 6 ‖g2‖2 6 ‖φ‖∗, so the
general property Cp 6 C · p for p > 2 demonstrates that the choice gφ = g2 has all
properties claimed for it in the statement.

Proof of Theorem 6.6. Since ĥφ(n) = φ−n it is clear that all three expressions in

ii) evaluate to the common value
∑N

−N f̂(n)einτφ−n; hence the claim. Taking the
particular case τ = 0 and letting N →∞ certifies i) by definition of the pairing.

As f ∈ L1
b0 and φ ∈ L1

b0
∗, every (sNf)∗hφ is a continuous function. Furthermore,

for all τ ∈ T

∣∣sNf ∗ hφ(τ)− sMf ∗ hφ(τ)
∣∣ =

∣∣〈sNf − sMf, φτ 〉
∣∣ 6 ‖sNf − sMf‖ ‖φ‖∗.
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It follows that

‖sNf ∗ hφ − sMf ∗ hφ‖C(T) 6 ‖sNf − sMf‖ ‖φ‖∗ → 0, as N,M →∞,

which shows that {sNf ∗ hφ}∞N=0 is a Cauchy sequence in C(T). Consequently,
limN→∞ sNf ∗ hφ is a continuous function.

The identity 〈sNf, φτ 〉 = sNf ∗ hφ(τ) and the claim in the last paragraph show
that also 〈f, φτ 〉 is a continuous function of τ . Simultaneously, the argument above,
taking this last relation into consideration, establishes that the two functions in the
claim coincide point-wise. By construction the inequality

‖f ? φ‖C(T) 6 supN>0 ‖τ 7→ 〈sNf, φτ 〉‖∞ 6 ‖f‖ ‖φ‖∗

clarifies the last statement.

Now the preparation needed to show L1
b0
∗ to be an L1-subalgebra has been

completed.

Lemma 6.7. For all f ∈ L1
b0 and φ ∈ L1

b0
∗, the membership f ∗ hφ ∈ L∞ ⊂ L1

b0

obtains, and furthermore, f ∗ hφ = f ? φ almost everywhere.

Proof. Since 〈sNf, φτ 〉 =
∑

|j|6N f̂(n)ĥφ(n)einτ it is clear from the construction

above that f ? φ and f ∗hφ have identical Fourier coefficients; hence they are equal
almost everywhere and f ∗ hφ ∈ L∞. The algebra L1

b0 being an ideal in L1, it is
obvious that f ∗ hφ ∈ L1

b0.

Remark. Remember the inclusion L1
b0 ⊇ L∞ from ‖g‖ 6 ‖g‖2 6 ‖g‖∞.

Proposition 6.8. Define φ ? ψ in L1
b0
∗ for φ, ψ ∈ L1

b0
∗ by 〈f, φ ? ψ〉 = 〈f ? φ, ψ〉.

Then L1
b0
∗ is a commutative algebra with the multiplication gφ?ψ = gφ ∗ gψ.

Proof. Lemma 6.7 shows that 〈f ? φ, ψ〉 makes sense and

∣∣〈f ? φ, ψ〉
∣∣ 6 ‖f ∗ hφ‖ ‖ψ‖∗ 6 ‖f‖ ‖hφ‖1 ‖ψ‖∗ 6 ‖f‖ ‖φ‖∗ ‖ψ‖∗

by the norm inequality in Theorem 6.6. This means that φ?ψ ∈ L1
b0
∗ with ‖φ?ψ‖∗ 6

‖φ‖∗ ‖ψ‖∗.
The formal series for φ ? ψ has coefficients

(φ ? ψ)n = 〈e−inθ, φ ? ψ〉 = 〈e−inθ ∗ hφ, ψ〉 = ĥφ(−n) 〈e−inθ, ψ〉 = φn ψn,

so φ ? ψ and ψ ? φ have the same expansion
∑
φn ψn e

inθ. It follows that gφ?ψ =
gφ ∗ gψ as well as hφ?ψ = hφ ∗ hψ. All the claims have been verified.

Observe that we have obtained the identity

〈f, φ ? ψ〉 = f ∗ hφ?ψ(0) = f ∗ hφ ∗ hψ(0) = 〈f, gφ ∗ gψ〉

for all polynomials f and all φ, ψ ∈ L1
b0
∗.
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In case φ ∈ L1∩L1
b0
∗ we have gφ = φ almost everywhere and hφ = g̃φ = φ̃, where

f̃(θ) = f(−θ). In consequence, each ψ ∈ L1
b0
∗ gives gφ?ψ = φ∗gψ and hφ?ψ = φ̃∗hψ

viewed as L1-functions.

Definition. For φ ∈ L1 and ψ ∈ L1
b0
∗ the object φ?ψ is determined by gφ?ψ = φ∗gψ

and hφ?ψ = φ̃ ∗ hψ .
This notion coincides with the previous notation for the cases where φ belongs

either to L1
b0 or to L1 ∩ L1

b0
∗; the latter class appears as long as φ and gφ are not

identified. In contrast to L1
b0 ? L

1
b0
∗ ⊆ L∞, by Lemma 6.7, the space L1 ? L1

b0
∗

does contain unbounded functions; Example 6.13 can be used to construct some
instances.

Proposition 6.9. i) For φ ∈ L1, ψ ∈ L1
b0
∗ the membership φ ? ψ ∈ L1

b0
∗ obtains.

In addition, ‖φ ? ψ‖∗ 6 ‖φ‖1 ‖ψ‖∗ and 〈f, φ ? ψ〉 = 〈f ∗ φ̃, ψ〉.
ii)
(
L1
b0
∗, ?
)

is a commutative algebra and an ideal of L1 under the convolu-

tion ?, containing the subspace of all polynomials. In other words, L1
b0
∗ is

a Segal algebra.

Remark. By definition of ? it becomes the ordinary L1-convolution as soon as the
functional φ ∈ L1

b0
∗ is identified with either gφ or hφ.

Proof. gφ?ψ and hence also φ?ψ have a formal expansion
∑
φ̂(n)ψn e

inθ. It follows
that for f ∈ L1

b0

〈f, sN (φ ? ψ)〉 =
∑

|n|6N

f̂(n)φ̂(−n)ψ−n =
∑

|n|6N

f̂ ∗ φ̃(n)ψ−n = 〈f ∗ φ̃, sNψ〉.

In particular,

∣∣〈f, sN (φ ? ψ)〉
∣∣ 6 ‖f ∗ φ̃‖ ‖ψ‖∗ 6 ‖f‖ ‖φ̃‖1 ‖ψ‖∗ = ‖f‖ ‖φ‖1 ‖ψ‖∗.

Letting N →∞ we deduce the three properties in (i).
Furthermore, φ ∗ gψ is the g-representative for φ ? ψ, so ‖φ ∗ gψ‖1 6 ‖φ ? ψ‖∗ 6

‖φ‖1 ‖ψ‖∗, thereby proving L1
b0
∗ to be a convolution ideal of L1 using the identifi-

cation φ 7→ gφ.

At this stage a supply of non-trivial functionals in L1
b0
∗ would be most useful;

this we do next.

Proposition 6.10. Assume that φ ∼∑∞
−∞ φne

inθ has the properties

|n|+ 1

log(|n|+ 2)
|φn| 6 A and

∑∞

n=−∞

|n|+ 1

log(|n|+ 2)

∣∣ |φn| − |φn+1|
∣∣ 6 A.

Then there is an absolute constant C, independent of A and φ, such that φ ∈ L1
b0
∗

and ‖φ‖∗ 6 C A.

Proof. One needs to prove |〈f, sNφ〉| 6 C A ‖f‖ for all N and f . Let for this
purpose f ∼∑ cne

inθ ∈ L1
b0. According to Salem–Zygmund’s theorem both dN =∑N

n=0 |φn| and d′N =
∑−1

n=−N are majorised by C ‖f‖N/ log(N + 1) for N > 1.
A calculation completes the proof:

|〈f, sNφ〉| =
∣∣∑N

n=−N
cnφ−n

∣∣ 6
∑N

n=−N
|cn| |φ−n|
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= |c0|+ dN |φ−N |+ d′N |φN |+
N−1∑

n=1

dN
(
|φ−n| − |φ−n−1|

)

+

N−1∑

n=1

d′N
(
|φn| − |φn+1|

)

6 |c0|+
CN‖f‖

log(N + 1)

{
|φ−N |+ |φN |

}

+ C ‖f‖
N−1∑

n=1

n

log(n+ 1)

{∣∣ |φ−n| − |φ−n−1|
∣∣+
∣∣ |φn| − |φn+1|

∣∣
}

6 C ‖f‖
{ N + 1

log(N + 2)

(
|φ−N |+ |φN |

)

+

N∑

n=−N

|n|+ 1

log(|n|+ 2)

∣∣ |φn| − |φn+1|
∣∣
}

6 C A ‖f‖.

Corollary 6.11. Let {φn}∞−∞ have |φn| decreasing in each direction as n → ±∞
and |n| > M . There is a universal constant such that φ ∼ ∑∞

n=−∞ φne
inθ satisfies

‖φ‖∗ 6 C
{
‖sM−1φ‖∗ + (M + 1) ‖ {φn/ log(|n|+ 2)} ‖`1

}
.

Proof. Write ψ = φ− sMφ; clearly ‖φ‖∗ 6 ‖sMφ‖∗ + ‖ψ‖∗.
The decrease of coefficients shows

|ψ±n| 6
log(|n|+ 2)

n−M + 1

∑
|k|6n

|φk|
log(|k|+ 2)

,

which obviously provides for all n, since ψn = 0 if |n| < M ,

n+ 1

log(n+ 2)
|ψ±n| 6 (M + 1)

∥∥∥∥
φk

log(|k|+ 2)

∥∥∥∥
`1
.

Furthermore, the variation inequality
N∑

n=M+1

n

log(n+ 1)

∣∣ |ψn| − |ψn+1|
∣∣ =

N∑

n=M+1

n

log(n+ 1)

(
|ψn| − |ψn+1|

)

=
(M + 1)|φM+1|

log(M + 2)
− N |φN+1|

log(N + 1)
+

N∑

n=M+2

|φn|
{

n

log(n+ 1)
− n− 1

log n

}

6
(M + 1)|φM+1|

log(M + 2)
− N |φN+1|

log(N + 1)
+ C

∑ |φn|
log(n+ 1)

6 C (M + 1)

∥∥∥∥
φn

log(|n|+ 2)

∥∥∥∥
`1

is independent of the upper limit N . A perfectly similar calculation shows also
N∑

n=M+1

n

log(n+ 1)

∣∣ |ψn| − ψn+1|
∣∣ 6 C (M + 1)

∥∥∥∥
φn

log(|n|+ 2)

∥∥∥∥
`1
.

The previous proposition displays that ‖ψ‖∗ is dominated by a multiple of the
`1-norm in the present statement, so the full claim for ‖φ‖∗ follows.



NORM-BOUNDED PARTIAL SUMS II 15

Corollary 6.12. Consider φ ∼ ∑φne
inθ such that φn > 0 and φn, φ−n ↘ 0 for

n ∈ [M,∞[. Then φ ∈ L1
b0
∗ if and only if

∑
|n|>2 φn/ log |n| converges.

Proof. Should the series converge, the previous corollary proves φ to be an element
in L1

b0
∗.

Assume for the other implication φ ∈ L1
b0
∗ and consider the by now well known

`(θ) =
∑

|n|>2(log |n|)−1einθ. One recalls that ` ∈ L1
b and ‖` − sN`‖ → 4/π2,

so the collection of polynomials sN` is uniformly bounded in L1
b0. This implies

|〈sN`, φ〉| 6 ‖sN`‖ ‖φ‖∗ 6 C ‖φ‖∗ independently of N . Observing 〈sN`, φ〉 =∑
26|n|6N φ−n/ log |n| it is clear that the claimed convergence of the series is a

consequence.

Remark. The slightly more general case ζξnφn > 0, for some ζ, ξ ∈ T, may be
reduced to the above case simply by considering ζφτ with ξ = eiτ . It is functionals
with more irregular oscillation of arg φn that present difficulties.

Example 6.13. By Corollary 6.12 the function
∑∞

n=2
einθ

n loga n
belongs to L1

b0
∗ for

every a > 0. These functions are point-wise unbounded as soon as 0 < a 6 1; in
particular, L1

b0
∗ ) L∞.

Likewise
∑∞

n=3
cosnθ

n loga log n
represents an element in L1

b0
∗ if and only if a > 1.

Observe that no restrictions on a are needed to make these to be elements in L1
b0;

this follows already from Lemma 1.5.

7. Relations to other norms.

We have already seen in Theorem 6.2 that Lp-norms of gφ are controlled by the
norm of φ ∈ L1

b0
∗, but that the L∞-norm is not approachable of natural reasons.

In view of the construction of φ from all sNφ in L1
b0
∗, it seems natural to consider

a particular norm put on each sNφ and then try to recover information on ‖φ‖∗.
The first result, which is essentially sharp by Corollary 7.3, explains why Theo-

rem 6.2 could not say anything on L∞-norms.

Proposition 7.1. Let φ ∈ L1
b0
∗. Then for all N

‖sNφ‖∞ 6 C {1 + log(N + 1)} ‖φ‖∗.

Proof. The translated Dirichlet polynomial DN (θ − t) has

〈DN (· − t), φ〉 =

N∑

n=−N

φ−ne
−int = sNφ(t).

In particular,

|sNφ(t)| =
∣∣〈(DN )t, φ〉

∣∣ 6 ‖DN‖ ‖φ‖∗ 6 C {1 + log(N + 1)} ‖φ‖∗,

which is the claim.

It is convenient to reinterpret Salem–Zygmund’s theorem:

Proposition 7.2. Let pN be a trigonometric polynomial of degree N . If a linear

form 〈 · , pN 〉 is defined on Mb using 〈µ, pN 〉 =
∑
µ̂(n) p̂N (−n), then pN ∈M∗

b with

‖pN‖∗ 6 C N+1
log(N+2)

‖p̂N‖∞.
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Proof. Clearly 〈µ, pN 〉 is linear in µ ∈Mb. For every N > 2, by Salem–Zygmund’s
theorem,

|〈µ, pN 〉| 6
∑

|n|6N

|µ̂(n)| |p̂N (−n)| 6 C N
logN ‖p̂N‖∞ ‖µ‖.

Clearly |〈µ, p1〉| 6 3 ‖p̂N‖∞ ‖µ̂‖∞ 6 3 ‖p̂N‖∞ ‖µ‖, which establishes the claim.

Proposition 7.3. In L1
b0
∗ and M∗

b the value ‖DN‖∗ = N
logN · O(1) obtains.

Proof. That the norm cannot exceed the stated value follows from Proposition 7.2,
whereas ‖DN‖M∗

b
> ‖DN‖L1

b0
∗ and Proposition 7.1, observing ‖DN‖∞ = 2N + 1,

clearly give the lower estimate needed for the claim.

Since every φ ∈ L∞ has ‖φ‖∗ 6 ‖φ‖∞, it is clear that the inequality in Propo-
sition 7.1 cannot be reversed. It is possible to achieve some limited understanding
of ‖φ‖∗ if all ‖sNφ‖∞ are taken into account, as the last two results in this section
show.

Proposition 7.4. Assume φ ∈ L1
b0
∗ has φn > 0. There is a constant independent

of φ such that for all N > 0

∞∑

n=0

‖snφ‖∞
(n+ 2) log2(n+ 2)

6 C ‖φ‖∗.

Remark. In particular, the increase exhibited in Proposition 7.1 is never attained
for this specialized kind of functionals.

Proof. Positivity yields ‖sNφ‖∞ =
∑N

−N φn. Therefore

N∑

−N

φn
log(|n|+ 2)

=
‖s0φ‖∞

log 2
+

N∑

1

‖snφ‖∞ − ‖sn−1φ‖∞
log(n+ 2)

=
‖s0φ‖∞

log 2
+

‖sNφ‖∞
log(N + 2)

+

N∑

n=1

‖snφ‖∞
(
[log(n+ 2)]−1 − [log(n+ 3)]−1

)

=
‖s0φ‖∞

log 2
+

‖sNφ‖∞
log(N + 2)

+
N∑

n=1

‖snφ‖∞ log
(
1 + 1

n+2

)

log(n+ 2) log(n+ 3)
.

The first member can conveniently be seen as the action of φ, so this is equal to

〈∑N

n=−N

einθ

log(|n|+ 2)
, φ
〉

6 C ‖φ‖∗,

since ‖∑N
−N [log(|n|+ 2)]−1einθ‖ 6 C independently of N . The claim follows from

this inequality, simply by estimating from below the quotient of the three logarithms
in the form of the quantity C [(n+ 2) log2(n+ 2)]−1.

Corollary 7.5. Consider φ ∼ ∑
φne

inθ such that φ−n and φn are decreasing to

zero for n > 0. In L1
b0
∗ the two quantities

∑∞
n=0

‖snφ‖∞
(n+2) log2(n+2)

+ supn>0
‖snφ‖∞
log(n+2)

and ‖φ‖∗ are equivalent as norms of this particular kind of functional.
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Proof. According to Corollary 6.11, the assumptions on φ implies

‖sNφ‖ 6 C

N∑

n=−N

φn
log(|n|+ 2)

6 C
{ ‖sNφ‖∞

log(N + 2)
+

N−1∑

n=0

‖snφ‖∞
(n+ 2) log2(n+ 2)

}
,

where the last inequality is extracted from the proof of the previous proposition.
On the other hand, the reverse inequality for bounding the complicated ex-

pression by C ‖φ‖∗, follows without any assumption of decrease, but keeping the
positivity, from Propositions 7.1 and 7.4. The proof is complete.

8. The remaining dual spaces.

This section focuses on some features of the dual spaces L1
b
∗ and H1

b0
∗. The first

of these displays awkward properties in comparison with L1
b0
∗, such as the failure

of continuity under translation as well as the non-denseness of partial sums even in
the weak-∗ topology. The analytic space on the other hand shows better behaviour
than its general counterpart, as of course is to be expected.

To display the new behaviour of L1
b
∗ we start with a construction, which will lead

to an element Ψ in L1
b
∗ with the necessary properties. In essence the shortcoming

of L1
b
∗ is that its elements are not approximable in norm by polynomials, so that,

as will be demonstrated, there are functionals ψ ∈ L1
b
∗ whose partial sums sNψ

yield no information on ψ at all.

Lemma 8.1. The family of functionals ψN on Mb, for N > 2, defined by

〈µ, ψN 〉 =
logN

N

2N∑

n=N

µ̂(n)

is a bounded set in M ∗
b .

Proof. Trivially every ψN is a member of Mb. By Salem–Zygmund’s theorem

∣∣∣ logNN
2N∑

n=N

µ̂(n)
∣∣∣ 6

2 logN
log 2N · log 2N

2N

∑

|n|62N

|µ̂(n)| 6 C ‖µ‖

for all µ ∈Mb and uniformly in N > 2. This is the claim.

Recall from Proposition 5.8 that the linear space V in the following statement
is a closed subalgebra of L1

b .

Lemma 8.2. The formula 〈g, ψ〉 = limN→∞〈g, ψN 〉 defines a bounded functional

on V = {µ ∗ `+ f ; µ ∈ Md(T), f ∈ L1
b0}. More specifically, the action of ψ on V

is described by 〈µ ∗ `+ f, ψ〉 = µ
(
{0}
)
.

Proof. We need to make sense out of the notation

〈g, ψ〉 = lim
N→∞

logN

N

∑2N

n=N
ĝ(n)

as a functional on V . Clearly the linearity is automatic, and by Lemma 8.1 the
complex numbers on the right, as depending on N for fixed g ∈ V , are contained in
the closed set {z ∈ C ; |z| 6 C ‖g‖} for an absolute constant C independent of N
and g ∈ V . Consequently the claim follows once it is shown that the limit in fact
has value µ({0}) for the element g = µ ∗ `+ f in V .
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Let µ be a discrete measure and f ∈ L1
b0. For such functions Salem–Zygmund’s

theorem says that (see [Z], page 289)

log 2N

2N

∑
|n|62N

|f̂(n)| = o(1),

so 〈f, ψ〉 = 0 exists.
On the other hand, one finds that

logN

N

2N∑

n=N

µ̂ ∗ `(n) =

∫

T

(
2N∑

n=N

e−inθ

1 + log(n/N)
logN

1

N

)
dµ(θ).

The integrand has modulus not exceeding N+1
N

, and as N → ∞ it is point-wise
convergent to zero, except for θ = 0 where the convergence is to 1. By dominated
convergence it follows that the relevant expression 〈µ ∗ `, ψN 〉 tends to µ({0}) with
increasing N . This completes the proof of the statement.

Theorem 8.3. There is a functional Ψ ∈ L1
b
∗ such that

i) Ψ
∣∣∣
L1

b0

= 0, i.e., sNΨ = 0 for all N , and

ii) 〈`,Ψτ 〉 =

{
1, τ = 0,

0, τ 6= 0,
for the translates of Ψ.

Corollary 8.4. (1) L1
b
∗ ) L1

b0
∗ in the sense that not all functionals on L1

b are

determined by their action on L1
b0.

(2) It is not true that sNφ tends to φ in the weak-∗ topology of L1
b
∗, much less

in its norm topology.

(3) The mapping τ 7→ φτ is not continuous in L1
b
∗.

(4) L1
b
∗ is not separable.

Proof. The properties appearing in the four claims are verified by the functional
Ψ ∈ L1

b
∗ from Theorem 8.3. For the last claim just observe that τ 6= σ in T yields

1 = 〈`τ ,Ψτ −Ψσ〉 6 ‖`τ‖ ‖Ψτ −Ψσ‖∗,

so ‖Ψτ −Ψσ‖∗ > 1/‖`‖. This prevents separability.

Proof of Theorem 8.3. Let Ψ be any Hahn–Banach extension to L1
b from V of the

functional ψ ∈ V ∗ constructed in Lemma 8.2. Since the restrictions of Ψ and ψ to
L1
b0
∗ agree and the latter is zero there, the first claim follows. The second claim is

simply the obvious calculation

〈`,Ψτ 〉 = 〈`−τ ,Ψ〉 = 〈δ−τ ∗ `, ψ〉 =

{
1, τ = 0,

0, τ 6= 0.

The desired properties of Ψ are thus evident.

These few results give a first indication that the structure of L1
b
∗ is essentially

different from L1
b0
∗, which of course reflects the more complicated geometry of L1

b in
comparison to that of L1

b0. The failure for polynomials to approximate the elements
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in L1
b is at the heart of the matter. When proceeding to the analytic space H 1

b0
∗,

the added structure in H1
b0 ensures stronger results than those holding for L1

b0
∗.

In dealing with H1
b0
∗ we keep the notation ‖ ‖∗ for the dual norm and trust that

the circumstances make clear that it is with the analytic spaces in mind statements
are being made.

The development in section 6 leading up to and including Theorem 6.2 can obvi-
ously be repeated mutatis mutandis for H1

b0
∗ with one alteration: the representative

gp of φ
∣∣
Hp can be taken in Hp′, where the bar indicates complex conjugation. We

formalize the outcome for completeness. Observe that the dual pairing intention-
ally is taken to be sesquilinear when dealing with the analytic spaces, and so the
conventions now differs from the handling of L1

b0
∗.

Proposition 8.5. H1
b0
∗ constitutes a subclass of expansions φ ∼∑∞

−∞ φne
inθ with

a dual pairing 〈f, φ〉 described by sNφ(θ) =
∑N

−N φne
inθ, φn = 〈einθ, φ〉, and

(1) 〈f, sNφ〉 =

∫
f sNφ dm =

∑N

n=0
f̂(n)φn.

(2) For some constant C and all f ∈ H1
b0, N > 0∣∣〈f, sNφ〉

∣∣ 6 C ‖sNf‖, 〈f, sNf〉 = 〈sNf, φ〉.
The minimal constant C coincides with ‖φ‖∗. In particular, ‖sNφ‖∗ 6 ‖φ‖∗.

For each φ ∈ H1
b0
∗ there exists an analytic function hφ ∈

⋂
p>1H

p such that

the boundary value function of hφ has Fourier series
∑∞

n=0 φne
inθ. The function

gφ(θ) = hφ(e
iθ) verifies 〈f, φ〉 = 〈f, gφ〉 for all f ∈ H1

b0. In addition, ‖hφ‖p 6 ‖φ‖∗
for all 1 6 p 6 2, and in general ‖hφ‖p 6 C · p ‖φ‖∗.

Two methods for constructing members of H1
b0
∗ make a suitable starting point.

The first is a simple application of lacunarity.

Proposition 8.6. Let 0 = k0 < k1 < k2 < . . . be a sequence of integers with

kn+1 > ρ kn for n > 1 and a fixed ρ > 1. To every b = {bn}∞n=0 ∈ `2 there is an

element ψb ∼
∑∞

n=0 bn e
iknθ in H1

b0
∗ with the property ‖ψb‖ 6 Cρ ‖b‖2. Here the

constant Cρ depends only on ρ.
Conversely, assume ψ ∈ H1

b0
∗ to have support {n > 0 ; φn 6= 0} being a lacunary

sequence in N with lacunarity parameter ρ. Then ‖hψ‖2 6 ‖ψ‖∗ 6 Cρ ‖hψ‖2.
Proof. Paley’s inequality generates a constant Cρ such that for every f ∈ H1

[ ∞∑

n=0

|f̂(kn)|2
]1/2

6 Cρ ‖f‖1.

In particular, each f ∈ H1
b0 satisfies

∣∣〈f, ψb〉
∣∣ =

∣∣∣
∞∑

n=0

f̂(kn)bn

∣∣∣ 6
∥∥{f̂(kn)}∞n=0

∥∥
2
‖b‖2 6 Cρ ‖f‖1 ‖b‖2

6 Cρ ‖b‖2 ‖f‖,
from which ψb ∈ H1

b0
∗ with ‖ψb‖∗ 6 Cρ ‖b‖2 follows.

For the second part, Proposition 8.5 gives the left inequality even without any
lacunarity, whereas the part of the statement that already has been treated provides
the calculation

‖ψ‖∗ 6 Cρ ‖{ψn}∞0 ‖2 = Cρ ‖hψ‖2.
The equivalence of ‖ψ‖∗ and ‖hψ‖2 has therefore been established.
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Corollary 8.7. Let M : N → R+ be unboundedly increasing, but otherwise arbi-

trary. There is an element φ ∈ H1
b0
∗ such that lim supn→∞M(n)φ−n = +∞.

Proof. A suitable choice of k0 < k1 < k2 < . . . for φ ∼∑∞
n=0

1
n+1e

iknθ will resolve
the problem. Take k0 = 0 and k1 = 1. Recursively we desire kn+1 > 2kn and
M(kn+1) bn+1 > 2M(kn) bn, where bn = (n + 1)−1. Since M is increasing, it is
to each kn possible to determine kn+1 satisfying both requirements. Thus {kn} is

lacunary of quotient at least 2, so the previous proposition yields ‖φ‖∗ 6
√

2 ‖b‖2 =

π/
√

3, using the determination C2 =
√

2 due to Fournier.
Finally, by construction, M(kn) bn > 2n−1M(k1) b1 for all n > 1. The intended

limes superior follows from this.

Remark. The result says that the decay to zero can be arbitrarily slow. Soon we
will see that the such decay can only take place on a small set of indices.

To describe the second method of construction we use the expression ‖φ‖m =
supn>0 (n+ 1)|φn| applied to φ ∼∑∞

−∞ φne
inθ. Obviously ‖ ‖m is a semi-norm.

Lemma 8.8. Seen in H1
b0
∗ the inequality ‖φ‖∗ 6 π ‖φ‖m obtains.

Proof. Consider f ∈ H1
b0 and N > 0. Then

∣∣〈f, sNφ〉
∣∣ 6

∑

06n6N

|f̂(n)| |φn| 6 ‖φ‖m
∑

06n6N

|f̂(n)|
n+ 1

6 π ‖φ‖m ‖f‖1 6 π ‖φ‖m ‖f‖,

where the second to last transition is due to Hardy’s inequality. The inequalities
do not depend on N , so φ ∈ H1

b0
∗ with ‖φ‖∗ 6 π ‖φ‖m follows.

Corollary 8.9. The class of formal series c0 +
∑

n6=0
cn

n
einθ, for c = {cn}∞−∞ ∈ `∞

and ‖{cn}∞0 ‖∞ 6 A, constitutes a uniformly bounded subspace of H 1
b0
∗, but which

is not contained in L1
b0
∗.

Proof. The norm for the formal series is in H1
b0
∗ at most π

(
|c0|+‖{n+1

n cn}∞1 ‖∞
)

6

2πA. The boundary function of log(1 − z) =
∑

n>1 n
−1 zn represents an element

in H1
b0
∗ \ L1

b0
∗, according to Corollary 6.12.

For one kind of functionals the above decay of rate O(n−1) is optimal, as we
demonstrate presently.

Proposition 8.10. Let φ ∈ H1
b0
∗ with φn > 0. There is a constant C independent

of φ such that
N∑

n=0

φn
log(n+ 2)

6 C log log(N + 2) ‖φ‖∗.

This rate of growth is attained by the member
∑∞

1 n−1einθ of H1
b0
∗.

Proof. By the Lemma 5.10

N∑

n=0

φn
log(n+ 2)

6

∥∥∥
N∑

n=0

zn

log(n+ 2)

∥∥∥ ‖φ‖∗ 6 C log log(N + 2) ‖φ‖∗.

It is clear that this rate of growth is achieved by
∑∞

1 n−1e−inθ, which represents
an element in H1

b0
∗ by Corollary 8.9.
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Corollary 8.11. There is C > 0 such that every φ ∈ H1
b0
∗ with all φn > 0 has the

property lim infn→∞ nφn 6 C ‖φ‖∗.
Remark. As for L1

b0
∗ the same result is valid for the case that ξnφn > 0 by consid-

ering φτ and ξ = eiτ .

Proof. Choose for δ < lim inf nφn an Nδ > 0 such that n > Nδ implies δ 6 nφn.
The previous proposition now shows

C log logN ‖φ‖∗ >

N∑

n=Nδ

φn
log(n+ 2)

> δ

N∑

n=Nδ

1

n log(n+ 2)

> C1 δ
(
log logN − log logNδ

)
.

It follows that

δ
(
1− log logNδ

log logN

)
6 C ‖φ‖∗.

As N →∞ we deduce δ 6 C ‖φ‖∗ independently of Nδ, so taking supremum over
all possible δ the result has been established.

Remarks. i) Corollary 6.12 and Proposition 8.10 illustrate that elements of L1
b0
∗

and H1
b0
∗, respectively, show different behaviour for their Fourier coefficients.

ii) A similar method of proof as in Proposition 8.10 using 1 + · · · + eiNθ as test
function demonstrates that with the same assumption on positivity ‖sNφ‖∞ =∑N

n=0 φn 6 C log(N + 2) ‖φ‖∗, an inequality which has the same appearance
for L1

b0
∗.

Corollary 8.12. Let φ ∼ ∑∞
−∞ φne

inθ with φn > 0 as n > 0 and with {nφn}∞n=0

monotone. Then φ ∈ H1
b0
∗ if and only if {nφn}∞n=0 ∈ `∞.

Proof. From {nφn}∞n=0 ∈ `∞ Lemma 8.8 produces φ ∈ H1
b0
∗. Conversely, Corollary

8.11 yields from φ ∈ H1
b0
∗ and φn > 0 the existence of lim infn→∞ nφn as a finite

quantity. By monotonicity the membership in `∞ obtains.

Remark. The example
∑∞

k=1 k
−3/4z2k ∈ H1

b0
∗ shows that monotonicity is decisive.

Similarly to the observations regarding L1
b0
∗ we quote for H1

b0
∗ results how L∞-

norms of sNhφ relate to the norm of φ. For the next two results, the optimality of
the quantities log logN and logN , respectively, is once more demonstrated by the
particular example mentioned in Proposition 8.10.

Proposition 8.13. Let φ ∈ H1
b0
∗ with φn > 0. There is a universal constant

independent of φ such that

‖sNhφ‖∞
log(N + 2)

+
N−1∑

n=0

‖snhφ‖∞
(n+ 2) log2(n+ 2)

6 C
{
1 + log+ log+N

}
‖φ‖∗.

Proof. The technique of proof applied in Proposition 7.4, now incorporating Lemma
5.10, demonstrates that the left-hand side in the statement is less that

C
N∑

n=0

φn
log(n+ 2)

6 C

〈∑N

n=0

zn

log(n+ 2)
, φ

〉
6 C

{
1 + log+ log+N

}
‖φ‖∗.

In each step the constants are independent of N and φ.
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Corollary 8.14. There is a constant C such that each φ ∈ H 1
b0
∗, with φn > 0 for

n > 0, satisfies

lim inf
N→∞

‖sNhφ‖∞
logN

6 C ‖φ‖∗.

Proof. Given φ of the kind described above, consider any ρ > 0 such that for
N > M = Mρ the growth ‖sNhφ‖∞ > ρ logN obtains. As a result of the previous
proposition

log logN ‖φ‖∗ > Cρ

N−1∑

n=M

1
n logn > Cρ {log logN − log logM},

as soon as N > M , with the positive constant C independent of N , M , ρ, and φ.
Hence

ρ
{

1− log logM
log logN

}
6 C ‖φ‖∗.

Letting N → ∞ one deduces ρ 6 C ‖φ‖∗, from which the claim is an obvious
consequence.
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