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On Rank One H−3-Perturbations

of Positive Self–adjoint Operators

P. Kurasov and K.Watanabe

Abstract. Rank one H
−3 perturbations of positive self–adjoint operators

are constructed using a certain extended Hilbert space and regularization pro-
cedures. Applications to Schrödinger operators with point interactions are
discussed.

1. Introduction

Self–adjoint operators with complicated spectral structure can be obtained us-
ing finite rank perturbations of well studied operators with rather simple structure
of the spectrum. Nevertheless these perturbed operators are exactly solvable in the
sense that all eigenfunctions, spectral decomposition and scattering matrix can be
written explicitly, sometimes using analytic functions. Suppose that A is a certain
self–adjoint operator acting in the Hilbert space H . Then a finite rank perturbation
of it is formally defined by the formula

AV = A+ V,(1.1)

where V is a finite dimensional operator. The domains of the perturbed and unper-
turbed operators coincide if the perturbation is a bounded operator in the Hilbert
space V ∈ B(H). But it is possible to consider more general perturbations deter-
mined by operators V acting in the scale of Hilbert spaces associated with the
original operator A

V : H2(A) → H−2(A).(1.2)

In the latter case the perturbed operator can be defined using the form perturbation
technique and the extension theory for symmetric operators. Really the operators
A and AV restricted to the domain

Dom(A0) = {ψ ∈ Dom(A) : ψ ∈ Ker(V )}

coincide. If the operator V is symmetric and finite dimensional then the restricted
operator has finite deficiency indices and the resolvents of the perturbed and original
operators are related via Krein’s formula [19, 20, 21, 24]. This approach has been
used to construct the so-called operators with point interactions [2, 7, 9, 25, 26].
Perturbations with the support on a discrete set of points or on low dimensional
manifolds have been studied in detail, especially in applications to Schrödinger
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operators. More general finite rank perturbations of self–adjoint operators have
been investigated recently [3, 4, 14, 18, 22, 23, 32]. It has been shown that
standard perturbation theory allows one to define only perturbations determined
by operators acting as H1(A) → H−1(A), the so-called H−1 perturbations. It is
possible to generalize this approach to include more general perturbations (1.2).
The perturbed operator cannot be determined uniquely in this case only a finite
parameter family corresponding to the formal expression (1.1) can be established.
To determine a unique operator one needs to use extra assumptions, for example
scaling properties of the original operator and the perturbation [3, 4, 5]. This
approach does not work for H−3 perturbations determined by the operators acting
as

V : H3(A) → H−3(A).(1.3)

Really consider the one dimensional perturbation formally determined by

Aα = A+ α〈ϕ, ·〉ϕ,(1.4)

where ϕ ∈ H−3(A) \ H−2(A). The restriction of the operator A to the domain
Dom(A0) = {ψ ∈ Dom(A) : 〈ϕ, ψ〉 = 0} is essentially self–adjoint. Every self–
adjoint extension of this symmetric operator coincides with the original operator
A. Therefore the operator corresponding to (1.4) cannot be defined in the original
Hilbert space using standard methods of extension theory. The aim of the current
paper is to define the operator Aα as a self–adjoint operator in a certain extended
Hilbert space.

Operators formally defined by (1.4) are important in different applications. For
example, consider the Laplace operator with one point interaction acting in L2(R

3).
The deficiency indices of Laplace operator restricted to the set of functions vanish-
ing at one point are equal to (1, 1). All self–adjoint extensions of this symmetric
operator are rotationally invariant. Therefore no non-spherically symmetric point
interaction for the Laplace operator in R3 can be constructed. Different modifi-
cations of this approach have been suggested. The first mathematically rigorous
approach uses perturbations in Pontryagin spaces, where the perturbed operator
has been defined in a certain extension of the original Hilbert space with non posi-
tive definite scalar product [12, 17, 27, 28, 29, 30, 31].1 Another approach has
been used by physicists who suggested considering certain abstract boundary condi-
tions connecting coefficients in the asymptotics of wave functions [10, 11] without
paying any attention to the fact that the wave functions corresponding to the p-
state have non-normalizable singularities of order r−2. Therefore no scalar product
space has been taken into consideration. Another constructive approach has been
suggested by Yu.E. Karpeshina [16]. In the first step a set of functions having the
form of p-scattering states is constructed. Then the self–adjoint operator and the
Hilbert space are defined using this set of scattering waves. Recently I. Andronov
suggested using extended Hilbert spaces to model non-spherically symmetric scat-
terers in R2 [6]. This model is very similar to the generalized point interactions
introduced by B. Pavlov [5, 25]. We are going to use some of the ideas suggested by
I.Andronov to construct rank one H−3 perturbations. Nonspherically symmetric
point interactions appear naturally in the studies of the Aharonov-Bohm effect but
no modification of the Hilbert space is needed [1, 8].

1After finishing this manuscript the authors learned about the recent paper [13] where the
idea of using Pontryagin spaces to define singular perturbations is developed.
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In [3, 4] it was proven that H−2 perturbations can be defined uniquely using
a certain regularization procedure. It appears that a similar approach works for
H−3-perturbations. In our paper we are going to show how to define arbitrary rank
one H−3-perturbations of self–adjoint operators restricting our consideration to the
case of semibounded (positive) operators. The approach suggested can easily be
modified to include finite rank and not necessarily semibounded operators. We are
not going to discuss how to construct regularizations and relations to symmetry
properties of the problem. We are planning to present those results in one of our
forthcoming publications.

2. The Hilbert Space

Our aim is to define the self–adjoint operator corresponding to (1.4), where A
is a certain positive self–adjoint operator acting in the Hilbert space H and ϕ is an
element from the space H−3 from the scale of Hilbert spaces associated with the
operator A. In what follows we are going to consider the case where

ϕ ∈ H−3 \H−2,(2.1)

since rank one perturbations from the class H−2 have already been studied in detail
in [3, 4, 22, 23, 32].

It is natural to determine the operator Aα using the restriction-extension
method. The operator Aα coincides with one of the extensions of the operator
A0, which is the restriction of the operator A to the set of functions u from the
domain Dom(A) of the operator A satisfying the condition

〈ϕ, u〉 = 0.(2.2)

Suppose that the operator A is considered as an operator in the original Hilbert
space H. Then the domain of the operator coincides with the space H2, Dom(A) =
H2 and the operator A0 is essentially self–adjoint if ϕ satisfies (2.1). The operator
A0 is not essentially self–adjoint for such ϕ only if the domain of the unperturbed
operator A is a subset of H3. Therefore let us consider the operator A as a self–
adjoint operator acting in the Hilbert space H1 equipped with the scalar product

〈u, v〉1 = 〈u, (1 + bA)v〉,(2.3)

where b is a positive real number,

b > 0.(2.4)

The norm determined by the latter scalar product is equivalent to the standard
norm in the space H1 and is given by

‖ u ‖21= 〈u, (1 + bA)u〉.

Then the domain of the operator A coincides with the space H3 and the operator is
self–adjoint on this domain. The operator A0 being the restriction of the operator
A to the domain

Dom(A0) = {u ∈ H3 : 〈ϕ, u〉 = 0}(2.5)

is a densely defined symmetric operator, since ϕ satisfies (2.1). The domain of
the self–adjoint operator corresponding to the formal expression (1.4) necessarily
contains the element g1 = 1

A+a1

ϕ ∈ H−1. Therefore the extension of the operator
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A0 corresponding to formal expression (1.4) cannot be constructed in the Hilbert
space H1. Let us consider the one dimensional extension H of this space,

H = Dom(A0)+̇C 3 U = (u, u1).(2.6)

Note that H ⊂ H3+̇C. We define the following natural embedding ρ of the space
H into the space H−1:

ρ : H → H−1

(u, u1) 7→ u+ u1g1.
(2.7)

Then the scalar product in the spaceH can be introduced using the following formal
calculations where b is a certain positive constant:

� U ,V �H = 〈ρU , ρV〉+ b〈ρU , AρV〉
= 〈u+ u1g1, v + v1g1〉+ b〈u+ u1g1, A(v + v1g1)〉
= 〈u, v〉+ b〈u,Av〉+ ū1v1

(

‖ g1 ‖
2 +b〈g1, Ag1〉

)

+ū1 (〈g1, v〉+ b〈Ag1, v〉) + v1 (〈u, g1〉+ b〈u,Ag1〉) .

The last two terms can be simplified taking into account that

Ag1 = −a1g1 + ϕ

and the fact that the functions u, v ∈ H3 satisfy (2.2). Then the scalar product is
given by the expression

� U ,V �H = 〈u, v〉+ b〈u,Av〉+ ū1v1
(

‖ g1 ‖
2 +b〈g1, Ag1〉

)

+(1− ba1) (u1〈g1, v〉+ v1〈u, g1〉) ,

which can be considered only formally, since the scalar product 〈g1, Ag1〉 and the
norm ‖ g1 ‖

2 are not defined (since ϕ is an element from H−3 \ H−2). To define
the scalar product we extend ϕ as a bounded linear functional using the equalities

〈g1, g1〉 = c1, 〈g1, Ag1〉 = c2,(2.8)

where c1 and c2 are arbitrary positive real constants.2 In what follows we are going
to use thenotation

d = c1 + bc2 ∈ R+.(2.9)

The scalar product determined by the following expression will also be considered:

� U ,V �H = 〈u, v〉+ b〈u,Av〉+ dū1v1 + (1− ba1) {ū1〈g1, v〉+ v1〈u, g1〉} .

(2.10)

This formula defines a sesquilinear form on the domain Dom(A0)+̇C. This form
defines a scalar product only if it is positive definite.

Let us denote by ‖ U ‖2
H=� U ,U �H the norm associated with the previously

introduced scalar product. The space H with this norm is not complete, and the
following lemma describes its completion with respect to this norm.

Lemma 2.1. Let the following inequality be satisfied

d > |1− ba1|
2 ‖ g1 ‖

2
−1 .(2.11)

Then the norm ‖ · ‖H is equivalent to the standard norm in the Hilbert space H1⊕C

‖ U ‖2≡‖ (u, u1) ‖
2= 〈u, (1 + bA)u〉+ |u1|

2.

2One can use some regularization procedure similar to those introduced for H
−2-pertubations

in [3, 4].
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The completion of the space H = Dom(A0)+̇C with respect to the norm ‖ · ‖H
coincides with the space H1+̇C.

Proof. We prove first that the norm ‖ · ‖H can be estimated from above by
the standard norm. The last term in (2.10) for U = V can be estimated as follows

|(1− ba1) {ū1〈g1, u〉+ u1〈u, g1〉} | ≤ 2|1− ba1||u1| ‖ u ‖1 ||g1||−1

≤ |1− ba1| ‖ g1 ‖−1 {|u1|
2+ ‖ u ‖21}.

(2.12)

It follows that

� U ,U �H ≤ ‖ u ‖21 +d|u1|
2 + |1− ba1|{‖ u ‖

2
1 +|u1|

2}
≤ (max{1, d}+ |1− ba1|) ‖ U ‖

2 .
(2.13)

This upper estimate is proven without using any assumption on the parameters
d, b, a1.

Let us prove the lower estimate provided that condition (2.11) is satisfied. Using
estimate (2.12) we can estimate the norm as follows

� U ,U � ≥ ‖u‖21 + d|u1|
2 − 2|1− ba1| ‖ g1 ‖−1 |u1| ‖ u ‖1

= (‖ u ‖ −|1− ba1| ‖ g1 ‖−1)
2
+

(

d− |1− ba1||
2 ‖ g1 ‖

2
−1

)

|u1|
2

≥ ε ‖ U ‖2

where ε = min{
d−|1−ba1|

2‖g1‖
2

−1

2 ,
d−|1−ba1|

2‖g1‖
2

−1

d+|1−ba1|2‖g1‖2
−1

} > 0. This completes the proof of

the Lemma.
Note that the scalar product in the space H calculated on the vectors with the

component u1 equal to zero is equivalent to the scalar product in the space H1.

But the decomposition of the space H = H1+̇C is not orthogonal. Only if ba1 = 1
does the decomposition become orthogonal. We are going to use the same notation
H for the completed space.

3. The Operator

We define the operator A on the set of regular elements Domr ⊂ H which
possess the representation

U = (u, u1) = (ur + u2g2, u1),

where ur ∈ H3, u2 ∈ C. The vector

g2 =
1

A+ a2
g1 =

1

A+ a2

1

A+ a1
ϕ ∈ H1

is defined using another one positive parameter, a2 > 0. The embedding operator
ρ maps every such element to a vector from H−1 as follows:

ρ(ur + u2g2, u1) = ur + u2g2 + u1g1.

Then the operator A in H is defined on Domr in such a way that the following
equality holds:

AρU ≡ ρAU(modϕ),(3.1)

where this equality in H−3 holds if and only if the difference between the left and
right hand sides is proportional to ϕ ∈ H−3. In other words, the operator A acts
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as formal adjoint operator. There exists a unique operator A in H satisfying (3.1)

AU = A

(

ur + u2g2
u1

)

=

(

Aur − a2u2g2
u2 − a1u1

)

.(3.2)

The operator A is not self–adjoint. In fact it is not even symmetric. The boundary
form of the operator can be calculated explicitly. We present here the result of
these tedious but otherwise straightforward calculations

� AU ,V �H − � U ,AV �H=< ur, ϕ > (bv2 + (1− ba1)v1)
− (bū2 + (1− ba1)ū1) < ϕ, vr > +a {ū2v1 − ū1v2} ,

(3.3)

where we used the notation

a = d+ (ba1 − 1) < g1, g2 > (a2 − a1).

This formula defines the following sesquilinear form in C3:

� AU ,V �H − � U ,AV �H=(3.4)

=

〈





0 −c b

c 0 −a
−b a 0









< ϕ, ur >

u1

u2



 ,





< ϕ, vr >

v1
v2





〉

,

where c = ba1 − 1 ∈ R. The rank of the 3 × 3 matrix appeared in this formula is
equal to 2 if at least one of the parameters a, b, c is different from zero, since the
characteristic polynomial for the matrix is given by −λ(λ2 + a2 + b2 + c2). Then
all symmetric restrictions of the operator A can be defined by certain boundary
conditions imposed on the functions from the domain of the operator. The problem
of defining a symmetric restriction of A is equivalent to the problem of finding a
Lagrangian plane of the boundary form.

Suppose that the boundary conditions are written in the form

α < ϕ, ur > +βu1 + γu2 = 0,(3.5)

where α, β, γ ∈ C are certain complex parameters, not all equal to zero simulta-
neously. Suppose that the parameter α is different from zero. Then the boundary
form of the operator restricted to the linear set of functions satisfying the boundary
conditions is given by

� AU ,V �H − � U ,AV �H = ū1v1c
(

β
α
− β̄

ᾱ

)

+ ū2v2b
(

− γ
α

+ γ̄
ᾱ

)

+ū1v2

(

a+ b β̄
ᾱ

+ c γ
α

)

− ū2v1

(

a+ b β̄
ᾱ

+ c γ
α

)

.

(3.6)

This expression vanishes for arbitrary u1,2, v1,2 if and only if the following three
conditions are satisfied:

β

α
∈ R;

γ

α
∈ R; a+ b

β̄

ᾱ
+ c

γ

α
= 0.(3.7)

The first two conditions imply that the complex parameters α, β and γ have equal
phase. Hence, without loss of generality, we can restrict our consideration to the
case of real parameters, since the boundary condition (3.5) is linear. Then the first
two conditions are fulfilled automatically. The third condition can be written as

αa+ βb+ γc = 0 ⇔ (α, β, γ) ⊥ (a, b, c).(3.8)

The symmetric restrictions of A have been described by three real parameters
(α, β, γ) ∈ R3 satisfying (3.8). Since the length of the vector (α, β, γ) does not play



ON RANK ONE H
−3-PERTURBATIONS OF POSITIVE SELF–ADJOINT OPERATORS 7

any role, all of the Lagrangian planes can be parameterized by one real parameter
θ ∈ [0, 2π) as follows:

(α, β, γ) = (b sin θ,−a sin θ − c cos θ, b cos θ),(3.9)

where we have taken into account that b is not equal to zero due to (2.4). We are
going to use the following definition in what follows

Definition 3.1. The operator Aθ, θ ∈ [0, 2π), is the restriction of the operator
A defined by (3.2) to the domain of functions U = (u, u1) ∈ H possessing the
representation

(u, u1) = (ur + u2g2, u1), ur ∈ H3, u1,2 ∈ C

and satisfying the boundary condition

b sin θ〈ϕ, ur〉 − (a sin θ + c cos θ)u1 + b cos θu2 = 0.(3.10)

4. Self–adjointness

Theorem 4.1. The operator Aθ is a self–adjoint operator in H with the scalar

product � ·, · �H .

Proof. It has already been proven that the operator Aθ is symmetric. We are
going to prove that it is self–adjoint by calculating its resolvent for large negative
λ, λ� 0.

We prove that the range of the operator Aθ−λ coincides with the Hilbert space
H

R(Aθ − λ) = H,

i.e. that for for any V = (v, v1) ∈ H there exits an element U = (ur + u2g2, u1) ∈
Dom(Aθ) such that

(Aθ − λ)U = V .

The last equation can be written as






(A− λ)ur − (a2 + λ)u2g2 = v;

u2 − (a1 + λ)u1 = v1.

The first of these equations can be rewritten as

ur − (a2 + λ)
1

A− λ
g2u2 =

1

A− λ
v,

which implies

〈ϕ, ur〉 − (a2 + λ)〈ϕ,
1

A− λ
g2〉u2 = 〈ϕ,

1

A− λ
v〉.

The vector U = (ur + u2g2, u1) should satisfy the boundary condition (3.5). Hence
the vector (〈ϕ, ur〉, u1, u2) ∈ C3 solves the system of linear equations





1 0 −(a2 + λ)〈ϕ, 1
A−λ

g2〉

0 −(a1 + λ) 1
b sin θ −a sin θ − c cos θ b cos θ









〈ϕ, ur〉
u1

u2



 =





〈ϕ, 1
A−λ

v〉

v1
0



 .

(4.1)

The determinant of this system is given by

−(a1 + λ)b cos θ − b sin θ(a1 + λ)(a2 + λ)〈ϕ,
1

A− λ
g2〉+ a sin θ + c cos θ.(4.2)
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To prove the theorem we have to show that the determinant is not equal to zero
for some λ.

Suppose first that θ 6= 0. Then the second term is dominant for very small
negative λ, λ < 0. Let us denote by σϕ the spectral measure associated with the
positive self–adjoint operator A and the element ϕ ∈ H−3 \H−2. Then we have:

∫ ∞

0

1

(µ+ 1)3
dσϕ(µ) = 〈ϕ,

1

(A+ 1)3
ϕ〉; lim

N→∞

∫ N

0

1

(µ+ 1)2
dσϕ(µ) = ∞.(4.3)

Actually the estimate
∣

∣

∣

〈

ϕ, λ
A−λ

1
A+a1

1
A+a2

ϕ
〉∣

∣

∣ =
∫∞

0
|λ|

µ+|λ|
1

µ+a1

1
µ+a2

dσϕ(µ)

≥
∫ N

0
|λ|

µ+|λ|
1

µ+a1

1
µ+a2

dσϕ(µ)

≥ |λ|
N+|λ|

∫ N

0
1

µ+a1

1
µ+a2

dσϕ(µ),

whcih is uniform in N > 0, implies that

lim
λ→−∞

∣

∣

∣

∣

〈

ϕ,
λ

A− λ

1

A+ a1

1

A+ a2
ϕ

〉∣

∣

∣

∣

= ∞,

if one takes into account (4.3). It follows that the asymptotics of the determinant
for small negative λ is given by

−b sin θλ〈ϕ,
λ

A− λ
g2〉

and it follows that the determinant is different from zero in a neighborhood of −∞.

Consider now the case θ = 0. The determinant is then given by

−a1b+ c− bλ

and is different from zero for small negative λ, since b 6= 0 according to (2.4).
We have proven that the linear system (4.1) has a unique solution. Then the

element U can be calculated to be

U =

(

1

A− λ
v +

1

A− λ
g1u2, u1

)

.

The theorem is proven.
We have actually proven that the operator Aθ is not only self–adjoint, but

semibounded from below. Moreover the resolvent of the operator can easily be
calculated. The solution of the linear system (4.1) is given by

〈ϕ, ur〉 =
(a sin θ + (c− b(a1 + λ)) cos θ) 〈ϕ, 1

A−λ
v〉+ (a2 + λ)〈ϕ, 1

A−λ
g2〉(a sin θ + c cos θ)v1

cos θ (c− b(a1 + λ)) + sin θ
(

a− b(a1 + λ)(a2 + λ)〈ϕ, 1
A−λ

g2〉
) ;

u1 =
b sin θ〈ϕ, 1

A−λ
v〉+ b

(

cos θ + (a2 + λ)〈ϕ, 1
A−λ

g2〉 sin θ
)

v1

cos θ (c− b(a1 + λ)) + sin θ
(

a− b(a1 + λ)(a2 + λ)〈ϕ, 1
A−λ

g2〉
) ;

u2 =
b sin θ(a1 + λ)〈ϕ, 1

A−λ
v〉+ (a sin θ + c cos θ) v1

cos θ (c− b(a1 + λ)) + sin θ
(

a− b(a1 + λ)(a2 + λ)〈ϕ, 1
A−λ

g2〉
) .

Then the resolvent can be calculated as

1

Aθ − λ
(v, v1) =

(

1

A− λ
v +

(

1

A− λ
g1

)

u2, u1

)

.(4.4)
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The resolvent restricted to the subspace H1 ⊂ H of functions V = (v, v1) ∈ H
with zero component u1 = 0 is given by

ρ
1

Aθ − λ
|H1

v =
1

A− λ
v +(4.5)

+
b sin θ

cos θ (c− b(a1 + λ)) + sin θ
(

a− b(a1 + λ)(a2 + λ)〈ϕ, 1
A−λ

g2〉
)

(

1

A− λ
g1

) 〈

ϕ,
1

A− λ
v

〉

.

Consider the special case θ = 0. In this case the resolvent and the restricted
resolvent are given by

1

A0 − λ
V =

(

1

A− λ
v +

(

1

A− λ
g1

)

1
c
b
− a1 − λ

v1,
1

c
b
− a1 − λ

v1

)

(4.6)

and

1

A− λ
|H1

=
1

A0 − λ
|H1

,(4.7)

respectively. The range of the restricted resolvent in this case is a subset of H1

again. Moreover the restricted resolvent coincides with the resolvent of the original
operator A, and this property is characteristic of the operator A0. In other words,
the domain of the operator A0 contains the domain of the original operator A, and
the action of the operators A0 and A restricted to this domain coincide,

A0|Dom(A) = A.

Therefore the operator A0 should be considered as an unperturbed operator,
since this is the unique operator possessing the properties described above. All of
the other operators Aθ corresponding to θ 6= 0 are perturbations of A0.
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