

On the number of solutions of some equations in finite groups

Torbjörn Tambour

Research Reports in Mathematics Number 15, 1998

Department of Mathematics
Stockholm University

Electronic versions of this document are available at http://www.matematik.su.se/reports/1998/15

Date of publication: December 11, 1998
Postal address:
Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden
Electronic addresses:
http://www.matematik.su.se
info@matematik.su.se

On the number of solutions of some equations in finite groups

Torbjörn Tambour

Abstract

We compute the number of solutions to some equations in finite groups and give a new proof of the fact that the degrees of the irreducible characters divide the order of the group.

1 On a result of Frobenius

In this note G will be a finite group with neutral element $1 . \operatorname{Irr}(G)$ denotes the set of irreducible characters. For $\chi \in \operatorname{Irr}(G)$ we let $\Theta_{\chi}: G \rightarrow G L\left(V_{\chi}\right)$ be a representation affording χ. All representations below are over the complex numbers. The scalar product on the space of class functions on G will be denoted by $[$,$] . By 1_{V}$ we denote the identity map on the vector space V and by $t r$ the trace map $\operatorname{End}_{\mathbf{C}}(V) \rightarrow \mathbf{C}$. The number of elements of a finite set S will be denoted by $|S|$.

We are going to study the two equations

$$
\begin{align*}
g & =x_{1} x_{2} \ldots x_{n} x_{1}^{-1} x_{2}^{-1} \ldots x_{n}^{-1} \text { and } \tag{1}\\
g & =\left[x_{1}, y_{1}\right] \ldots\left[x_{n}, y_{n}\right] \tag{2}
\end{align*}
$$

in G, where $[x, y]$ is the commutator $x y x^{-1} y^{-1}$, and we let $N_{n}(g)$ and $M_{n}(g)$ denote the number of solutions of (1) and (2) respectively (hence $N_{2}=$ M_{1}). Clearly both N_{n} and M_{n} are class functions, i.e. they are constant on the conjugacy classes, and therefore they can be expanded into irreducible characters. Frobenius [1] showed that

$$
N_{2}(g)=\sum_{\chi \in \operatorname{Irr}(G)} \frac{|G|}{\chi(1)} \chi(g),
$$

and we will compute the coefficients in the expansions of N_{n} and M_{n} and use them to give a new proof of the fact that the degrees of the irreducible characters divide $|G|$. We will also see that the numbers $N_{n}(1)$ actually determine the degrees of the irreducible characters.

Remark: Although maybe not apparent from the definition, elements of the form $g=x_{1} \ldots x_{n} x_{1}^{-1} \ldots x_{n}^{-1}$ belong to the commutator subgroup. For if λ is a one-dimensional character, then clearly $\lambda(g)=1$. Hence g lies in the kernel of every one-dimensional character, the intersection of which is the commutator subgroup.

Theorem 1 The expansions into irreducible characters are

$$
N_{n}(g)=\sum_{\chi \in \operatorname{Irr}(G)} \frac{|G|^{n-1}}{\chi(1)^{n-\epsilon_{n}}} \chi(g),
$$

where $\epsilon_{n}=1$ if n is even and 2 if n is odd, and

$$
M_{n}(g)=\sum_{\chi \in \operatorname{Irr}(G)} \frac{|G|^{2 n-1}}{\chi(1)^{2 n-1}} \chi(g)
$$

Proof. We first prove two useful relations. For an irreducible character χ,

$$
\begin{align*}
\sum_{x \in G} \Theta_{\chi}\left(x y x^{-1}\right) & =\frac{|G|}{\chi(1)} \chi(y) 1_{V_{\chi}} \tag{3}\\
\sum_{x \in G} \chi(x) \Theta_{\chi}\left(x^{-1}\right) & =\frac{|G|}{\chi(1)} 1_{V_{\chi}} . \tag{4}
\end{align*}
$$

Denote the left hand side of (3) by $F(y)$; then apparently $F(y)$ commutes with all $\Theta_{\chi}(g)$, so by Schur's lemma $F(y)=\lambda(y) 1_{V_{\chi}}$ for some scalar $\lambda(y)$. The trace of $F(y)$ is $\operatorname{tr} F(y)=\sum_{x} \chi\left(x y x^{-1}\right)=|G| \chi(y)$ and the trace of the right hand side is $\lambda(y) \chi(1)$.

The left hand side of (4) also commutes with all $\Theta_{\chi}(g)$, since

$$
\begin{aligned}
& \Theta_{\chi}(g) \sum_{x \in G} \chi(x) \Theta_{\chi}\left(x^{-1}\right) \Theta_{\chi}\left(g^{-1}\right)=\sum_{x \in G} \chi(x) \Theta_{\chi}\left(g x^{-1} g^{-1}\right) \\
= & \sum_{x \in G} \chi\left(g^{-1} x g\right) \Theta_{\chi}\left(x^{-1}\right)=\sum_{x \in G} \chi(x) \Theta_{\chi}\left(x^{-1}\right)
\end{aligned}
$$

after a change of variables. Hence $\sum_{x} \chi(x) \Theta_{\chi}\left(x^{-1}\right)=\mu 1_{V_{\chi}}$ for some scalar μ. Taking the trace gives

$$
|G|=\sum_{x \in G} \chi(x) \chi\left(x^{-1}\right)=\mu \chi(1)
$$

by the first orthogonality relation. This proves the claim.
Combining (3) and (4) now gives

$$
\begin{equation*}
\sum_{x, y \in G} \Theta_{\chi}\left(x y x^{-1} y^{-1}\right)=\frac{|G|}{\chi(1)} \sum_{y \in G} \chi(y) \Theta_{\chi}\left(y^{-1}\right)=\left(\frac{|G|}{\chi(1)}\right)^{2} 1_{V_{\chi}} \tag{5}
\end{equation*}
$$

Hence

$$
\sum_{x_{1}, y_{1}, \ldots, x_{n}, y_{n} \in G} \Theta_{\chi}\left(x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} \ldots x_{n} y_{n} x_{n}^{-1} y_{n}^{-1}\right)=\left(\frac{|G|}{\chi(1)}\right)^{2 n} 1_{V_{\chi}},
$$

which on taking the trace gives

$$
\begin{aligned}
{\left[M_{n}, \chi\right] } & =\frac{1}{|G|} \sum_{g \in G} M_{n}(g) \chi(g) \\
& =\frac{1}{|G|} \sum_{x_{1}, y_{1}, \ldots, x_{n}, y_{n} \in G} \chi\left(x_{1} y_{1} x_{1}^{-1} y_{1}^{-1} \ldots x_{n} y_{n} x_{n}^{-1} y_{n}^{-1}\right)=\frac{|G|^{2 n-1}}{\chi(1)^{2 n-1}}
\end{aligned}
$$

The expansion of M_{n} follows.
If we take the trace of both sides of (5) we get

$$
\left[N_{2}, \chi\right]=\frac{1}{|G|} \sum_{g \in G} N_{2}(g) \chi(g)=\frac{1}{|G|} \sum_{x, y \in G} \chi\left(x y x^{-1} y^{-1}\right)=\frac{|G|}{\chi(1)},
$$

and Frobenius's expansion of N_{2} follows.
By (3) again we have

$$
\sum_{x, y, z \in G} \Theta_{\chi}\left(x y z x^{-1} y^{-1} z^{-1}\right)=\frac{|G|}{\chi(1)} \sum_{y, z \in G} \chi(y z) \Theta_{\chi}\left(y^{-1} z^{-1}\right)
$$

and so

$$
\sum_{x, y, z \in G} \chi\left(x y z x^{-1} y^{-1} z^{-1}\right)=\frac{|G|}{\chi(1)} \sum_{y, z \in G} \chi(y z) \chi\left(y^{-1} z^{-1}\right) .
$$

Now

$$
\sum_{z \in G} \chi(y z) \chi\left(y^{-1} z^{-1}\right)=\sum_{z \in G} \chi(z) \chi\left(y^{-1} z^{-1} y\right)=\sum_{z \in G} \chi(z) \chi\left(z^{-1}\right)=|G|
$$

which finally gives

$$
\sum_{g \in G} N_{3}(g) \chi(g)=\sum_{x, y, z \in G} \chi\left(x y z x^{-1} y^{-1} z^{-1}\right)=\frac{|G|}{\chi(1)} \sum_{y \in G}|G|=\frac{|G|^{3}}{\chi(1)}
$$

and $\left[N_{3}, \chi\right]=|G|^{2} / \chi(1)$.
To finish the proof we are going to show that for $n \geq 3$,

$$
\left[N_{n}, \chi\right]=\left(\frac{|G|}{\chi(1)}\right)^{2}\left[N_{n-2}, \chi\right]
$$

By (3),

$$
\sum_{x_{1} \in G} \Theta_{\chi}\left(x_{1} x_{2} \ldots x_{n} x_{1}^{-1}\right)=\frac{|G|}{\chi(1)} \chi\left(x_{2} \ldots x_{n}\right) 1_{V_{\chi}}
$$

and

$$
\begin{aligned}
\sum_{x_{1}, x_{2} \in G} \Theta_{\chi}\left(x_{1} x_{2} \ldots x_{n} x_{1}^{-1} x_{2}^{-1}\right) & =\frac{|G|}{\chi(1)} \sum_{x_{2} \in G} \chi\left(x_{2} \ldots x_{n}\right) \Theta_{\chi}\left(x_{2}^{-1}\right) \\
& =\frac{|G|}{\chi(1)} \Theta_{\chi}\left(x_{3} \ldots x_{n}\right) \sum_{t \in G} \chi(t) \Theta_{\chi}\left(t^{-1}\right) \\
& =\left(\frac{|G|}{\chi(1)}\right)^{2} \Theta_{\chi}\left(x_{3} \ldots x_{n}\right)
\end{aligned}
$$

where we have made the change of variables $t=x_{2} \ldots x_{n}$. Hence

$$
\begin{gathered}
\sum_{x_{1}, \ldots, x_{n} \in G} \Theta_{\chi}\left(x_{1} \ldots x_{n} x_{1}^{-1} \ldots x_{n}^{-1}\right) \\
=\left(\frac{|G|}{\chi(1)}\right)^{2} \sum_{x_{3}, \ldots, x_{n} \in G} \Theta_{\chi}\left(x_{3} \ldots x_{n} x_{3}^{-1} \ldots x_{n}^{-1}\right)
\end{gathered}
$$

wherefore

$$
\sum_{x_{1}, \ldots, x_{n} \in G} \chi\left(x_{1} \ldots x_{n} x_{1}^{-1} \ldots x_{n}^{-1}\right)=\left(\frac{|G|}{\chi(1)}\right)^{2} \sum_{x_{3}, \ldots, x_{n} \in G} \chi\left(x_{3} \ldots x_{n} x_{3}^{-1} \ldots x_{n}^{-1}\right),
$$

that is, $\left[N_{n}, \chi\right]=(|G| / \chi(1))^{2}\left[N_{n-2}, \chi\right]$. The theorem is proved.
Remark: Since the coefficients in the expansion of N_{2} (or of any N_{n}) are integers, N_{2} is actually a character and it is tempting to try to find a nice description of some representation affording N_{2}. This does not seem to be so easy, though. For instance, one can see that N_{2} cannot in general be the character of a permutation representation. For let $G=S_{3}$, the symmetric group on three letters, and assume that there exists a G-set affording N_{2}. The orbits have length $1,2,3$ or 6 . Since $N_{2}(1)=18$ and the number of orbits is 6 (by Burnside's lemma), there must be either 6 orbits of length 3 or 1 orbit of length 6,2 of length 3 and 3 of length 2 . In any case there is an orbit of length 3 . The permutation representation of G on this orbit is equivalent to one with G acting on the cosets of some subgroup with $6 / 3=2$ elements, i.e. a subgroup consisting of the identity 1 and a transposition $(a b)$. The coset $\{1,(a b)\}$ is fixed by the element $(a b)$. But $N_{2}((a b))=0$, so there are no fixed points of $(a b)$ and we have a contradiction.

2 On the degrees of the irreducible characters

By Theorem 1

$$
\frac{1}{|G|} N_{2 n+2}(1)=\sum_{\chi \in \operatorname{Irr}(G)}\left(\frac{|G|}{\chi(1)}\right)^{2 n}
$$

Put $a_{\chi}=|G| / \chi(1)$ and let p_{k} be the k th power sum symmetric function, $p_{k}\left(x_{1}, \ldots, x_{m}\right)=x_{1}^{k}+\cdots+x_{m}^{k}$. Then

$$
\frac{1}{|G|} N_{2 n+2}(1)=p_{n}\left(a_{\chi}^{2} ; \chi \in \operatorname{Irr}(G)\right)
$$

Denote the k th elementary symmetric function by e_{k}. By Newton's formulæ the numbers $e_{k}\left(a_{\chi}^{2}\right)$ are determined by the $p_{k}\left(a_{\chi}^{2}\right)$, hence they are determined
by the $N_{2 n}(1)$. But then the quotients a_{χ} and therefore the degrees $\chi(1)$ are determined by the $N_{2 n}(1)$ (and the order $|G|$ of course).

It is a classical result of Frobenius that the degrees of the irreducible characters divide the order of G and there are well-known improvements of this. We will give a new proof of Itô's theorem that $\chi(1)$ divides the index $|G: A|$ for any normal abelian subgroup A of G. Other proofs of these results can be found in any textbook on character theory, e.g. [2].

We first prove a lemma.
Lemma 2 Let y_{1}, \ldots, y_{r} be rational numbers and suppose that there is an integer $s \neq 0$ such that $s \cdot p_{m}\left(y_{1}, \ldots, y_{r}\right)$ are integers for all $m \geq 1$. Then the y_{i} are integers.

Proof. We will prove the lemma by contradiction. Suppose then that the claim is not true and let y_{1}, \ldots, y_{k} be those y_{i} that are not integers (if necessary we can of course renumber the y_{i}). Since $p_{m}\left(y_{1}, \ldots, y_{r}\right)=$ $p_{m}\left(y_{1}, \ldots, y_{k}\right)+p_{m}\left(y_{k+1}, \ldots, y_{r}\right)$ we have $s \cdot p_{m}\left(y_{1}, \ldots, y_{k}\right) \in \mathbf{Z}$ for all m. Hence we may replace k by r and assume that no y_{i} is an integer.

We first consider the case $s=1$. We use the following convenient notation: When q is a prime and a an integer, $o_{q}(a)=n$, where a is divisible by q^{n}, but not by q^{n+1}. When a / b is a rational number, $o_{q}(a / b)=$ $o_{q}(a)-o_{q}(b)$. By Newton's formulæ, $m!e_{m}$ is a polynomial with integer coefficients in the p_{k}, so $m!e_{m}\left(y_{1}, \ldots, y_{r}\right) \in \mathbf{Z}$ for all m. Let q be a prime such that $o_{q}\left(y_{i}\right)<0$ for some i. Renumbering if necessary, we may assume that $o_{q}\left(y_{i}\right)<0$ for $i=1,2, \ldots, j$ and ≥ 0 for $i=j+1, \ldots r$. Consider $j!e_{j}\left(y_{1}, \ldots, y_{r}\right)$. If $\left\{i_{1}, \ldots, i_{j}\right\} \neq\{1, \ldots, j\}$, then $o_{q}\left(y_{i_{1}} \ldots y_{i_{j}}\right)>o_{q}\left(y_{1} \ldots y_{j}\right)$, so $o_{q}\left(e_{j}\left(y_{1}, \ldots, y_{r}\right)\right)=o_{q}\left(y_{1} \ldots y_{j}\right)$. Since $o_{q}\left(y_{i}\right)<0$ for $i=1, \ldots, j$, we have $o_{q}\left(e_{j}\left(y_{1}, \ldots, y_{r}\right)\right) \leq-j$ and it follows that $q^{j} \mid j$!. But the exact power of q dividing j ! is

$$
\left[\frac{j}{q}\right]+\left[\frac{j}{q^{2}}\right]+\cdots<\frac{j}{q}+\frac{j}{q^{2}}+\cdots=\frac{j}{q-1} \leq j
$$

where [] denotes the integer part, and we have a contradiction.
Now we consider the general case. We get

$$
p_{m}\left(s y_{1}, \ldots, s y_{r}\right)=s^{m} p_{m}\left(y_{1}, \ldots, y_{r}\right) \in \mathbf{Z}
$$

so $s y_{i} \in \mathbf{Z}$ for all i by the first part of the proof. Put $y_{i}=t_{i} / s$, where $t_{i} \in \mathbf{Z}$. Then $\sum_{i} t_{i}^{m} / s^{m-1} \in \mathbf{Z}$ for all m. If p is a prime dividing s, then $p^{m-1} \mid \sum_{i} t_{i}^{m}$
for all m. We will prove that $p \mid t_{i}$ for all i. By induction on the number of prime factors of s, this will show that $s \mid t_{i}$ for all i. Suppose that there is some t_{i} that is not divisible by p. We can then as above assume that no t_{i} is divisible by p. Since p and t_{i} are coprime and $\varphi\left(p^{k}\right)=p^{k-1}(p-1)$ we have

$$
t_{i}^{p^{k-1}(p-1)} \equiv 1 \bmod p^{k} .
$$

Because $\sum_{i} t_{i}^{p^{k-1}(p-1)}$ is divisible by $p^{p^{k-1}(p-1)-1}$ and $k \leq p^{k-1}(p-1)-1$ if k is sufficiently large, $p^{k} \mid r$ for all k. This is impossible and the lemma is proved.

An immediate consequence of the lemma is that $\chi(1)$ divides $|G|$ for all irreducible χ. For we saw in the beginning of this section that $|G| p_{n}\left(a_{\chi}^{2}\right)$ is an integer for all n, and then a_{χ}^{2} and also a_{χ} are all integers. We proceed to prove Itô's theorem.

Theorem 3 (Itô) Let A be a normal abelian subgroup of G. Then the degrees of the irreducible characters divide the index $|G: A|$.

Proof. We will use the notation

$$
\left[x_{1}, x_{2}, \ldots, x_{n}\right]=x_{1} x_{2} \ldots x_{n} x_{1}^{-1} x_{2}^{-1} \ldots x_{n}^{-1}
$$

For $a \in A$, let $\Omega_{n, a}$ be the set of all $\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$ such that

$$
\left[x_{1}, \ldots, x_{n}\right]=a
$$

Also let Ω_{n} denote the union of all $\Omega_{n, a}$ for $a \in A$. Notice that $\left|\Omega_{n, 1}\right|=N_{n}(1)$.
We first claim that there is an action of A^{n} on Ω_{n} given by

$$
\left(a_{1}, \ldots, a_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)
$$

and we need to show that $\left(a_{1} x_{1}, \ldots, a_{n} x_{n}\right)$ lies in Ω_{n} if $\left(x_{1}, \ldots, x_{n}\right)$ does. To simplify the formulæ we write $x^{y}=y x y^{-1}$. Using induction one easily proves that

$$
x_{0} a_{1} x_{1} a_{2} x_{2} \ldots a_{n} x_{n}=a_{1}^{x_{0}} a_{2}^{x_{0} x_{1}} \ldots a_{n}^{x_{0} x_{1} \ldots x_{n-1}} x_{0} x_{1} \ldots x_{n}
$$

for any a_{i} and x_{i}. This gives

$$
a_{1} x_{1} a_{2} x_{2} \ldots a_{n} x_{n}=a_{1} a_{2}^{x_{1}} \ldots a_{n}^{x_{1} \ldots x_{n-1}} x_{1} \ldots x_{n}
$$

and

$$
\begin{gathered}
x_{1} \ldots x_{n} x_{1}^{-1} a_{1}^{-1} x_{2}^{-1} a_{2}^{-1} \ldots x_{n}^{-1} a_{n}^{-1} \\
=\left(a_{1}^{-1}\right)^{x_{1} \ldots x_{n} x_{1}^{-1}}\left(a_{2}^{-1}\right)^{x_{1} \ldots x_{n} x_{1}^{-1} x_{2}^{-1}} \ldots\left(a_{n}^{-1}\right)^{x_{1} \ldots x_{n} x_{1}^{-1} \ldots x_{n}^{-1}}\left[x_{1}, \ldots, x_{n}\right] .
\end{gathered}
$$

Combining these we get

$$
\left[a_{1} x_{1}, \ldots, a_{n} x_{n}\right]=f_{\bar{x}}\left(a_{1}, \ldots, a_{n}\right)\left[x_{1}, \ldots, x_{n}\right]
$$

where $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ and

$$
f_{\bar{x}}\left(a_{1}, \ldots, a_{n}\right)=a_{1} a_{2}^{x_{1}} a_{3}^{x_{1} x_{2}} \ldots a_{n}^{x_{1} \ldots x_{n-1}}\left(a_{1}^{-1}\right)^{x_{1} \ldots x_{n} x_{1}^{-1}} \ldots\left(a_{n}^{-1}\right)^{x_{1} \ldots x_{n} x_{1}^{-1} \ldots x_{n}^{-1}}
$$

Since $A \triangleleft G, f_{\bar{x}}\left(a_{1}, \ldots, a_{n}\right) \in A$ and indeed we have an action of A^{n} on Ω_{n}. Furthermore, $f_{\bar{x}}: A^{n} \rightarrow A$ is a homomorphism since A is abelian. Let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right) \in \Omega_{n, 1}$ and $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$. Then $\bar{a} \cdot \bar{x} \in \Omega_{n, 1}$ if and only if $f_{\bar{x}}(\bar{a})=1$, i.e., if and only if $\bar{a} \in \operatorname{ker} f_{\bar{x}}$. Hence

$$
\operatorname{orb}_{A^{n}}(\bar{x}) \cap \Omega_{n, 1}\left|=\left|\operatorname{ker} f_{\bar{x}}\right|,\right.
$$

where $\operatorname{orb}_{A^{n}}(\bar{x})$ is the orbit through \bar{x} under the action of A^{n}. We have $\left|\operatorname{ker} f_{\bar{x}}\right| \cdot\left|\operatorname{im} f_{\bar{x}}\right|=|A|^{n}$ or

$$
\left|\operatorname{ker} f_{\bar{x}}\right|=\frac{|A|}{\left|\operatorname{im} f_{\bar{x}}\right|} \cdot|A|^{n-1}
$$

where the first factor is an integer, since the image is a subgroup of A. It follows that $\operatorname{orb}_{A^{n}}(\bar{x}) \cap \Omega_{n, 1} \mid$ is divisible by $|A|^{n-1}$ for all \bar{x}. But $\Omega_{n, 1}$ is the disjoint union of all sets $\operatorname{orb}_{A^{n}}(\bar{x}) \cap \Omega_{n, 1}$ for $\bar{x} \in \Omega_{n, 1}$, wherefore $N_{n}(1)$ is divisible by $|A|^{n-1}$ for all n.

By Theorem 1

$$
\frac{1}{|A|^{2 n}} N_{2 n+2}(1)=|G| \sum_{\chi}\left(\frac{|G: A|}{\chi(1)}\right)^{2 n}
$$

and then by Lemma $2,|G: A| / \chi(1)$ is indeed an integer for all $\chi \in \operatorname{Irr}(G)$.
The most obvious example of a normal abelian subgroup is of course the centre $Z=Z(G)$. For an irreducible character χ the (normal) subgroup $Z(\chi)$
is defined as set of all elements g such that $\Theta_{\chi}(g)$ is a scalar multiple of the identity. It is easy to see that $Z(\chi)$ consists of all g such that $|\chi(g)|=\chi(1)$. Moreover, $Z(G)$ is the intersection of all $Z(\chi)$ for $\chi \in \operatorname{Irr}(G)$. For by Schur's lemma, $Z(G) \subseteq Z(\chi)$ for all χ. On the other hand, if $g \in \cap_{\chi} Z(\chi)$, then $\Theta_{\chi}\left(g x g^{-1} x^{-1}\right)=1_{V_{\chi}}$ for all x and χ. Hence $g x g^{-1} x^{-1} \in \cap_{\chi} \operatorname{ker} \Theta_{\chi}=\{1\}$ for all x, so $g \in Z(G)$, which proves the claim.

The image of $Z(\chi)$ under Θ_{χ} is the centre of $\Theta_{\chi}(G)$. The identity map $G L(V) \rightarrow G L(V)$ gives by restriction an irreducible representation of $\Theta_{\chi}(G)$. Hence by the theorem, $\chi(1)$ divides the index $\left|\Theta_{\chi}(G): Z\left(\Theta_{\chi}(G)\right)\right|$. But

$$
\frac{\Theta_{\chi}(G)}{Z\left(\Theta_{\chi}(G)\right)}=\frac{\Theta_{\chi}(G)}{\Theta_{\chi}(Z(\chi))} \cong \frac{G / \operatorname{ker} \Theta_{\chi}}{Z(\chi) / \operatorname{ker} \Theta_{\chi}} \cong \frac{G}{Z(\chi)}
$$

which proves (a like-wise well-known)
Corollary 4 The degree $\chi(1)$ divides the index $|G: Z(\chi)|$ for all $\chi \in \operatorname{Irr}(G)$.

3 A remark

It follows of course from the above that $N_{n}(1)$ is divisible by $|G|$ for all n. This can also be proved directly, which gives some information on the structure of $\Omega_{n, 1}$. Let

$$
\Psi_{n}=\left\{\left(x_{1}, \ldots x_{n}\right) \in G^{n} ; x_{1} \ldots x_{n}=g x_{n} \ldots x_{1} g^{-1} \text { for some } g \in G\right\}
$$

and define a map

$$
\begin{aligned}
f: \Omega_{n, 1} & \rightarrow \Psi_{n-1} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

$\left(\left(x_{1}, \ldots, x_{n-1}\right) \in \Psi_{n-1}\right.$ since we may take $\left.g=x_{n}\right)$. Let $\left(x_{1}, \ldots, x_{n}\right) \in$ $\Omega_{n, 1}$. Then the inverse image of $\left(x_{1}, \ldots, x_{n-1}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ consists of those $\left(x_{1}, \ldots, x_{n-1}, y\right)$ for which $x_{n} x_{n-1} \ldots x_{1} x_{n}^{-1}=y x_{n-1} \ldots x_{1} y^{-1}$. Hence $f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n-1}, y\right)$ if and only if $x_{n}^{-1} y \in C_{G}\left(x_{1} \ldots x_{n-1}\right)$, the centralizer of $x_{1} \ldots x_{n-1}$, and it follows that

$$
\left|f^{-1}\left(x_{1}, \ldots, x_{n-1}\right)\right|=\left|C_{G}\left(x_{1} \ldots x_{n-1}\right)\right|
$$

This shows that

$$
N_{n}(1)=\left|\Omega_{n, 1}\right|=\sum_{\bar{x} \in \Psi_{n-1}}\left|C_{G}(\pi \bar{x})\right|,
$$

where we have used the notation $\pi \bar{x}=x_{1} \ldots x_{n-1}$ if $\bar{x}=\left(x_{1}, \ldots, x_{n-1}\right)$.
G acts on Ψ_{n-1} by

$$
g .\left(x_{1}, \ldots, x_{n-1}\right)=\left(g x_{1} g^{-1}, \ldots, g x_{n-1} g^{-1}\right) .
$$

If \bar{x} and \bar{x}^{\prime} belong to the same orbit, $\bar{x}^{\prime}=g \cdot \bar{x}$, then $\pi \bar{x}^{\prime}=g(\pi \bar{x}) g^{-1}$, so $\left|C_{G}\left(\pi \bar{x}^{\prime}\right)\right|=\left|C_{G}(\pi \bar{x})\right|$. If we denote the orbit through \bar{x} by $O(\bar{x})$ and let $\bar{x}_{1}, \ldots, \bar{x}_{m}$ be representatives for the orbits, then these observations show that

$$
N_{n}(1)=\sum_{j=1}^{m}\left|O\left(\bar{x}_{j}\right)\right| \cdot\left|C_{G}\left(\pi \bar{x}_{j}\right)\right| .
$$

Clearly the stabilizer $\operatorname{stab}(\bar{x})$ of $\bar{x} \in \Psi_{n-1}$ is a subgroup of $C_{G}\left(\pi \bar{x}_{j}\right)$. Since

$$
\left|O\left(\bar{x}_{j}\right)\right| \cdot|\operatorname{stab}(\bar{x})|=|G|
$$

and $|\operatorname{stab}(\bar{x})|$ divides $\left|C_{G}\left(\pi \bar{x}_{j}\right)\right|$ by Lagrange's theorem, $|G|$ divides $\left|O\left(\bar{x}_{j}\right)\right|$. $\left|C_{G}\left(\pi \bar{x}_{j}\right)\right|$ and thus also $N_{n}(1)$.

References

[1] F.G. Frobenius, Über Gruppencharaktere, Gesammelte Abhandlungen Band III, p. 1-37 (J.P. Serre, ed.), Springer-Verlag, Berlin, 1968.
[2] I.M. Isaacs, Character theory of finite groups, Academic Press, New York 1976.

