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On the number of solutions of some equations

in finite groups

Torbjörn Tambour

Abstract

We compute the number of solutions to some equations in finite
groups and give a new proof of the fact that the degrees of the irre-
ducible characters divide the order of the group.

1 On a result of Frobenius

In this note G will be a finite group with neutral element 1. Irr(G) denotes
the set of irreducible characters. For χ ∈ Irr(G) we let Θχ : G → GL(Vχ) be
a representation affording χ. All representations below are over the complex
numbers. The scalar product on the space of class functions on G will be
denoted by [ , ]. By 1V we denote the identity map on the vector space V
and by tr the trace map EndC(V ) → C. The number of elements of a finite
set S will be denoted by |S|.

We are going to study the two equations

g = x1x2 . . . xnx−1
1 x−1

2 . . . x−1
n and (1)

g = [x1, y1] . . . [xn, yn] (2)

in G, where [x, y] is the commutator xyx−1y−1, and we let Nn(g) and Mn(g)
denote the number of solutions of (1) and (2) respectively (hence N2 =
M1). Clearly both Nn and Mn are class functions, i.e. they are constant on
the conjugacy classes, and therefore they can be expanded into irreducible
characters. Frobenius [1] showed that

N2(g) =
∑

χ∈Irr(G)

|G|

χ(1)
χ(g),
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and we will compute the coefficients in the expansions of Nn and Mn and
use them to give a new proof of the fact that the degrees of the irreducible
characters divide |G|. We will also see that the numbers Nn(1) actually
determine the degrees of the irreducible characters.

Remark: Although maybe not apparent from the definition, elements of
the form g = x1 . . . xnx−1

1 . . . x−1
n belong to the commutator subgroup. For if

λ is a one-dimensional character, then clearly λ(g) = 1. Hence g lies in the
kernel of every one-dimensional character, the intersection of which is the
commutator subgroup.

Theorem 1 The expansions into irreducible characters are

Nn(g) =
∑

χ∈Irr(G)

|G|n−1

χ(1)n−εn
χ(g),

where εn = 1 if n is even and 2 if n is odd, and

Mn(g) =
∑

χ∈Irr(G)

|G|2n−1

χ(1)2n−1
χ(g).

Proof. We first prove two useful relations. For an irreducible character χ,

∑

x∈G

Θχ(xyx−1) =
|G|

χ(1)
χ(y)1Vχ

(3)

∑

x∈G

χ(x)Θχ(x−1) =
|G|

χ(1)
1Vχ

. (4)

Denote the left hand side of (3) by F (y); then apparently F (y) commutes
with all Θχ(g), so by Schur’s lemma F (y) = λ(y)1Vχ

for some scalar λ(y).
The trace of F (y) is trF (y) =

∑

x χ(xyx−1) = |G|χ(y) and the trace of the
right hand side is λ(y)χ(1).

The left hand side of (4) also commutes with all Θχ(g), since

Θχ(g)
∑

x∈G

χ(x)Θχ(x−1)Θχ(g−1) =
∑

x∈G

χ(x)Θχ(gx−1g−1)

=
∑

x∈G

χ(g−1xg)Θχ(x−1) =
∑

x∈G

χ(x)Θχ(x−1)
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after a change of variables. Hence
∑

x χ(x)Θχ(x−1) = µ1Vχ
for some scalar

µ. Taking the trace gives

|G| =
∑

x∈G

χ(x)χ(x−1) = µχ(1)

by the first orthogonality relation. This proves the claim.
Combining (3) and (4) now gives

∑

x,y∈G

Θχ(xyx−1y−1) =
|G|

χ(1)

∑

y∈G

χ(y)Θχ(y−1) =
( |G|

χ(1)

)2

1Vχ
. (5)

Hence

∑

x1,y1,...,xn,yn∈G

Θχ(x1y1x
−1
1 y−1

1 . . . xnynx−1
n y−1

n ) =
( |G|

χ(1)

)2n

1Vχ
,

which on taking the trace gives

[Mn, χ] =
1

|G|

∑

g∈G

Mn(g)χ(g)

=
1

|G|

∑

x1,y1,...,xn,yn∈G

χ(x1y1x
−1
1 y−1

1 . . . xnynx
−1
n y−1

n ) =
|G|2n−1

χ(1)2n−1
.

The expansion of Mn follows.
If we take the trace of both sides of (5) we get

[N2, χ] =
1

|G|

∑

g∈G

N2(g)χ(g) =
1

|G|

∑

x,y∈G

χ(xyx−1y−1) =
|G|

χ(1)
,

and Frobenius’s expansion of N2 follows.
By (3) again we have

∑

x,y,z∈G

Θχ(xyzx−1y−1z−1) =
|G|

χ(1)

∑

y,z∈G

χ(yz)Θχ(y−1z−1)

and so

∑

x,y,z∈G

χ(xyzx−1y−1z−1) =
|G|

χ(1)

∑

y,z∈G

χ(yz)χ(y−1z−1).
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Now

∑

z∈G

χ(yz)χ(y−1z−1) =
∑

z∈G

χ(z)χ(y−1z−1y) =
∑

z∈G

χ(z)χ(z−1) = |G|

which finally gives

∑

g∈G

N3(g)χ(g) =
∑

x,y,z∈G

χ(xyzx−1y−1z−1) =
|G|

χ(1)

∑

y∈G

|G| =
|G|3

χ(1)

and [N3, χ] = |G|2/χ(1).
To finish the proof we are going to show that for n ≥ 3,

[Nn, χ] =
( |G|

χ(1)

)2

[Nn−2, χ].

By (3),

∑

x1∈G

Θχ(x1x2 . . . xnx−1
1 ) =

|G|

χ(1)
χ(x2 . . . xn)1Vχ

and

∑

x1,x2∈G

Θχ(x1x2 . . . xnx−1
1 x−1

2 ) =
|G|

χ(1)

∑

x2∈G

χ(x2 . . . xn)Θχ(x−1
2 )

=
|G|

χ(1)
Θχ(x3 . . . xn)

∑

t∈G

χ(t)Θχ(t−1)

=
( |G|

χ(1)

)2

Θχ(x3 . . . xn)

where we have made the change of variables t = x2 . . . xn. Hence

∑

x1,...,xn∈G

Θχ(x1 . . . xnx−1
1 . . . x−1

n )

=
( |G|

χ(1)

)2 ∑

x3,...,xn∈G

Θχ(x3 . . . xnx−1
3 . . . x−1

n )
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wherefore

∑

x1,...,xn∈G

χ(x1 . . . xnx−1
1 . . . x−1

n ) =
( |G|

χ(1)

)2 ∑

x3,...,xn∈G

χ(x3 . . . xnx−1
3 . . . x−1

n ),

that is, [Nn, χ] = (|G|/χ(1))2[Nn−2, χ]. The theorem is proved.

Remark: Since the coefficients in the expansion of N2 (or of any Nn) are
integers, N2 is actually a character and it is tempting to try to find a nice
description of some representation affording N2. This does not seem to be
so easy, though. For instance, one can see that N2 cannot in general be the
character of a permutation representation. For let G = S3, the symmetric
group on three letters, and assume that there exists a G-set affording N2.
The orbits have length 1, 2, 3 or 6. Since N2(1) = 18 and the number of
orbits is 6 (by Burnside’s lemma), there must be either 6 orbits of length 3
or 1 orbit of length 6, 2 of length 3 and 3 of length 2. In any case there is
an orbit of length 3. The permutation representation of G on this orbit is
equivalent to one with G acting on the cosets of some subgroup with 6/3 = 2
elements, i.e. a subgroup consisting of the identity 1 and a transposition
(ab). The coset {1, (ab)} is fixed by the element (ab). But N2((ab)) = 0, so
there are no fixed points of (ab) and we have a contradiction.

2 On the degrees of the irreducible charac-

ters

By Theorem 1

1

|G|
N2n+2(1) =

∑

χ∈Irr(G)

( |G|

χ(1)

)2n

.

Put aχ = |G|/χ(1) and let pk be the kth power sum symmetric function,
pk(x1, . . . , xm) = xk

1 + · · · + xk
m. Then

1

|G|
N2n+2(1) = pn(a2

χ; χ ∈ Irr(G)).

Denote the kth elementary symmetric function by ek. By Newton’s formulæ
the numbers ek(a

2
χ) are determined by the pk(a

2
χ), hence they are determined
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by the N2n(1). But then the quotients aχ and therefore the degrees χ(1) are
determined by the N2n(1) (and the order |G| of course).

It is a classical result of Frobenius that the degrees of the irreducible
characters divide the order of G and there are well-known improvements of
this. We will give a new proof of Itô’s theorem that χ(1) divides the index
|G : A| for any normal abelian subgroup A of G. Other proofs of these results
can be found in any textbook on character theory, e.g. [2].

We first prove a lemma.

Lemma 2 Let y1, . . . , yr be rational numbers and suppose that there is an

integer s 6= 0 such that s · pm(y1, . . . , yr) are integers for all m ≥ 1. Then the

yi are integers.

Proof. We will prove the lemma by contradiction. Suppose then that
the claim is not true and let y1, . . . , yk be those yi that are not integers
(if necessary we can of course renumber the yi). Since pm(y1, . . . , yr) =
pm(y1, . . . , yk) + pm(yk+1, . . . , yr) we have s · pm(y1, . . . , yk) ∈ Z for all m.
Hence we may replace k by r and assume that no yi is an integer.

We first consider the case s = 1. We use the following convenient no-
tation: When q is a prime and a an integer, oq(a) = n, where a is divis-
ible by qn, but not by qn+1. When a/b is a rational number, oq(a/b) =
oq(a) − oq(b). By Newton’s formulæ, m!em is a polynomial with integer co-
efficients in the pk, so m!em(y1, . . . , yr) ∈ Z for all m. Let q be a prime
such that oq(yi) < 0 for some i. Renumbering if necessary, we may assume
that oq(yi) < 0 for i = 1, 2, . . . , j and ≥ 0 for i = j + 1, . . . r. Consider
j!ej(y1, . . . , yr). If {i1, . . . , ij} 6= {1, . . . , j}, then oq(yi1 . . . yij) > oq(y1 . . . yj),
so oq(ej(y1, . . . , yr)) = oq(y1 . . . yj). Since oq(yi) < 0 for i = 1, . . . , j, we have
oq(ej(y1, . . . , yr)) ≤ −j and it follows that qj |j!. But the exact power of q
dividing j! is

[j

q

]

+
[ j

q2

]

+ · · · <
j

q
+

j

q2
+ · · · =

j

q − 1
≤ j,

where [ ] denotes the integer part, and we have a contradiction.
Now we consider the general case. We get

pm(sy1, . . . , syr) = smpm(y1, . . . , yr) ∈ Z,

so syi ∈ Z for all i by the first part of the proof. Put yi = ti/s, where ti ∈ Z.
Then

∑

i t
m
i /sm−1 ∈ Z for all m. If p is a prime dividing s, then pm−1|

∑

i t
m
i
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for all m. We will prove that p|ti for all i. By induction on the number of
prime factors of s, this will show that s|ti for all i. Suppose that there is
some ti that is not divisible by p. We can then as above assume that no ti is
divisible by p. Since p and ti are coprime and ϕ(pk) = pk−1(p − 1) we have

t
pk−1(p−1)
i ≡ 1 mod pk.

Because
∑

i t
pk−1(p−1)
i is divisible by ppk−1(p−1)−1 and k ≤ pk−1(p−1)−1 if k is

sufficiently large, pk|r for all k. This is impossible and the lemma is proved.

An immediate consequence of the lemma is that χ(1) divides |G| for all
irreducible χ. For we saw in the beginning of this section that |G|pn(a

2
χ) is

an integer for all n, and then a2
χ and also aχ are all integers. We proceed to

prove Itô’s theorem.

Theorem 3 (Itô) Let A be a normal abelian subgroup of G. Then the de-

grees of the irreducible characters divide the index |G : A|.

Proof. We will use the notation

[x1, x2, . . . , xn] = x1x2 . . . xnx−1
1 x−1

2 . . . x−1
n .

For a ∈ A, let Ωn,a be the set of all (x1, . . . , xn) ∈ Gn such that

[x1, . . . , xn] = a.

Also let Ωn denote the union of all Ωn,a for a ∈ A. Notice that |Ωn,1| = Nn(1).
We first claim that there is an action of An on Ωn given by

(a1, . . . , an).(x1, . . . , xn) = (a1x1, . . . , anxn)

and we need to show that (a1x1, . . . , anxn) lies in Ωn if (x1, . . . , xn) does. To
simplify the formulæ we write xy = yxy−1. Using induction one easily proves
that

x0a1x1a2x2 . . . anxn = ax0

1 ax0x1

2 . . . ax0x1...xn−1

n x0x1 . . . xn

for any ai and xi. This gives

a1x1a2x2 . . . anxn = a1a
x1

2 . . . ax1...xn−1

n x1 . . . xn
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and

x1 . . . xnx−1
1 a−1

1 x−1
2 a−1

2 . . . x−1
n a−1

n

= (a−1
1 )x1...xnx−1

1 (a−1
2 )x1...xnx−1

1
x−1

2 . . . (a−1
n )x1...xnx−1

1
...x−1

n [x1, . . . , xn].

Combining these we get

[a1x1, . . . , anxn] = fx̄(a1, . . . , an)[x1, . . . , xn],

where x̄ = (x1, . . . , xn) and

fx̄(a1, . . . , an) = a1a
x1

2 ax1x2

3 . . . ax1...xn−1

n (a−1
1 )x1...xnx−1

1 . . . (a−1
n )x1...xnx−1

1
...x−1

n .

Since A / G, fx̄(a1, . . . , an) ∈ A and indeed we have an action of An on
Ωn. Furthermore, fx̄ : An → A is a homomorphism since A is abelian. Let
x̄ = (x1, . . . , xn) ∈ Ωn,1 and ā = (a1, . . . , an) ∈ An. Then ā.x̄ ∈ Ωn,1 if and
only if fx̄(ā) = 1, i.e., if and only if ā ∈ ker fx̄. Hence

|orbAn(x̄) ∩ Ωn,1| = | ker fx̄|,

where orbAn(x̄) is the orbit through x̄ under the action of An. We have
| ker fx̄| · |im fx̄| = |A|n or

| ker fx̄| =
|A|

|im fx̄|
· |A|n−1,

where the first factor is an integer, since the image is a subgroup of A. It
follows that |orbAn(x̄) ∩ Ωn,1| is divisible by |A|n−1 for all x̄. But Ωn,1 is the
disjoint union of all sets orbAn(x̄) ∩ Ωn,1 for x̄ ∈ Ωn,1, wherefore Nn(1) is
divisible by |A|n−1 for all n.

By Theorem 1

1

|A|2n
N2n+2(1) = |G|

∑

χ

( |G : A|

χ(1)

)2n

and then by Lemma 2, |G : A|/χ(1) is indeed an integer for all χ ∈ Irr(G).

The most obvious example of a normal abelian subgroup is of course the
centre Z = Z(G). For an irreducible character χ the (normal) subgroup Z(χ)
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is defined as set of all elements g such that Θχ(g) is a scalar multiple of the
identity. It is easy to see that Z(χ) consists of all g such that |χ(g)| = χ(1).
Moreover, Z(G) is the intersection of all Z(χ) for χ ∈ Irr(G). For by Schur’s
lemma, Z(G) ⊆ Z(χ) for all χ. On the other hand, if g ∈ ∩χZ(χ), then
Θχ(gxg−1x−1) = 1Vχ

for all x and χ. Hence gxg−1x−1 ∈ ∩χ ker Θχ = {1} for
all x, so g ∈ Z(G), which proves the claim.

The image of Z(χ) under Θχ is the centre of Θχ(G). The identity map
GL(V ) → GL(V ) gives by restriction an irreducible representation of Θχ(G).
Hence by the theorem, χ(1) divides the index |Θχ(G) : Z(Θχ(G))|. But

Θχ(G)

Z(Θχ(G))
=

Θχ(G)

Θχ(Z(χ))
∼=

G/ ker Θχ

Z(χ)/ ker Θχ

∼=
G

Z(χ)
,

which proves (a like-wise well-known)

Corollary 4 The degree χ(1) divides the index |G : Z(χ)| for all χ ∈ Irr(G).

3 A remark

It follows of course from the above that Nn(1) is divisible by |G| for all
n. This can also be proved directly, which gives some information on the
structure of Ωn,1. Let

Ψn = {(x1, . . . xn) ∈ Gn; x1 . . . xn = gxn . . . x1g
−1 for some g ∈ G}

and define a map

f : Ωn,1 → Ψn−1

(x1, . . . , xn) 7→ (x1, . . . , xn−1)

((x1, . . . , xn−1) ∈ Ψn−1 since we may take g = xn). Let (x1, . . . , xn) ∈
Ωn,1. Then the inverse image of (x1, . . . , xn−1) = f(x1, . . . , xn) consists of
those (x1, . . . , xn−1, y) for which xnxn−1 . . . x1x

−1
n = yxn−1 . . . x1y

−1. Hence
f(x1, . . . , xn) = f(x1, . . . , xn−1, y) if and only if x−1

n y ∈ CG(x1 . . . xn−1), the
centralizer of x1 . . . xn−1, and it follows that

|f−1(x1, . . . , xn−1)| = |CG(x1 . . . xn−1)|.

This shows that

Nn(1) = |Ωn,1| =
∑

x̄∈Ψn−1

|CG(πx̄)|,
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where we have used the notation πx̄ = x1 . . . xn−1 if x̄ = (x1, . . . , xn−1).
G acts on Ψn−1 by

g.(x1, . . . , xn−1) = (gx1g
−1, . . . , gxn−1g

−1).

If x̄ and x̄′ belong to the same orbit, x̄′ = g.x̄, then πx̄′ = g(πx̄)g−1, so
|CG(πx̄′)| = |CG(πx̄)|. If we denote the orbit through x̄ by O(x̄) and let
x̄1, . . . , x̄m be representatives for the orbits, then these observations show
that

Nn(1) =

m
∑

j=1

|O(x̄j)| · |CG(πx̄j)|.

Clearly the stabilizer stab(x̄) of x̄ ∈ Ψn−1 is a subgroup of CG(πx̄j). Since

|O(x̄j)| · |stab(x̄)| = |G|

and |stab(x̄)| divides |CG(πx̄j)| by Lagrange’s theorem, |G| divides |O(x̄j)| ·
|CG(πx̄j)| and thus also Nn(1).
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