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Abstract

In this thesis we study Susceptible-Infectious-Removed epidemics

on configuration model networks. Networks are used in different kinds

of studies, such as the study of the internet, social networks and bio-

logical networks, as a simplified model of the real world. We look at

a closed population without births, deaths and migration. On that

population we look at an SIR epidemic, which divides the population

into three different states: susceptible, infectious and removed. Those

who are susceptible can be infected if they are in contact with an in-

fectious individual. Those who are infected make contacts at a fixed

rate, then they recover and becomes immune or die from the disease.

How a disease spreads through the population depends strongly on

the connections that occur between infectious and susceptible indi-

viduals. By constucting a configuration model network it is possible

to investigate when the epidemic may become large and when it will

stay small with probability one and how the distribution of the infec-

tious period affects the outbreak. We use generating functions and

percolation theory to answer these questions. The early stages of an

epidemic outbreak can be approximated by a branching process, we

see that this approximation is possible until approximately the
√

nth

infection in a population that consist of n individuals. We also show

that an epidemic outbreak is possible when the expected number of

transmission causing contacts an infectious individual has is above

one.
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Abstract

In this thesis we study Susceptible-Infectious-Removed epidemics on configura-
tion model networks. Networks are used in different kinds of studies, such as the
study of the internet, social networks and biological networks, as a simplified model
of the real world. We look at a closed population without births, deaths and migra-
tion. On that population we look at an SIR epidemic, which divides the population
into three different states: susceptible, infectious and removed. Those who are sus-
ceptible can be infected if they are in contact with an infectious individual. Those
who are infected make contacts at a fixed rate, then they recover and becomes im-
mune or die from the disease. How a disease spreads through the population depends
strongly on the connections that occur between infectious and susceptible individu-
als. By constucting a configuration model network it is possible to investigate when
the epidemic may become large and when it will stay small with probability one and
how the distribution of the infectious period affects the outbreak. We use generating
functions and percolation theory to answer these questions. The early stages of an
epidemic outbreak can be approximated by a branching process, we see that this
approximation is possible until approximately the

√
nth infection in a population

that consist of n individuals. We also show that an epidemic outbreak is possible
when the expected number of transmission causing contacts an infectious individual
has is above one.
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1 Introduction

A network is a collection of points connected pairwise by lines. The points in the net-
work are called vertices and the lines are called edges. Several different fields of science
use networks as a model for connections, it is common to use them in the study of the
internet, neural networks or social networks. A social network is a network of people
where the individuals are represented by the vertices and the edges represent some kind
of relationships between the individuals.

In this thesis we study Susceptible-Infectious-Removed (SIR) epidemics in a large pop-
ulation. The population is divided into three subgroups: susceptible, infectious and
removed. An infected individual can transmit the disease to susceptible individuals be-
fore she recovers and become immune or dies from the disease. The population is closed,
this means that there are no births, death or migration in the population. The patterns
of the spread of the disease are similar to the connection patterns between suscepti-
ble and infective individuals. A contact network is a social network where the edges
represent possible contacts between individuals. During a day an individual may be in
contact with different individuals: family, friends, colleagues and so forth, these people
make up this individual’s possible connections. There is no guarantee that a connected
individual will have a transmission causing contact with the infected individual. The de-
gree of a vertex is the number of edges attached to it, i.e. the number of connections an
individual has. We study a configuration model network, that is a stochastic model net-
work with arbitrary degree distribution. We have n individuals in our model and assign
independent and identically distributed number of connections to these individuals. We
choose one graph with this degree distribution uniformly and consider an SIR epidemic
on it. Two vertices that are connected by an edge are called neighbors. Two neighboring
vertices make contact at a fixed rate. Those contacting processes are independent for
different pairs of vertices. If an infective individual contacts a susceptible individual,
the disease will be transmitted and the susceptible individual becomes infectious. The
infectious period for an individual is independent of each other individual’s infectious
periods and is distributed as the random variable τ .

We use a configuration model network in this thesis to examine when an SIR epidemic
might become large and when it will stay small with probability one. We also look at
after how many infections approximations of the epidemic will become unrealistic and
how the distribution of the infection length will affect the outbreak.

2 Networks

In this thesis we consider large networks where the number of vertices is denoted by n
and the number of edges is denoted by m. Two vertices may have more than one edge
connecting them, these are called parallel edges or multiedges. Edges that connect a
vertex to itself are called self-loops [5]. A common terminology for networks is graphs,

5



or multigraphs in the case when we allow parallel edges.

Figure 1: A random network with 5 vertices and 6 edges.

The number of edges connected to a vertex is called the degree of the vertex. For example
if a certain vertex i has three edges attached, then vertex i has degree three. In Figure 1
we have a network with five vertices and six edges. One vertex has degree one, one ver-
tex has degree two and the other three have degree three. A degree sequence is a set of
degrees for all the vertices {k1, k2, ...} and in this case the degree sequence is {1, 2, 3, 3, 3}.

A contact network is a social network where the vertices represent individuals, the edges
represent connections or possible contacts between two individuals and the degree of
a vertex is the number of connections that individual has. Two individuals that are
connected are neighbors of each other. When we study epidemics, the connecting edges
represent the possible paths a disease can be transmitted along.

A graph can be either directed or undirected. If we have a pair of vertices (vi, vj)
and the edge between vi and vj is identical to the edge between vj and vi, for all i and
j, we have an undirected graph. In the case of an epidemic process this means that we
have a pair of individuals i and j, if the graph is undirected then i can infect j if and
only if j can infect i, for all individuals i and j. If this is not true we have a directed
graph.

2.1 Random graphs

If a model network is specified by specific set of parameters and the network is random
in other respects we have a random graph. A common way to construct a random graph
is by keeping the number of vertices, n, and the probability of an edge between vertices,
p, fixed. The expected number of connections of a vertex we denote by z and this means
that p = z

n−1 ≈
z
n for large n. We let pk denote the probability that a vertex has degree

k, if we estimate these probabilities from Figure 1 we get: p1 = 1
5 , p2 = 1

5 , p3 = 3
5 , and
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pk = 0 for all other values of k. The probability that a vertex is connected to k of the
vertices and not to any of the other n− k vertices is given by

pk =

(
n

k

)
pk(1− p)n−k ≈ zke−z

k!
. (1)

That is, for large n, the number of neighbors has a Poisson distribution, we show the
details of the calculations behind equation (1) in Appendix A. This is also called the
Erdös-Rényi model. In many cases this model does not give a good approximation
of real-world phenomena, particularly because of the degree distribution. The degree
distribution in most real-world networks is right skewed, this means that there are many
vertices with low degrees and a relatively many with high degrees [4], thus the degree
distribution is a power-law distribution of the form:

pk = Θ(k−α)

i.e.
0 < lim inf

k→∞

pk
k−α

≤ lim sup
k→∞

pk
k−α

<∞

where α is constant. In words this means that the lower bound of pk
k−α is larger than

zero while the upper bound is finite when k goes to infinity.

2.1.1 Giant component

When p = 0, there are no edges between any vertices in the network, so the largest
component is of size one and is therefore independent of the number of vertices in the
network. When p = 1 all vertices are connected and form a component of size n. The
size of such a component grows with the size of the network. The largest component in
the random graph differs for different values of p.

A giant component is a component that grows proportional to n. It is shown in [4]
that for the Erdös-Rényi model the fraction of vertices in the giant component is a so-
lution of S = 1− e−zS , where S denotes the size of the giant component as a proportion
of the size of the network and z denotes the expected degree of a vertex.

In a graph there can only exist one giant component. This can be shown by first
calculating the expected degree of a vertex, z, in a generated random graph. On this
generated graph we then add some additional edges between vertices, that are not al-
ready connected, with a probability p′ = z

(n−1)3/2 . It is shown on page 409 in [4] that the

expected degree is the same after as it were before we added the additional edges when
n is large. If there is more than one giant component in the random graph before we add
the additional edges, we can choose two of them with sizes S1n and S2n respectively.
There are S1n ∗ S2n = S1S2n

2 possible pairs of vertices between the two giant compo-
nents. With probability p′ new edges are created. The probability that none of these
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new edges is among the S1S2n
2 pairs of vertices that are connecting the two components

is given by q′ = (1− p′)S1S2n2
. We have

ln(q′) = S1S2n
2 ln(1− p′) = S1S2n

2 ln(1− z(n− 1)−3/2) ≈ −zS1S2
√
n

and thus q′ = e−zS1S2
√
n. This probability goes to zero as n grows large and the expected

degrees stays the same, thus when z > 1 there can only be one giant component.

2.1.2 Small component

Small components are the components that do not belong to the giant component. If
there exists one giant component, this component usually does not consist of all the
vertices. In large networks most of the small components are trees without loops, a tree
of s vertices contains s− 1 edges. When we are looking at a small component of size s
in the Erdös-Rényi graph, the probability of another edge, which would result in a loop,
is p = z/(n − 1). An extra edge could be created in

(
s
2

)
− (s − 1) = 1/2(s − 1)(s − 2)

ways. The expected number of extra edges in the component is 1
2(s − 1)(s − 2) ∗ z

n−1
which goes to zero as n→∞, hence the component is a tree without loops.

Not all small components are trees, but most of them are. We assume that the de-
gree distribution has finite variance. The following theorem, given by Durrett on page
71 in [2], says that the number of self-loops and parallel edges in a network is Poisson
distributed:

Theorem 1 Let µ =
∑

k kpk and µ2 =
∑

k k(k−1)pk. As n→∞, the number of self-loops
χ0 and the number of parallel edges χ1 are asymptotically independent Poisson(µ2/2µ)
and Poisson((µ2/2µ)2).

In the Erdös-Rényi graph the degree distribution is a Poisson(λ) distribution. To calcu-
late the expected number of self-loops and parallel edges in a Erdös Rényi graph we have
µ = E[K] = λ and µ2 = E[K2]− E[K] = V ar(K) + E[K]2 − E[K] = λ+ λ2 − λ = λ2,
where we have used that V ar(K) = E[K2] − E[K]2 = λ. The expected number of
self-loops χ0 are asymptotically Poisson(λ/2) and the number of parallel edges χ1 are
asymptotically Possion(λ2/4) as n→∞.

2.2 The configuration model

In this thesis we are interested in an epidemic spreading process and for this the Erdös-
Rényi model is not appropriate. Instead we use a configuration model. The configuration
model is a random graph with a general degree distribution. We consider a configura-
tion model where the vertices have independent and identically distributed degrees. The
probability that a randomly chosen vertex has degree k is pk. From this degree distribu-
tion we uniformly draw a degree sequence {ki}, which is a set of n degrees ki, i = 1, ..., n,
where ki denotes the number of neighbors of vertex i. This sequence we use to generate
a network by giving each vertex i a total of ki ”stubs”. A stub is an end of an edge, in
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total there are 2m =
∑

i ki stubs. We create an edge by choosing two stubs uniformly at
random and connecting them to one another. We do the same thing for the remaining
2m− 2 stubs. For this to work we must have an even number of stubs. To get an even
number we can condition on that En = {k1 + ...+ kn is even}. We can do this because
if the probability P (E1) ∈ (0, 1) then P (En)→ 1/2 when n goes to infinity and this will
have a small effect.

To illustrate this, we look at Figure 1 again and assume that it is constructed as a
configuration model. We have the degree sequence {1, 2, 3, 3, 3}, each of the five vertices
is given ki number of stubs, as shown on the left hand side of Figure 2. These stubs are
paired at random and creating edges, this is illustrated by the dotted lines on the right
hand side of the figure.

Figure 2: Construction of a configuration model with 5 vertices and 12 stubs. The stubs
are on the left hand side, these are paired at random and create the graph on the right
hand side.

Since each pair of stubs is equally likely to create an edge, the configuration model can
have self-loops and parallel edges. As mentioned in the previous subsection, the number
of self-loops and parallel edges is Poisson distributed with a parameter that asyptotically
does not depend on n as n grows large. The number of self-loops and parallel edges in
the network are therefore sparse if n is large, [2]. What kind of network we get depend
on the exact degree distribution, specified by the pk’s. We either get a network with
several small clusters or it may contain a giant component and some small components.
In a social network where the edges represent connections between individuals, a person
A can only be connected to person B if there is at least one connecting edge between
them. They have to belong to the same component for it to be a connecting edge be-
tween them. A large fraction, S, of the individuals in the network can communicate
with one another if there is a giant component in the network. In networks without a
giant component there are only small components, so all communication takes place in
small groups. The size of a small component has distribution Ps and the expected value
E[s] is its typical size.
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2.3 Percolation

Percolation is used on networks to see what happens if we remove some vertices and/or
edges. There are two kinds of percolation: bond percolation where edges are removed
at random and site percolation where vertices are removed at random along with all the
edges attached to them.

It is used to study different processes, in the case of transmission of a disease one can
use percolation to look at the effects of vaccination or immunization. Diseases spread
through the population as a network of connections. If one individual becomes immune
against a specific disease, he does not affect the spread since he will not get infected
and infect others. Such an individual can be removed from the network. By using site
percolation we can randomly ”occupy” vertices and calculate how many individuals that
need to be vaccinated to avoid an epidemic outbreak. A cluster of occupied edges is
called a percolation cluster.

3 Susceptible-Infectious-Removed epidemics

The susceptible-infectious-removed epidemic or SIR epidemic is an epidemic where the
population is divided into three different states. An individual is susceptible if he does
not have the disease but can be infected when he is in contact with an infectious indi-
vidual. An individual who has the disease is in the infectious state and can transmit
the disease to susceptible individuals. When individuals get infected they stay infected
for independent infectious periods, which are distributed as the random variable τ . An
individual who has been infected can either recover and become immune to the disease or
die and thus make a transition to the removed state. We have a closed population with
n individuals, where n is large. We let S(t) denote the number of susceptible individuals
at time t, I(t) denote the number of infectious individuals at time t and R(t) denote the
removed part of the population at time t, thus S(t) + I(t) +R(t) = n.

S =⇒ I =⇒ R

When the disease is rapidly spreading and the survivors of the disease are immune to
further infection of it, this model is appropriate. For example it is appropriate on dis-
eases like influenza or measles.

We first assume that we have a fully mixed model, which means that an individual
is equally likely to be in contact with any other individual in the population. An indi-
vidual in the infectious state has contacts with individuals from any other state at an
average rate β per time unit and leaves the infectious state in an average rate γ per
time unit. If we let s, i and r denote the fraction of individuals in the state susceptible,
infectious and removed respectively, we get the following differential equations, under
the assumption that n goes to infinity:

∂s

∂t
= −βis, ∂i

∂t
= βis− γi, ∂r

∂t
= γi. (2)
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It is necessary that s+ i+r = 1. In the beginning of the epidemic development, at t = 0,
the population consist of many susceptible individuals, a few infectious individuals and
no yet recovered or deceased individuals. We denote the initial fraction of the population
in the different states as s0, i0 and r0 respectively.

Figure 3: The fully mixed SIR epidemic model, where the lines s, i and r represent
the fraction of individuals in the state susceptible, infectious and removed respectively.
With inputs s0 = 0.99, i0 = 0.01, r0 = 0, β = 2 and γ = 0.4.

In Figure 3 we can see how the SIR model developes over time. The fraction of susceptible
decrease over time while the fraction of removed increase over time. The number of
infected increase in the beginning and then decrease. As t goes to infinity, the fraction
susceptibles does not go to zero. When t grows large, i goes towards zero and there are
no infected individuals left who can transmit the disease to the remaining susceptibles.
This also implies that the fraction removed does not reach one as t → ∞. If we solve
the differential equations (2) above, we get the expressions s = s0e

−βr/γ and dr
dt =

γ(1− r − s0e−βr/γ) [4]. When the population grows large and we initially have s0 ≈ 1,
the fraction removed individuals is approximately r = 1 − e−βr/γ which does not reach
one. This is the same equation as the one for the size S of the giant component in
a Erdös-Rényi graph, we mention in the previous subsection that the size of the giant
component is the solution to S = 1− e−zS , when z = β/γ.
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3.1 The basic reproduction number

The basic reproduction number, R0, is the average number of other individuals an in-
fected individual in the early stage of the epidemic development will transmit the disease
to. In the early stage there are only few individuals carrying the disease and most in-
dividuals are susceptible. When the expected number of people an infected individual
will transmit the disease to is larger than one, the epidemic may spread, while when
the expectation is less than one the epidemic will die out. Thus R0 = 1 corresponds to
the epidemic threshold, the point of transition between the epidemic and non-epidemic
regimes.

We denote the time during which an individual is infected by ι. Given the average
rate of recovering from the disease, γ, the probability of recovering in any infinitesimal
time interval ∂ι is γ∂ι. The probability that an infectious individual is still infected after
a time ι, is given by

lim
∂ι→0

(1− γ∂ι)ι/∂ι = e−γι.

The probability that an individual has been infected this long and then recovers in the
time interval ι and ι + dι is γe−γιdι. This means that the time an individual remains
infected is exponentially distributed. The expected number of contacts this individual
has during his infectious period is βι. In the early stages of the epidemic development
every other individual he has contact with is in the susceptible stage. Hence βι is also
the expected number of people who will get infected by this individual. According to [4]
we have

R0 = βγ

∫ ∞
0

ιe−γιdι =
β

γ
(3)

and when the basic reproduction number is equal to one, it corresponds to the epidemic
threshold. By putting R0 = 1 into equation (3), we can solve it and the solution is
γ = β. Thus when the average rate of recovering is larger than the contact rate, γ > β,
an epidemic outbreak is not possible.

4 SIR epidemic on a configuration model network

In this section we will look at the SIR epidemic on a configuration model network. The
assumption about a fully mixed model is not the real life case. It is not very likely
that all individuals meet the same number of other individuals during the infectious
time or that it is equally likely to meet everyone in the entire population. We therefore
modify the fully mixed model by replacing it with a contact network. The vertices are
individuals and all possible transmission causing contacts are represented by the edges
between two vertices. The number of possible connections an individual i has is given
by the degree of vertex i.

12



4.1 Transmissibility

The contact network is undirected and has an arbitrary degree distribution. On this
contact network we consider an SIR epidemic. The contacting processes are indepen-
dent for different pairs of vertices. If an infectious vertex contacts a susceptible then the
susceptible becomes infectious as well, if an infectious individual contacts an infective or
removed individual nothing happens. An infectious individual stays so for independent
infectious periods, distributed as the random variable τ .

We want to know the probability of transmission, we therefore look at two randomly
chosen individuals that are connected, one of them is infected i and one is susceptible j.
The probability of transmission of the disease between these two individuals is denoted
by Tij . The average rate of disease causing contact we denote by rij and the infectious
period for individual i by τi, where τi is random. The probability that j will be infected
by i when we have continous time is

Tij = lim
∂t→0

1− (1− rij∂t)τi/∂t = 1− e−rijτi .

If we instead use discrete time, we set ∂t = 1 and get the expression

Tij = 1− (1− rij)τi ,

where τi is measured in time steps.

Since the values of rij and τi usually will vary between individuals, the probability
of transmission also varies. We assume that the rij are independent and identically dis-
tributed (i.i.d.) and distributed with some arbitrary distribution Pr and that τi is one
i.i.d. taken from some arbitrary distribution Pτ . The rij

′s and τi
′s are independent of

each other.

If an infected individual stays infective for some fixed infectious period, then Tij is
one i.i.d. random variable and the a priori probability of transmission is the average of
Tij over the distributions Pr and Pτ . Thus for the continous case

T̂ = E[Tij ] = 1−
∫ ∞
0

drdτPrPτe
−rτ (4)

and for the discrete case

T̂ = E[Tij ] = 1−
∫ ∞
0

dr

∞∑
τ=0

PrPτ (1− r)τ . (5)

We call T̂ ”transmissibility”, 0 ≤ T̂ ≤ 1 [6]. When we consider SIR epidemics and in-
dividuals are infective for fixed infectious periods, bond percolation can be used on the
network. When the epidemic outbreak starts with one infected individual we can watch
the spread of the disease across the network by occupying each edge along which the

13



disease can be transmitted. An individual is transmitted with a probability T̂ and the
component that consists of the vertices that are connected by occupied edges, including
the initial infected individual, corresponds to the size of the outbreak.

If the infection period is random, we can not use bond percolation and the quanti-
ties investigated will change [2]. We show this later in the end of section 4.2.1. This is
because when we have random infectious periods the transmission probabilities are not
independent. For example, the probabilities T12 and T13 are both functions of the same
τ1 and hence not independent.

In the case when one infected individual either transmits the disease to all of its neighbors
or to none, we have a situation that is approximately corresponding to site percolation.
If an infected vertex transmits the disease to all of its neighbors, this vertex and all its
edges get occupied. But since some of the vertices in the other end of an edge do not
spread the disease any further, we can not occupy this edge, which is why the connection
between the epidemic outbreak and site percolation is not exact.

4.2 Outbreak of a disease

In this thesis the focus is on large networks. When the population is large we can calcu-
late several quantities of interest exactly. We assume that we initially have one infective
individual which is chosen uniformly at random. The outbreak spreads from this initial
individual through the population across the network. We can look at the development
of the disease with fixed infectious periods as a model equivalent to bond percolation,
with the transmission probability T̂ as the probability of occupation. This means that
if T̂ = 1 all edges in the network are occupied and thus form a giant component, while
if T̂ = 0 no edges are occupied.

By occupying each edge along which the disease is transmitted, the set of vertices
connected by these occupied edges represents the infected individuals. The infected
individuals form a percolation cluster along the occupied edges. The size of the out-
break corresponds to the size of the cluster to which the initial vertex is attached.

Our graph is constructed as the configuration model, so the graph is chosen uniformly
at random from the set of all graphs with the drawn degree sequence.

4.2.1 The generating function

To solve the average behaviour of graphs we use generating functions. The generating
function is an alternative representation of a probability distribution. It is defined in [3]
as

Definition 1 Let K be a nonnegative, integer-valued random variable. The (probability)
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generating function of K is

gK(x) = E[xK ] =
∞∑
k=0

xkP (K = k).

The generating function has many advantageous properties, we will use the folllowing
theorems and corollaries in [3]

Theorem 2 Let K1,K2, ...,Kn be independent, nonnegative, integer-valued random vari-
ables, and set Sn = K1 +K2 + ...+Kn. Then

gSn(x) =

n∏
h=1

gKh(x).

Corollary 2.1 If, in addition, K1,K2, ...,Kn are identically distributed, then

gSn(x) = (gK(x))n

Theorem 3 Let K be a nonnegative, interger-valued random variable, and suppose that
E|K|h <∞ for some h = 1, 2, .... Then

E[K(K − 1) ∗ ... ∗ (K − h+ 1)] = g
(h)
K (1),

where g
(h)
K (1) stands for the hth derivative of the generating function gK(x) at x = 1.

Corollary 3.1. Let K be a nonnegative, integer-valued random variable, then
(a) E[|K|] <∞ =⇒ E[K] = g′K(1), and
(b) E[K2] <∞ =⇒ V ar(K) = g′′K(1) + g′K(1)− (g′K(1))2.

The proof of Corollary 3.1 follows from Theorem 3, by inserting h = 1 and h = 2
we obtain
h = 1⇒ g′K(1) = E[K],
h = 2⇒ g′′K(1) = E[K(K − 1)] = E[K2 −K] = E[K2]− E[K].
From this we get V ar(K) = E[K2]− E[K]2 = g′′K(1) + g′K(1)− (g′K(1))2.

We denote the generating function for the degree distribution by G0(x). We let pk
be correctly normalized and denote the probability that a randomly chosen vertex has
degree k. This function is defined as

G0(x) =

∞∑
k=0

pkx
k, (6)

where we have that G0(1) = 1. Since the degree distribution is normalized and positive
definite we have that G0(x) is absolutely convergent for all |x| ≤ 1 [5].
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If we instead follow a randomly chosen edge to the vertex in one of its ends, the vertex
we arrive to has another degree distribution. This is because if the vertex has degree k,
it is k times as likely to be chosen as a vertex with degree 1. The degree distribution
of a vertex we reach by following a randomly chosen edge is proportional to kpk, thus
the normalized generating function of the degree of a vertex we arrive to by following a
randomly chosen edge is∑

k kpkx
k∑

k kpk
=

∑
k kpkx

k−1x

G′0(1)
= x

G′0(x)

G′0(1)
. (7)

In function (7) we include the edge from which we arrived, but we are interested in how
many ways we can leave such a vertex. We therefore exclude the vertex through which
we arrived, that is the degree minus one. If we divide equation (7) by x we achieve this
new generating function

G1(x) =
G′0(x)

G′0(1)
=

1

z
G′0(x), (8)

where z denotes the expected degree of a vertex, z = E[K] =
∑

k kpk = G′0(1).

If we know the generating function we can calculate the probability pk, since it is given
by the kth derivative of G0

pk =
1

k!

∂kG0

∂xk

∣∣∣∣
x=0

.

We need two other generating functions to solve the bond percolation problem, those
who correspond to the distribution of occupied edges attached to a vertex as a function
of transmission. These generating functions we denote by G0(x, T̂ ) and G1(x; T̂ ), where
T̂ is the transmissibility for an individual when the infectious periods are fixed. The
probability that a vertex has exactly m of k occupied edges is given by

(
k
m

)
T̂m(1−T̂ )k−m,

there are
(
k
m

)
different ways of chosing m edges out of k and the probability of m occupied

edges and k−m unoccupied edges is given by the other part of the expression. We thus
have the generating function:

G0(x; T̂ ) =
∞∑
m=0

∞∑
k=m

pk

(
k

m

)
T̂m(1− T̂ )k−mxm

=

∞∑
k=0

k∑
m=0

pk

(
k

m

)
(xT̂ )m(1− T̂ )k−m =

∞∑
k=0

pk(1− T̂ + xT̂ )k = G0(1 + (x− 1)T̂ ). (9)

By corresponding calculations we can get the expression for the number of occupied
edges leaving a vertex we arrived at by following a randomly chosen edge

G1(x; T̂ ) = G1(1 + (x− 1)T̂ ). (10)

If the infectious period is random the transmission probability is not independent and
equations (9) and (10) are false. This can be shown by using Jensen’s inequality [7]:
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Proposition 1 (Jensen’s inequality) If f(x) is a convex function, then

E[f(X)] ≥ f(E[X])

provided that the expectations exists and are finite.

When the contact rate, r, is independent and fixed while the infectious period is random
we have transmissbility

T = 1−
∫ ∞
0

dtP (τ = dt)e−rt. (11)

By looking at the generating function of the number of neighbors that will become
infected, where rk is the probability of having k neighbors, Durrett shows that this is
not the same as (9) and (10), [2]. The entire calculation is in Appendix B, but the main
result is the following

G0(x;T ) =

∫ ∞
0

dtP (τ = dt)
∞∑
j=0

xj
∞∑
k=j

rk

(
k

j

)
(1− e−rt)je−r(k−j)t

= ... = E[G(1 + (x− 1)(1− e−rτ ))] > G(1 + (x− 1)T̂ ).

We have that (1 − (1 − x)(1 − e−rτ )) ∈ [0, 1] and G(1 − (1 − x)(1 − e−rτ )) is a strictly
convex function, since all derivatives are positive, thus if r0 + r1 < 1 and E[1− e−rτ ] =
T̂ this inequality holds. From this we can see that when the infectious periods are
random the generating function of the number of neighbors that will become infected is
larger than when two individuals are independent. This means that assuming that the
transmissibility between individuals is independent, when it is not, will overestimate the
number of infected neighbors.

4.2.2 Branching processes

In large populations the early stages of an epidemic can be described as a branching pro-
cess. In the initial stages of an epidemic most of the contacted individuals are susceptible,
which is why we can make the coupling that the number of infectious individuals follows
a branching process. In the branching process an individual’s birth corresponds to the
transition of the disease to susceptible individuals. By analysing a branching process
we can determine if a major outbreak is possible. If such an outbreak is possible we
can then further analyse the branching process to determine the probability of a major
epidemic.

To describe a branching process we look at a population that generates offspring of
the same kind. At time zero there exists an initial number of individuals, denoted by
X0. In the end of its lifetime an individual has generated j offspring with probability
Pj , 0 ≤ j. The number of offspring an individual generates is independent of other in-
dividuals offspring. The offspring from X0 result in a new generation denoted X1. The
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size of the nth generation is denoted by Xn. Thus {Xn, n = 0, 1, ...} is a Markov chain,
i.e. the next generation conditioned on past generations only depends on the current
generation. As long as P0 > 0 the population will either die out or converge to infinity.
The expected number of offspring an individual generates is given by µ =

∑∞
j=0 jPj and

the variance is σ2 =
∑∞

j=0(j − µ)2Pj [8].

A starting vertex has k neighbors with probability pk. The number of neighbors cor-
responds to the first generation of a branching process. The second generation has a
different distribution, since a vertex with a high degree is more likely to be chosen than
one with a low degree. The distribution of the number of offspring of a first generation
vertex has the probabilities for k ≥ 1

qk−1 =
kpk∑
k kpk

(12)

since we use one edge when connecting to the vertex it is k−1 on the left hand side. The
mean of q is equal to v =

∑
k k(k − 1)pk/µ where µ =

∑
k kpk, which is finite when we

assume that p has finite second moment. We can use equations (6) and (8) to calculate
the transition point of the existence of a giant component. The growth of a cluster is
a two-phase branching process where the first generation has distribution p, the initial
individual is a randomly chosen vertex and has degree k with probability pk, and later
generations has distribution q, which is the random variable determined by the qk’s. We
denote Xn as the number of vertices in generation n, where n ≥ 1, E[Xn] = µvn−1 so
when v < 1

E

( ∞∑
n=0

Xn

)
= 1 +

∞∑
n=1

µvn−1 = 1 +
µ

1− v
.

When the mean of the number of offspring is less than one, the probability that the
population will die out is one, which means that the probability of not having an giant
component is one. When v > 1 there exists a giant component. We denote the extinction
probability of the homogenous branching process with offspring distribution q by ρ. The
probability that this two phase branching process will die out is the probability that all
k independent first generation families will die out and thus

∑∞
k=0 pkρ

k = G0(ρ), where
ρ is the smallest fixed point of G1 in [0, 1]. The giant component does not cover the
entire graph, the fraction of vertices in the giant component is asymptotically 1−G0(ρ).
We show this in section 4.4.

4.2.3 Application of the birthday problem

The birthday problem is the following: among N random individuals, what is the prob-
ability that at least two of them share the same birthday? We assume that there is 365
possible birthdays and all of them is equally probable, so n = 365 [1]. We denote E as
the event that none of the N persons share birthday, the probability of event E is

P (E) = 1 ∗
(

1− 1

365

)
∗
(

1− 2

365

)
∗ ... ∗

(
1− N − 1

365

)
18



=
365 ∗ 364 ∗ ... ∗ (365−N + 1)

365N
=

365!

365N (365−N)!
.

The probability of at least two people sharing a birthday is then 1−P (E). We generalize
the birthday problem, we have n different possible outcomes and N people, then the
probability of at least two people sharing an outcome is

1− P (E) = 1− n!

nN (n−N)!
.

To calculate after how many infections the branching process approximation of the epi-
demic is unreliable we will use a version of the birthday problem. Whenever a birth
occur in the branching process, this corresponds to a contact in the epidemic process. If
the individual contacted at the ith contact is susceptible, he becomes infected. On the
other hand if he is not susceptible he already is or has already been infected so she and
all her offspring are ignored in the epidemic process because we have a loop. Thinking
about the epidemic outbreak as a branching process, we need to determine the number
of contacts made before a previously infected individual is in a transmission causing
contact again.

In the configuration model we have n vertices and an even number of stubs that will
be paired uniformly at random and create m edges. That is we have 2m stubs in our
network. We have a degree sequence and let ki denote the degree of the vertex of ith
contact or ith birth in terms of the branching process. In the branching process ap-
proximation we first choose a vertex uniformly at random among all the vertices. This
vertex has k1 number of stubs, each stub will be paired with one of the other stubs
in the network. We use the generalized birthday problem, where we have 2m possible
stubs that can be drawn. We draw stubs with replacement and when a drawn stub
is attached to a vertex to which a previously drawn stub already has been attached
we can no longer use the branching process approximation. The probability of draw-
ing a stub attached to a high degree vertex is larger than the probability of drawing a
stub attached to a low degree vertex, it is in fact proportional to the degree of the vertex.

We know that
∑n

i=1 ki = 2m and that E[K] =
∑

k kpk = 2m
n , where pk denote the

degree distribution. This means that the fraction of the vertices with degree k is pk. All
stubs are equally likely to be chosen, so the stub we draw has probability k

2m of belonging
to any particular vertex with degree k. The total number of vertices with degree k is
approximately npk, by the law of large numbers. The probability of chosing any stub
attached to a vertex with degree k is k

2m ∗ npk = kpk
E[K] . From this we can calculate the

expected degree of a vertex we reach by chosing a stub, namely

E[K ′] =
∑
k

k
kpk
E[K]

=
E[K2]

E[K]
.

We have N infected persons and will calulate when the number of infected individuals is
large enough so the probability of infecting the same individual more than once is close
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to one. We let ki denote the degree of the vertex to which the ith drawn stub is attached
and by the law of large numbers the average value of ki goes towards the expected value.
The probability that at least one of the N drawn individuals are drawn twice is

1− P (no match) = 1− 1 ∗
(

1− k1
2m

)
∗
(

1− (k1 + k2)

2m

)
∗ ... ∗

(
1− (k1 + ...+ kn−1)

2m

)

≈ 1−
N−1∏
i=0

(
1− iE[K ′]

2m

)
The first order Taylor series expansion of the exponential function when x is small is

ex ≈ 1 + x. We put x = − iE[K′]
2m where i is replaced with non-negative integers for each

term in the formula of 1− P (no match) until i = N − 1, we get

P (match) ≈ 1− exp

(
− 1

2m
(
N−1∑
i=0

iE[K ′])

)
= 1− exp

(
− 1

2m
E[K ′](N(N − 1)/2))

)

≈ 1− exp

(
− 1

2m

(
N2

2
∗ E[K2]

E[K]

))
= 1− exp

(
− 1

nE[K]

(
N2

2
∗ E[K2]

E[K]

))
,

so the probability that all the drawn stubs are attached to different vertices is approxi-

mately exp
(
− 1

2m

(
N2

2 ∗
E[K2]
E[K]

))
. The probability of drawing the same vertex more than

once is above ε, where ε is small, when

1− P (match) = 1− ε ≈ exp

(
− 1

nE[K]

(
N2

2
∗ E[K2]

E[K]

))

−2 ln(1− ε) ∗ n ∗ E[K]2

E[K2]
≈ N2 =⇒ N ≈ C ∗

√
n,

where C =
√
−2 ln(1− ε)E[K]2/E[K2]. Thus after C

√
n infections approximations

become unreliable, during the course of a major epidemic.

In Figure 4 we can see that when n = 1000000 and E[K]2/E[K2] = 1/2 the probability
of the same vertex being drawn at least twice is close to one when N ≈ 2000.

4.3 Distribution of the outbreak size

The outbreak size of the epidemic corresponds to the size of the cluster of vertices
connected by occupied edges in the percolation model. The distribution of the size, s,
of the outbreak of the disease on our network is a function of transmission. When the
contact rate is constant the transmissibility is given by equation (11) and is a function of
the infectious period τ which is either random or fixed, in the latter the transmissibility
T = T̂ . Since the size distribution is a function of transmissibility, we denote the size
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Figure 4: The probability of chosing stub attached to the same vertex more than once
when n = 1000000 and E[K2]/E[K]2 = 1/2.

distribution of the outbreak by Ps(T (τ)) = Ps(T ). For this distribution H0(x;T ) is the
generating function,

H0(x;T ) =

∞∑
s=0

Ps(T )xs.

We also need another generating function for the size of the cluster of connected vertices
we reach by following a randomly chosen edge, we denote it by H1(x;T ). There are two
possible clusters we can reach by following a random edge:

• a single vertex without any occupied edges,

• a single vertex with m occupied edges, where m ≥ 1, which all lead to another
cluster with size distribution generated by H1.

The probability of an edge between two finite clusters that already are attached to the
same vertex goes as 1

n with the size n of the graph. The probability of these clusters
having loops goes to zero as n grows large and we have a tree structure. If we denote
the probability that the initial vertex has k edges coming out of it other than the edge
we came along by qk, then [5]

H1(x;T ) = xq0 + xq1H1(x;T ) + xq2[H1(x;T )]2 + ... = xG1(H1(x;T );T ). (13)

When we randomly choose an initial vertex, the size of the cluster to which it is attached
is distributed as

H0(x;T ) = xG0(H1(x;T );T ). (14)

When we have H0 we can get Ps(T )

Ps(T ) =
1

s!

∂sH0

∂xs

∣∣∣∣
x=0

which can be solved by the Cauchy formula [6].
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4.4 Outbreak sizes and epidemic threshold

With the generating functions we can calculate the mean outbreak size, which is the
derivative of H0(x;T ) at x = 1 and can be expressed as

E[s] = H ′0(1;T ) = 1 +G′0(1;T )H ′1(1;T )

H ′1(1;T ) = 1 +G′1(1;T )H ′1(1;T ) =
1

1−G′1(1;T )

=⇒ E[s] = 1 +
G′0(1;T )

1−G′1(1;T )
= 1 +

TG′0(1)

1− TG′1(1)
. (15)

From equation (15) we can see that when TG′1(1) = G′1(1;T ) = 1 the equation diverges
and the disease outbreak might become an epidemic. This point is called the epidemic
threshold, Tc, and is equal to

Tc =
1

G′1(1)
=
G′0(1)

G′′0(1)
=

∑
k kpk∑

k k(k − 1)pk
.

Above Tc, i.e. for T > Tc, we can have an epidemic. An epidemic corresponds to a giant
component which is widely spread and can therefore contain loops, thus equation (13)
is no longer valid. The part of the graph that is covered by this giant component we
denote by S(T ). We redefine H0 as the generating function for outbreaks that are not
epidemics. These clusters do not cover the entire graph. Above the epidemic threshold

H0(1;T ) =
∑
s

Ps = 1− S(T ),

S(T ) = 1−G0(u;T ), (16)

where u is the probability that a vertex we reach by following a randomly chosen edge
remains uninfected during an epidemic. We have used the equation (14) so u ≡ H1(1;T )
which is the solution to

u = G1(u;T ). (17)

The probability of an epidemic is not one even above the epidemic transition, the prob-
ability that the disease is an epidemic is S(T ).

When the infectious periods are random, we can show that by assuming that the trans-
missibility is independent between individuals we will have the same epidemic threshold
as when we calculate it correctly. We look at the branching process approximation when
the infectious time τ is constant, to make it easier we assume it is equal to one and that
we initially have one infected individual. The transmission probability is T = (1− e−r)
and we denote the probability that an infected individual transmit the disease to j of
its k neighbors by p̂j , which is equal to

p̂j =
∞∑
k=j

pk

(
k

j

)
(1− e−r)je−(k−j)r.
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The mean of p̂ is µ̂ = µ(1− e−r), where µ is the mean of p. The probability of having k
neighbors in the next generations is qk = (k + 1)pk+1/µ for k ≥ 0. The probability that
j of the k neigbors will become infected in these generations is

q̂j =

∞∑
k=j

qk

(
k

j

)
(1− e−r)je−(k−j)r.

The mean of q is v, thus the mean of q̂ is v̂ = v(1− e−r). When v̂ > 1 we may have an
epidemic outbreak. Since v̂ = vT the epidemic threshold is the same.

4.5 Degree of infected individuals

In this section we calculate the expected degree of the vertices outside and inside the
giant component. A vertex does not get infected by any of its edges if the edge is
unoccupied, the probability of this is 1−T , or if it is occupied but the vertex to which it
is connected is uninfected, the probability of this is Tu, where u denote the probability
of a vertex we reach by following a randomly chosen edge do not belong to the giant
component. We let v denote the probability that the vertex does not get infected by
any of its edges then v = 1 − T + Tu = 1 + (u − 1)T , so vk is the probability of an
uninfected vertex of degree k. The probability of having k neighbors given that the
vertex is uninfected is

pkv
k∑

k pkv
k

=
pkv

k

G0(v)
.

The distribution of having degree k while beeing uninfected is generated by the function
G0(vx)
G0(v)

. We want to calculate the expected degree of vertices outside the giant component,
we get this by differentiating and setting x = 1

zout =
vG′0(v)

G0(v)
=
vG1(v)

G0(v)
z =

[1 + (u− 1)T ]G1(1 + (u− 1)T )

G0(1 + (u− 1)T )
z

=
[1 + (u− 1)T ]G1(u;T )

G0(u;T )
z =

[1− T + Tu]u

1− S
z,

in the last step we use equation (16) and (17), as before S denotes the fraction of the
population affected by the epidemic. The degree distribution of an infected vertex is

given by
∑
k pk(1−v)kxk∑
k pk(1−v)k

= G0(x)−G0(vx)
1−G0(v)

, therefore in the giant component the expected

degree for vertices is

zin =
G′0(1)− vG′0(v)

1−G0(v)
=

1− vG1(v)

1−G0(v)
z =

1− u[1− T + Tu]

S
z.

We have that 1−S = G0(u;T ) ≤ u which implies zout ≤ z and z ≤ zin. This means that
the mean degree of infected individuals is greater than or equal to the mean degree of
uninfected individuals when there is a large outbreak.
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5 Conclusions and Discussion

In this thesis we have studied networks, in particular the configuration model network,
and how we can use them to investigate the outbreak of an SIR epidemic. We have
been using a model which allow self-loops and parallel edges and where the neighboring
vertices make contacs at a fixed rate. The transmission of the disease depend on the
infectious periods, if the infectious periods are fixed for all individuals the transmission
is independent and identically distributed while if the infectious periods are random
this is not the case. If the infectious periods are random the extinction probability is
smaller when we assume that the transmission is independent than when we do not.
By using generating functions and percolation theory we saw that if the transmission
probability is above the epidemic threshold we have a giant component in our network
and thus an epidemic outbreak is possible. The epidemic threshold is at the point where
transmissibility is equal to

∑
k kpk/

∑
k k(k−1)pk, where k denote the degree of a vertex

and pk specifies the degree distribution. If we have a transmission probability below this
threshold there are only small components in our network and the outbreak will not
become an epidemic. We have also seen that up to approximately the

√
nth infected

individual, we can look at the epidemic outbreak as a branching process.
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Appendix

A The degree distribution of an Erdös-Rényi graph

In large networks, when the number of vertices n grows large, and we have an Erdös-
Rényi graph the degree distribution is a Poisson distribution. The probability of an edge
between two vertices is denoted by p, while the expected degree of a vertex we denote
by z. Starting from a vertex, the probability that it has degree k is the probability that
it is attached to k of the other vertices and not attached to the other n− 1− k vertices.
There are

(
n−1
k

)
ways to choose these k vertices. The probability of a vertex having

degree k is

pk =

(
n− 1

k

)
pk(1− p)n−1−k. (18)

Since p = z
n−1 will become arbitrary small when n grows large, by expanding the loga-

rithm as a Taylor series we have

ln[(1− p)n−1−k] = (n− 1− k) ln

(
1− z

n− 1

)
≈ −(n− 1− k)

z

n− 1
−→ −z, n→∞

(1− p)n−1−k → e−z

when n→∞. We also have(
n− 1

k

)
=

(n− 1)!

(n− 1− k)!k!
≈ (n− 1)k

k!

and by inserting these results to equation (18) we get

pk →
(n− 1)k

k!
pke−z =

(n− 1)k

k!

(
z

n− 1

)k
e−z = e−z

zk

k!

when n→∞.

B Random infectious periods result in overestimate with bond perco-
lation

When the infectious periods is random it can be shown that the generating functions
we calculate by analysing bond percolation methods, the equations (9) and (10) are
overestimates. The number of neighbors that will become infected have generating
function G0(x;T ) and in the following calculations is rk the probability distribution
of having k neighbors:

G0(x;T ) =

∫ ∞
0

dtP (τ = dt)

∞∑
j=0

xj
∞∑
k=j

rk

(
k

j

)
(1− e−rt)je−r(k−j)t
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=

∫ ∞
0

dtP (τ = dt)
∞∑
k=0

rk

k∑
j=0

(
k

j

)
(x(1− e−rt))je−r(k−j)t

=

∫ ∞
0

dtP (τ = dt)
∞∑
k=0

rk(e
−rt + x(1− e−rt))k = E

[ ∞∑
k=0

rk(e
−rτ + x(1− e−rτ ))k

]

= E[G(1 + (x− 1)(1− e−rτ ))] > G(1 + (x− 1)T̂ ) =

∞∑
k=0

rk(1 + (x− 1)T̂ )k.

We can use Jensen’s inequality if r0 + r1 < 1, because G(1− (1−x)(1− e−rτ )) is strictly
convex in 1− e−rτ and E[1− e−rτ ] = T̂ .
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